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Abstract—An increasing number of field robots would be used
for mission-critical tasks in remote or post-disaster areas. Due
to the limited individual abilities, these robots usually require
an edge information hub (EIH), with not only communication
but also sensing and computing functions. Such EIH could
be deployed on a flexibly-dispatched unmanned aerial vehicle
(UAV). Different from traditional aerial base stations or mobile
edge computing (MEC), the EIH would direct the operations
of robots via sensing-communication-computing-control (SC3)
closed-loop orchestration. This paper aims to optimize the closed-
loop control performance of multiple SC3 loops, with constraints
on satellite-backhaul rate, computing capability, and on-board
energy. Specifically, the linear quadratic regulator (LQR) control
cost is used to measure the closed-loop utility, and a sum LQR
cost minimization problem is formulated to jointly optimize the
splitting of sensor data and allocation of communication and
computing resources. We first derive the optimal splitting ratio
of sensor data, and then recast the problem to a more tractable
form. An iterative algorithm is finally proposed to provide a sub-
optimal solution. Simulation results demonstrate the superiority
of the proposed algorithm. We also uncover the influence of SC3

parameters on closed-loop controls, highlighting more systematic
understanding.

Index Terms—Closed-loop control, edge information hub
(EIH), linear quadratic regulator (LQR), satellite, unmanned
aerial vehicle (UAV).

I. INTRODUCTION

Robots and various unmanned machines have great potential
to help humans carry out dangerous and strenuous tasks in
post-disaster or remote areas [1], [2]. In general, the abilities
of an individual robot are usually limited. For example, the
sensors equipped on a robot could only detect its surrounding
information. The onboard computers may malfunction due
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to the electronic components failure caused by the harsh
conditions after disasters, including high temperatures and
radiation [3]. In such cases, the robots have to rely on external
helpers to assist them with mission-critical control tasks. Such
a helper should be integrated with sensing functionality for
global environmental detection [4], computing functionality
for sensor-data analysis and decision-making [5], and com-
munication functionality for delivering control commands [6].

Traditionally, the designs of the sensing, communication,
and computing modules are relatively independent of each
other, with little consideration of their relationships. How-
ever, during certain tasks, these components often collabo-
rate closely to support robots. This suggests that the helper
should be considered as a unified entity integrating sensing,
communication, and computing functionalities. As an inte-
grated center of the control-oriented information, we refer to
the above helper as an edge information hub (EIH), which
incorporates remote sensors, mobile edge computing (MEC)
servers and communication modules. Note that, the terrestrial
infrastructures may be unavailable during disasters. For more
robust applications, the EIH can be deployed on a flexibly-
dispatched unmanned aerial vehicle (UAV) in an on-demand
manner [7]. In addition, the payload of an EIH is limited in
practice, resulting in limited computing capability onboard.
Accordingly, the satellite could be leveraged to offload some
sensor data to the remote cloud. This leads to EIH-based
satellite-UAV networks for control tasks.

The EIH assists the field robots to accomplish control
tasks in a closed-loop manner. Specifically, the remote sensors
collect information of the controlled objects, and then the
computing modules (comprising the MEC server and the
remote cloud) process the sensor data for decision making and
control commands. Next, the communication modules transmit
the commands to the corresponding robots. Finally, the robots
follow the commands to perform the tasks. This entire process
is referred to as the sensing-communication-computing-control
(SC3) loops [8]. Different components of the SC3 loops
are coupled with each other. Therefore, different from the
traditional system design focusing on communications only,
it becomes more relevant to focus on the whole closed-loop
performance and to design different components of the SC3

loops with a systematic mindset. In addition, constrained by
the payload of UAVs, both communication and computing
resources on the EIH are limited [9]–[12]. This makes it
necessary to orchestrate the communication and computing
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resources to ensure that resource allocation aligns with control
requirements. Motivated by these considerations, we investi-
gate the joint communication and computing resource alloca-
tion problem in an EIH-empowered system serving multiple
robots for their control tasks, with the aim of optimizing the
closed-loop control performance.

A. Related Works
Closed-loop control utilizes the output of a dynamic system

as the input of the controller, which forms a closed loop [13]. It
is an important research field in the control theory, as it can sta-
bilize an unstable system and reduce sensitivity to disturbance
[14]. Classical control theory, rooted in frequency domain
techniques based on transfer functions, has been extensively
investigated [15], [16]. In the late 1950s, researchers began
to develop the modern control theory, employing the state
variable approach [17], [18]. An important area within modern
control theory is optimal control, which aims at seeking a
control strategy that optimizes an objective function [19], [20].
In optimal control, the linear quadratic regulator (LQR) control
cost is commonly used to measure the system state deviation
and control input energy [21]. The optimal control strategy to
minimize the LQR cost has been proven to be a linear strategy
[22]. Nevertheless, most works in the control field assume that
the communication limitations in the loops have a negligible
impact on control performance [23]. However, the resources
on the EIH are usually limited by the UAV payload and flight
time. In such cases, it is necessary to take the limitations of
communication and computing capability into consideration.

As an integration of computing and physical processes,
cyber-physical systems (CPSs), which require computation,
communication, control, and perception, have received great
attention [24]. Some works have delved into communication
design to meet high requirements in the CPSs [25]–[27]. In
particular, [25] proposed the design and implementation of a
real-time high-speed wireless communication protocol called
RT-WiFi, so as to provide deterministic timing at a high sam-
pling speed in CPSs. The authors in [26] analyzed the options
and configuration choices for the fifth generation (5G) network
deployment in industrial CPSs. In [27], an energy-efficient
massive multiple-input multiple-output (MIMO) system was
designed to reduce the power consumption and fabrication
cost for the industrial CPSs. On the other hand, in order to
effectively manage the diverse data with low latency, MEC has
been investigated as a means of integration in the CPSs [28],
[29]. The authors in [28] proposed a deep Q-network-based
service placement algorithm, which minimizes the service
response time by optimizing the service placement, resource
allocation and workload scheduling. Ref. [29] investigated
large-scale CPSs, and proposed an edge intelligent approach
to minimize the service latency and maximize system lifetime.
Although these works have provided valuable insights into
SC3 integration, further research is needed to comprehend
the coupling relationships among the sensing, communica-
tion, computing, and control components in such systems.
Exploring how the sensing, communication, and computing
capabilities influence the overall control performance will be
beneficial for a more effective SC3 system design.

As a special type of CPSs, networked control systems
(NCSs), wherein the control systems are connected through
a communication network, have been recently studied due to
their flexibility and maintainability [30], [31]. Many works
have been conducted to investigate the impact of communi-
cation limitations on the control system stability from various
aspects, including data rate [23], delay [32], packet loss [33],
[34], and so on. In [23], the authors demonstrated that the con-
trol system can be stabilized only if the communication data
rate exceeds its intrinsic entropy rate. Ref. [32] investigated
an NCS consisting of clock-driven sensors and event-driven
controllers and actuators, and analyzed the stability region
plot with respect to the sampling rate and network-induced
delay. Authors in [33] considered the logarithmic quantization
and packet loss, and derived the stability condition. Ref.
[34] further considered the packet loss and random delays
in NCSs. A set of necessary and sufficient conditions for
stabilizing the NCSs was proposed. On the other hand, some
works designed control strategies contemplating communi-
cation limitations [35]–[39]. A control strategy aiming at
achieving good performance over an unreliable communica-
tion network affected by packet loss and delays was described
in [35], which uses the data packet frame to transmit control
sequences. The authors in [36] proposed an event-triggered
control strategy that guaranteed stability with an H∞ norm
bound, where the communication delay was considered. In
[37], the control strategy and transmit power policies were
designed to minimize the weighted sum of the control cost
and power cost, where the packet loss was considered. Ref.
[38] investigated the tradeoff between the data rate and the
control performance. The transmission and control strategies
were proposed to minimize the sum of the communication
cost and control cost function. Authors in [39] considered
the packet loss and optimized control parameters under the
system instability probability constraint. In addition, some
works investigated the influence of communication indicators
on control performance [40]–[42]. In [40], a lower bound
of the minimum average data rate to achieve a certain LQR
cost was presented. Authors in [41] investigated connected
and automated vehicles, where the impact of communication
erasure channels on vehicle platoon formation and robustness
was analyzed. Ref. [42] further investigated the tradeoff be-
tween the average data rate and control performance of NCSs,
considering the transmission delay. All of these works are
valuable for analyzing the SC3 loops. However, most of these
works only investigated one control loop from the perspectives
of performance analysis or control strategy design, instead of
resource allocation among multiple SC3 loops.

Recently, some works have been conducted on the commu-
nication resource allocation among SC3 loops considering the
control performance. Constraints on the control performance
have been considered in the resource allocation [43]–[45]. The
authors in [43] studied the resource allocation problem in wire-
less control systems, where the bandwidth and transmit power
were jointly optimized to maximize the spectral efficiency, un-
der the control convergence rate constraint. Ref. [44] designed
a frequency allocation policy to keep the overall control system
stable. In [45], the authors investigated a system identification
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problem in a wireless NCS. The transmit power and channel
allocation were jointly optimized to maximize the communi-
cation throughput or minimize the power consumption, while
guaranteeing the system identification performance. Unlike
these works that focused on the communication process, in
an SC3 system, the communication process is only designed
to facilitate control and it is the control performance that
should be the main objective for optimization. Some studies
investigated the communication resource allocation aiming at
improving the control performance [8], [46], [47]. Ref. [46]
maximized the ratio of the remained energy to LQR cost
by optimizing the transmit power and time allocation. The
authors in [47] extended the work in [46] by introducing
reconfigurable intelligent surface (RIS) technology to assist
communication in a wireless NCS, where the transmission
power, time, beamforming matrix, and RIS reflecting coef-
ficients were jointly optimized to maximize the ratio of the
reliability performance to LQR cost. In our previous work
[8], we formulated an LQR cost minimization problem that
optimized the transmit power allocation. However, these works
did not utilize MEC or consider the computing resource
allocation to further reduce latency.

On the other hand, the UAV-aided MEC has been widely
investigated as a potential technology to extend the cover-
age of computation service [48]–[51]. The authors in [48]
considered a UAV-aided MEC system, where the user data
can be processed locally or offloaded to the MEC. The sum
of delays was minimized by jointly optimizing the UAV
trajectory, the ratio of offloading tasks, and the user scheduling
variables. The authors in [49] further proposed a multi-agent
reinforcement learning method to solve the resource allocation
problem in an MEC- and UAV-assisted vehicular network. Ref.
[50] considered the information security in the UAV-assisted
MEC system, where the secure computation efficiency was
maximized by optimizing the offloading decision and resource
allocation based on deep reinforcement learning. The authors
in [51] investigated a vehicular edge computing system, where
a UAV was utilized to assist task offloading. A UAV-assisted
vehicular task offloading problem was proposed to minimize
vehicular task delay. Most existing works on the UAV-aided
MEC focus on communication performance, such as latency or
energy efficiency. However, as mentioned above, in SC3 loops,
our main concern is the overall closed-loop control perfor-
mance, rather than the separate communication or computing
performances. Therefore, the closed-loop performance is of
more interest to the system design.

In summary, despite the above works, several outstanding
challenges remain in the SC3 system design. Firstly, the
sensing, communication, computing, and control components
in the SC3 loops cooperate closely to accomplish common
tasks, and they are coupled with each other. However, existing
works mainly focus on the aforementioned four components
separately, lacking a holistic consideration of the entire system.
Secondly, to efficiently utilize the limited resources on the EIH
and improve the overall control performance, the multi-domain
resources, such as the transmit power, the communication rate,
and the computing capability, should be jointly orchestrated.
There is lack of work focusing on the control performance

to concurrently address the joint allocation of multi-domain
resources. Therefore, it is imperative to explore the joint
allocation of the multi-domain resources with the objective
of the control performance.

B. Main Contributions

Motivated by the above observations, in this paper, we
investigate an EIH-empowered SC3 system where an EIH
assists multiple robots with their control tasks. The UAV-
mounted EIH integrates the sensing, computing, and commu-
nication capabilities to assist the robots, and utilizes satellite
as backhaul. We jointly optimize the communication and
computing resources, as well as the splitting ratio of sensor
data, to minimize the sum LQR cost of multiple loops. The
optimization problem is a non-convex problem. We recast it
to a more tractable form and propose an iterative algorithm to
solve it. The main contributions are summarized as follows.

• We conceive the sensing, communication, and computing
modules as a unified entity that assists robots to accom-
plish tasks, referred to as an EIH. This allows us to focus
on the coupling among the functions within the SC3

loops. By comprehensively contemplating the influence
of different components and orchestrating multi-domain
resources, we can improve the overall closed-loop control
performance efficiently.

• We investigate a UAV-mounted EIH, which is integrated
with a remote sensor, an MEC server, and a communi-
cation module to assist multiple robots with their control
tasks. The sensor data can be processed locally on EIH,
offloaded to the cloud after pre-processing, or offloaded
to the cloud without pre-processing. In order to explore
the potential of closed-loop orchestration, we jointly
optimize the splitting of sensor data and allocation of
communication and computing resources. Specifically,
we utilize the LQR cost to evaluate the overall control
performance, and incorporate the minimum information
entropy constraint to achieve a certain LQR cost.

• We formulate a sum LQR cost minimization problem,
which jointly optimizes the splitting ratio of sensor data,
the computing capability of MEC, the satellite-backhaul
rate, and the transmit power from EIH to robots. The
problem is non-convex. We derive the optimal splitting
vector of sensor data, and accordingly recast the original
problem to a more tractable form. Finally, we propose an
iterative algorithm to solve the recast problem based on
the successive convex approximation (SCA) method.

• We provide simulation results to show the superiority of
the proposed closed-loop-oriented method over the tradi-
tional communication-oriented method. Additionally, we
show how the sensing noise variance and the computing
capability influence the LQR cost through simulation.

C. Organization and Notation

The rest of the paper is organized as follows. Section II
introduces the system model, and formulates the optimization
problem. In Section III, we recast the original problem to a
more tractable form and propose an iterative algorithm to solve
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Fig. 1. Illustration of an EIH-empowered SC3 system, where the EIH is
mounted on a UAV, and utilizes satellites to backhaul data.

it. Simulation results are provided in Section IV with further
discussions. Finally, Section V concludes this paper.

Throughout this paper, lower case and upper case boldface
symbols denote vectors and matrices, respectively. Rn rep-
resents the collection of all the n-dimensional real-number
vectors, and Rm×n represents the collection of all the m× n
real-number matrices. E is the expectation operator. tr (·) and
det (·) denote the trace operator and the determinant operator,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider an EIH-empowered SC3

system, where K field robots are assisted by the EIH to
perform mission-critical tasks. The UAV-mounted EIH incor-
porates a remote sensor, an MEC server, and a communica-
tion module to synergistically integrate sensing, computing,
and communication functions. Due to the limited computing
capability on the EIH, part of the sensor data will be offloaded
to the cloud server through the satellite.

The EIH directs the field robots by forming SC3 closed
loops. In each loop, the remote sensor captures the states of
the controlled object. The sensor data is then processed in
the MEC server or the cloud to judge the situation and make
corresponding control commands. Next, the communication
module sends these commands to the field robots. The field
robots follow the received commands to handle their object.
The whole process is performed periodically. In the following,
we will detail the models of different parts of the SC3 loop.

A. Computation Model

In each cycle, the sensor data is analyzed to compute the
optimal control commands. Due to the limited computing
capability of the MEC server in the EIH, some of the sensor
data will be offloaded to the cloud through satellite. As shown
in Fig. 2, we assume the sensor data can be arbitrarily split
into three parts:

EIH
Sensor
data ,1kD

,2kD

,3kD

,3kD

,2kD

,2kD

EIH
Sensor
data ,1kD

,2kD

,3kD

,3kD

,2kD

,2kD

Fig. 2. Illustration of three flows of the remote sensor data.

• Part 1: processed in the MEC server completely.
• Part 2: pre-processed in the MEC server and then trans-

mitted to the cloud for further processing.
• Part 3: processed in the cloud completely.

The data sizes of the three parts of the sensor data in loop k
are denoted as Dk,1, Dk,2 and Dk,3 in bits. We have

Dk,1 +Dk,2 +Dk,3 = Dk, (1)

where Dk denotes the total size of the sensor data of SC3 loop
k in each cycle.

The three parts of sensor data are processed in parallel as
data streams. The overall computation time depends on the
maximum processing time of the three parts.

For the first part of sensor data, the computation time can
be formulated as

T comp
k,1 =

αDk,1

fk,1
, (2)

where α denotes the number of CPU cycles for processing the
sensor data per bit, and fk,1 is the computing capability (i.e.,
CPU frequency) allocated to first part of data in loop k by the
MEC.

For the second part of sensor data, the data are first pre-
processed in the MEC server, where the processing time can
be calculated as

T proc
k,2 =

βDk,2

fk,2
, (3)

where β denotes the number of CPU cycles for pre-processing
sensor data per bit, and fk,2 is the computing capability
allocated to second part of data in loop k by the MEC server.

We assume the data compression ratio of pre-processing is
ρ, i.e., data of ρDk,2 bits will be transmitted to the satellite
for further processing after pre-processing. The transmission
latency from the UAV to satellite can be calculated as

T trans
k,2 =

ρDk,2

Rk,2
, (4)

where Rk,2 is the backhaul rate from UAV to satellite allocated
to the second part of data in loop k.

The downlink transmission data rate from the satellite to
the cloud is usually much bigger than the uplink data rate.
Therefore, the downlink transmission latency is negligible
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compared with T trans
k,2 . In addition, we assume that the cloud has

enough computing capability, so that the computation time in
the cloud is negligible. The transmission latency of the output
data is also assumed to be ignorable as the output data is much
smaller than the input data size. Based on the above analysis,
the overall time for processing the second part of sensor data
can be calculated as

T comp
k,2 =

{
0, if Dk,2 = 0

max
{
T proc
k,2 , T trans

k,2

}
+ 4τ, if Dk,2 > 0,

(5)

where τ is the propagation latency between the ground and the
satellite. The pre-processing and the transmission process are
performed in parallel. Therefore, the overall latency will be
determined by the maximum of the two processes. It should
be noted that we have considered the special case of Dk,2 = 0,
i.e., we do not split any data to Part 2. In such case, the latency
for the second part of data is zero.

For the third part of data, similarly, the total time can be
calculated as

T comp
k,3 =


0, if Dk,3 = 0

Dk,3

Rk,3
+ 4τ, if Dk,3 > 0,

(6)

where Rk,3 is the satellite-backhaul rate allocated to the third
part of sensor data in loop k.

In conclusion, the overall time duration of the computing
phase can be formulated as

T comp
k = max

{
T comp
k,1 , T comp

k,2 , T comp
k,3

}
. (7)

Considering the limited computation and communication
resources, we have the following constraints

K∑
k=1

(fk,1 + fk,2) ≤ Fmax, (8)

K∑
k=1

(Rk,2 +Rk,3) ≤ RU2S
max , (9)

where Fmax denotes the computing capability of the MEC
server, and RU2S

max denotes the maximum satellite-backhaul rate.

B. Communication Model

After processing the sensor data, the control commands
will be transmitted to the field robots. The EIH transmits
the control commands to K robots simultaneously through
orthogonal channels1. Denoting the transmit power allocated
to loop k as pk, we have

K∑
k=1

pk ≤ Pmax, (10)

where Pmax represents the transmit power constraint.

1In this paper, an assumption is made that different channels are completely
orthogonal, to neglect the interference between the robots. This allows us to
concentrate on the control-performance-oriented resource allocation and data
offloading scheme. The inclusion of interference among robots will be a future
study.

The EIH communications with satellites and field robots
in different frequency bands, so we assume that there is no
communication interference among different communication
links. The wireless channels between the EIH and robots are
assumed to be dominated by line-of-sight (LoS) links [52].
Therefore, the channel gain from the EIH to robot k follows
the free space path loss model as gk = γ0

d2
k

, where dk denotes
the distance from the UAV to robot k and γ0 is the reference
channel gain at the distance of one meter. The transmit data
rate from EIH to robot k can be calculated as2

RU2G
k (pk) = log2

(
1 +

gkpk
σ2

)
, (11)

where σ2 denotes the channel noise power.
The computing phase and communication phase of each

loop share the time resource, which can be denoted as

T comp
k + T commu

k ≤ Tk, (12)

where T commu
k denotes the transmission time of the control

commands, and Tk is the time recourse reserved for the
computing and communication phase, which is assumed to
be fixed in each cycle.

C. Control Model

After receiving the control commands from the EIH, the
robots follow the commands to handle the objects. For sim-
plicity, we model each robot and its object as a linear control
system3, and formulate the discrete-time system equation of
the k-th control system in cycle t as [40]

xk,t+1 = Akxk,t +Bkuk,t + vk,t, (13)

where t denotes the cycle index, xk,t ∈ Rnk denotes the
system state, such as the temperature or radiation intensity,
uk,t ∈ Rmk denotes the control input, nk and mk denote the
dimensions of the system state and control input, respectively,
vk,t ∈ Rnk denotes Gaussian control system noise with mean
zero and covariance ΣV

k , and Ak and Bk are fixed nk × nk

and nk × mk matrices denoting the state matrix and input
matrix. The matrix Ak describes how a state depends on the
previous state, and the matrix Bk describes how the control
input affects the system state. The two matrices are determined
by the type of control task, which are assumed to be known
to the EIH.

We also consider a linear sensing model, where the obser-
vation equation can be written as

yk,t = Ckxk,t +wk,t, (14)

where yk,t ∈ Rqk is the sensing output, Ck ∈ Rqk×nk is
the observation matrix that defines how the system state is
transformed into an output vector, qk denotes the dimension
of the sensing output, and wk,t ∈ Rqk is the Gaussian sensing
noise with mean zero and covariance ΣW

k .

2The small-scale channel fading is not considered here. In more diverse
environmental conditions where the small-scale fading should be taken into
account, we can regarded (11) as an upper bound for the expected data rate

3Although some control systems may be quite complicated, they can still
be analyzed as linear systems through local linearization [53].
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In this paper, we evaluate the control performance with the
infinite-horizon LQR cost [40], which is formulated as

lk ≜ lim
N→∞

E

[
1

N

N∑
t=1

(
xT
k,tQkxk,t + uT

k,tRkuk,t

)]
, (15)

where Qk and Rk are semi-positive definite weight matrices.
The term xT

k,tQkxk,t denotes the deviation of the system
from zero state, and the term uT

k,tRkuk,t denotes the control
energy consumption. The physical significance of the LQR
cost function is that it is a comprehensive measure of the
system state convergence and control energy consumption.
A lower LQR cost indicates smaller system state deviation
and less control energy consumption, which implies a better
control performance. The weight matrices Qk and Rk balance
the state and the energy, which can be set according to the
practical requirements. For example, one should set the entries
of Qk to be large if one wants the state of the system to
converge to zero quickly but is not so concerned about energy
consumption.

As in (15), the LQR cost is determined by the system state
xk,t and the control input uk,t, which is mainly influenced by
the control strategy that computes the control input based on
the sensing output. We will not try to optimize the control
strategy, which is beyond the scope of this work. Instead,
we will focus on the impact of the communication capability
on the LQR cost, and accordingly carry out computing and
communication resource allocation.

We use the information entropy transmitted from the EIH to
the robots per cycle to evaluate the communication capability.
According to [40, Theorem 5], in order to achieve a certain
LQR cost lk, the average information entropy transmitted
through channel k per cycle must satisfy the following con-
straint

BT commu
k RU2G

k (pk) ≥ ek (lk) , (16)

where B denotes the bandwidth of each channel, the left side
of (16) denotes the maximum information entropy transmitted
per cycle, and

ek (lk) ≜ hk +
nk

2
log2

(
1 +

nk|det (NkMk) |
1

nk

lk − lmin,k

)
(17)

denotes the minimum entropy to achieve LQR cost lk, hk ≜
log2 |det (Ak) | is the intrinsic entropy rate of object k. It
should be noted that hk evaluates the stability of object
k. An object with a larger intrinsic entropy rate is more
difficult to stabilize [23]. The term lmin,k = tr

(
ΣV

kSk

)
+

tr
(
ΣkA

T
kMkAk

)
denotes the lower bound of the LQR cost,

where Nk, Mk, Σk and Sk are the solutions to the matrix
equations shown in [40], which are related to the control
parameters, i.e., Ak, Bk, Ck, Rk, Qk, ΣV

k , and ΣW
k .

Remark 1: The constraint in (16) is derived under the assump-
tion that both the sensing noise and control process noise
follow Gaussian distributions. This assumption is based on
the central limit theorem, as the noise can be regarded as
the cumulative outcome of a large number of independent
variables. If the noise is non-Gaussian, the expression in

(16) will be imprecise, offering only an approximation of the
relationship between the information entropy and LQR cost.
It is worth noting that if the sensing capability is sufficiently
strong so that the sensing noise is negligible, then (16) can be
extended to scenarios where the control noise is non-Gaussian,
as delineated in [40, Theorem 1]. The revised expression of
ek for cases with non-Gaussian control process noise and
negligible sensing noise is [40]

e′k (lk) = hk +
nk

2
log2

(
1 +

nkN (vk) |det (Mk) |
1

nk

lk − tr
(
ΣV

kSk

) )
,

(18)
where N(vk) =

1
2π exp

(
2
nk

h(vk)
)

, and h(vk) is the differ-
ential entropy of the noise vk. The more complicated case
with non-Gaussian noises can be a future study.

D. Problem Formulation

In this work, we aim to minimize the sum LQR cost of the
SC3 loops by jointly optimizing the transmit power allocation
p = {pk}, the computing capability allocation f = {fk,i}, the
satellite-backhaul rate allocation R = {Rk,j}, and the data
splitting vector D = {Dk,r} (where i ∈ {1, 2}, j ∈ {2, 3}
and r ∈ {1, 2, 3}), while keeping the information entropy
constraint satisfied. The optimization problem is formulated
as

min
p,f ,R,D,l

K∑
k=1

lk (19a)

s.t.
K∑

k=1

pk ≤ Pmax, (19b)

Dk,1+Dk,2+Dk,3 = Dk, k = 1, 2, · · · ,K,
(19c)

K∑
k=1

(fk,1 + fk,2) ≤ Fmax, (19d)

K∑
k=1

(Rk,2 +Rk,3) ≤ RU2S
max , (19e)

T comp
k + T commu

k ≤ Tk, k = 1, 2, · · · ,K, (19f)

BT commu
k RU2G

k (pk) ≥ ek (lk) , (19g)

where l = [l1, l2, · · · , lK ]. The problem in (19) is non-convex
due to the non-convex and non-continuous expression of T comp

k

as in (7). Therefore, it is difficult to solve (19) directly. Next,
we will recast (19) to an equivalent and more tractable form
by decoupling the optimization of data splitting vector D.

III. PROBLEM TRANSFORMATION AND ITERATIVE
SOLUTION

In this section, we will derive the optimal data splitting
vector, given the computing capability and satellite-backhaul
rate allocated to each SC3 loop, so that we can decouple the
optimization of D, and find a way to simplify the original
problem. Then, based on the simplified optimization problem,
we propose an iterative algorithm to obtain a sub-optimal
solution.
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A. Problem Transformation

It can be seen from (19) that the LQR cost lk is influenced
by the other variables only through the information entropy
constraint (19g). As ek (lk) is decreasing with lk, we can
prove that lk is increasing with the computation time T comp

k .
Therefore, minimizing the LQR cost lk in SC3 loop k indicates
minimizing the computation time T comp

k . In addition, it is ob-
served that the data splitting parameters in different SC3 loops
are decoupled with each other. Therefore, if the computing and
communication resources allocated to SC3 loop k is given, the
optimal data splitting vector in that loop can be calculated by
minimizing the computation time. Based on the above analysis,
we can transform the optimization problem (19) to

min
p,f ′,R′,l

K∑
k=1

lk (20a)

s.t.
K∑

k=1

pk ≤ Pmax, (20b)

K∑
k=1

fk ≤ Fmax, (20c)

K∑
k=1

Rk ≤ RU2S
max , (20d)

T comp,∗
k (fk, Rk) + T commu

k ≤ Tk, k = 1, 2, · · · ,K,
(20e)

BT commu
k RU2G

k (pk) ≥ ek (lk) , (20f)

where fk = fk,1 + fk,2 denotes the overall computing
capability allocated to SC3 loop k, Rk = Rk,2 + Rk,3

denotes the satellite-backhaul rate allocated to SC3 loop k,
and f ′ = {fk} and R′ = {Rk}. The function T comp,∗

k (fk, Rk)
denotes the minimal computation time of loop k when fk and
Rk are given. T comp,∗

k (fk, Rk) can be calculated as the optimal
objective function value of the following optimization problem

min
Dk,fk,Rk

max
{
T comp
k,1 , T comp

k,2 , T comp
k,3

}
(21a)

s.t. Dk,1+Dk,2+Dk,3 = Dk, (21b)
fk,1 + fk,2 ≤ fk, (21c)
Rk,2 +Rk,3 ≤ Rk, (21d)

where Dk = {Dk,1, Dk,2, Dk,3}, fk = {fk,1, fk,2}, and
Rk = {Rk,2, Rk,3} denote the split schemes in SC3 loop
k. The optimization problem (21) is non-convex due to the
non-convex and non-continuous objective function. Next, we
will solve the problem (21) and give a closed-form expression
of T comp,∗

k (fk, Rk).

B. Optimal Solution to Problem (21)

The problem in (21) is not convex and therefore difficult to
solve directly. In order to solve (21), we have the following
lemma.

Lemma 1: If fk < αDk

4τ , then the equations

T comp
k,1 = T comp

k,2 = T comp
k,3 , (22)

T proc
k,2 = T trans

k,2 (23)

must hold in order to minimize the computation time in SC3

loop k.

Proof: From (2), (5) and (6), we can see that the computation
time of each part of sensor data is strictly increasing with
the respective data size, i.e., Dk,1, Dk,2 and Dk,3. Therefore,
if (22) does not hold and Tk,i (i ∈ {1, 2, 3}) is larger than
the other two terms, we have T comp

k = T comp
k,i . We can reduce

the corresponding data size Dk,i and increase the data size
of the other two parts, until (22) holds. Following the above
procedure, we decrease T comp

k,i and increase the computation
time of the other two parts, and thereby decreasing the overall
computation time T comp

k . Therefore, the equation (22) must
hold to minimize the overall computation time if fk < αDk

4τ

(the condition fk < αDk

4τ guarantees that T comp,∗
k > 4τ and

increasing the data size of the second or third parts at the
jumping point, i.e., the zero pint, will not increase the overall
computation time).

Next, we prove that (23) should hold to minimize T comp
k .

If T comp
k,2 > T trans

k,2 , which indicates that the communication re-
source for the second part of sensor data in loop k is redundant,
we can decrease Rk,2 and increase Rk,3 until (23) holds. The
above procedure will decrease T comp

k,3 while maintaining T comp
k,2

unchanged, resulting in a non-increasing overall computation
time T comp

k . On the other hand, if T comp
k,2 < T trans

k,2 , we can
decrease fk,2 and increase fk,1 in a similar way to ensure that
T comp
k is non-increasing. □

Based on Lemma 1, we have the following proposition.

Proposition 1: The optimal value of the objective function of
(21) is given by the piece-wise function shown in (24) on the
next page.

Proof: See Appendix A. □

Remark 2: In most cases, all the computing and communica-
tion resources allocated to SC3 loop k will be utilized, and
T comp,∗
k is strictly decreasing with respect to fk and Rk. The

exception is when fk ≥ αDk

4τ , which indicates that the MEC
computing capability is enough and the computation time in
the MEC server is less than the satellite propagation delay. In
such case, all the sensor data will be processed in the EIH,
and the satellite communication resource will not be utilized
even if Rk is large.

Remark 3: In the case when α− αρ− β < 0, we have S1 =
S2 = ∅. In such case, we have Dk,2 = 0, i.e., none of the
sensor data will be pre-processed in the MEC server. In fact,
the condition m−mρ− n < 0 holds if n is close to m or ρ
is close to 1, which implies that pre-processing the sensing is
not so useful.

C. Joint Communication and Computing Resource Optimiza-
tion

Based on Proposition 1, we can remove the optimization
variables D and recast (19) to an equivalent form as (20).
However, (20) is still a non-convex optimization problem due
to the non-convexity of T comp,∗

k (fk, Rk). Next, we propose
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T comp,∗
k (fk, Rk)=



T 1
k (fk, Rk)≜

βDk

βRk+(1−ρ) fk
+4τ, (fk, Rk) ∈ S1 ≜

{
(f,R) | 0 ≤ f ≤ min

{
(α− αρ− β)Dk − 4βτR

4 (1− ρ) τ
,
βR

ρ

}}
T 2
k (fk, Rk)≜

ραDk−4ρτfk+4βRkτ

ρfk + (α− β)Rk
+4τ, (fk, Rk) ∈ S2 ≜

{
(f,R) | βR

ρ
≤ f ≤ (α− αρ− β)Dk − 4βτR

4 (1− ρ) τ
,R ≥ 0

}
T 3
k (fk, Rk)≜

αDk − 4τfk
fk + αRk

+ 4τ, (fk, Rk) ∈ S3 ≜

{
(f,R) | (α− αρ− β)Dk − 4βτR

4 (1− ρ) τ
≤ f ≤ αDk

4τ
, f ≥ 0, R ≥ 0

}
T 4
k (fk, Rk)≜

αDk

fk
, (fk, Rk) ∈ S4 ≜

{
(f,R) | f ≥ αDk

4τ
,R ≥ 0

}
(24)

an iterative algorithm to solve the joint communication and
computing resource optimization problem

First, we regard the communication time {T commu
k } as

optimization variables, and rewrite (20) as

min
p,f ′,R′,l,Tcommu

K∑
k=1

lk (25a)

s.t.
K∑

k=1

pk ≤ Pmax, (25b)

K∑
k=1

fk ≤ Fmax, (25c)

K∑
k=1

Rk ≤ RU2S
max , (25d)

T comp,∗
k (fk, Rk) + T commu

k ≤ Tk,

k = 1, 2, · · · ,K,
(25e)

BRU2G
k (pk) ≥

ek (lk)

T commu
k

, k = 1, 2, · · · ,K,

(25f)

where Tcommu = {T commu
k }. By regarding T commu

k as a variable
and moving it to the left of (25f), we can clarify the convexity
of (25f), based on the following lemma.

Lemma 2: The function f (x, y) = 1
y log

(
1 + 1

x−a

)
with a ∈ R+ is convex in the domain domf =
{(x, y) |x > a, y > 0}.

Proof: See Appendix B. □

Based on Lemma 2, it can be shown that the right side
of (25f), i.e., ek (lk) /T

commu
k , is convex with respect to lk

and T commu
k . In addition, we have RU2G

k (pk) is concave with
respect to pk. Therefore, constraint (25f) describes a convex
set. However, the function T comp,∗

k (fk, Rk) in (25e) is piece-
wise and non-convex, which makes this problem still difficult
to solve. Next, we propose an iterative algorithm to solve (25)
based on the SCA method [54]. Before proceeding further,
we introduce the following lemma in order to approximate
the non-convex function T comp,∗

k (fk, Rk).

Lemma 3: For the convex function 1/xy with x > 0 and
y > 0, we have the following inequality for any x0 > 0 and

y0 > 0

1

xy
≥ 1

x0y0

(
3− x

x0
− y

y0

)
. (26)

Proof: The convexity of 1/xy can be checked by checking the
Hessian matrix. With the convexity of 1/xy, we can obtain the
inequality in (26) immediately through the first-order condition
of convex functions [55, Section 3.1.3]. □

Based on Lemma 3, we have the following inequality by
substituting x = 1/u, y = au+bv, x0 = 1/u0, y0 = au0+bv0
into (26)

u

au+ bv
≥ u0

au0 + bv0

(
3− u0

u
− au+ bv

au0 + bv0

)
, (27)

where a > 0, b > 0, u > 0 and v > 0.
With (27), we are ready to approximate T comp,∗

k (fk, Rk)
with a convex function. The approximate function
T

comp,∗
k (fk, Rk|fk0, Rk0) is formulated as (30) on the

next page, where fk0 > 0 and Rk0 > 0 are fixed values,
and T

2

k (fk, Rk|fk0, Rk0) and T
3

k (fk, Rk|fk0, Rk0) are
two convex functions that approximate T 2

k (fk, Rk) and
T 3
k (fk, Rk), respectively, formulated as (31) and (33) on the

next page. The inequalities in (32) and (34) follow from (27),
indicating that

T
2

k (fk, Rk|fk0, Rk0) ≥ T 2
k (fk, Rk) , (28)

T
3

k (fk, Rk|fk0, Rk0) ≥ T 3
k (fk, Rk) . (29)

It should be noted that the approximate function
T

comp,∗
k (fk, Rk|fk0, Rk0) is not a piece-wise function. Instead,

the specific expression of T
comp,∗
k (fk, Rk|fk0, Rk0) depends

on the values of fk0 and Rk0. We have the following lemma
which illustrates the fundamental properties of T

comp,∗
k .

Lemma 4: The function T
comp,∗
k (fk, Rk|fk0, Rk0) shown in

(30) is a convex function, and satisfies the following inequality

T
comp,∗
k (fk, Rk| fk0, Rk0) ≥ T comp,∗

k (fk, Rk) , (35)

where fk0 and Rk0 are non-negative constants, and the
equality holds if fk = fk0, and Rk = Rk0.

Proof: See Appendix C. □

By approximating T comp,∗
k (fk, Rk) with

T
comp,∗
k (fk, Rk|fk0, Rk0), we propose an iterative algorithm

to obtain a sub-optimal solution to problem (25). During each
iteration, we solve an approximate optimization problem of
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T
comp,∗
k (fk, Rk|fk0, Rk0) =


max

{
T 1
k (fk, Rk) , T

2

k (fk, Rk|fk0, Rk0)
}
, (fk0, Rk0) ∈ S1 ∪ S2

T
3

k (fk, Rk|fk0, Rk0) , (fk0, Rk0) ∈ S3

T 4
k (fk, Rk) , (fk0, Rk0) ∈ S4

(30)

T
2

k (fk, Rk|fk0, Rk0) ≜
ραDk

ρfk + (α− β)Rk
+ 4

ατ

α− β
−

4ρατ
α−β fk0

ρfk0 + (α− β)Rk0

[
3− fk0

fk
− ρfk + (α− β)Rk

ρfk0 + (α− β)Rk0

]
(31)

≥ ραDk

ρfk + (α− β)Rk
+ 4

ατ

α− β
−

4ρατ
α−β fk

ρfk + (α− β)Rk
(32)

T
3

k (fk, Rk|fk0, Rk0) ≜
αDk

fk + αRk
+ 4τ − 4τfk0

fk0 + αRk0

[
3− fk0

fk
− fk + αRk

fk0 + αRk0

]
(33)

≥ αDk

fk + αRk
+ 4τ − 4τfk

fk + αRk
(34)

(25), formulated as

min
p,f ′,R′,l,Tcommu

K∑
k=1

lk (36a)

s.t.
K∑

k=1

pk ≤ Pmax, (36b)

K∑
k=1

fk ≤ Fmax, (36c)

K∑
k=1

Rk ≤ RU2S
max , (36d)

T
comp,∗
k

(
fk, Rk|f (i−1)

k , R
(i−1)
k

)
+T commu

k ≤Tk,

k = 1, 2, · · · ,K,
(36e)

BRU2G
k (pk) ≥

ek (lk)

T commu
k

, k = 1, 2, · · · ,K,

(36f)

where i denotes the iteration index, and f
(i−1)
k and

R
(i−1)
k denote the solutions in the (i− 1)-th iteration. As

T
comp,∗
k (fk, Rk|fk0, Rk0) is a convex function, it can be

proven that problem (36) is a convex optimization problem,
which can be solved efficiently with convex optimization
toolboxes [55].

By solving the optimization problem in (36) iteratively, we
propose Algorithm 1 to solve (25). The convergence of this
algorithm can be demonstrated with the following proposition.

Proposition 2: The output solution of Algorithm 1 is a feasi-
ble solution to the optimization problem in (25). In addition,
Li in Algorithm 1 is non-increasing along with the iterations,
i.e., Li−1 ≥ Li holds for any i > 1. Therefore, Algorithm 1
is assured to converge.

Proof: See Appendix D. □

The computational complexity of the proposed Algorithm 1
to solve (25) is dominated by the process of solving (36) dur-
ing the iterations. As (36) is a convex optimization problem, it

Algorithm 1: The proposed iterative algorithm for
solving problem (25)

Input : System parameter Pmax, Fmax, RU2S
max ,

etc; the convergence tolerance ϵ.
Initialization: Calculate a feasible f ′0 and R′0 based

on (36c) and (36d), and set i = 0
1 repeat
2 Set i = i+ 1;
3 Update pi, f ′i and R′i by solving (36), denote the

value of the objective function as Li;
4 until Li−1−Li

Li−1 < ϵ;
Output : the optimal resource allocation pi, f ′i,

R′i, and the sum LQR cost Li.

can be solved with interior point method [55]. The complexity
of the interior point method is O

(
K3.5 log (1/ϵ0)

)
, where ϵ0

is the solution accuracy of the interior point method [56].
Denoting the iteration number of Algorithm 1 as I1, the
overall computational complexity of the proposed algorithm
is O

(
I1K

3.5 log (1/ϵ0)
)
. In the next section, we will evaluate

the iteration numbers via simulations.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to evaluate
our proposed algorithm. We consider an EIH-empowered SC3

system where the EIH assists K = 5 robots for their control
tasks. The locations of the robots are assumed to be randomly
distributed in a circular area with a radius of 5000 m. The UAV
is located in the center of the circle, with the height of 100 m.
The bandwidth of each channel is set as B = 5kHz, and other
parameters are set as β0 = −60 dB and σ2 = −110 dBm [57].
We assume a Low Earth Orbit (LEO) satellite, with the height
of 1500 km, and hence τ = 5 ms. The power constraint and
the satellite-backhaul rate constraint are set as Pmax = 10
dBW and RU2S

max = 50 Mbps unless specified otherwise. For
the computing parameters, we set α = 100 CPU cycles/bit,
β = 50 CPU cycles/bit, and Dk = 300 kilobits. Unless

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3460053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



specified otherwise, the maximal CPU frequency of the MEC
server is set as Fmax = 5 GHz, and the data compression ratio
is set as ρ = 0.2.

For control parameters, unless specified otherwise, the state
matrices Ak are assumed to be 50×50 diagonal matrices with
diagonal elements randomly selected in [−10, 10]. The control
system noise and sensing noise are assumed to be independent
Gaussian random variables with zero means and covariance
matrices ΣV

k = σ2
V,k×In and ΣW

k = σ2
W,k×In, where n = 50,

σ2
V,k = σ2

V = 0.01 and σ2
W,k = σ2

W = 0.001 unless specified
otherwise. The time constraint of each loop is set as 70 ms.
The observation matrices are set as identity matrices, and the
LQR weight matrices are Qk = In,Rk = 0.

All the simulations are implemented in MATLAB R2021b,
and the convex optimization problem is solved with the
fmincon function of the Optimization Toolbox [58]. The
interior-point algorithm is used for the fmincon function to
solve the convex optimization problems, and the optimality
tolerance parameter of the fmincon function is set as 10−8.
The convergence tolerance threshold is set ot be ϵ = 5 ×
10−5. As a suitable initial point, we distribute the comput-
ing capability and satellite-backhaul rate equally, i.e., f ′0 =
[Fmax/K, · · · , Fmax/K], and R′0 = [Rmax/K, · · · , Rmax/K]

In order to evaluate the performance of the proposed algo-
rithm, we compare it with the following benchmarks through
simulation.

• Closed-loop-oriented power allocation: allocating the EIH
transmit power to robots, aiming to minimize the sum
LQR cost as in [8], where the computing capability and
the satellite-backhaul rate are allocated equally to the
loops.

• Communication-oriented scheme: allocating the comput-
ing capability of MEC server, aiming to minimize the
sum computation time [59], with the satellite-backhaul
rate equally allocated to the loops, and the transmit power
of the EIH is allocated to maximize the downlink data
throughput.

Fig. 3 verifies the convergence performance of the proposed
algorithm. Ten snapshots with different robot locations are
evaluated, where the transmit power constraint is set as Pmax =
10 dBW. This figure shows that our proposed algorithm can
converge within three iterations, confirming its efficiency in
practical applications.

In Fig. 4, we compare the LQR cost achieved by the above
three schemes with different transmit power constraints. From
this figure, it is seen that the communication-oriented scheme
achieves the worst closed-loop performance. Particularly, the
system with the communication-oriented scheme will be un-
stable when the transmit power constraint is below 12 dBW,
leading to an infinite LQR cost. The proposed scheme achieves
the lowest LQR cost. In addition, it is shown that the LQR
cost is decreasing with respect to the transmit power constraint,
which indicates that improving the communication capability
is beneficial for the overall closed-loop performance. However,
when the transmit power is sufficiently large, the LQR cost
becomes saturated, and the rate of decrease slows.

In Figs. 5 and 6, we show the LQR cost with different
computing capability constraints Fmax and satellite-backhaul

1 2 3 4 5 6 7 8 9 10

Snapshot number

0

1

2

3

4

N
u

m
b
er

 o
f 

it
er

at
io

n
s

1 2 3 4 5 6 7 8 9 10

Snapshot number

0

1

2

3

4

N
u

m
b
er

 o
f 

it
er

at
io

n
s

Fig. 3. Convergence performance of the proposed scheme.

8 9 10 11 12 13 14 15

Transmit power constraint (dBW)

10.9

11

11.1

11.2

11.3

11.4

11.5

11.6

11.7

Communication-oriented scheme

Closed-loop-oriented power allocation

Proposed scheme

L
Q

R
 c

o
st

Fig. 4. The LQR cost achieved with different transmit power constraints.

rate constraints Rmax, respectively. We can see that the pro-
posed scheme outperforms the other two schemes under all
conditions. Similar to Fig. 4, it is shown that the LQR cost is
decreasing with respect to the Fmax and Rmax, indicating that
increasing the computing capability can improve the closed-
loop control performance of SC3 loops.

We show the impact of the time constraints Tk on the LQR
cost in Fig. 7, where the time constraints of each SC3 loop
are set to be the same for better readability. The maximal
CPU frequency is set as Fmax = 3 GHz. We can see that
the proposed scheme can achieve a lower LQR cost than the
power allocation scheme, especially when the time resources
are limited, thereby showing the superiority of the proposed
scheme. They become similar when the time resources are
saturated, i.e., Tk is larger than 75 ms. In addition, it can be
seen that the LQR cost decreases with the time constraint,

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3460053

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4 6 8 10 12 14 16 18

Computing capability constraint (GHz)

11.7

11.9

12.1

12.3

12.5

12.7

12.9

Communication-oriented scheme

Closed-loop-oriented power allocation

Proposed scheme

L
Q

R
 c

o
st

4 6 8 10 12 14 16 18

Computing capability constraint (GHz)

11.7

11.9

12.1

12.3

12.5

12.7

12.9

Communication-oriented scheme

Closed-loop-oriented power allocation

Proposed scheme

L
Q

R
 c

o
st

Fig. 5. The LQR cost achieved with different computing capability con-
straints.
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Fig. 6. The LQR cost achieved with different satellite-backhaul rate con-
straints.

which indicates that increasing the time for communication
and computing is an efficient way to improve the control
performance. The reason is that more precise control com-
mands can be transmitted given more time for transmission
and computation.

Fig. 8 shows how the LQR cost is influenced by the trans-
mit power constraints and computing capability constraints
with the proposed scheme. It is shown that the LQR cost
decreases with both the transmit power and computing capa-
bility constraints. However, the contours become sparse as the
transmit power constraint or computing capability constraint
increases, indicating diminishing marginal returns with respect
to transmit power and computing capability. In addition, it
can be seen that even for the computing capability with a
high value, the LQR cost is still restricted by a lower bound
that is determined by the maximum power. The reason is that
the transmit time T commu

k cannot increase infinitely with the
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Fig. 7. The LQR cost achieved with different time constraints.
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Fig. 8. LQR cost achieved with different transmit power and computing
capability constraints.

increased computing capability, leading to an upper bound
of the transmitted information entropy. The finite information
entropy determines the bound of LQR cost lk, as shown in the
constraint (19g).

To show the joint influence of the sensing and communica-
tion capability on the closed-loop performance, we show the
contours of the sum LQR cost with respect to the transmit
power constraint Pmax and the sensing noise variance σ2

V in
Fig. 9. It is shown that the increase of the sensing noise
variance will cause the degradation of the control perfor-
mance, leading to a higher LQR cost. This degradation can
be compensated partially by enhancing the communication
capability, i.e., increasing Pmax. However, even if the transmit
power constraint becomes high enough, the LQR cost will
still be bounded by the lower bound lmin,k, which will also
be increased by the sensing part. This result shows that only
enhancing the communication capability on the EIH cannot
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Fig. 9. LQR cost achieved with different transmit power constraints and
sensing noise variances.
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Fig. 10. Optimal splitting ratio of the different parts of sensor data with
different computing capabilities.

fully compensate for the poor sensing capability in the SC3

loop.
Fig. 10 shows the optimal data splitting vector of the sensor

data in SC3 loop k with different computing capabilities fk
based on Proposition 1, where Rk = 50 Mbps and ρ = 0.25.
It can be seen that when the local computing capability is low,
most sensor data will be transmitted to the cloud server for
processing (Part 3), and the local computing capability will be
fully used on pre-processing the sensor data (Part 2). As the
computing capability increases, the sensor data will be either
processed locally in the MEC server (Part 1) or in the cloud
server (Part 3). Finally, when the local computing capability on
the EIH is large enough, all the sensor data will be processed
locally, and we have Dk,1 = Dk, and Dk,2 = Dk,3 = 0.

In Fig. 11, we show the average LQR cost of each SC3

4 5 6 7 8 9 10

Number of robots

2.36

2.38

2.4

2.42

2.44

2.46

Closed-loop-oriented power allocation

Proposed scheme

A
v

er
ag

e 
L

Q
R

 c
o
st

4 5 6 7 8 9 10

Number of robots

2.36

2.38

2.4

2.42

2.44

2.46

Closed-loop-oriented power allocation

Proposed scheme

A
v

er
ag

e 
L

Q
R

 c
o
st

Fig. 11. The average LQR cost achieved with different numbers of robots.

loop with different numbers of robots, i.e., K. For ease of
comparison, the control parameters of each SC3 loop are set
to be identical. It can be seen that the average LQR cost
increases rapidly with the number of robots. The reason is that
the communication and computing resources allocated to each
SC3 loop will decrease as the number of robots increases.
This indicates that an efficient allocation of resources is
important in practical scenarios where there are many robots
working together. It is worth noting that when the number of
robots increases, different robots will cooperate to complete a
common task, and the coupling between different SC3 loops
will be interesting and non-negligible, which will be left to
the future study.

V. CONCLUSION

In this paper, we investigated an EIH-empowered satellite-
UAV network serving multiple robots for their control tasks.
The UAV-mounted EIH is integrated with sensing, comput-
ing, and communication modules. It is capable of directing
the behaviors of robots, via synergistic SC3 closed-loop or-
chestration. In order to explore the potential of closed-loop
optimization, we formulated a sum LQR cost minimization
problem that jointly optimized the splitting of sensor data,
the computing capability, the satellite-backhaul rate, and the
transmit power from EIH to robots. An iterative algorithm was
proposed to solve this non-convex optimization problem. Sim-
ulation results demonstrated the superiority of the proposed
algorithm. Moreover, we have shown the joint influences of
the sensing, communication, and computing capability on the
sum LQR cost, to uncover a more systematic understanding
of closed-loop controls.

APPENDIX A
PROOF OF PROPOSITION 1

First, if fk ≥ αDk

4τ , all the sensor data should be processed
locally in the MEC server of the EIH, and the overall com-
putation time is T comp

k = T comp
k,1 = αDk

fk
< 4τ . Otherwise, if
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some sensor data are transmitted to the cloud server through
satellite, i.e., Dk,2 > 0 or Dk,3 > 0, the computation time
will be larger than the sum propagation delay 4τ , as shown in
(5) and (6).

Next, we consider the case of fk < αDk

4τ . Based on (2),
(5) and (6), we can see that the latency is non-increasing
with respect to the fk,1, fk,2, Rk,2 and Rk,3. Therefore, the
equality of (21c) and (21d) must hold to minimize the overall
computation time, i.e,

fk,1 + fk,2 = fk, (37)
Rk,2 +Rk,3 = Rk. (38)

Therefore, we have six equations in total, as shown in (1), (22),
(23), (37), and (38). Based on these equations, next, we will
remove the other variables and express the objective function
of (21) as a function of fk,2.

From (23), (37), and (38) , we have fk,1 = fk−fk,1, Rk,2 =
ρ
β fk,2 and Rk,3 = Rk− ρ

β fk,2. Substituting these variables into
(1) and (22), we can get the relation between T comp

k and fk,2,
formulated as

T comp
k =

αβDk − 4βτfk + 4βτfk,2
(α− αρ− β) fk,2 + βfk + αβRk

+ 4τ. (39)

From (39), we see that T comp
k is a fractional linear function

of fk,2. Therefore, T comp
k is monotonous with respect to fk,2.

It can be shown that T comp
k is increasing with respect to fk,2

if 4βτRk − (α− αρ− β)Dk +4 (1− ρ) τfk ≥ 0, and T comp
k

is decreasing otherwise.
Based on the above analysis, if 4βτRk−(α− αρ− β)Dk+

4 (1− ρ) τfk ≥ 0, then fk,2 should be as small as possible in
order to minimize T comp

k . Therefore, we have fk,2 = 0 in such
case. Substituting fk,2 = 0 into (39), we have

T comp
k =

αDk − 4τfk
fk + αRk

+ 4τ. (40)

On the other hand, if 4βτRk − (α− αρ− β)Dk +
4 (1− ρ) τfk ≤ 0, then fk,2 should be as large as possible.
There are two constraints for fk,2, i.e., fk,2 ≤ fk and Rk,2 =
ρ
β fk,2 ≤ Rk, which indicates that fk,2 = min

{
fk,

βRk

ρ

}
.

Therefore, when fk ≤ βR
ρ , we have fk,2 = fk, and

T comp
k =

βDk

βRk + (1− ρ) fk
+ 4τ. (41)

On the other hand, if fk ≥ βR
ρ , then fk,2 = βRk

ρ , Rk,2 =
Rk, and

T comp
k =

ραDk − 4ρτfk + 4βRkτ

ρfk + (α− β)Rk
+ 4τ. (42)

Based on the above analysis, the validity of Proposition 1
has been demonstrated.

APPENDIX B
PROOF OF LEMMA 2

According to [55, Page 89], a function is convex if and only
if its epigraph is a convex set, where the epigraph of f (x, y)
is defined as epif = {(x, y, z)|(x, y) ∈ domf, f (x, y) ≤ z}.

In order to show the convexity of f (x, y), we will show
that its epigraph A is a convex set, which can be formulated
as

A =

{
(x, y, z)| 1

y
log

(
1 +

1

x− a

)
≤ z, x > a, y > 0

}
.

(43)
We can transform A to an equivalent form as

A =

{
(x, y, z)| 1

exp (yz)− 1
+ a ≤ x, y > 0, z > 0

}
.

(44)
From (44), it can be seen that A can be regarded as the
epigraph of a new function g (y, z) = 1

exp(yz)−1 + a with
the domain y > 0, z > 0.

Next, we show that g (y, z) is convex by checking its
Hessian matrix, which is calculated as

∇2g (y, z) =

 z2eyz(eyz+1)

(eyz−1)3
eyz(yz−eyz+yzeyz+1)

(eyz−1)3

eyz(yz−eyz+yzeyz+1)

(eyz−1)3
y2eyz(eyz+1)

(eyz−1)3

 .

(45)
The determinant of ∇2g (y, z) can be calculated as

|∇2g (y, z) | = e2yz (2yzeyz − eyz + 2yz + 1)

(eyz − 1)
5 . (46)

It can be shown that 2yzeyz − eyz + 2yz + 1 > 0 when
y > 0, z > 0 by checking the derivative. Therefore, we have
|∇2g (y, z) | > 0. As ∂2g

∂y2 > 0 and ∂2g
∂z2 > 0, we can obtain

that ∇2g (y, z) is positive definite with y > 0 and z > 0,
which shows the convexity of g. From the above analysis, we
have A is a convex set, indicating that f (x, y) is a convex
function.

APPENDIX C
PROOF OF LEMMA 4

We first prove the convexity of T
comp,∗
k (fk, Rk|fk0, Rk0).

As T 1
k (fk, Rk), T

2

k (fk, Rk|fk0, Rk0), T
3

k (fk, Rk|fk0, Rk0)
and T 4

k (fk, Rk) are all reciprocal functions of the linear
combination of fK and Rk, they are all convex functions.
As the point-wise maximum function of two convex functions
is still a convex function [55], we can establish the convexity
of T

comp,∗
k (fk, Rk|fk0, Rk0).

Next, we prove the correctness of inequality (35) by com-
paring the values of T i

k (fk, Rk) for i ∈ [1, 2, 3, 4]. The
differences of the four functions can be formulated as

T 1
k (fk, Rk)− T 2

k (fk, Rk)

=
(ρfk−βRk) [4 (1−ρ) τfk−(α−αρ−β)Dk+4βτRk]

[βRk+(1−ρ) fk] [ρfk + (α− β)Rk]
,

(47)

T 1
k (fk, Rk)− T 3

k (fk, Rk)

=
fk [4 (1−ρ) τfk−(α−αρ−β)Dk+4βτRk]

[βRk+(1−ρ) fk] (fk + αRk)
, (48)

T 2
k (fk, Rk)− T 3

k (fk, Rk)

=
αRk [4 (1−ρ) τfk−(α−αρ−β)Dk+4βτRk]

(fk + αRk) [ρfk + (α− β)Rk]
, (49)

T 3
k (fk, Rk)− T 4

k (fk, Rk)
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=
αRk (4fkτ − αDk)

fk (fk + αRk)
. (50)

Based on the above results, we can establish the relationship
among the four functions when (fk, Rk) falls in different
areas, that is

T 4
k (fk, Rk) > T 3

k (fk, Rk) > T 1
k (fk, Rk) , (fk, Rk) ∈ S1, (51a)

T 4
k (fk, Rk) > T 3

k (fk, Rk) ≥ T 2
k (fk, Rk) , (fk, Rk) ∈ S2, (51b)

T 1
k (fk, Rk) ≥ T 2

k (fk, Rk) ≥ T 3
k (fk, Rk) , (fk, Rk) ∈ S3, (51c)

T 4
k (fk, Rk) ≥ T 3

k (fk, Rk) , (fk, Rk) ∈ S3, (51d)

T 2
k (fk, Rk) ≥ T 3

k (fk, Rk) > T 4
k (fk, Rk) , (fk, Rk) ∈ S4. (51e)

With the inequalities in (51), it can be proven that, for any
fk ≥ 0, and Rk ≥ 0, the following inequalities hold

T comp,∗
k (fk, Rk) ≤ max

{
T 1
k (fk, Rk) , T

2
k (fk, Rk)

}
, (52a)

T comp,∗
k (fk, Rk) ≤ T 3

k (fk, Rk) , (52b)

T comp,∗
k (fk, Rk) ≤ T 4

k (fk, Rk) . (52c)

Therefore, if (fk0, Rk0) ∈ S1 ∪ S2, we have

T
comp,∗
k (fk, Rk| fk0, Rk0) (53a)

=max
{
T 1
k (fk, Rk) , T

2

k (fk, Rk|fk0, Rk0)
}

(53b)

≥max
{
T 1
k (fk, Rk) , T

2
k (fk, Rk)

}
(53c)

≥T comp,∗
k (fk, Rk) , (53d)

where (53b) is based on the definition of T
comp,∗
k in (30), (53c)

follows from (28), and (53d) follows from (52a).
If (fk0, Rk0) ∈ S3 or (fk0, Rk0) ∈ S4, it can be proven

that T
comp,∗
k (fk, Rk| fk0, Rk0) ≥ T comp,∗

k (fk, Rk) following a
similar procedure as (53), which demonstrates the correctness
of (35).

Finally, we show the equality condition of (35), i.e.,

T
comp,∗
k (fk0, Rk0| fk0, Rk0) = T comp,∗

k (fk0, Rk0) . (54)

If (fk, Rk) ∈ S1, we have

T
comp,∗
k (fk0, Rk0| fk0, Rk0) (55a)

=max
{
T 1
k (fk0, Rk0) , T

2

k (fk0, Rk0|fk0, Rk0)
}

(55b)

=max
{
T 1
k (fk0, Rk0) , T

2
k (fk0, Rk0)

}
(55c)

=T 1
k (fk0, Rk0) (55d)

=T comp,∗
k (fk0, Rk0) , (55e)

where (55d) follows from (47). If (fk, Rk) falls into other
areas, the equality can be proven in a similar way, which
completes the proof.

APPENDIX D
PROOF OF PROPOSITION 2

Denoting the optimal solution to problem (36) in the i-th
iteration as

(
pi, f ′i,R′i, li,Tcommu,i

)
, we have

T comp,∗
k

(
f i
k, R

i
k

)
+ T commu,i

k (56a)

≤ T
comp,∗
k

(
f i
k, R

i
k|f

(i−1)
k , R

(i−1)
k

)
+ T commu,i

k (56b)

≤ Tk (56c)

holds for k = 1, 2, · · · ,K, where (56b) follows from (35),
and (56c) follows from (36e). Therefore, any optimal solution
to (36) will also satisfy all the constraints in (25), i.e., (25b)-
(25f), indicating that it is also a feasible solution to (25).

Next, we show the convergence of Algorithm 1. We have

T
comp,∗
k

(
f
(i−1)
k , R

(i−1)
k |f (i−1)

k , R
(i−1)
k

)
+ T

commu,(i−1)
k

(57a)

= T comp,∗
k

(
f
(i−1)
k , R

(i−1)
k

)
+ T

commu,(i−1)
k (57b)

≤T
comp,∗
k

(
f
(i−1)
k , R

(i−1)
k |f (i−2)

k , R
(i−2)
k

)
+ T

commu,(i−1)
k

(57c)
≤ Tk, (57d)

where (57c) follows from (35), and (57d) holds becasue
f ′(i−1), R′(i−1), and Tcommu,(i−1) are the optimal solu-
tion to (36) in the (i− 1)-th iteration and should sat-
isfy the constraint (36e). Therefore, it is shown that(
p(i−1), f ′(i−1),R′(i−1), l(i−1),Tcommu,(i−1)

)
is also feasible

to the optimization problem (36) in the i-th iteration, indicating
that Li−1 is also an achievable objective function value in the
i-th iteration. As

(
pi, f ′i,R′i, li,Tcommu,i

)
minimizes (36) in

the i-th iteration, we have Li ≤ Li−1 holds for any i ≥ 1,
which completes the proof.
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