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Cold-atom analog experiments are a promising new tool for studying relativistic vacuum decay, enabling
one to empirically probe early-Universe theories in the laboratory. However, existing proposals place stringent
requirements on the atomic scattering lengths that are challenging to realize experimentally. Here we eliminate
these restrictions and show that any stable mixture between two states of a bosonic isotope can be used as a
faithful relativistic analog. This greatly expands the landscape of suitable experiments, and will expedite efforts
to study vacuum decay with cold atoms.
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Introduction. Quantum fields can escape metastable “false
vacuum” states by nucleating “true vacuum” bubbles [1–5].
This process of vacuum decay plays a pivotal role in many
aspects of cosmology, from the Universe’s inflationary begin-
nings [6–10] to the present-day (meta)stability of the Higgs
field [11–13]. The standard treatment of this problem relies
on Euclidean (imaginary-time) calculations, leaving many key
questions unanswered. In particular, how does vacuum decay
proceed in real time? And what happens in situations where
the symmetries of the Euclidean solutions are broken, e.g.,
nucleation of multiple bubbles [14]?

There has been a recent surge of interest in tackling
these questions using quantum analog experiments that sim-
ulate metastable relativistic fields [15–26]. In this Letter, we
present the first such proposal that is both viable with cur-
rent experiments and rigorously, quantitatively analogous to
relativistic vacuum decay. Our proposal uses ultracold-atomic
condensates to enable controlled real-time tests of early-
Universe theories on a tabletop. Similar technologies have
been successfully used to study discontinuous transitions in
nonrelativistic quantum fields [27–32], including nonrelativis-
tic thermal vacuum decay [33].
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As we demonstrate below, our proposed analog system
satisfies four requirements that are essential for delivering new
cosmological insights:1

(1) The system possesses a degree of freedom with the
same equations of motion as a relativistic field.

(2) The quantum fluctuation statistics in this degree of
freedom match those of the same relativistic field.

(3) The system can be made homogeneous in one or more
dimensions, replicating the translation invariance of a rela-
tivistic theory.

(4) The effective relativistic field can be put into a
metastable state, leading to bubble nucleation.

In mixtures between two atomic hyperfine states, this
level of analogy has previously only been established under
“symmetric” conditions, with equal density and s-wave scat-
tering length in each state, and zero scattering between atoms
in different states [16–18,20,21,23,26]. These conditions are
challenging to realize in practice. While the scattering can be
tuned using Feshbach resonances in an applied magnetic field
[34], there is insufficient freedom to simultaneously satisfy all
the symmetric conditions. As a result, previous studies have
found only two discrete points in parameter space where these
conditions hold (both in 41K [16,17,26]), leaving no flexibility
to accommodate other experimental requirements.

Here we eliminate these restrictions, and show that any
stable mixture between two states of a bosonic isotope can
be made to simulate relativistic vacuum decay by tuning
their number densities. While Ref. [17] first studied such

1With deviations that can be made perturbatively small by tuning
the experimental parameters.
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FIG. 1. Landscape of vacuum decay analogs in the F = 1 hyperfine manifold of 41K. The horizontal bars correspond to pairs of states
|mF 〉 ∈ {| + 1〉, |0〉, | − 1〉}. Shading indicates the viable parameter space for our asymmetric proposal (identified using scattering lengths from
Ref. [35]), while dashed black lines show two points where the symmetric conditions hold [16,17,26]. (These lines are ∼ 1000× thicker
than the actual symmetric regions.) As well as greatly expanding the parameter space for 41K, our results enable analogs in isotopes with no
symmetric options.

“asymmetric” systems in this context, there has until now
been no theoretical justification for using them as vacuum
decay analogs. We establish this analogy rigorously, showing
that asymmetric condensates can be made to exhibit all four
conditions listed above, just as in the symmetric case. By
greatly expanding the landscape of experimental possibilities
(see Fig. 1), our results bring robust vacuum decay analogs
within reach of current technologies.

Analog system. We consider a gas of two hyperfine states
(↓ and ↑) of some bosonic isotope. At low temperatures, each
forms a condensate described by a nonrelativistic quantum
field ψ̂i(x) = √

n̂i(x) exp[iφ̂i(x)] (i = ↓,↑), whose modulus
n̂i(x) measures the density of atoms in state i, and whose
phase φ̂i(x) captures coherent behavior. We define the mean
density n = (n↓ + n↑)/2 and population imbalance z = (n↓ −
n↑)/(n↓ + n↑), which we treat as homogeneous. In practice,
the potential that traps the atoms generates an inhomogeneous
density profile; however, using an optical box trap [36,37]
ensures homogeneity everywhere except a small boundary
region.

We couple the species with an electromagnetic field of fre-
quency ω = ω0 + δ, where ω0 = (E↑ − E↓)/h̄ is the resonant
frequency (with Ei the energies of the states), and δ is the de-
tuning away from resonance. This causes interstate transitions
at a variable rate �(t ), set by the coupling amplitude. The
Hamiltonian is

Ĥ (t ) =
∫

V
dx

{
− ψ̂

†
↓

h̄2∇2

2m
ψ̂↓ − ψ̂

†
↑

h̄2∇2

2m
ψ̂↑

− μ(ψ̂†
↓ψ̂↓ + ψ̂

†
↑ψ̂↑) − h̄�(t )

2
(ψ̂†

↓ψ̂↑ + ψ̂
†
↑ψ̂↓)

− h̄δ

2
(ψ̂†

↓ψ̂↓ − ψ̂
†
↑ψ̂↑) +

∑
i, j

gi jψ̂
†
i ψ̂

†
j ψ̂iψ̂ j

}
, (1)

with m the atomic mass, μ the chemical potential,2 and gi j

describing contact interactions between species i and j, which
we parametrize as

g = g↓↓ + g↑↑
2

, � = g↑↑ − g↓↓
2

,

κ = g↓↓ + g↑↑ − 2g↓↑
2

. (2)

2This is the chemical potential for N = N↓ + N↑, while μ↓, μ↑ are
associated with N↓ and N↑ individually.

We require repulsive self-interactions g↓↓, g↑↑ > 0, while
g↓↑ = g↑↓ can have either sign. The condition for miscibility
(i.e., a stable homogeneous mean field) is g↓↓g↑↑ > g2

↓↑ [38]
or, equivalently, g2 − �2 > (g − κ )2.

The relative phase in this system, φ↓ − φ↑, behaves like
a relativistic scalar field, with a potential determined by the
coupling �(t ). To recover a false-vacuum potential, this cou-
pling must contain a constant piece and an oscillating piece.
The constant piece generates a cosine potential for the relative
phase, due to the cost of putting the species out of phase with
each other. This does not allow vacuum decay, as the antiphase
“false vacuum” is then unstable rather than metastable. As first
pointed out by Fialko et al. [16], however, this state can be
made metastable by modulating the coupling. This generates
an effective potential barrier, allowing for discontinuous tran-
sitions out of the false vacuum (as illustrated in Fig. 2).

We therefore set h̄�(t ) = 2εn
√

κ2 − �2 +
λh̄ν

√
2ε cos νt , where ν 	 κn/h̄ is the modulation frequency,

and ε, λ control the amplitudes of the constant and oscillatory
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FIG. 2. Lattice simulation of a 39K analog, with time increasing
from left to right and top to bottom. The metastable false vacuum
(blue) spontaneously decays via expanding bubbles of true vacuum
(red). We show a 2D analog here for illustration, while our main
numerical results are in 1D.
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terms.3 Inserting this into Eq. (1), we use the formalism of
Ref. [39] to calculate an effective Hamiltonian, valid for
ε 
 1 and on timescales 	 2π/ν [40]. The false-vacuum
barrier stems from quadratic terms in the modulation, which
are O(ε). The constant part of the coupling is also O(ε), to
ensure the energy difference between vacua is comparable to
the barrier height; the exact relationship depends on the O(1)
parameter λ, where λ � 1 is required for metastability, and
larger values give longer-lived false vacua.

Effective relativistic theory. Our key result concerns the
phase fields φ̂i(x), which we rewrite as

ϑ̂ (x) =
√

h̄2n

2m
[(1 + z)φ̂↓(x) + (1 − z)φ̂↑(x)],

ϕ̂(x) =
√

h̄2n

2m

√
1 − z2[φ̂↓(x) − φ̂↑(x)]. (3)

In situations where the detuning δ, density fluctuations ni −
〈ni〉, and field gradients ∇2ϑ,∇2ϕ are all O(ε), one can elim-
inate the densities to obtain coupled equations for ϑ, ϕ [40].
For the appropriate population imbalance,

z = �

κ
+ O(ε), (4)

the equations decouple to give

0 = (
c−2
ϑ ∂2

t − ∇2)ϑ,

0 = (
c−2
ϕ ∂2

t − ∇2
)
ϕ + U ′(ϕ). (5)

These are relativistic equations of motion for a massless scalar
ϑ and a self-interacting scalar ϕ with potential

U (ϕ) = m2
0ϕ

2
0

c2
ϕ

h̄2

[
1 − cos(ϕ/ϕ0) + λ2

2
sin2(ϕ/ϕ0)

]
, (6)

where we define m0 = m
√

4εκ2/(κ2 − �2) and ϕ0 =√
(κ2 − �2)h̄2n/(2mκ2). This potential contains true vacua at

ϕtv/ϕ0 = 0 (mod 2π), and, for λ > 1, false vacua at ϕfv/ϕ0 =
π (mod 2π), allowing one to observe vacuum decay by
preparing the system in a false vacuum. The decoupling be-
tween ϑ and ϕ is crucial for simulating a relativistic system,
as the general coupled equations cannot be derived from any
relativistic Lagrangian.

The fields (3) each live on a flat Minkowski space-time
with its own “speed of light” (i.e., phonon sound speed),

c2
ϑ = n

m

(
2g − κ − �2

κ

)
, c2

ϕ = n

m

(
κ − �2

κ

)
, (7)

where miscibility implies c2
ϕ � c2

ϑ > 0. These define two

healing lengths ξi = h̄/(
√

2mci ), below which each field be-
comes nonrelativistic, thus determining the regime of validity
of the analogy.

References [41–44] previously investigated this “bi-
metric” structure in Bose-Bose mixtures, deriving a condition
analogous to Eq. (4) for linear perturbations around a fixed

3Note that �(t ) can change sign, modulating the phase as well as
the amplitude of the coupling.

background when g↓↓ = g↑↑ and/or g↓↑ = 0. Here we gen-
eralize to any gi j , greatly expanding the parameter space, and
derive a fully nonlinear relativistic theory for the phase fields,
which is crucial for simulating nonperturbative phenomena
like vacuum decay.

Our decoupling condition (4) is equivalent to matching the
chemical potentials of the two species, μ↓ = μ↑. Intuitively,
this is because each chemical potential sets the mean velocity
of the corresponding phase, so Eq. (4) ensures that 〈ϕ̇〉 = 0 in
the false vacuum. This also suppresses density fluctuations, as
required for pseudorelativistic phase dynamics.

As well as the equations of motion (5), we have verified
that the analogy holds in terms of the vacuum fluctuations
[40], which is crucial for faithfully simulating the decay rate
[26]. Expanding the effective Hamiltonian to quadratic or-
der in the fluctuations, we find that it decouples into two
independent sectors Ĥeff  Ĥϑ + Ĥϕ , if and only if Eq. (4)
holds. Diagonalizing each sector we find that, on scales much
larger than their respective healing lengths (ξik 
 1, with k
the wave number), the dispersion relations match those of a
massless relativistic scalar ϑ and a self-interacting scalar ϕ

with potential given in Eq. (6), with the sound speeds given
by Eq. (7):

ωϑ (k)  cϑk, ωϕ (k) 
√

c2
ϕk2 + m2

fvc4
ϕ

h̄2 , (8)

where ωϑ (k), ωϕ (k) are the frequencies of modes with wave
number k, and mfv = √

λ2 − 1 m0. This nontrivial check con-
firms all the key features of the theory.

Experimental proposal. Our results open an extensive new
landscape of experimental possibilities. As well as greatly
expanding the 41K parameter space beyond the two symmetric
cases considered in Refs. [16,17,26] (see Fig. 1), we can now
consider other isotopes, where no symmetric cases exist. As
an illustrative example, we present a feasible set of parameters
for 39K. We consider the F = 1 hyperfine states | ↓〉 ≡ |mF =
0〉 and | ↑〉 ≡ |mF = −1〉 (with F, mF the total and projected
angular momenta). These are miscible in a magnetic field B ≈
57–59 G, and have been used to study “quantum droplets” just
outside the miscible regime [45–48].

While the asymmetric analogy is valid in any number of
dimensions, we focus here on the one-dimensional (1D) case,
with the atoms tightly confined in the transverse directions.
This offers several practical advantages, including the option
of running arrays of traps in parallel, or enforcing periodicity
using a ring trap. Bubble nucleation is parametrically faster
in 1D [40], allowing one to probe a broader range of decay
rates within each run. A two-dimensional (2D) setup is also
possible (shown in Fig. 2 for illustration), and would allow
one to investigate phenomena such as domain walls between
distinct true vacua. A three-dimensional (3D) setup would
carry technical complications associated with levitating both
species against gravity [37].

We summarize our proposed parameters in Table I. We
choose these to maximize the energy scale mc2

ϕ , thereby sup-
pressing the influence of thermal fluctuations. This results
in a population imbalance z ≈ 0.7, which differs strongly
from the symmetric case z = 0. To scan over decay rates,
we vary the number of atoms inversely to the strength of
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TABLE I. Fiducial 1D experimental parameters. Here u =
1.661 × 10−27 kg and a0 = 5.292 × 10−2 nm. The dimensionless
density n̄ϕ = ξϕn is set by varying the number of atoms N and the
transverse trapping frequency ω⊥.

Parameter Value

Atomic isotope potassium-39 (39K)

Atomic mass m = 38.96 u = 6.470 × 10−26 kg

Hyperfine states | ↓〉 ≡ |F = 1, mF = 0〉
| ↑〉 ≡ |F = 1, mF = −1〉

Magnetic field B = 58.50 G

Scattering lengths (3D) a↓↓ = 31.85 a0 = 1.686 nm

a↑↑ = 446.2 a0 = 23.61 nm

a↓↑ = −51.84 a0 = −2.743 nm

Population imbalance z = 0.7159

Healing lengths ξϑ = 1.797 × 104 a0 = 1.141 µm

ξϕ = 9.449 × 103 a0 = 0.600 µm

Sound speeds cϑ = 1.010 mm s−1

cϕ = 1.921 mm s−1

Energy scales mc2
ϑ = 0.412 peV = 4.78 kB nK

mc2
ϕ = 1.490 peV = 17.29 kB nK

Box trap length L = 400 ξϕ = 240 µm

Sound-crossing time L/cϕ = 124.9 ms

Total number of atoms 8000 � N � 32 000

Density per species 16.67 µm−1 � n � 66.67 µm−1

Dimensionless density 10 � n̄ϕ � 40

Transverse trap frequency 0.356 kHz � ω⊥/2π � 1.43 kHz

Mean Rabi frequency �0 = 16.04 Hz

Rabi coupling parameter ε = 2.5 × 10−3

Modulation amplitude λ = √
2

False vacuum mass mfv = √
λ2 − 1 m0 = 0.1425 m

transverse confinement, holding mc2
ϕ constant. This lets one

vary the dimensionless density n̄ϕ = ξϕn, which controls the
fluctuation amplitudes, while leaving all other parameters of
the relativistic theory fixed [26]. Since the rate scales like
log � ∼ −n̄ϕ , even a small range of n̄ϕ is sufficient to probe a
broad range of scenarios.

One can initialize the false vacuum using a strong, constant
coupling � 	 mc2

ϕ/h̄, so the Hamiltonian becomes

Ĥ  − h̄

2

(| ↓〉 | ↑〉)( δ �

� −δ

)(〈↓ |
〈↑ |

)
(9)

(temporarily ignoring inhomogeneous modes). The resulting
energy eigenstates have the species either in phase or in an-
tiphase, corresponding to the true and false vacua, with the
population imbalance in the latter given by

zfv = 〈fv| ↓〉 − 〈fv| ↑〉
〈fv| ↓〉 + 〈fv| ↑〉 = − δ√

δ2 + �2
. (10)

Starting from a pure-| ↑〉 condensate with large positive de-
tuning (or pure-| ↓〉 with large negative detuning), one can
thus initialize a false vacuum with arbitrary z by adiabatically
varying δ. We then replace the strong, constant coupling with
the weak, modulated coupling required for pseudorelativistic

dynamics. After allowing the system to evolve for some time,
ϕ is converted via a radio-frequency pulse into a density
contrast between true- and false-vacuum regions, and imaged
with an efficiency of

√
1 − z2 ≈ 70%. Analyzing snapshots

from many runs then allows one to extract quantities like the
decay rate.

Lattice simulations. We test our predictions with semiclas-
sical lattice simulations, using the time-dependent Hamilto-
nian (1) to evolve ψ↓, ψ↑. We model the quantum nature of the
system by including vacuum fluctuations in the initial state,
which we evolve in real time by numerically integrating the
classical equations of motion. Repeating this for an ensemble
of initial states gives a semiclassical approximation of the
system’s behavior, known as the “truncated Wigner approx-
imation” [49,50].

These simulations provide detailed dynamical informa-
tion, complementing insights from Euclidean calculations,
and revealing a wealth of new observables such as bubble
clustering [14], precursors [51], and time-dependent decay
rates [52–54] that are otherwise inaccessible, but could have
important theoretical and observational implications. Both the
real-time (simulation-based) and imaginary-time (Euclidean)
approaches make assumptions and approximations [1,2,49]
that ultimately must be empirically tested and calibrated
against experiments. This comparison between simulations,
Euclidean methods, and our proposed analog experiments has
the potential to advance our understanding of vacuum decay,
with wide-ranging impact across cosmology and high-energy
physics.

We use these simulations here to test the effective rela-
tivistic theory described above. We simulate a 39K mixture
in a periodic 1D box, with parameters from Table I, using an
eighth-order symplectic pseudospectral code. (See Ref. [26]
for details and convergence tests; we obtain the same level
of convergence here.) In each simulation we set z by min-
imizing μ in the homogeneous false vacuum, with δ = 0.
This corresponds to the decoupling value (4) with an O(ε)
correction. We then draw random fluctuations in ϑ, ϕ and their
conjugate momenta, and use our chosen z to convert these into
fluctuations in ψ↓, ψ↑.

We perform several tests, all confirming that ϑ, ϕ behave
like decoupled relativistic fields if and only if Eq. (4) holds:

(1) We test for decoupling by initializing ϕ without
fluctuations, while initializing ϑ as normal; given perfect de-
coupling, ϕ should remain constant. For z ≈ 0.7, fluctuations
in ϕ remain small, reaching a maximum of ≈0.1 % of the
mean-field after one sound-crossing time. We interpret this as
a weak coupling due to, e.g., neglected O(ε2) terms. For z = 0
the ϕ fluctuations grow rapidly to equilibrate with those of ϑ ,
demonstrating strong coupling.

(2) We test the dynamics of fluctuations (e.g., the sound
speeds and false vacuum mass) by computing dispersion rela-
tions for ϑ, ϕ. For z ≈ 0.7 we find excellent agreement with
our predictions (see Fig. 3). For z = 0 we find two branches
in the dispersion relation of each field, reflecting the coupling
between them, as well as modified sound speeds (as expected).

(3) We test whether the nonlinear dynamics of ϕ are ef-
fectively relativistic by computing the Noether charges of the
relativistic theory [26], with any time-variation interpreted as
departures from relativistic behavior. We expect some varia-
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FIG. 3. Dispersion relationship for ϕ in the false vacuum. The
blue heat map shows the average of 32 simulations with parameters
from Table I (with n̄ϕ = 100, so no bubbles nucleate). This dispersion
relation matches that of a relativistic scalar of mass mfv (purple) on
large scales but becomes nonrelativistic on small scales, agreeing
with our theoretical prediction (red).

tion due to nonrelativistic effects on small scales, as well as
neglected renormalization corrections [55]. However, we find
that the charges are conserved just as well as in the symmetric
case [26], with variation converging to zero as n̄ϕ → ∞. This
demonstrates a well-defined relativistic regime for the asym-
metric analog.

We perform these tests initially with large densities n̄ϕ �
100. This suppresses the vacuum fluctuations, so that our
perturbative calculations [e.g., treating density fluctuations
as O(ε)] give a good approximation. For experimentally
accessible densities n̄ϕ � 40, we expect backreaction from
fluctuations to become significant, leading to deviations from
our predictions. In particular, this should modify the critical
z, so that Eq. (4) no longer gives a long-lived metastable
state. We verify this numerically, finding that simulations with
n̄ϕ � 40 decay rapidly due to a homogeneous initial velocity
in ϕ that carries it over the barrier.

In principle one could account for backreaction analyt-
ically, calculating the renormalized critical value of z. We
postpone this for future work. A simpler solution is to intro-
duce a small detuning δ that compensates for the error in z,
such that the initial mean velocity of ϕ vanishes. Adopting this
prescription, our simulations exhibit precisely the expected
behavior, passing all the tests described above. This could
be implemented experimentally using ensembles of runs with
different detunings, selecting the ensemble with the longest-
lived metastable state.

Summary and outlook. Cold-atom analog experiments raise
the possibility of direct empirical tests of relativistic vacuum
decay. We have extended this relativistic analogy to a much
larger class of cold-atom systems, representing a proposal
for analog vacuum decay that is both rigorously analogous
to early-Universe theories and experimentally viable with
current capabilities. These experiments have enormous dis-
covery potential, allowing one to test decay rate predictions
(potentially resolving or confirming the discrepancy between
Euclidean calculations and lattice simulations [50,55]), as
well as probing new phenomena, such as bubble clustering
[14] and dynamical precursors [51], with far-reaching poten-
tial implications for our understanding of the early Universe.

The data that support the findings of this study are avail-
able from the corresponding author, A.C.J., under reasonable
request.
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