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Abstract

Image inpainting aims to repair a partially damaged im-
age based on the information from known regions of the im-
ages. Achieving semantically plausible inpainting results
is particularly challenging because it requires the recon-
structed regions to exhibit similar patterns to the semanticly
consistent regions. This requires a model with a strong ca-
pacity to capture long-range dependencies. Existing mod-
els struggle in this regard due to the slow growth of recep-
tive field for Convolutional Neural Networks (CNNs) based
methods and patch-level interactions in Transformer-based
methods, which are ineffective for capturing long-range de-
pendencies. Motivated by this, we propose SEM-Net, a
novel visual State Space model (SSM) vision network, mod-
elling corrupted images at the pixel level while capturing
long-range dependencies (LRDs) in state space, achieving
a linear computational complexity. To address the inher-
ent lack of spatial awareness in SSM, we introduce the
Snake Mamba Block (SMB) and Spatially-Enhanced Feed-
forward Network. These innovations enable SEM-Net to
outperform state-of-the-art inpainting methods on two dis-
tinct datasets, showing significant improvements in captur-
ing LRDs and enhancement in spatial consistency. Addi-
tionally, SEM-Net achieves state-of-the-art performance on
motion deblurring, demonstrating its generalizability. Our
source code is available in supplementary materials.

1. Introduction

Image inpainting is a highly challenging low-level vi-
sion task in computer vision due to its ill-posed nature.
It aims to repair partially damaged or missing regions by
leveraging information from the known areas [58]. Success-
ful inpainting relies heavily on advanced image representa-
tion learning, particularly in capturing both short-range and
long-range dependencies [11, 58], to ensure consistent re-
construction between the filled and visible contents.

Convolutional Neural Networks (CNNs) are widely used
as backbone networks in image inpainting due to their
strong performance in learning generalizable representa-

tions from images and their effective mining of short-
range dependencies through convolution operations [34,
40, 49, 52]. However, their slow-grown receptive field
constrains the perception of the global context and ham-
pers the ability to capture long-range dependencies within
the image. This limitation is particularly problematic for
low-level vision tasks like image inpainting, where single-
pixel reconstruction must preserve pixel consistency while
accounting for dependencies over larger distances. To
address this limitation, researchers have shifted towards
transformer-based architectures [2, 25] to better capture
the long-range dependencies (LRDs) and global structure.
However, transformer-based methods suffer from quadratic
computational complexity, which restricts their ability to
learn spatial LRDs only at the patch level rather than the
pixel level. [54] attempts to model images at the pixel level
with transformer, but it focuses on semantic features rather
than spatial relations, which means it still lacks the ability
to effectively capture spatial LRDs.

LRDs are critical in image inpainting, as a lack of LRDs
often results in low-quality outcomes due to insufficient
context capturing. This is evidenced by the inconsistent eye
colours and patterns, as shown in the visualization of the
prominent CNN-based method [42] and transformer-based
method [25] (Sample I of Fig. 1), where the visible red eye
fails to guide the accurate reconstruction of the other eye.

One feasible solution to this challenge is from [14],
which proposes an emerging Selective State Space Model
(SSM), known as Mamba. SSM has demonstrated its ef-
ficient and effective capacity in learning LRDs, and good
adaptability in computer vision [29]. As shown in Sample
I of Fig. 1, directly adopting SSM [31] (M-Unet) captures
LRDs effectively and achieves more consistent eye colour.

However, as the vanilla SSM scans the data as a sequence
with a single fixed direction, it lacks 2D spatial awareness,
making the way to model pixels in SSM crucial. As illus-
trated in Sample II of Fig. 1, a vanilla SSM model [31]
shows positional drifting of the inpainted left eye (upper
than the right eye). This insight introduces two key chal-
lenges: (i) how to maintain the continuity and consistency
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Figure 1. Comparisons with the state-of-the-art CNN-based method [42] and transformer-based method [25]. M-Unet is a variant of
directly applying the Mamba model [31] followed by a feedforward network [54] in a U-Net. Red boxes and arrows highlight major
differences. Our SEM-Net demonstrates the strong capability to capture LRDs visualised by the consistent eye colors and patterns, and
addresses the challenge of lack of spatial awareness in M-Unet. Please refer to the supplementary material for more quantitative results.

of pixel adjacency for pixel-level dependencies learning
while processing the SSM recurrence; and (ii) how to ef-
fectively integrate 2D spatial awareness to the predominant
linear recurrent-based SSMs.

To solve these challenges, we propose SEM-Net:
Spatially-Enhanced SSM Network for image inpainting,
which is a simple yet effective encoder-decoder architecture
incorporating four-stage Snake Mamba Blocks (SMB). The
proposed SMB is assembled by two novel modules, which
holistically integrate local and global spatial awareness
into the model. Specifically, we introduce the Snake Bi-
Directional Modelling module (SBDM) in place of vanilla
SSM. It brings the crucial spatial context into a linear recur-
rent system, modelling images in two directions by consis-
tently scanning each pixel with a snake shape. Moreover,
we explicitly incorporate positional embedding into the se-
quences via a Position Enhancement Layer (PE layer) to
strengthen the long-range positional awareness and improve
the sensitivity to specific parts of the sequence(e.g., masked
regions). We further propose Spatially- Enhanced Feedfor-
ward Network (SEFN) to complement the local spatial de-
pendencies. aiming to leverage spatial information stored in
the feature before SBDM, to refine the feature after SBDM
with a gating mechanism.

Comparative experiments show that SEM-Net out-
performs state-of-the-art approaches across two distinct
datasets, i.e, CelebA-HQ [22] and Places2 [60]. De-
tailed qualitative comparison demonstrates that our method
achieves a significant improvement in capturing spatial
LRDs while preserving better spatial structure. In ad-
dition, SEM-Net achieves state-of-the-art performance on
two motion-deblurring datasets, further demonstrating our
method’s generalizability in image representation learning.

Our main contributions are summarized as follows:

• We propose a novel U-shaped Spatially-Enhanced
SSM architecture focused on capturing short- and
long-range spatial dependencies in image inpainting.

To the best of our knowledge, SEM-Net is the first
SSM-based model in this research field.

• We propose a Snake Mamba Block (SMB), involving a
Snake Bi-Directional Modelling (SBDM) module and
a Position Enhancement Layer (PE layer), to implicitly
integrate crucial spatial context awareness into a linear
recurrent SSM, and explicitly enhance the long-range
positional awareness.

• We propose a Spatially-Enhanced Feedforward Net-
work (SEFN) to complement local spatial dependen-
cies learning among pixels, enhancing the spatial
awareness throughout image representation learning.

2. Related Work

2.1. Image Inpainting

Image inpainting is a classic ill-posed low-level vision
task that requires inferring the missing or damaged areas
of the image based on the known pixels. The rapid ad-
vancements in CNNs have led to the introduction of di-
verse techniques that have significantly improved image
inpainting by using CNN-based encoder-decoder architec-
tures [40, 48, 52] or CNN-based Generative Adversarial
Networks (GANs) [21, 34, 37, 47, 49, 50]. Nonetheless,
limited receptive fields of convolution hinder the captur-
ing of long-range dependencies [46, 54], which motivates
the researchers to enlarge the receptive fields by employ-
ing convolution in frequency domain [7, 42] or developing
transformer-based models [2, 5, 25, 27]. However, practi-
cal applications are limited by the computational complex-
ity of self-attention, specifically, as it is still challenging to
achieve pixel-level self-attention at relatively high resolu-
tions [9]. In this paper, we primarily focus on the field of
selective SSM for achieving image pixel-level LRDs learn-
ing with strong spatial awareness.



2.2. SSM in Computer Vision

SSMs serve as fundamental models in various fields,
including control theory and computational neuroscience.
However, the application of SSMs in deep learning is lim-
ited due to the risk of vanishing gradients when using the
linear first-order Ordinary Differential Equations to solve
an exponential function [17]. To solve this problem, Gu
et al. [16] proposed a structured SSM model with the
HiPPO framework [15] to address the significant computa-
tional challenges and model LRDs with rigorous theoretical
proofs. Recently, [14] further proposed a selective struc-
tured SSM, namely Mamba, to allow for context-based rea-
soning using long sequence inputs. Inspired by them, sev-
eral researchers have begun to explore the selective SSMs in
computer vision tasks, including image segmentation [31],
image classification and object detection [29,61]. However,
these works have not effectively leveraged the potential of
Mamba in capturing long-range pixel-level spatial depen-
dencies for image representation learning. [20] uses a
zigzag scanning approach to improve spatial continuity in
patched images. However, the fixed scanning directions can
result in a loss of joint information between pixels, particu-
larly as the patch size increases.

2.3. Preliminary

While SSMs are generally regarded as linear time-
invariant systems that map a 1-dimensional sequence x(t) ∈
R to response y(t) ∈ R via an implicit latent state h(t) ∈
RN (Eq.1), the structured SSMs use zero-order hold dis-
cretisation rule (Eq.2) to transform the continues parameter
(∆,A,B) to discrete parameters (A,B) for allowing effi-
cient linear recurrence in (Eq.3).
h′(t) = Ah(t) + Bx(t), y(t) = Ch(t), (1)

A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B, (2)

ht = Aht−1 + Bxt, yt = Cht, (3)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and ∆ is the
step size.

To enhance the hidden state dimension while avoiding
the trade-offs in speed and memory, Gu et al. [14] fur-
ther proposes an architecture (i.e., Mamba) with a selection
mechanism on SSMs to transform parameters ∆,B,C, into
functions that depend on the input, such that introducing
a length dimension to these parameters, making the model
changed from time-invariant to time-varying.

3. Spatially-Enhanced Mamba Network
Given an image I with pixels x̂1, x̂2, ..., x̂N×N in N×N

resolution. Image inpainting is a task for learning the map-
ping from the input masked image Iin = concat[I⊙M,M ]
to the semantically accurate output image Iout, where M is
the mask. The overall pipeline of the proposed SEM-Net

is illustrated in Fig. 2. Our framework comprises two key
components to address the two identified challenges in a
synergistic manner. The first component, a Snake Mamba
Block (Sec. 3.1.1), aims at effectively preserving the con-
tinuity and consistency of pixel adjacency for pixel-level
dependency learning during the linear recurrence in SSMs.
The second component, a Spatially-Enhanced Feedforward
Network (Sec. 3.2), is proposed to further complement the
2D spatial awareness of the 1D linear recurrent based SSMs.

Our SEM-Net adopts the encoder-decoder based U-Net
architecture formed with four-stage SEM blocks to learn hi-
erarchical multi-scale representation. Given a masked im-
age Iin ∈ RH×W×3, where H × W is spatial dimension
and 3 denotes the RGB channels. SEM-Net first employs
a 3 × 3 convolution to extract low-level feature embedding
h0 ∈ RH×W×C . Then, these features h0 pass through the
four-scale encoder SEM blocks, which gradually decrease
in spatial size while increasing in channel capacity, to gen-
erate latent features hl ∈ RH

8 ×W
8 ×8C . Next, the decoder

takes hl to progressively reconstruct high-resolution rep-
resentations. Every stage contains multiple SEM blocks,
each SEM block has a pair of proposed Snake Mamba
Block (SMB) and Spatially-Enhanced Feedforward Net-
work (SEFN) for refining image representation learning
while effectively capturing spatial LRDs. During this pro-
cess, we use skip connections to link mirrored SEM blocks
at the end of each stage and use a 1× 1 convolution to half
the channels after each connection, preserving the shared
features learned by the encoder and then supporting the de-
coder. The cost-efficient pixel-unshuffle and pixel-shuffle
operations [39] are employed to achieve feature downsam-
pling and upsampling, respectively. In the final step, a con-
volutional layer projects the decoded features to the output.

3.1. Snake Mamba Block

In each snake mamba block (SMB), we propose a holis-
tic framework to preserve continuity and ensure the com-
prehensiveness of pixel adjacency for pixel-level depen-
dency learning during 1D linear recurrence in SSMs. This
is achieved through two novel designs: the implicit Snake
Bi-Directional Modelling (SBDM) and the explicit Position
Enhancement Layer (PE layer).

3.1.1 Snake Bi-Directional Modelling

Directly leveraging the predominant 1D linear SSMs by
feeding the flattened spatial features is prone to an in-
evitable loss of pixel adjacency continuity and spatial in-
formation, resulting in a degradation in image representa-
tion learning. To alleviate this challenge, SBDM mainly
contains two sequence modelling techniques: snake-like se-
quence modelling and bi-directional sequence modelling.
Snake-like Sequence Modelling. Snake-like sequence



Figure 2. (a) Architecture overview of the proposed SEM-Net with multi-scale SEM blocks. (b) The details in each SEM block with core
designs in SMB and SEFN, which holistically enhance the spatial awareness and improve the capability to capture LRDs.

Figure 3. The architecture of proposed SMB. The input feature is modelled to sequences in two directions with snake-like traverses in
SBDM-Sequential, enhancing the spatial awareness implicitly. Then, the PE layer explicitly enhances the long-range positional awareness
through positional embeddings. The features after Mamba are restructured and aggregated by SBDM-Fusion to generate the output.

modelling aims to maintain the continuity in pixel adja-
cency when flattening spatial features across each channel
from a shape of H ×W to 1 ×HW . This is crucial as we
observe that the conventional flattening operation directly
connects the end of one row to the start of the next, forcing
SSMs to recognize recurrent connections between spatially
distant pixels rather than adjacent ones, leading to a loss of
pixel adjacency continuity and constrains the dependency-
reasoning capacity. To address this issue, our snake-like
sequence modelling ensures consistent connections among
neighboring pixels both within and across rows by reorder-
ing pixels and concatenating rows, illustrated by the red ar-
rows in Fig. 3.

Specifically, given an input feature hin ∈ RH×W×C ,
where H is the number of rows (lines), W is the number
of columns (pixels in a line), and C is the dimension for
each pixel. pi,j ∈ R1×1×C denotes the pixel value at the
position of i-th row and j-th column. Then, the horizontal
snake-like sequence modelling process is represented as:

Si =

{
[pi,0, pi,1, . . . , pi,W−1] , i = 0, 2, 4, . . . ,

[pi,W−1, pi,W−2, . . . , pi,0] , i = 1, 3, 5, . . . ,
(4)

S = concat[S0, S1, S2, S3, . . . , SH−1], (5)

where the 1D sequence S maintains the pixel adjacency con-
tinuity by concatenating the sequences Si for i ∈ [0, H−1],
each Si represents the reordered pixel position in that row.

Bi-directional Sequence Modelling To further comple-
ment the comprehensiveness of pixel adjacency and implic-
itly enhance spatial awareness, we propose a bi-directional
sequence modelling involving two processes: SBDM-
Sequential (SBDM-S) and SBDM-Fusion (SBDM-F). As
shown in 3, SBDM-S simultaneously traverse pixels in a
snake-like manner in two directions: horizontally and ver-
tically across all pixels, enabling the SMB to generate se-
quences that capture discriminative dependencies. Specifi-
cally, in a snake-like manner, SBDM-S vertically traverses
pixels to 1-D sequences S = concat[S0, S1, . . . , SH−1],
and horizontally traverses pixels to 1-D sequences T =
concat[S⊤

0 , S⊤
1 , . . . , S⊤

W−1], where each S⊤
j for j ∈

[0,W − 1] contains reordered pixels in that column. These
two directions are designed since they are spatially com-
plementary to each other and are computationally efficient
in multi-directional traversals. After processing through
Mamba, SBDM-F restructures the 1D sequences back to 2D
via the inverse function of Eq. 5 and fuse them by element-
wise aggregation to retain their spatial information, enrich-
ing the spatial awareness in image representation learning.

Position Enhancement Layer To further explicitly com-
plement the implicit approach of SBDM in enhancing spa-
tial dependency reasoning, we propose a simple yet effec-
tive strategy of integrating 1D positional embeddings to en-
hance position awareness. Specifically, we incorporate the
1D positional embeddings directly into 1D sequences in the



position enhancement layer (PE layer) before processing
with Mamba, assigning absolute positional information to
each element within the sequences for providing the posi-
tional context and maintaining the pixel adjacency relation-
ships. Formally, assume S(n) for n ∈ [0, N2 − 1] ∩ Z is
the element at positional coordinate n, PE(n) is the corre-
sponding cosine positional embedding [44]. Then, the el-
ements in 1D sequence S with 1D positional embeddings
S̄(n) are integrated by aggregation:

S̄(n) = S(n) + PE(n), n = 0, 1, 2, 3, . . . , N2 − 1. (6)

3.2. Spatially-Enhanced Feedforward Network

To complement local spatial information in regions span-
ning multiple rows and columns that are subject to inher-
ent design limitations of SSMs, we propose a Spatially-
Enhanced Feedforward Network (SEFN) for refining spatial
awareness in image representation learning. The key idea of
SEFN lies in leveraging spatial information extracted from
the feature representations prior to the SEM block, subse-
quently applying it in a gating mechanism to inform the fea-
tures post-SMB, thereby facilitating the integration of spa-
tial awareness and LRDs learning to the entire SEM block.

Specifically, SEFN first snatches hbefore and hafter at
the entrance and exit of the Mamba block. Then, SEFN uses
the average pooling to expand the receptive field, followed
by two {Conv-LN -ReLU} blocks to capture a broader
spatial perception. The subsequent upsampling yields a spa-
tial awareness indicator γ preserving spatial relationships
from hbefore. The gating mechanism starts from hafter,
which is divided into h′

after and h′′
after. The h′

after is in-
formed by γ to form a ‘gate’ via a linear transformation
and a GELU non-linear activation. ‘gate’ then modulates
h′′
after through a point-wise product, significantly enhanc-

ing the spatial awareness of h′′
after. The whole process is

formulated as:

h′
after = Wd3W1LN(hafter), (7)

h′′
after = W ′

d3W
′
1LN(hafter), (8)

γ = Up(f(AveragePooling(hbefore))), (9)
gate = GELU(Wd3W1γ||h′

after), (10)

output = gate⊙ h′′
after, (11)

where W1, W ′
1 are 1× 1 convolutions, Wd3, W ′

d3 are 3× 3
depth-wise convolutions to reduce computational cost while
refining features, LN is a layer normalization, f denotes
two {Conv-LN -ReLU} blocks, Up is upsampling.

4. Experiments
We quantitatively and qualitatively prove the superiority

of our proposed inpainting method by comparing it with the

state-of-the-art methods on two widely used datasets [25,
45, 59]: CelebA-HQ [22] and Places2-Standard [60] in
Sec. 4.1 and 4.2. We carefully evaluate each of the proposed
novelties by a comprehensive ablation and component anal-
ysis in Sec. 4.3. In Sec. 4.5, we demonstrate the capability
of our model in generalising to both higher resolution and
unseen images. In addition, we further evaluate the image
representation learning capability and generalisation ability
of SEM-Net by directly applying it to another low-level vi-
sion task - image motion debluring. The implementation
setting is detailed in the supplementary material.

Baselines and Metrics We choose the following base-
lines for inpainting comparison: CNN-based methods with
DeepFill v1 [50], DeepFill v2 [51], CTSDG [18] and
MISF [26], WaveFill [53] and LAMA [42]; Transformer-
based methods with MAT [25] and CMT [23]; Expensive
diffusion models [30, 36]. Italic denotes the SOTA meth-
ods. We followed [25, 26] to evaluate our SEM-Net on
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
(SSIM), L1, Fréchet Inception Distance (FID) [19] and Per-
ceptual Similarity (LPIPS).

4.1. Quantitative Comparison

We employ officially released models and test with the
same masks [28] for fair comparisons. The quantitative
results are shown in Tab 1. Our method consistently out-
performs the state-of-the-art approaches [23, 26, 42] across
all mask ratios in both CelebA-HQ and Places2 datasets.
Particularly on the CelebA-HQ dataset, SEM-Net achieves
(i) a substantial gain of 0.7743 (2.15%↑), 0.7187 (2.55%↑),
and 0.5386 (2.25%↑) PSNR; (ii) and a significant reduction
of 0.0192 (5.14%↓), 0.074 (5.72%↓), and 0.1636 (5.84%↓)
L1, over the second methods [23, 42] on three mask ratios,
respectively. The improvements in these two specific met-
rics indicate a significant boost in the pixel-wise reconstruc-
tion accuracy. In addition, the LPIPS of SEM-Net appre-
ciably drops than the second-best method [23] in CelebA-
HQ dataset by 0.0035 (13.41%↓), 0.0101 (12.36%↓), and
0.0199 (12.70%↓) on three mask ratios, respectively. It
demonstrates a significant improvement in high-quality im-
age inpainting with lower perceptual differences.

4.2. Qualitative Comparison

We showcase the qualitative image inpainting results on
both datasets in Fig. 5. Each sample is the inpainted re-
sult where the mask ratio exceeds 40%, to more intuitively
demonstrate the advantages of SEM-Net in handling chal-
lenging cases. In facial inpainting, generating one eye
in masked regions (masked eye) based on another eye in
visible regions (visible eye) is more challenging than di-
rectly generating two eyes, because it requires the model
to have a solid ability to capture long-range dependency



Figure 4. The architecture of proposed Spatially-Enhanced Feedforward Network (SEFN)

Table 1. Quantitative comparison with the state-of-the-arts on CelebA-HQ (top), and Places2 (bottom). Bold and underline are the best and
the second-best respectively. Number of parameters (Param.) and inference time (Inf.) are based on the inpainting evaluation conducted
on 256 × 256 images. C , T and D indicate CNN-based, Transformer-based and Diffusion-based methods, respectively.

CelebA-HQ Param.×106 0.01%-20% 20%-40% 40%-60%
Method / Inf. Time PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

DeepFill v1 [50]C 3 / 7ms 34.2507 0.9047 1.7433 2.2141 0.1184 26.8796 0.8271 2.3117 9.4047 0.1329 21.4721 0.7492 4.6285 15.4731 0.2521
DeepFill v2 [51]C 4 / 10ms 34.4735 0.9533 0.5211 1.4374 0.0429 27.3298 0.8657 1.7687 5.5498 0.1064 22.6937 0.7962 3.2721 8.8673 0.1739

WaveFill [53]C 49 / 70ms 31.4695 0.9290 1.3228 6.0638 0.0802 27.1073 0.8668 2.1159 8.3804 0.1231 23.3569 0.7817 3.5617 13.0849 0.1917
RePaint [30]D 552 / 250000ms - - - - - - - - - - 21.8321 0.7791 3.9427 8.9637 0.1943
LaMa [42]C 51 / 25ms 35.5656 0.9685 0.4029 1.4309 0.0319 28.0348 0.8983 1.3722 4.4295 0.0903 23.9419 0.8003 2.8646 8.4538 0.1620
MISF [26]C 26 / 10 ms 35.3591 0.9647 0.4957 1.2759 0.0287 27.4529 0.8899 2.0118 4.7299 0.1176 23.4476 0.7970 3.4167 8.1877 0.1868
MAT [25]T 62 / 70ms 35.5466 0.9689 0.3961 1.2428 0.0268 27.6684 0.8957 1.3852 3.4677 0.0832 23.3371 0.7964 2.9816 5.7284 0.1575
CMT [23]C 143 / 60ms 36.0336 0.9749 0.3739 1.1171 0.0261 28.1589 0.9109 1.2938 3.3915 0.0817 23.8183 0.8141 2.8025 5.6382 0.1567

Ours 163 / 240ms 36.8079 0.9774 0.3547 1.1070 0.0226 28.8776 0.9192 1.2198 3.3878 0.0716 24.4805 0.8240 2.6389 5.5972 0.1368

Places2 Param.×106 0.01%-20% 20%-40% 40%-60%
Method / Inf. Time PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

DeepFill v1 [50]C 3 / 7ms 30.2958 0.9532 0.6953 26.3275 0.0497 24.2983 0.8426 2.4927 31.4296 0.1472 19.3751 0.6473 5.2092 46.4936 0.3145
DeepFill v2 [51]C 4 / 10ms 31.4725 0.9558 0.6632 23.6854 0.0446 24.7247 0.8572 2.2453 27.3259 0.1362 19.7563 0.6742 4.9284 36.5458 0.2891

CTSDG [18]C 52 / 20ms 32.1110 0.9565 0.6216 24.9852 0.0458 24.6502 0.8536 2.1210 29.2158 0.1429 20.2962 0.7012 4.6870 37.4251 0.2712
WaveFill [53]C 49 / 70ms 29.8598 0.9468 0.9008 30.4259 0.0519 23.9875 0.8395 2.5329 39.8519 0.1365 18.4017 0.6130 7.1015 56.7527 0.3395

LDM [36]D 387 / 6000 ms - - - - - - - - - - 19.6476 0.7052 4.6895 27.3619 0.2675
Stable DiffusionD∗ 860 / 880 ms - - - - - - - - - - 19.4812 0.7185 4.5729 27.8830 0.2416

MISF [26]C 26 / 10ms 32.9873 0.9615 0.5931 21.7526 0.0357 25.3843 0.8681 1.9460 30.5499 0.1183 20.7260 0.7187 4.4383 44.4778 0.2278
LaMa [42]C 51 / 25ms 32.4660 0.9584 0.5969 14.7288 0.0354 25.0921 0.8635 2.0048 22.9381 0.1079 20.6796 0.7245 4.4060 25.9436 0.2124
CMT [23]T 143 / 60ms 32.5765 0.9624 0.5915 22.1841 0.0364 24.9765 0.8666 2.0277 32.0184 0.1184 20.4888 0.7111 4.5484 35.1688 0.2378

Ours 163 / 240ms 33.0106 0.9631 0.5902 14.5163 0.0328 25.4159 0.8736 1.9275 22.7814 0.1054 20.8265 0.7279 4.3614 25.7049 0.2120

∗: The officially released Stable Diffusion inpainting model pretrained on high-quality LAION-Aesthetics V2 5+ dataset.

to learn from another eye. Compared with current state-
of-the-art techniques, SEM-Net successfully transfers fea-
tures in the visible eye to the masked eye, including eyeball
colour and shape, while preserving finer-grained features.
In Places2, SEM-Net generates fewer artefacts and more co-
herent structures, such as the white lines in the road and the
edges of coloured cardboard, ensuring the contextual con-
sistency of the texture and structure of the image.

Table 2. Ablation studies of each component in 40%− 60% mask
ratio. Refer to supplementary material for all mask ratios.

Net Components 40%-60%

MB FN [54] SEFN SBDM PE PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓
(a) 21.6134 0.7308 4.1254 8.1732 0.2464
(b) ✓ ✓ 21.7828 0.7587 3.9117 8.0742 0.2227
(c) ✓ ✓ 22.0510 0.7682 3.7649 7.9871 0.2132
(d) ✓ ✓ ✓ 21.9064 0.7653 3.7679 8.0214 0.2102
(e) ✓ ✓ ✓ 22.0926 0.7692 3.7634 7.9174 0.2091
(f) ✓ ✓ ✓ ✓ 22.1776 0.7708 3.6747 7.9125 0.2095
(g) ✓ ✓ ✓ ✓ 22.1780 0.7725 3.6274 7.8915 0.2038

4.3. Ablation Study and Component Analysis
To efficiently verify the proposed modules, we fol-

lowed [10] to conduct the ablation and component analy-
sis experiments on a lighter version of SEM-Net with the

Table 3. Comparison between our proposed SMB with
transformer-based methods in 40% − 60% mask ratio. Refer to
supplementary material for all mask ratios.

Input Model 40%-60%

Resolution PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

256*256
CSA [54] 21.5362 0.7543 4.0471 8.1652 0.2326
SSA [12] Out of memory

SMB 22.1776 0.7708 3.6747 7.9125 0.2095

64*64 SSA [12] 20.1655 0.7265 5.2256 5.5547 0.1702
SMB 20.1716 0.7352 5.1332 5.3158 0.1617

halved number of SMB in each U-Net stage. Each experi-
ment is trained on CelebA-HQ for 30K iterations.

Improvement in Each Component. Tab. 2 and Fig. 6
present the improvement of each component quantitatively
and qualitatively. Based on the U-Net shape baseline
(Tab. 2a), integrating the Mamba Block (MB) and Feedfor-
ward Network (FN) [54] (Tab. 2b) results in noticeable im-
provements across all metrics. Fig. 6d→b and Fig. 6e→c
shows that degrading SBDM, model struggle in capture
the relations of vertically adjacent pixels, resulting in arte-
facts between the left eyebrow and left eye. Fig. 6b→c,
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Figure 5. Comparisons with visualisations (256× 256) showing that our results are more coherent in structure and sharper in texture and
semantic details. The top three rows are from Places2 [60] and the bottom three rows are from CelebA-HQ [22].
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Figure 6. The qualitative visualisation of ablation studies. Zoom in for the details.

Fig. 6d→e and Fig. 6f→g revealed the effect of SEFN by
resulting sharper jaw and less artefacts, demonstrated by the
improvement in SSIM score. Tab. 2d→f and Tab. 2e→g
showcase that introducing positional embedding signifi-
cantly improves L1 and PSNR in larger masks, which is
evidenced by the clearer texture at the mouth and eye.
4.4. Comparing SMB with Transformer Blocks.

We evaluate the effectiveness of our proposed SMB in
image representation learning by comparing it with two typ-
ical and widely used transformer blocks that claimed to
have strong capability in capturing LRDs: channel-wise
self-attention [54] and Spatial-wise self-attention (SSA)
[12]. For fair comparisons, all models use vanilla feedfor-
ward networks [54] instead of our novel SEFN, with only
differences between SMB, CSA and SSA. From Table. 3,

we observe that our SMB consistently outperforms two dis-
tinct transformer blocks across all metrics in all mask ratios.
In addition, our SMB is shown to be efficient enough to pro-
cess original resolution (256× 256) images while SSA can
only be trained on the degraded 64× 64 images with a sin-
gle A100 due to its significant computational cost. Further-
more, compared with the diffusion-based models [30, 36]
with a very long inference time [1], our model has better
performance while the inference time is still in millisec-
onds, which is suitable for real-time scenarios (shown in
Tab. 1).

4.5. Generalisation Ability

Unseen High Resolution Images. We examine the scala-
bility and generalizability of SEM-Net trained on 256×256
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Figure 7. Examples of generalisation to real-world high-resolution images of 2560× 1920.

Table 4. Performance in generalising to image motion deblurring
task. Our SEM-Net is trained only on the GoPro dataset [32] and
directly applied to the HIDE [38].

GoPro [32] HIDE [38]
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DeblurGAN-v2 [24] 29.55 0.934 26.61 0.875
Shen et al. [38] - - 28.89 0.930
Gao et al. [13] 30.90 0.935 29.11 0.913
DBGAN [57] 31.10 0.942 28.94 0.915
MT-RNN [33] 31.15 0.945 29.15 0.918
DMPHN [56] 31.20 0.940 29.09 0.924
Suin et al. [41] 31.85 0.948 29.98 0.930
SPAIR [35] 32.06 0.953 30.29 0.931
MIMO-UNet+ [6] 32.45 0.957 29.99 0.930
IPT [3] 32.52 - - -
MPRNet [55] 32.66 0.959 30.96 0.939
HINet [4] 32.71 0.959 30.32 0.932
Restormer [54] 32.92 0.961 31.22 0.942
Stripformer [43] 33.08 0.962 31.03 0.940
Ours 33.11 0.962 31.12 0.941

Places2 images in processing unseen images of higher reso-
lution, since these abilities are crucial for practical applica-
tions where image resolutions can significantly vary. Fig. 7
showcases examples of unseen real-world high-resolution
applications. While [49] performs similarly with larger
masks, its upsampling strategy causes narrow mask drift-
ing, leading to artefacts. SEM-Net, by modelling at the
pixel level, captures finer details without artefacts, offering
the community a better, more resource-efficient solution for
processing large-resolution images. More examples with
different resolutions are included in the supplementary.
Low-level Vision Tasks. To further evaluate the capabil-
ity of representation learning and generalisation ability of
SEN-Net, we directly apply SEN-Net to another low-level
vision task, image motion deblurring, through the necessary
learning of the residual between clear images and blurred
images without any other task-specific modifications. Tab. 4
shows that SEM-Net overall outperforms the restoration

models on two synthetic benchmark datasets GoPro [32]
and HIDE [38]. Especially on GoPro, SEM-Net improves
PSNR by 0.19 compared to the strong restoration baseline
model Restormer [54]. Notably, our SEM is trained on
GoPro and directly applied to HIDE, without progressive
learning [54] or Test-time Local Converter [8] such exter-
nal optimization, showcasing strong generalization ability.
Refer to supplementary materials for qualitative results.

5. Conclusion and Discussion
We present an SSM-based image inpainting model,

SEM-Net, which demonstrates strong capabilities in cap-
turing LRDs and addresses the challenge of lack of spatial
awareness in SSMs. We propose two key designs, SMB
and SEFN, for improved image representation learning.
With these designs, our model outperforms state-of-the-art
approaches on two image inpainting datasets, especially
on CelebA-HQ. This could be due to dataset characteris-
tics, CelebA-HQ’s structured, human-centric images bene-
fit more from our model’s ability to capture long-range de-
pendencies and spatial awareness, shown in quantitative re-
sults. Also, we showcases strong generalizability to higher-
resolution images and another low-level visual task, image
deblurring. Our future work aims to build a controllable im-
age inpainting model based on the proposed SMB to handle
large-resolution images.
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