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Móstoles-Madrid, Spain
cDepartment of Engineering, University of Durham, South Road, DH1 3LE, UK

dInternational Water Research Institute, University Mohammed VI Polytechnic, Benguerir, Morocco

Abstract

We investigate the performance of a unified finite element method for the numerical solution of moving fronts in
porous media under non-isothermal flow conditions. The governing equations consist of coupling the Darcy equation
for the pressure to two convection-diffusion-reaction equations for the temperature and depth of conversion. The
aim is to develop a non-oscillatory unified Galerkin-characteristic method for efficient simulation of moving fronts
in porous media. The method is based on combining the modified method of characteristics with a Galerkin finite
element discretization of the governing equations. The main feature of the proposed unified finite element method is
that the same finite element space is used for all solutions to the problem including the pressure, velocity, temperature
and concentration. Analysis of convergence and stability is also presented in this study and error estimates in the
L2-norm are established for the numerical solutions. In addition, due to the Lagrangian treatment of convection terms,
the standard Courant-Friedrichs-Lewy condition is relaxed and the time truncation errors are reduced in the diffusion-
reaction part. We verify the method for the benchmark problem of moving fronts around an array of cylinders. The
numerical results obtained demonstrate the ability of the proposed method to capture the main flow features.

Keywords: Moving fronts, Darcy flow, Porous media, Galerkin-characteristic method, Unified finite elements, A
priori error estimates.

1. Introduction

Moving fronts in porous media occur in many engineering applications including combustion and carbon dioxide
storage [1, 2, 3]. The focus in these problems is mainly on moving fronts produced by the thermal frontal polymer-
izations. In this case, the chemical reactions are a process in which liquid monomers are converted into polymers via
a localized and specific reaction zone, thus generating the so-called polymerization front which propagates through
the medium if the reaction is exothermic and highly activated. Frontal polymerization has a variety of possible uses
including material synthesis, curing large composites, filled materials, microfluidic applications, and determining
whether some systems obey the Snell’s law of refraction [4]. Its advantages in different combustion systems include
the ability to vary the morphology, lower energy consumption, and rapid conversion of monomers to polymers [5].
In many applications, frontal polymerization processes are exothermal reactions that produce an important heat re-
moval which may lead to possible heat explosion and reduction of the reagent concentration. In general injection
of a reactive fluid into a porous medium leads to alteration of the reactive part and to changes in the porosity and
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permeability of the medium. Under certain conditions of flow and reaction, the alteration pattern becomes a reaction
front. The front is a transition from fully reacted to unreacted rock over a narrow reaction zone. The reactive part of
the matrix has fully reacted behind the front and it is unreacted ahead of the front. The effect of natural convection on
the heat transfer was first studied in [6, 7]. It was shown that the critical value of the Frank-Kamenetskii parameter
increases with the Rayleigh number and heat transfer can be prevented by vigorous convection. In [8, 9], the influ-
ence of natural convection on the thermal instability of propagating reaction fronts was studied. These investigations
focus on the determination of critical values of Rayleigh number and Lewis number demarcating a region of stability
from that of instability. These were continued in [10, 11, 12] where new stationary and oscillating regimes were
found. The authors showed how complex the regimes appeared through successive bifurcations leading from a stable
stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asym-
metric convection, periodic in time oscillations, and finally aperiodic oscillations. Oscillating heat transfer, where the
temperature grows and oscillates, was also discovered in the studies reported in [10, 11, 12]. The effects of natural
convection and consumption of reactants on heat transfer in a closed spherical vessel were studied in [13]. Heat trans-
fer with convection in a horizontal cylinder was considered in [14]. It should be stressed that, in these reference, the
heat transfer is considered in a gaseous or liquid medium with its motion described by the Navier-Stokes equations
under the Boussinesq approximation. In this study, the Darcy law in a quasi-stationary form under the Boussinesq
approximation is used to describe fluid motion. It is shown that convection decreases the maximal temperature and
increases the critical value of the Frank-Kamenetskii parameter.

In the current study, we consider a coupled Darcy and convection-diffusion system to model moving fronts in
porous media. The system includes a wide variety of difficulties which typically arise in the numerical approxi-
mation of partial differential equations describing and consequently determining their dynamics. Current trends in
incompressible viscous flows are to combine these equations with complex components to simulate applications, for
instance, in fluid mechanics, groundwater, turbulence and multiphase flow models. All these applications require a
very efficient and robust numerical solver for the convection-diffusion systems. Computing the numerical solution of
the coupled system is not easy due to the nonlinear form, incompressibility condition and the presence of the convec-
tive terms. Hence, in many heat transfer equations, the convective term is distinctly more important than the diffusive
term; particularly when the Peclet numbers reach high values, this convective term is a source of computational dif-
ficulties and oscillations. It is well known that the solutions of these equations present steep fronts which need to be
resolved accurately in applications and often cause severe numerical difficulties. Modified method of characteristics
or semi-Lagrangian methods as known in meteorological community, make use of the transport nature of the govern-
ing equations. They combine the fixed Eulerian grids with a particle tracking along the characteristic curves of the
governing equations, see for instance [15, 16, 17, 18, 19]. The central idea in these methods is to rewrite the governing
equations in terms of Lagrangian coordinates as defined by the particle trajectories (or characteristics) associated with
the problem under consideration. The time derivative and the advection terms are combined as a directional deriva-
tive along the characteristics, leading to a characteristic time-stepping procedure. The Lagrangian treatment in these
methods greatly reduces the time truncation errors in the Eulerian methods. Furthermore, the semi-Lagrangian method
offers the possibility of using time steps that exceed those permitted by the Courant-Friedrichs-Lewy (CFL) stability
condition in Eulerian methods for convection-dominated flows. A class of Galerkin-characteristic methods has been
investigated in references [16, 20], among others. To this end, we examine the performance of Galerkin-characteristic
finite element methods for numerical simulations of moving fronts in porous media under non-isothermal flow condi-
tions. Unlike mixed finite elements, for which the different approximation spaces are used for the velocity field and
the pressure variable, we present a unified finite element approximation for both solutions. This class of unified finite
elements has been analyzed in [21, 22, 23] for Darcy and Stokes problems using a polynomial pressure-projection
stabilization. The method consists of using the same low-order Eulerian finite element spaces to approximate both
velocity and pressure solutions. In the current study, we extend and analyze these techniques in the framework of
Galerkin-characteristic finite elements. For the temperature and concentration solutions we consider the L2-projection
in the host element where the departure points are located. Therefore, a second-order accuracy is achieved in the pro-
posed Galerkin-characteristic unified finite element method for all the solution fields. Numerical results are presented
for a class of Darcy flows problem with known analytical solutions to quantify the accuracy of the method. Then, the
proposed Galerkin-characteristic unified finite element method is used to solve a coupled problem of moving thermal
fronts in porous media. In the study, we also present analysis of convergence and stability for the proposed method
and we give error estimates in the framework of L2-theory.
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The present paper is organized as follows. The description of the mathematical model is introduced in section 2.
Section 3 is devoted to notations and preliminaries along with functional spaces and assumptions used in this study.
This section includes also the finite element discretization of the spatial domain. In section 4 we formulate of the
unified Galerkin-characteristic finite element method employed for the numerical solution of the Darcy problem and
the convection-diffusion equations. Analysis of convergence and stability is presented in section 5. An optimal a priori
error estimates in the L2-norm is also investigated in this section. In section 6, we present numerical results for both
two test problems with known exact solutions and the benchmark problem of moving fronts in porous media. Our new
approach is shown to enjoy the expected accuracy as well as the robustness. Concluding remarks and perspectives are
given in section 7.

2. Governing equations

A schematic of the physical system considered in the present work is shown in Figure 2.1. The system consists
of a vertical rectangle enclosure with sides of height H, length L and subject to a thermal variation (Θ′H −Θ

′
C), where

Θ′H and Θ′C are temperatures of the hot and cold boundary walls. The enclosure consists of a Darcian fluid and all the
thermo-physical properties are assumed to be constant, except for density in the buoyancy term that can be adequately
modeled by the Boussinesq approximation. With these assumptions, the governing equations are:

Darcy equations:

u′ = −
Kp

ϵµ

∂p′

∂x′
,

v′ = −
Kp

ϵµ

(
∂p′

∂y′
−

g
gc
βρ0

(
Θ′ − Θ′0

))
, (2.1)

∂u′

∂x′
+
∂v′

∂y′
= 0.

Energy equation:

ρ0cp

(
ϵ
∂Θ′

∂t′
+ u′
∂Θ′

∂x′
+ v′
∂Θ′

∂y′

)
= ϵλ

(
∂2Θ′

∂x′2
+
∂2Θ′

∂y′2

)
+ K(Θ′, α′)Q′, (2.2)

Depth of conversion equation:

ϵ
∂α′

∂t′
+ u′
∂α′

∂x′
+ v′
∂α′

∂y′
= ϵγ

(
∂2α′

∂x′2
+
∂2α′

∂y′2

)
+ K(Θ′, α′), (2.3)

On the boundary, we consider the following conditions

Θ′ = Θ′0, α
′ = 0 and u′ = 0 when y′ −→ +∞,

(2.4)
Θ′ = Θ′∞, α

′ = 1 and u′ = 0 when y′ −→ −∞.

Here, the primed functions and variables refer to dimensional quantities. In the above equations, u′ = (u′, v′)⊤ is the
velocity field, p′ the pressure, Θ′ is the temperature, α′ the depth of conversion, Kp the permeability, ϵ the porosity,
µ the dynamic viscosity, g the gravity force, β the coefficient of thermal expansion, ρ0 the density, gc a conversion
constant, cp the specific heat at constant pressure, λ the thermal conductivity coefficient, γ the depth diffusivity
coefficient, Q′ the adiabatic heat release, Θ′0 the mean temperature and Θ′∞ the reference temperature. In (2.2)-(2.3),
the function K(Θ′, α′) = K(Θ′)Φ(α′) describes the reaction rate where the temperature dependence is given by the
Arrhenius law

K(Θ′) = ϵk0 exp
(
−

E
R0Θ′

)
, (2.5)
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Figure 2.1: Illustration of the geometry for a moving front in porous media.

where k0 is the pre-exponential factor, R0 the universal gas constant and E is the activation energy assumed to be very
large in the present study. The kinetic function Φα(α′) is assumed to be independent of the reactant concentration and
defined by the first-order reaction approximation as

Φα(α′) = 1 − α′, 0 ≤ α′ ≤ 1. (2.6)

Since it is convenient to work with dimensionless formulations, we define the following non-dimensional variables

x =
x′c
κ
, y =

y′c
κ
, t =

t′c2

κ
, u =

u′

ϵc
, p =

Kp p′

ϵ2κµ
, α = α′, Θ =

Θ′ − Θ′∞

Q
,

where the heat release Q and thermal diffusivity κ are defined as

Q =
Q′

ϵρ0cp
= Θ′H − Θ

′
C , κ =

λ

ρ∞cp
,

and c is the characteristic velocity given by [24]

c2 =
k0κR0Θ

′2
∞

QE
exp

(
−

E
R0Θ

′2
∞

)
.

We also define the following dimensionless parameters

Pr =
µ

κ
, Ra =

βgQκ2

µc3 , Rp =
Kpc2PrRaρ0

ϵ2µ2gc
, Z =

QE
R0Θ′

2
∞

, Le =
κ

γ
, Θ0 =

Θ′∞ − Θ
′
0

Q
, δ =

R0Θ
′
∞

E
,

where Pr, Ra, Le and Z are the Prandtl number, the Rayleigh number, the Lewis number and the Zeldovich number,
respectively. Hence, equations (2.1)-(2.4) can be rewritten in a coupled dimensionless form as

u + ∇p = f(Θ),
(2.7a)

∇ · u = 0,
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DΘ
Dt
− ∇2Θ = g(Θ, α),

(2.7b)
Dα
Dt
−

1
Le
∇2α = g(Θ, α),

where ∇ =
(
∂

∂x
,
∂

∂y

)⊤
denotes the gradient operator and

D
Dt

is the material derivative of any physical variable w

defined by
Dw
Dt
=
∂w
∂t
+ u · ∇w. (2.8)

In the above and in what follows bold face type denotes vector quantities. Equations (2.7b)-(2.7a) are subject to the
following boundary conditions

Θ = −1, α = 0 and u = 0 when y −→ +∞,
(2.9)

Θ = 0, α = 1 and u = 0 when y −→ −∞,

The function f in (2.7a) is defined by
f(Θ) = Rp (Θ + Θ0) e, (2.10)

where e is the unit vector associated with the gravity and Θ0 being a parameter with a constant value. In (2.7b), the
function g is given by

g(Θ, α) = WZ (Θ)Φα(α), (2.11)

where Φα(α) = 1 − α, and the dimensionless reaction function WZ (Θ)

WZ (Θ) = Z exp
(

Θ

Z−1 + δΘ

)
. (2.12)

It should be stressed that the exponent −E/R0Θ
′ in the Arrhenius formula (2.5) represents the ratio between the acti-

vation energy E and the average kinetic energy R0Θ
′. For most practical kinetic applications with highly exothermic

reactions, the dependence on the temperature is negligible compared to the activation energy i.e., E >> R0Θ
′, see for

example [24, 25]. Therefore, it becomes apparent with the negative sign in (2.5) that low rate is obtained for high
values of this ratio. This ensures that a high activation energy yields less substantial effects on the exponential term
and therefore its variation with temperature becomes very small. Thus, the dimensionless Arrhenius function (2.12)
can be interpreted as a form of the exponential decay law. As a consequence, g(Θ, α) in (2.11) is a bounded continuous
real function which can be approximated by Lipschitz functions.

3. Preliminaries and assumptions

In this section, we introduce notations and assumptions to be used in this study. LetΩ be a bounded spatial domain
in Rd (d = 2, 3) with Lipschitz boundary Γ, and [0,T ] is the time interval. For the time discretization we divide the
time interval into NT subintervals [tn, tn+1] with length ∆t = tn+1− tn for n = 0, 1,NT . We use the notation wn to denote
the value of a generic function w at time tn. For solving the coupled equations (2.7), we first require a discretization
of the space domain Ω = Ω ∪ Γ. Given h0, 0 < h0 < 1, let h be a space discretization parameter such that 0 < h < h0.
We generate a quasi-uniform partition, Ωh ⊂ Ω̄ = Ω ∪ Γ, of finite elements K j that satisfy the following conditions:

(i) Ω =
Ne⋃
j=1

K j, where Ne is the number of elements of the partition Ωh.

(ii) If Ki and K j are two different elements of the partition Ωh, then

Ki ∩ K j =


Pi j, a mesh point, or
Γi j, a common side, or
∅, empty set.
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(iii) There exists a positive constant κ such that for all j ∈ {1, · · · ,Ne},
d j

h j
> κ (h j ≤ h), where d j is the diameter of

the circle inscribed in K j and h j is the largest side of K j.

The conforming finite element space for temperature, concentration and pressure is defined as

Vh =

{
vh ∈ C0(Ω) : vh

∣∣∣
K j
∈ Pk(K j), ∀ K j ∈ Ωh

}
,

where Pk(K j) is the space of complete polynomials of degree k defined in K j. We also define the conforming finite
element space Vh for the velocity field as

Vh = Vh × Vh.

We use the notation wn to denote the value of a generic function w at time tn. Hence, we formulate the finite element
solutions to un(x), Θn(x), αn

h(x) and pn(x) as

un
h(x) =

M∑
j=1

Un
j · φ j(x), Θn

h(x) =
M∑
j=1

T n
j ϕ j(x), αn

h(x) =
M∑
j=1

An
jϕ j(x), pn

h(x) =
M∑
j=1

Pn
jϕ j(x), (3.1)

The functions Un
j , T

n
j , An

j and Pn
j are the corresponding nodal values of un

h(x), Θn
h(x), αn

h(x) and pn
h(x), respectively.

They are defined as Un
j = un

h(x j), T n
j = Θ

n
h(x j), An

j = α
n
h(x j) and Pn

j = pn
h(x j) where {x j}

M
j=1 is the set of mesh

points in the partition Ωh. In (3.1), {φ j}
M
j=1 = {(ϕ j, ϕ j)}Mj=1 and {ϕ j}

M
j=1 are the basis vectors and functions of Vh and Vh

respectively given by the Kronecker delta symbol.

We shall use standard notation for Sobolev spaces, norms, and inner products. Here, C, C′, C′′, C1, . . . are used
to denote generic positive constants independent of the mesh parameter h whose values may change from place to
place. We also use the notation | · | to denote the standard Euclidean norm in Rd. The functional spaces Ck(Ω), k ≥ 1
refer to the class of functions whose partial derivatives of order at least k are bounded and uniformly continuous in
Ω, whereas Ck

0(Ω) denotes the set of compactly supported functions contained in Ck(Ω). We also define the Sobolev
spaces Wm,p(Ω) for any integers (m, p), m ≥ 1 and 1 ≤ p ≤ ∞ as

Wm,p(Ω) =
{
w ∈ Lp(Ω)d : Dkw ∈ Lp(Ω)d, ∀ |k| ≤ m

}
,

where k = (k1, . . . , kd) ∈ Nd is a multi-index of order |k| = k1 + · · · + kd, and the derivative operator Dk is given by

Dk =
∂|k|

∂xk1
1 · · · ∂x

kd
d

.

These spaces are equipped with the following norms

∥w∥m,p =



 ∑
0≤|k|≤m

∥∥∥Dkw
∥∥∥p

Lp(Ω)


1
p

, if 1 ≤ p < ∞,

max
x∈Ω,0≤|k|≤m

∥∥∥Dkw
∥∥∥

L∞(Ω) , if p = ∞,

and the semi-norms

|w|m,p =



∑
|k|=m

∥∥∥Dkw
∥∥∥p

Lp(Ω)


1
p

, if 1 ≤ p < ∞,

max
x∈Ω,|k|=m

∥∥∥Dkw
∥∥∥

L∞(Ω) , if p = ∞.
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Note that, in the special case p = 2, the space Wm,2(Ω) (m ≥ 1) forms the Hilbert space Hm(Ω) which is the closure of
C∞(Ω). We also define Hm

0 (Ω) as the closure of C∞0 (Ω) with respect to the same norm. For m = 1, H−1(Ω) denote the
dual space of H1

0(Ω) and the space L2(Ω) is defined by

L2(Ω) =
{
w : Ω −→ R :

∫
Ω

w2dΩ < ∞
}
,

whose inner product and norm are defined by

(w, v) =
∫
Ω

wv dΩ and ∥w∥L2(Ω) = (w,w)
1
2 , ∀ w, v ∈ L2(Ω),

respectively. We also define the space L2
0(Ω) of all square integrable functions with vanishing mean as

L2
0(Ω) =

{
w : Ω −→ R :

∫
Ω

wdΩ = 0
}
.

For the Darcy problem, we recall the standard spaces H (div,Ω) and H0 (div,Ω)

H (div,Ω) =
{
w ∈ (L2(Ω))d : div (w) ∈ L2(Ω)

}
, H0 (div,Ω) =

{
w ∈ H(div,Ω) : (w · n)

∣∣∣∣
Γ
= 0

}
.

For the convection-diffusion equations, we introduce the following spaces

H1(Ω) =
{
w ∈ L2(Ω) : ∂kw ∈ L2(Ω), ∀ |k| ≤ 1

}
, H1

0(Ω) =
{
w ∈ H1(Ω) : w|Γ = 0

}
.

For a real Banach space X and 1 ≤ p ≤ ∞ we introduce the standard Bochner spaces Lp(0,T ; X) consisting of all
measurable functions w(t, x) defined in [0,T ] ×Ω for which∫ T

0
∥w∥pXdt < ∞, if 1 ≤ p < ∞,

ess sup
t∈[0,T ]

∥w(·, t)∥X < ∞, if p = ∞.

Here, the space Lp(0,T ; X) is equipped with the norm

∥w∥Lp(0,T ;X) =



(∫ T

0
∥w∥pXdt

)1/p

, if 1 ≤ p < ∞,

ess sup
t∈[0,T ]

∥w(·, t)∥, if p = ∞.

It should be noted that the previous notations concern scalar functions and can be extended to d-dimensional vector
functions in a similar way by using the product norms. In what follows, we announce the assumptions required for
the analysis in the present study.

Assumption 3.1. The temperature Θ and the concentration α are assumed to satisfy:

1. Θ ∈ L∞
(
0,T ; Hm+1 ∩Wm+1,∞(Ω)

)
and α ∈ L∞

(
0,T ; Hm+1 ∩Wm+1,∞(Ω)

)
,

2.
D2Θ

Dt2 ∈ L2
(
0,T ; L2(Ω)

)
and

D2α

Dt2 ∈ L2
(
0,T ; L2(Ω)

)
,

3.
D3Θ

Dt3 ∈ L2
(
0,T ; L2(Ω)

)
and

D3α

Dt3 ∈ L2
(
0,T ; L2(Ω)

)
.

Assumption 3.2. The velocity field u is assumed to satisfy:
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1. u(x, t) ∈ C0
(
0,T ; W1,∞(Ω)

)
,

2. ∇ · u(x, t) = 0 in Ω,
3. u(x, t) · n = 0 on ∂Ω.

Assumption 3.3. The functions f and g defined in (2.10) and (2.11) are assumed to verify:
1. f ∈ L2

(
0,T ; L2(Ω)d

)
and g ∈ L2

(
0,T ; L2(Ω)

)
2. f is Lipschitz with respect to its variable Θ i.e.,

∥f(Θ)∥L∞(0,T ;L2(Ω)d) ≤ cf ∥Θ∥L∞(0,T ;L2(Ω)d) ,

where cf is a positive constant.
3. g is Lipschitz with respect to its variables (Θ, α) i.e.,

∥g(Θ, α)∥L∞(0,T ;L2(Ω)) ≤ cg

(
∥Θ∥L∞(0,T ;L2(Ω)) + ∥α∥L∞(0,T ;L2(Ω))

)
,

where cg is a positive constant.

Finally, we introduce the operators required for the error analysis of the temperature and concentration solutions.
Hence, assuming that the subset Vh is composed of polynomials of degree k ≥ 2 on each element K j, j = 1, · · ·Ne of
the partition Ωh. For w = Θ or α, we define the following operators:

• The orthogonal projection operator P0 : H−1(Ω) −→ Vh

(P0w, ϕ) = (w, ϕ) , ∀ ϕ ∈ Vh. (3.2)

• The polynomial interpolant of degree m for continuous functions w ∈ Vh, Im : C0(Ω) −→ Vh

Imw(x) =
M∑
j=1

w(x j)ϕ j(x), ∀ x ∈ Ω, (3.3)

where x j (1 ≤ j ≤ M) are mesh points in the partition Ωh. Then, by the approximation theory, we have

∥w − Imw∥L2(Ω) ≤ Chm+1|w|m+1. (3.4)

• The linear continuous operator A : H1
0(Ω) −→ H−1(Ω)

⟨Aw, r⟩ = (∇w,∇r) , ∀ r ∈ H1
0(Ω), (3.5)

where ⟨·, ·⟩ denotes the duality pairing. It is evident that A is a symmetric positive definite operator on H1
0(Ω).

• The discrete operator Ah : Vh −→ Vh,

(Ahwh, ϕ) = ⟨Awh, ϕ⟩ , ∀ ϕ ∈ Vh. (3.6)

Ah is also a symmetric positive definite operator on Vh.

• The Ritz projection operator R : Vh −→ Vh,

(∇w,∇r) = ⟨Awh, ϕ⟩ , ∀ ϕ ∈ Vh. (3.7)

• The discrete operator Gh : Vh −→ Vh,

(gh(w), ϕ) = (g(w), ϕ), ∀ ϕ ∈ Vh. (3.8)

Note that it is easy to verify that
AhR = P0A and Gh = P0g.

It should also be stressed that the assumptions introduced above are needed in the current work in order to analyze
convergence and stability of the proposed Galerkin-characteristic unified finite element method for the coupled Darcy
and convection-diffusion-reaction problems (2.7). These assumptions are also used to establish error estimates for
velocity, pressure, temperature and concentration solutions.
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4. Galerkin-characteristic unified finite element method

As in most finite element methods, the starting point in the Galerkin-characteristic unified finite element method
is the weak formulation of the problem under study. Hence, the weak formulation of the coupled problem (2.7) reads:
Find the quadruplet (u, p,Θ, α) in H0(div,Ω) × L2

0(Ω) × H1
0(Ω) × H1

0(Ω) such that∫
Ω

u · s dΩ −
∫
Ω

p∇ · s dΩ =

∫
Ω

f(Θ) · s dΩ, ∀ s ∈ H0(div,Ω),
(4.1a)∫

Ω

q ∇ · u dΩ = 0, ∀ q ∈ L2
0(Ω),∫

Ω

DΘ
Dt

r dΩ +
∫
Ω

∇Θ · ∇r dΩ =

∫
Ω

g(Θ, α)r dΩ, ∀ r ∈ H1
0(Ω),

(4.1b)∫
Ω

Dα
Dt

r dΩ +
1
Le

∫
Ω

∇α · ∇r dΩ =

∫
Ω

g(Θ, α)r dΩ, ∀ r ∈ H1
0(Ω).

It evident that any quadruplet (u, p,Θ, α) ∈ H0(div,Ω) × L2
0(Ω) × H1

0(Ω) × H1
0(Ω) solving the problem (2.7) in the

sense of distributions in Ω is a solution of the variational problem (4.1). For the a priori bound on the temperature Θ
and concentration α we have the following theorem:

Theorem 4.1. Every solution of (4.1) such that (Θ, α) ∈ L∞ (Ω × [0,T ]) × L∞ (Ω × [0,T ]) satisfies the following
bounds:

∥u∥L2(Ω)d ≤ cf ∥Θ∥L∞(0,T ;L2(Ω)d , (4.2)

∥Θ∥2L∞(0,T ;L2(Ω)) + ∥Θ∥
2
L2(0,T ;H1

0 (Ω)) ≤ cg

(
3
2
∥Θ∥2L2(0,T ;L2(Ω)) +

1
2
∥α∥2L2(0,T ;L2(Ω))

)
, (4.3)

and

∥α∥2L∞(0,T ;L2(Ω)) +
1
Le
∥α∥2L2(0,T ;H1

0 (Ω)) ≤ cg

(
3
2
∥α∥2L2(0,T ;L2(Ω)) +

1
2
∥Θ∥2L2(0,T ;L2(Ω))

)
, (4.4)

where cf and cg are positive constants independent of h.
□

Proof. By testing equations (4.1a) with s = u and q = p, and using the Cauchy-Schwarz inequality together with
Assumption 3.3 on the function f we immediately derive the a priori bound (4.2). Next, for u ∈ H0(div,Ω) rewriting
the first equation in (4.1b) by using the definition of the material derivative (2.8) and testing it with r = Θ, we obtain
by noting that

∫
Ω

(u · ∇Θ)Θ dΩ = 0 and using the Cauchy-Schwarz inequality for all t ∈ [0,T ]

1
2

d
dt
∥Θ∥2L2(Ω) + ∥∇Θ∥

2
L2(Ω) ≤ ∥g(Θ, α)∥L2(Ω) ∥Θ∥L2(Ω) .

Then, by using Assumption 3.3 on the function g along with the well-known Young’s inequality
(
ab ≤

a2

2
+

b2

2

)
, we

easily obtain (4.3). Note that (4.4) can be derived in the same manner by testing the second equation in (4.1b) with
r = α.

In the present study, to approximate solutions of the coupled problem (4.1) in space, we use the unified Galerkin-
characteristic finite element method which consists of using the same polynomial approximation for temperature,
concentration, velocity and pressure solutions in the simplicial finite elements K j in Ωh. The conforming finite
element spaces that we use are polynomials Pk of the same degree k for all the solutions defined on the element K j.
Thus, to approximate the velocity and pressure solutions for the Darcy problem (4.1a), we consider the equal-order
pair (Sh,Qh) with

Sh = Vh ∩H0 (div,Ω) and Qh = Vh ∩ L2
0(Ω). (4.5)
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To approximate the temperature and concentration solutions for the convection-diffusion-reaction problem (4.1b), we
define the discrete space Rh as

Rh = Vh ∩ H1
0 (Ω) . (4.6)

Note that same finite elements are used for solving both the Darcy problem and the convection-diffusion-reaction
equations without requiring mixed formulations widely used in the literature, see for example [26, 27]. This results in
a simple and efficient implementation of the method without need for mixed finite element techniques.

4.1. Solution of the Darcy problem

The Darcy problem (4.1a) can be reformulated as

A (uh, sh) − B (ph, sh) = Lf (sh) , ∀ sh ∈ Sh,
(4.7)

B (qh,uh) = 0, ∀ qh ∈ Qh,

whereA, B are the bilinear forms and Lf is the linear form defined as

A(uh, sh) =
∫
Ω

uh · sh dΩ, B(ph, sh) =
∫
Ω

ph∇ · sh dΩ, Lf(sh) =
∫
Ω

fh · sh dΩ.

Note that a stable and accurate solution of the discrete problem (4.7) requires that the spaces Sh and Qh satisfy the
discrete inf-sup condition [28],

sup
sh∈Sh
sh,0

B (ph, sh)
∥sh∥H1(Ω)d

≥ C ∥ph∥L2(Ω) , ∀ ph ∈ Qh, (4.8)

with C > 0 being a constant independent of h. However, it is well known that the pair (Sh,Qh) does not verify the
inf-sup condition associated with the mixed form (4.7), see [29, 30, 21] for further details. Therefore, the discrete
weak problem is not stable and a stabilization techniques is required. In the current work, to stabilize (4.7) we use the
polynomial pressure-projection stabilization method introduced in [21, 22]. The method consists of defining a local
L2-projection operator onto the discontinuous polynomial space as

[P]k−1 =

{
qh ∈ L2(Ω) : qh

∣∣∣∣∣
K j

∈ Pk−1(K j), ∀ K j ∈ Ωh

}
,

where the projection operator Πk−1 : L2(Ω) −→ [P]k−1 is defined by

Πk−1(p) = arg min
1
2

∫
Ω

(Πk−1qh − p)2 dΩ. (4.9)

Using this local projection, the velocity-pressure space (Sh,Qh) verifies a stabilized form of the inf-sup condition
(4.8). Thus, we recall the following result whose proofs can be found the proof in [21].

Lemma 4.1. Let Sh and Qh be the spaces defined in (4.5). Then, there exist positive constants C1 and C2 whose values
are independent of h such that

sup
sh∈Sh
sh,0

B (ph, sh)
∥sh∥H1(Ω)d

≥ C1 ∥ph∥L2(Ω) −C2 ∥ph − Πk−1 ph∥L2(Ω) , ∀ ph ∈ Qh. (4.10)

Note that the stabilized inf-sup condition (4.10) allows to identify terms that can be used to stabilize the unified finite
element method considered in this study. Furthermore, other than the range assumption, Lemma 4.1 requires no
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additional hypotheses on the projection operator Πk−1, compare [21]. Hence, the stabilized weak form reads: Find
(uh, ph) ∈ Sh × Qh such that

A (uh, sh) − B (ph, sh) = Lf (sh) , ∀ sh ∈ Sh,
(4.11)

B (qh,uh) = D (ph, qh) , ∀ qh ∈ Qh,

whereD is the bilinear form defined as

D (ph, qh) =
∫
Ω

(ph − Πk−1 ph) (qh − Πk−1qh) dΩ.

It should be stressed that, this unified finite element method has been assessed and examined for several examples for
stokes and Darcy problems and the obtained results have shown that the method is efficient, accurate and stable, see
[21, 22, 23] among others.

4.2. Solution of the convection-diffusion problem

To solve the convection-diffusion equations (4.1b), we consider the Galerkin-characteristic method using the mod-
ified method of characteristics for the convection terms. This class of method have been used for solving many
convection-dominated flow problems, see for example [15, 16, 20, 31, 32, 33]. Here, the main idea is to decouple the

transport parts
DΘ
Dt

and
Dα
Dt

from the convection-diffusion equations (4.1b) in the finite element discretization. The
new temperature and concentration solutions are approximated at each time subinterval [tn, tn+1] using the character-
istic curves associated with the material derivative (2.8). Here, the characteristic curves X(x, tn+1; t) associated with
the material derivative (2.8) are the solutions of the ordinary differential equations

dX(x, tn+1; t)
dt

= u (t,X(x, tn+1; t)) , ∀ (t, x) ∈ [tn, tn+1] × Ω̄,
(4.12)

X(x, tn+1; tn+1) = x.

The solutions are called departure points at time t of a particle passing through the point x at time t = tn+1. Note that
we assume that the velocity field u satisfies Assumption 3.2 which guarantees the existence and uniqueness of the
solution of (4.12) for all times t, see for instance [34]. Then, the unique solution of (4.12) can be expressed for all
(t, x) in [tn, tn+1] × Ω̄ as

X(x, tn+1; tn) = x −
∫ tn+1

tn
u (t,X(x, tn+1; t)) dt, (4.13)

To obtain the departure points {Xn
h j} for each mesh point x j, j = 1, . . . ,M, we use the algorithm proposed in [19]

which accurately solves (4.12) with a second-order accuracy. We write the solution of (4.12) in the form of

Xn
h j = x j − dh j, j = 1, . . . ,M, (4.14)

where the displacement dh j is calculated by the iterative procedure

d(0)
h j =

∆t
2

(
3un

h

(
x j

)
− un−1

h

(
x j

))
,

(4.15)

d(k+1)
h j =

∆t
2

(
3un

h

(
x j −

1
2

d(k)
h j

)
− un−1

h

(
x j −

1
2

d(k)
h j

))
, k = 0, 1, . . . .

To evaluate values of the approximate velocities un
h

(
x j −

1
2

d(k)
h j

)
and un−1

h

(
x j −

1
2

d(k)
h j

)
in (4.15), we first identify the

mesh element K̂ j where x j −
1
2

d(k)
h j resides. Then, a finite element interpolation on K̂ j is carried out according to

(3.1). In the numerical simulations obtained, the iterations in (4.15) were continued until the trajectory changed by
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less than 10−7. However, in practice it is not recommended to repeat the iteration process more than a few times due
to efficiency considerations.

We assume that the pairs (Xn
h j, K̂ j) along with the mesh point values

{
T n

j ,A
n
j

}
are known for all j = 1, . . . ,M, we

compute the values
{
T̂ n

j , Â
n
j

}
as

T̂ n
j := Θn

h(Xn
h j) =

M∑
k=1

Tkϕ(Xn
h j), Ân

j := αn
h(Xn

h j) =
M∑

k=1

Akϕ(Xn
h j). (4.16)

Then, the solution
{
Θ̂n

h(x) , α̂n
h(x)

}
of the convection equations (2.7b) is obtained by

Θ̂n
h(x) =

M∑
j=1

T̂ n
j ϕ j(x), α̂n

h(x) =
M∑
j=1

Ân
jϕ j(x). (4.17)

In transient Darcian flow problems, the convection process is repeated continuously. Thus, some artifacts which can
be tolerated for one step might become a serious issue as the errors start building up after several steps. Indeed, if
the solution of Darcian flow equations is expected to have sharp gradients, the numerical solution obtained by the
conventional Galerkin-characteristic method either develops spurious oscillations or it is affected by a large artificial
viscosity. Spurious oscillations and artificial viscosity often deteriorate the accuracy of the solution, so the numer-
ical solution may become physically unacceptable. For this reason, in most Galerkin-characteristic methods linear
interpolation procedures result in an oscillation-free solutions. However, applied to the Darcian flow equations a
Galerkin-characteristic method would require higher order interpolation for a higher accuracy. The main problem
with the high-order interpolation procedures is that high degree polynomials they use might show oscillatory behavior
as they are forced to satisfy the continuity condition at the nodal points. In order to avoid the principal drawback of
the conventional Galerkin-characteristic methods (4.16), that is the failure to preserve monotonicity, we incorporate
an L2-projection into our algorithm to convert the method to non-oscillatory and shape preserving at an additional
computational cost. The procedure consists of evaluating Θ̂n

h and α̂n
h in (4.17) using an L2-projection on the space Vh.

The method uses ideas of the quadrature rules for the approximation of integrals in the finite element discretization.
In the current study, the Galerkin-characteristic L2-projection method consists of generating a virtual partition

Ω̂n
h = X

n (Ωh) that is the image of the fixed mesh partition Ωh composed of elements K̂n
j = X

n
(
K j

)
, i.e.

Ω̂n
h =

{
K̂n

j ⊂ X
n
(
Ω̄
)

: K̂n
j = X

n
(
K j

)
, j = 1, . . . ,Ne

}
.

Then, we define the finite element space V̂n
h associated with Ω̂n

h as

V̂n
h =

{̂
vn

h ∈ C0 (Xn(Ωh)) : v̂n
h

∣∣∣
K̂n

j
∈ S (K̂n

j ), ∀ K̂n
j ∈ Ω̂

n
h

}
.

Given (Θn(x), αn(x)) ∈ Vh × Vh the approximate solutions of the problem at the current time tn, and denoting by(
P̂n

hΘ
n (Xn) , P̂n

hα
n (Xn)

)
the approximations of the L2-projection of (Θn (Xn) , αn (Xn)) onto Ω̂n

h×Ω̂
n
h, then the solutions(

Θn+1(x), αn+1(x)
)
∈ Vh × Vh at time tn+1 are approximated by

Θn+1(x) = P̂n
hΘ

n (Xn) , αn+1(x) = P̂n
hα

n (Xn) . (4.18)

Thus, to any pair functions
(
Θ̂n

h, α̂
n
h

)
∈ V̂n

h × V̂n
h , where

Θ̂n
h(X) =

M∑
j=1

T̂ n
j ϕ̂ j(X), α̂n

h(X) =
M∑
j=1

Ân
j ϕ̂ j(X),

there corresponds a pair functions
(
Θ̃n+1

h (x), α̃n+1
h (x)

)
∈ Vh × Vh defined by

Θ̃n+1
h (x) =

M∑
j=1

T̂ n
j ϕ j(x), α̃n+1

h (x) =
M∑
j=1

Ân
jϕ j(x).
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Next, we consider the solutions T n (Xn) and An (Xn) which are continuous in Ω but do not belong to V̂n
h . Define(

Θ̂n
h, α̂

n
h

)
∈ V̂n

h × V̂n
h as the L2-projection of

(
T n (Xn) ,An (Xn)

)
onto V̂n

h × V̂n
h such that, for all v̂n

h ∈ V̂n
h〈

Θ̂n
h (X) , v̂n

h (X)
〉
=

〈
T n (X) , v̂n

h (X)
〉
,

〈
α̂n

h (X) , v̂n
h (X)

〉
=

〈
An (X) , v̂n

h (X)
〉
, (4.19)

where X = X(x j, tn) and the inner products ⟨·, ·⟩ are defined by

〈
Θ̂n

h (X) , v̂n
h (X)

〉
=

Ne∑
j=1

∫
K̂n

j

Θ̂n
h (X) v̂n

h (X) dX,
〈
T n (X) , v̂n

h (X)
〉
=

Ne∑
j=1

∫
K̂n

j

T n (X) v̂n
h (X) , (4.20)

with a similar definition for the solution α̂n
h (X). Note that, when the integrals in (4.20) are evaluated exactly one

obtains

Θ̂n
h (X) =

M∑
j=1

T̂ n
j ϕ̂ j(X) and α̂n

h (X) =
M∑
j=1

Ân
j ϕ̂ j(X),

and we can therefore define a solution
(
Θ̃n+1

h (x), α̃n+1
h (x)

)
∈ Vh × Vh as

Θ̃n+1
h (x) =

M∑
j=1

T n+1
j ϕ j(x) and α̃n+1

h (x) =
M∑
j=1

An+1
j ϕ j(x),

with T n+1
j = T̂ n

j andAn+1
j = Ân

j for all j = 1, . . . ,M. Note that for X = X(x j, tn) we have

Θ̃n+1
h (x) = Θ̂n

h

(
X(x j, tn)

)
and α̃n+1

h (x) = α̂n
h

(
X(x j, tn)

)
.

In the current study, we propose a Galerkin-characteristic method where the exact evaluation of the L2-projection of
(T n (Xn) ,An (Xn) onto V̂n

h × V̂n
h are replaced by an approximate L2-projection that is both computationally efficient

and sufficiently accurate. In our simulations, the integral of an arbitrary function W on the element K̂ is approximated
by the quadrature rule ∫

K̂

W(x) dx ≈
3
√

3R2

4

Nq∑
g=1

wgW(xg, yg), (4.21)

where R denotes the radius of the circle circumscribed by the triangle K̂ , xg =
(
xg, yg

)⊤
is the quadrature point and wg

is its associated weight. Here, Nq is the total number of quadrature points in the rule, compare for example [35]. In
our simulations we consider a quadrature rule with Nq = 1 with their corresponding quadrature abscissa and weights
listed in Table 4.1.

Note that, the solution Θn+1(x) in (4.19) can be reformulated in a matrix form as[
M̂

] {
Θn+1

}
=

{
R̂
}
, (4.22)

where
[
M̂

]
is the mass matrix, the elements m̂i j of which are given by

∫
Ω̂n

j
ϕ̂ j(X)ϕ̂i(X) dX, i, j = 1, . . . ,M,

{
Θn+1

}
=(

Θn+1
1 , . . . ,Θ

n+1
M

)⊤
and

{
R̂
}
=

(̂
r1, . . . , r̂M

)⊤, with r̂ j being the right-hand side of (4.19). The formulation of the
concentration solution can be performed in a similar manner.

Hence, the Galerkin-characteristic L2-projection method to approximate the solution
{
Θ̂n

h(x), α̂n
h(x)

}
is carried out

in the following steps:

1. For each mesh element K j generate the quadrature pairs
(
xg,wg

)
using for example the approach (4.21).

2. For each quadrature point calculate the departure point Xh(xg, tn) using the iteration procedure (4.15).

3. Identify the mesh element K̂g where the departure point Xh(xg, tn) is located.
4. Evaluate the gridpoint approximations Θ̂n

h(x) and α̂n
h(x) by solving the linear system (4.22).
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Table 4.1: Coordinates and weights of the nodal points used for the quadrature formula.

Point g Coordinates (xg, yg) Weight wg

1 (0, 0)
270

1200

2
 √15 + 1

7
R, 0

 155 −
√

15
1200

3
−√15 + 1

14
R,−

√
15 + 1
14

√
3R

 155 −
√

15
1200

4
−√15 + 1

14
R,

√
15 + 1
14

√
3R

 155 −
√

15
1200

5
− √15 − 1

7
R, 0

 155 +
√

15
1200

6
 √15 − 1

14
R,−

√
15 − 1
14

√
3R

 155 +
√

15
1200

7
 √15 − 1

14
R,

√
15 − 1
14

√
3R

 155 +
√

15
1200

We should mention that in contrast to the conventional Galerkin-characteristic method, the Galerkin-characteristic L2-
projection method calculates the characteristic trajectories for all quadrature points belonging to each triangle in the
computational domain. Notice that other quadrature rules can also be applied in our Galerkin-characteristics method
without major modifications. To solve the reaction-diffusion terms in (2.7b) we use the Crank-Nicolson scheme for
the time integration as

Θn+1
h − Θ̂n

h

∆t
−

1
2
∇2Θn+1

h = WZ(Θ̂n
h)ϕ(α̂n

h) +
1
2
∇2Θ̂n

h,

(4.23)
αn+1

h − α̂n
h

∆t
−

1
2Le
∇2αn+1

h = WZ(Θ̂n
h)ϕ(α̂n

h) +
1

2Le
∇2α̂n

h.

Then, multiplying by vh and integrating by parts, we obtain for all rh ∈ Rh(
Θn+1

h , rh

)
+
∆t
2

(
∇Θn+1

h ,∇rh

)
=

(
Θ̂n

h + ∆t gh(Θ̂n
h, α̂

n
h), rh

)
−
∆t
2

(
∇Θ̂n

h,∇rh

)
,

(4.24)(
αn+1

h , rh

)
+
∆t

2Le

(
∇αn+1

h ,∇rh

)
=

(
α̂n

h + ∆t gh(Θ̂n
h, α̂

n
h), rh

)
−
∆t

2Le

(
∇α̂n

h,∇rh

)
.

Thus, in the linear system form, we have(
[M] +

∆t
2

[S]
)
Θn+1 = [M]

(
Θ̂

n
+ ∆t gh(Θ̂

n
, α̂n)

)
−
∆t
2

[S] Θ̂
n
,

(4.25)(
[M] +

∆t
2Le

[S]
)
αn+1 = [M]

(
α̂n
+ ∆t gh(Θ̂

n
, α̂n)

)
−
∆t

2Le
[S] α̂n,

where Θn+1 =
(
T n+1

1 , . . . ,T n+1
M

)T
, Θ̂

n
=

(
T̂ n

1 , . . . , T̂
n
M

)T
, αn+1 =

(
An+1

1 , . . . ,A
n+1
M

)T
and α̂n

=
(
Ân

1, . . . , Â
n
M

)T
. Here,

[M] is the same mass matrix as in (4.22) whose elements are defined by mi j =
∫
ϕ jϕi dx and [S] is stiffness matrix

whose elements are given by si j =
∫
∇ϕ j∇ϕi dx, with i, j = 1, . . . ,M.

For the existence and uniqueness of the solution of (4.11) and (4.24), we have the following theorem:
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Theorem 4.2. At each time tn and for given
(
Θn

h, α
n
h

)
∈ Rh × Rh and

(
Θ̂n

h, α̂
n
h

)
∈ Rh × Rh, the problem (4.11) and (4.24)

has a unique solution
(
un+1

h , p
n+1
h ,Θ

n+1
h , α

n+1
h

)
in Sh × Qh × Rh × Rh which verifies the following bounds:(

1 −
cf

2

) ∥∥∥un+1
h

∥∥∥2
L2(Ω)d ≤

cf

2

∥∥∥Θn
h

∥∥∥
L2(Ω)d +

∥∥∥pn+1
h − Πk−1 pn+1

h

∥∥∥2
L2(Ω) , (4.26a)

∥∥∥Θn+1
h

∥∥∥
L2(Ω) −

∥∥∥∥Θ̂n
h

∥∥∥∥
L2(Ω)

≤ cg∆t
(∥∥∥∥Θ̂n

h

∥∥∥∥
L2(Ω)
+

∥∥∥α̂n
h

∥∥∥
L2(Ω)

)
, (4.26b)

and ∥∥∥αn+1
h

∥∥∥
L2(Ω) −

∥∥∥α̂n
h

∥∥∥
L2(Ω) ≤ cg∆t

(∥∥∥∥Θ̂n
h

∥∥∥∥
L2(Ω)
+

∥∥∥α̂n
h

∥∥∥
L2(Ω)

)
, (4.26c)

where cf and cg are positive constants independent of h.
□

Proof. It is clear that the Darcy problem (4.11) has a unique solution since it satisfies the inf-sup condition (4.10). By
testing equations (4.11) with sh = uh and qh = ph, and using the Cauchy-Schwarz and Young’s inequalities along with
Assumption 3.3 on fh, we immediately derive the bound (4.26a).

Next, knowing un
h ∈ Sh and thus Θ̂n

h and α̂n
h obtained using the Galerkin-characteristic method, the convection-

diffusion equations (4.24) admit also a unique solution
(
Θn+1

h , α
n+1
h

)
∈ Rh × Rh. Therefore, if we take rh = Θ

n+1
h + Θ̂n

h
in (4.24), we obtain

∥∥∥Θn+1
h

∥∥∥2
−

∥∥∥∥Θ̂n
h

∥∥∥∥2
+
∆t
2

∥∥∥∥∇ (
Θn+1

h + Θ̂n
h

)∥∥∥∥2
=

(
∆tgh

(
Θ̂n

h, α̂
n
h

)
,Θn+1

h + Θ̂n
h

)
.

Then, by using the Cauchy-Schwarz and triangle inequalities along with Assumption 3.3 on the function gh, we obtain
for each time tn the bound (4.26b). Note that (4.26c) can be derived in the same way by testing the second equation in
(4.24) with rh = α

n+1
h + α̂n

h.

5. Convergence and stability of the Galerkin-characteristic unified finite element method

In this section, the focus is on the stability and a priori error estimates in the L2-norm for to the proposed Galerkin-
characteristics unified finite element method. We shall first study the stability and convergence for the velocity and
pressure solutions and then, stability and error estimates for the temperature and concentration solutions are demon-
strated.

5.1. Stability and error estimates for the velocity and pressure

By virtue of [21, 23], we consider the following necessary hypotheses:

Assumption 5.1. The spaces Sh have the following approximation property: given a function u ∈ Hk+1(Ω)d, k = 1, 2,
there exists uh ∈ Sh such that

∥u − uh∥L2(Ω)d + h |u − uh|H1(Ω)d ≤ Chk+1 |u|Hk+1(Ω)d , (5.1)

where C is a positive constant independent of h.

Assumption 5.2. We assume that for all p ∈ H1(Ω), there exists a function ph ∈ Qh such that

∥p − ph∥L2(Ω) ≤ Ch |p|H1(Ω) , (5.2)

where C is a positive constant independent of h.
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Assumption 5.3. The operator Πk−1 defined in (4.9) satisfies for all p ∈ L2(Ω):

1. Πk−1: L2(Ω) −→ L2(Ω) is continuous and satisfies

∥Πk−1 p∥L2(Ω) ≤ C ∥p∥L2(Ω) , (5.3)

where C is a positive constant.
2. The properties of Πk−1 must be augmented by the approximation

∥p − Πk−1 p∥L2(Ω) ≤ C′h |p|H1(Ω) , (5.4)

where C′ is a positive constant independent of h.

Let (u, p) and (un
h, p

n
h) be the solutions of the Darcy problems (4.1a) and (4.11), respectively. We rewrite equations

(4.1a) in a compact form as

S (un, pn; s, q) = Lf (s) , ∀ (s, q) ∈ H1
0(Ω) × L2

0(Ω), (5.5)

where S is the bilinear form given by

S (un, pn; s, q) = A (un, s) − B (pn, s) + B (q,un) .

Similarly, we can write (4.11) in the following form

S̃
(
un

h, p
n
h; sh, qh

)
= Lf (sh) , ∀ (sh, qh) ∈ Sh × Qh, (5.6)

where S̃ is the bilinear form given by

S̃
(
un

h, p
n
h; sh, qh

)
= A

(
un

h, sh

)
− B

(
pn

h, sh

)
+ B

(
qh,un

h

)
−D

(
pn

h, qh

)
.

Using (5.3), we can easily show that S̃ is continuous such that

S̃
(
un

h, p
n
h; sh, qh

)
≤ C

(∣∣∣un
h

∣∣∣
H1(Ω)d +

∥∥∥pn
h

∥∥∥
L2(Ω)

) (
|sh|H1(Ω)d + ∥qh∥L2(Ω)

)
, (5.7)

for all (uh, ph) and (sh, qh) in Sh ×Qh, where C is a positive constant independent of h. The stability of the variational
problem (4.11) is provided by the following theorem, the proof for which can be found in [21]:

Theorem 5.1. Let (Sh,Qh) be the pair of spaces defined in (4.5). Then, there exists a positive constant C whose value
is independent of h such that

sup
(sh,qh)∈Sh×Qh

S̃
(
un

h, p
n
h; sh, qh

)
|sh|H1(Ω)d + ∥qh∥L2(Ω)

≥ C
(
|uh|H1(Ω)d + ∥ph∥L2(Ω)

)
, ∀ (uh, ph) ∈ Sh × Qh. □

(5.8)

To prove convergence of the stabilized solutions of (5.6), we shall establish the following theorem:

Theorem 5.2. Let (Sh,Qh) be the pair of spaces defined in (4.5), let (u, p) ∈ H0(div,Ω) × L2
0(Ω) be the solution of

the Darcy problem (4.1a) and let (uh, ph) ∈ Sh × Qh be the solution of the stabilized mixed problem (4.11), where the
operator Πk−1 defined in (4.9) satisfies (5.3). Then, there exists a positive constant C whose value is independent of
h such that

|un − un
h|H1(Ω)d +

∥∥∥pn − pn
h

∥∥∥
L2(Ω) ≤ C

(
inf

wh∈Sh
|un − wn

h|H1(Ω)d + inf
lh∈Qh

∥∥∥pn − lnh
∥∥∥

L2(Ω) +

∥pn − Πk−1 pn∥L2(Ω) + Rp

∥∥∥Θn−1
h − Θn−1

∥∥∥
L2(Ω)d

)
.
□

(5.9)
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Proof. Since (Sh,Qh) is a subspace of H0(div,Ω) × L2
0(Ω), (4.1a) yields

A (un, sh) − B (pn, sh) = Lf (sh) , ∀ sh ∈ Sh,
(5.10)

B (qh,un) = 0, ∀ qh ∈ Qh,

where Lf (sh) =
∫
Ω

f · sh dΩ =
∫
Ω

Rp

(
Θn−1

h − Θn−1
)

e · sh dΩ. Subtracting these equations from (4.11) we obtain

A
(
un

h − un, sh

)
− B

(
pn

h − pn, sh

)
=

∫
Ω

Rp

(
Θn−1

h − Θn−1
)

e · sh dΩ, ∀ sh ∈ Sh,

(5.11)
B

(
qh,un

h − un
)
= D (ph, qh) , ∀ qh ∈ Qh,

or, simply

S̃
(
un

h − un, pn
h − pn; sh, qh

)
=

∫
Ω

Rp

(
Θn−1

h − Θn−1
)

e · sh dΩ +D (pn, qh) , ∀ (sh, qh) ∈ Sh × Qh. (5.12)

Let (wn
h, l

n
h) be an arbitrary pair in Sh × Qh, we shall estimate the discrete error∣∣∣un

h − wn
h

∣∣∣
H1(Ω)d +

∥∥∥pn
h − lnh

∥∥∥
L2(Ω) . (5.13)

Using the inequality (5.8) with (5.12), we obtain

C
(
|un

h − wn
h|H1(Ω)d +

∥∥∥pn
h − lnh

∥∥∥
L2(Ω)

)
≤ sup

(sh,qh)∈ Sh×Qh

S̃(un
h − wn

h, p
n
h − lnh; sh, qh)

|sh|H1(Ω)d + ∥qh∥L2(Ω)

= sup
(sh,qh)∈ Sh×Qh

S̃(un
h − un, pn

h − pn; sh, qh) + S̃(un − wn
h, p

n − lnh; sh, qh)
|sh|H1(Ω)d + ∥qh∥L2(Ω)

≤ sup
(sh,qh)∈Sh×Qh

D(p, qh) +
∫
Ω

Rp(Θn−1
h − Θn−1)e · sh dΩ + S̃(un − wn

h, p
n − lnh; sh, qh)

|sh|H1(Ω)d + ∥qh∥L2(Ω)
.

From (5.7), we have

S̃
(
un − wn

h, p
n − lnh; sh, qh

)
≤ C′

(∥∥∥un − wn
h

∥∥∥
H1(Ω)d +

∥∥∥pn − lnh
∥∥∥

L2(Ω)

) (
|sh|H1(Ω)d + ∥qh∥L2(Ω)

)
, (5.14)

where C′ is a positive constant. Using (5.3), we have

D (p, qh) ≤ C′′D (p, p)1/2 ∥qh∥L2(Ω) ,

where C′′ is a positive constant. Using the Cauchy-Schwarz inequality and (2.10) we get∫
Ω

Rp

(
Θn−1

h − Θn−1
)

e · sh dΩ ≤ Rp

∥∥∥Θn−1
h − Θn−1

∥∥∥
L2(Ω)d ∥sh∥L2(Ω)d . (5.15)

Hence, we obtain

C
(
|un

h − wn
h|H1(Ω)d +

∥∥∥pn
h − lnh

∥∥∥
L2(Ω)

)
≤ sup

(sh,qh)∈Sh×Qh

C′′D(p, p)1/2∥qh∥L2(Ω) + Rp∥Θ
n−1
h − Θn−1∥L2(Ω)d∥sh∥L2(Ω)d

|sh|H1(Ω)d + ∥qh∥L2(Ω)
+

sup
(sh,qh)∈Sh×Qh

C′
(
∥un − wn

h∥H1(Ω)d + ∥pn − lnh∥L2(Ω)

)(
|sh|H1(Ω)d + ∥qh∥L2(Ω)

)
|sh|H1(Ω)d + ∥qh∥L2(Ω)

.

As a result, we get

C
(
|un

h − wn
h|H1(Ω)d +

∥∥∥pn
h − lnh

∥∥∥
L2(Ω)

)
≤ C′′D(p, p)1/2 + Rp∥Θ

n−1
h − Θn−1∥L2(Ω)d +C′

(
|un − wn

h|H1(Ω)d +
∥∥∥pn − lnh

∥∥∥
L2(Ω)

)
,
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or, simply

C
(
|un

h − wn
h|H1(Ω)d +

∥∥∥pn
h − lnh

∥∥∥
L2(Ω)

)
≤ C′′ ∥pn − Πk−1 pn∥L2(Ω) + Rp∥Θ

n−1
h − Θn−1∥L2(Ω)d +

C′
(
|un − wn

h|H1(Ω)d +
∥∥∥pn − lnh

∥∥∥
L2(Ω)

)
.

Next, we use the triangle inequality to obtain

|un − un
h|H1(Ω)d +

∥∥∥pn − pn
h

∥∥∥
L2(Ω) ≤

(
|un − wn

h|H1(Ω)d +
∥∥∥pn − lnh

∥∥∥
L2(Ω)

)
+

(
|un

h − wn
h|H1(Ω)d +

∥∥∥pn
h − lnh

∥∥∥
L2(Ω)

)
.

Then,

|un − un
h|H1(Ω)d +

∥∥∥pn − pn
h

∥∥∥
L2(Ω) ≤ |un − wn

h|H1(Ω)d +
∥∥∥pn − lnh

∥∥∥
L2(Ω) +

1
C

(
C′′ ∥pn − Πk−1 pn∥L2(Ω) +

Rp∥Θ
n−1
h − Θn−1∥L2(Ω)d +C′

(
|un − wn

h|H1(Ω)d +
∥∥∥pn − lnh

∥∥∥
L2(Ω)

)
,

Thus, we can easily deduce by taking the maximum of C, C′ and C′′ that there exists a positive constant such that

|un − un
h|H1(Ω)d +

∥∥∥pn − pn
h

∥∥∥
L2(Ω) ≤ C

(
|un − wn

h|H1(Ω)d +
∥∥∥pn − lnh

∥∥∥
L2(Ω) + ∥p

n − Πk−1 pn∥L2(Ω) +

Rp∥Θ
n−1
h − Θn−1∥L2(Ω)d

)
.

By taking the infimum over wh ∈ Sh and lh ∈ Qh, we obtain (5.9).

Note that Theorem 5.2 can be used to show that solutions of the stabilized Darcy problem converge optimally with
respect to the regularized solution. From Theorem 5.2, we also deduce the following result for the error estimates of
the velocity and pressure solutions.

Lemma 5.1. Let (u, p) be the solution of (4.1a) and (un
h, p

n
h) be the solution of (4.11) at each time step tn. Under

Assumption 5.1, Assumption 5.2 and Assumption 5.3, there exists a positive constant C depending on u and p such
that

|un − un
h|H1(Ω)d +

∥∥∥pn − pn
h

∥∥∥
L2(Ω) ≤ C

(
h|un|H2(Ω)d + h|pn|H1(Ω)d + Rp∥Θ

n−1
h − Θn−1∥L2(Ω)d

)
.
□

(5.16)

Proof. Under Assumption 5.1, Assumption 5.2 and Assumption 5.3 and by taking into account the inequality (5.9) of
Theorem 5.2, we immediately obtain (5.16).

5.2. Stability and error estimate for temperature and concentration

Following [15, 36], we consider the one-step method for the computation of the approximate solutions {Xn
h} of

(4.12) which has the following form

Xn
h(x) = x − ∆tΦuh (tn+1, x,∆t), ∀ x ∈ Ωh, (5.17)

with Φuh (tn+1, x,∆t) being the incremental function. We also consider the following assumptions:

Assumption 5.4. We impose the following assumptions:

1. There exists a real constant 0 < ∆t0 < 1 such that:

Φuh : [0,T ] ×Ωh × (0,∆t0) −→ Rd,

is a continuous function that only depends on uh.
2. For any t ∈ [0,T ] and x ∈ Ωh, Φuh (t, x,∆t) −→ uh(x, t) as ∆t −→ 0.
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3. For any t ∈ [0,T ], x, y ∈ Ωh and ∆t ∈ (0,∆t0), there exists a positive constant C such that∣∣∣Φuh (t, x,∆t) − Φuh (t, y,∆t)
∣∣∣ ≤ C|x − y|.

4. There exists ∆t∗, with 0 < ∆t∗ < ∆t0, such that for ∆t ∈ (0,∆t∗) and h ∈ (0, h0), the method is absolutely stable.
5. The method is of order p, where p is an integer larger than 0. This means that, if

Xh(x, tn+1; tn) = x −
∫ tn+1

tn
uh (t,Xh(x, tn+1; t)) dt,

is the exact solution of (4.12) for any x ∈ Ωh, and we assume that uh(x, t) is sufficiently smooth in time, then for
all ∆t ∈ (0,∆t∗), h ∈ (0, h0) and tn ∈ (0,T ], we have∣∣∣Xh(x, tn+1; tn) − Xn

h(x)
∣∣∣ = O(∆tp+1).

Notice that Assumption 5.4 provide the convergence of Xn
h(x) to Xh(x, tn+1; tn). We recall the following result con-

cerning convergence of the characteristics:

Lemma 5.1. Assume that for each time subinterval [tn, tn+1], the points {Xn
h(x)} are calculated by the one-step method

(5.17) such that Assumptions 5.4 hold. Then∥∥∥X(x, tn+1; tn) − Xn
h(x)

∥∥∥
L∞(0,T ;L2(Ω)) ≤ C∆t ∥u − uh∥L∞(0,T ;L2(Ω)) + O(∆tp+1), (5.18)

where C is a positive constant defined by C = e∆t∗ |∇u|L∞ (0,T,Ω) .
□

In this instance, it is necessary to impose a condition on ∆t to approximate the departure points {Xn
h(x)}, under which

the functional iterative dh j defined in (4.14) converges.

Lemma 5.2. Suppose that Assumption 3.1 holds and that for all n

∆t∥∇Θn
h∥L∞(Ω) < 2 and ∆t∥∇αn

h∥L∞(Ω) < 2. (5.19)

Then, (5.18) represents an estimate of the committed error to compute the departure points {Xn
h(x)}.

□

Note that the proofs for Lemma 5.1 and Lemma 5.2 can be found in [15, 36] and are omitted here. As a consequence
of the above stability and consistency results for the velocity and pressure solutions and assuming that the method
used to compute the departure points points Xh is stable, we shall study stability and convergence for the temperature
and concentration solutions in the L2-norm. For this purpose, it is convenient to recall the following result of reference
[15] (Lemma 6 in page 40) concerning the stability of the Galerkin-characteristic step:

Lemma 5.3. Assume that Assumption 5.4 holds, then for any tn ∈ [0,T ], we have

∥Θ̂n
h∥L2(Ω) ≤ ∥Θ

n
h∥L2(Ω) and ∥α̂n

h∥L2(Ω) ≤ ∥α
n
h∥L2(Ω). □

(5.20)

Next, to prove the convergence of stabilized solutions of (4.24), we shall establish the following theorem:

Theorem 5.3. Assume that Assumption 5.4 holds, then for any tn ∈ [0,T ] we have

∥Θn+1
h ∥L2(Ω) − ∥Θ

n
h∥L2(Ω) ≤ cg∆t

(
|Θn

h∥L2(Ω) + ∥α
n
h∥L2(Ω)

)
, (5.21)

and
∥αn+1

h ∥L2(Ω) − ∥α
n
h∥L2(Ω) ≤ cg∆t

(
|Θn

h∥L2(Ω) + ∥α
n
h∥L2(Ω)

)
, (5.22)

where cg is a positive constant independent of h.
□
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Proof. We shall only prove (5.21) since (5.22) can be proved in the same way. If we take rh = Θ
n+1
h + Θ̂n

h in (4.24),
we obtain

∥Θn+1
h ∥

2 − ∥Θ̂n
h∥

2 ≤
(
∆tgh(Θ̂n

h, α̂
n
h),Θn+1

h + Θ̂n
h

)
.

Then, using the Cauchy-Schwarz and triangle inequalities along with (5.20) and Assumption 3.3 on the function gh,
we immediately obtain (5.21) for each time step tn.

Next, we proceed to the analysis of the convergence of the proposed method for solving the convection-diffusion
equations. For the temperature solution, we consider the standard estimates of Θ − P0Θ and Θ − RΘ where P0 and R
are the orthogonal projection and Ritz operators defined in (3.2) and (3.7), respectively. The following estimates hold
(see [15] for the proof):

Lemma 5.4. If w belongs to L∞(0,T ; Hr(Ω)). Then, for all t ∈ [0,T ], there exist positive constants C1 and C2 such
that for 1 ≤ r ≤ m + 1, the temperature solution Θ of (2.7b) satisfies

∥Θ − P0Θ∥L∞(0,T ;L2(Ω)) + h ∥Θ − P0Θ∥L∞(0,T ;H1(Ω)) ≤ C2hr ∥Θ∥L∞(0,T ;Hr(Ω)), (5.23)

and
∥Θ − RΘ∥L∞(0,T ;L2(Ω)) + h ∥Θ − RΘ∥L∞(0,T ;H1(Ω)) ≤ C1hr ∥Θ∥L∞(0,T ;Hr(Ω)). (5.24)

We also recall the following auxiliary results concerning properties of the two mappings x −→ X(x, s, t) and x −→
Xh(x, s, t) whose proofs can be found in [37].

Lemma 5.5. Suppose that Assumption 5.4 holds, then the mapping x −→ Xh(x, s; t) is a quasi-isometric homeomor-
phism of Ω into itself with an a.e zero Jacobian determinant.

Another interesting result related with homeomorphisms of the previous results is presented in the following Lemma
[38]:

Lemma 5.6. Let X(x, s; t) be the unique solution of (4.12) and assume that a quasi-isometric homeomorphism x −→
X(x, s; t) is of class Cr−1,1(Ω), r ≥ 1. Let f ∈ Wr,p(Ω̄) and h = f (X(x, s; t)), then h ∈Wr,p(Ω̄) and there exist positive
constants C1 and C2 such that

C1∥ f ∥r,p ≤ ∥h∥r,p ≤ C2∥ f ∥r,p.

Hence, since x −→ X(x, s; t) defines a quasi-isometric homeomorphism of Ω onto itself, we can introduce at each
time σ ∈ [tn, tn+1] the ephemeral Ritz projection and L2-projection operators RΘ̂ and P0Θ̂ as follows:

RΘ̂(x, σ) = z(x, σ) =
M∑
j=1

z j(σ)ϕ j(x),

(5.25)

P0Θ̂(x, σ) =

M∑
j=1

P0Θ̂ j(σ)ϕ j(x),

such that ∀ ϕh ∈ Vh

(
∇z(x, σ),∇ϕh

)
=

(
∇Θ̂(x, σ),∇ϕh

)
= P0

(
g(Xσ, σ) −

DΘ(Xσ, σ)
Dσ

)
,

(5.26)(
P0Θ̂(x, σ), ϕh

)
=

(
Θ̂(x, σ), ϕh

)
,
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where Θ̂(x, σ) = Θ(Xσ, σ) with Xσ = X(x, tn+1;σ). By using equation (5.2), it follows that

Ah z = P0

(
g(Xσ, σ) −

DΘ(Xσ, σ)
Dσ

)
, (5.27)

where P0 and Ah are the orthogonal projection and discrete operators defined in (3.2) and (3.6), respectively. Conse-
quently, for t = tn+1, zn+1 = RΘn+1 and Θn+1 = P0Θ

n+1 for all n, and by virtue of Lemma 5.4 and Lemma 5.6, we have
the following results [15]:

Lemma 5.7. Assume that Θ ∈ L∞(0,T ; Hm+1). Then, for all σ ∈ [tn, tn+1] there exist positive constants C1 and C2 such
that

∥Θ̂ − z∥L2(Ω) + h∥Θ̂ − z∥H1(Ω) ≤ C1hm+1∥Θ∥Hm+1(Ω),

and
∥Θ̂ − P0Θ̂∥ ≤ C2hm+1∥Θ∥Hm+1(Ω).

Next, by combining (2.7b) and (5.27), we obtain

∂z
∂σ
+ Ahz = P0

(
g(Xσ, σ) +

∂z
∂σ
−

DΘ(Xσ, σ)
Dσ

)
. (5.28)

Note that each term of (5.28) is an element of Vh. Now, we discretize (5.28) by the Crank-Nicolson scheme as follows

zn+1 = Ehzn +
∆t
2

S h

(
P0gn+1 + P0ĝn

)
+ S hP0

(
zn+1 − zn

)
− ∆tS hP0

(
DΘ(Xσ

′

, σ′)
Dσ

)
,

≡ A1 + A2 + A3 + A4, (5.29)

where σ′ = tn +
∆t
2

and the operators Eh : Vh −→ Vh and S h : Vh −→ Vh are given by

Ehvh =

 Ih −
∆t
2 Ah

Ih +
∆t
2 Ah

 vh, S hvh =

 Ih

Ih +
∆t
2 Ah

 vh,

where Ih : Vh −→ Vh is the identity operator and Eh and S h verify ∥|Eh∥| < 1 and ∥|S h∥| < 1, with ∥| · ∥| being the
operator norm. It should be stressed that, for the concentration solution, similar estimates of α − Rα and α − P0α can
be obtained using the same steps. Hence, we have the following result for the convergence of the temperature and
concentration solutions in the L2-norm:

Theorem 5.4. Assume that the following hypotheses hold:
1. h = O(∆t),
2. Assumption 3.1,
3. Assumption 5.4,
4. The time step ∆t satisfies the condition (5.19).

Then, there exist positive constants C and C′ such that

max
0≤tn≤T

∥∥∥Θ(tn) − Θn
h

∥∥∥ ≤ Chm+1∥Θ∥L∞(0,T ;Hm+1(Ω)) +C
(

hm+1

∆t
+ max

t∈(0,T )
β(t)hm+1 + O(∆tp)

)
∥Θ∥L∞(0,T ;Wm+1,∞(Ω)) +

Chm+1∥Θt∥L2(0,T ;Hm+1(Ω)) +C∆t2

∥∥∥∥∥∥D3Θ

Dt3

∥∥∥∥∥∥
L2(0,T ;L2(Ω))

, (5.30)

and

max
0≤tn≤T

∥∥∥α(tn) − αn
h

∥∥∥ ≤ C′hm+1∥α∥L∞(0,T ;Hm+1(Ω)) +C′
(

hm+1

∆t
+ max

t∈(0,T )
β(t)hm+1 + O(∆tp)

)
∥α∥L∞(0,T ;Wm+1,∞(Ω)) +

C′hm+1∥αt∥L2(0,T ;Hm+1(Ω)) +C′∆t2

∥∥∥∥∥∥D3α

Dt3

∥∥∥∥∥∥
L2(0,T ;L2(Ω))

, (5.31)

where β(t) = KeKtτ
1−m

2 (t), with τ(t) = min(t, 1) and K being a constant that depend on the velocity u.
□
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Proof. We shall prove only (5.30) since (5.32) can be proved in a similar way. Hence, we set

Θn+1 − Θn+1
h = (Θn+1 − zn+1) + (zn+1 − Θn+1

h ),

≡ ρn+1 + ξn+1. (5.32)

To estimate ρn+1, we use zn+1 = RΘn+1 according to (5.25). Next, from Lemma 5.4 it follows that

∥ρn+1∥ ≤ Chm+1∥Θ(tn+1)∥m+1, ∀ tn+1 ∈ [0,T ]. (5.33)

To estimate ξn+1, we introduce z̄n that is obtained from Rzn, then from (5.29) it follows that

zn+1 = Ehz̄n + Eh(zn − z̄n) + A2 + A3 + A4.

Next, taking into account the definition of ξ, we obtain from (4.24) and (5.29) along with ϕ ∈ Vh,

ξn+1 = Ehξ̄
n + Eh(zn − z̄n) + S hP0

(
(zn+1 − Θn+1) − (zn − Θn(Xn

h))
)
+

∆tS hP0

(
Θn+1 − Θn(Xn)

∆t
−

DΘ
Dσ

∣∣∣∣
σ=σ′

)
+ S hP0

(
Θn(Xn) − Θn(Xn

h)
)
,

≡ B1 + B2 + B3 + B4 + B5, (5.34)

where ξ̄n = z̄n − Θ∗nh is obtained from ξn. Now, we estimate the Bi’s terms in the L2-norm.

Estimate of B1:

From (5.20) and the definition of Eh, we have

∥B1∥ ≤ ∥|Eh∥|∥ξ̄
n∥ ≤ ∥ξn∥.

Estimate of B2:

Since
∥B2∥ ≤ ∥|Eh∥|∥zn − z̄n∥,

then, from the definition of Eh and triangle inequality, we have

∥B2∥ ≤ ∥Θ̂n − ImΘ̂
n∥ + ∥zn − Θ̂n∥ + ∥ImΘ̂

n − z̄n∥,

≡ B′1 + B′2 + B′3,

where Im is the polynomial interpolant of degree m defined in (3.3). The approximation (3.4) and Lemma 5.4 yield

B′1 ≤ Chm+1|Θ(tn)|m+1, ∀ tn ∈ [0,T ].

Then, by Lemma 5.7, we have
B′2 ≤ Chm+1∥Θ(tn)∥m+1, ∀ tn ∈ [0,T ].

To estimate B′3, by using the same arguments as in [15] we obtain:

B′3 ≤ Chm+1∥Θ(tn)∥m+1,∞, ∀ tn ∈ [0,T ].

Now, taking into account the B′i estimates and that Wm+1,∞(Ω) ⊂ Hm+1(Ω) and ∥Θ(tn)∥m+1 ≤ C∥Θ(tn)∥m+1,∞, it follows
that

∥B2∥ ≤ Chm+1∥Θ(tn)∥m+1,∞, ∀ tn ∈ [0,T ].
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Estimate of B3:

We have

B3 = S hP0

∫ tn+1

tn

∂
(
z(x, t) − Θ(Xh(x, tn+1; t), t)

)
∂t

dt.

Since ∥|S h∥| < 1 and ∥|Ph∥| are bounded, we obtain from Lemma 5.7

∥B3∥ ≤ Chm+1∥Θt∥L2(tn,tn+1;Hm+1(Ω)).

Estimate of B4:

By expanding in Taylor series the term B4 along the trajectories Xh(x, tn+1; t) with a remaining integral, we obtain

Θn+1 − Θn(Xn)
∆t

−
DΘ
Dσ

(
X(x, tn+1;σ′), σ′

)
=

1
4∆t

∫ tn+1

tn
(t − tn)(t − tn+1)

D3Θ(X(x, tn+1; t), t)
D3t

dt.

Next, by definition of S h and Ph, we obtain

∥B4∥
2 ≤ C

(∆t)4

4

∫ tn+1

tn

∥∥∥∥∥∥D3Θ(X(x, tn+1; t), t)
D3t

∥∥∥∥∥∥2

dt,

which leads to

∥B4∥ ≤ C∆t2

∥∥∥∥∥∥D3Θ

D3t

∥∥∥∥∥∥
L2(tn,tn+1;L2(Ω))

.

Estimate of B5:

We have

Θn(Xn) − Θn(Xn
h) = (Xn − Xn

h)
∫ 1

0
DXΘn(Xn(θ)) dθ,

where Xn(θ) = θXn + (1 − θ)Xn
h, for 0 < θ < 1. By using the definition of S h, P0 and from Lemma 5.6, we obtain

∥B5∥ ≤ C∥Xn − Xn
h∥∥Θ∥L∞(tn,tn+1;H1(Ω)),

then, by introducing (5.18) in the previous estimate, we have

∥B5∥ ≤ C∆t
(
∥u − uh∥L∞(0,T ;L2(Ω)) + O(∆tp)

)
∥Θ∥L∞(tn,tn+1;H1(Ω)). (5.35)

Next, referring to [39] and under regularity condition on the exact solution u and the approximate solution uh, it
follows that

∥u − uh∥ ≤ β(t)hm+1, ∀ t ∈ [0,T ], (5.36)

where
β(t) = KeKtτ

1−m
2 (t), (5.37)

with τ(t) = min(t, 1), and K is a constant that depends on u around the constant A > 0 that verifies the condition
sup
[0,T )
∥∇u∥ ≤ A. Then, by substituting (5.36) in (5.35) we have

∥B5∥ ≤ C∆t
(
β(t)hm+1 + O(∆tp)

)
∥Θ∥L∞(tn,tn+1;H1(Ω)).

By summing the estimates Bi’s, we obtain

∥ξn+1∥ ≤ ∥ξn∥ +Chm+1∥Θ∥m+1,∞ +C∆t
(
β(t)hm+1 + O(∆tp)

)
+ ∥Θ∥L∞(tn,tn+1;H1(Ω)) +

Chm+1∥Θt∥L2(tn,tn+1;Hm+1(Ω)) +C∆t2

∥∥∥∥∥∥D3Θ

D3t

∥∥∥∥∥∥
L2(tn,tn+1;L2(Ω))

.
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By using the Gronwall’s inequality, we have

∥ξn+1∥ ≤ ∥ξ0∥ +C
hm+1

∆t
∥Θ∥L∞(0,T ;Wm+1,∞(Ω)) +C

(
max
t∈(0,T )

β(t)hm+1 + O(∆tp)
)
∥Θ∥L∞(0,T ;H1(Ω)) +

Chm+1∥Θt∥L2(0,T ;Hm+1(Ω)) +C∆t2

∥∥∥∥∥∥D3Θ

Dt3

∥∥∥∥∥∥
L2(0,T ;L2(Ω))

. (5.38)

Hence, taking into account that ξ0 = 0, and using (5.32), (5.33) and (5.38) together with the triangle inequality we
obtain (5.30).

6. Numerical Results

In this section we present numerical results to examine the performance of the Galerkin-characteristic unified finite
element method. We first assess the accuracy of the method for two test example with known analytical solutions for a
Darcy problem and coupled system. Then we solve the benchmark problem (2.7a)-(2.9) to illustrate the performance
of the method for coupled Darcy and convection-diffusion-reaction equations. All the computations are performed
on a sequence of unstructured meshes with different element densities using the P2 elements for all the variables.
The linear systems of algebraic equations are solved using the conjugate gradient solver with incomplete Cholesky
decomposition. In addition, all stopping criteria for iterative solvers were set to 10−7 which is small enough to
guarantee that the algorithm truncation error dominates the total numerical error.

6.1. Accuracy example for a Darcy problem

As a first test example, we present numerical results for the Darcy problem (2.7a) rewritten in a simplified form as

u + ∇p = f, in Ω,

∇ · u = 0, in Ω, (6.1)
u · n = 0, on Γ,

where Ω = [0, 1] × [0, 1] and the source term f is defined such that the analytical solution of (6.1) is given by

p(x, y) = sin(πx) sin(πy), u(x, y) =

 −π cos(πx) sin(πy)

−π sin(πx) cos(πy)

 .
Since the exact solution for the problem (6.1) is available, errors and convergence rates for the unified finite element
method can be quantified. In Table 6.1 we summarize the errors and convergence rates computed using the L2-norm
for the pressure p, velocity u and velocity v using structured meshes with different number of elements. It is clear
that increasing the number of elements in the simulations results in an increase in the L2-errors for both pressure
and velocity solutions. As expected, using the proposed unified finite element method, a second-order accuracy is
achieved in both pressure and velocity solutions of the Darcy problem.

6.2. Accuracy example for a coupled Darcy and transport problem

Next we examine the accuracy of the proposed Galerkin-characteristic unified finite element method for solving a
coupled Darcy and transport problem. Thus, the problem statement consists of solving the coupled system

∂Θ

∂t
+ u · ∇Θ − ν∇2Θ = q, in Ω,

µu + ∇p = f, in Ω, (6.2)
∇ · u = 0, in Ω,
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Table 6.1: L2-error and convergence rates obtained for the pressure and velocity solutions in the accuracy test example of a Darcy problem.

Pressure p Velocity u Velocity v

Mesh L2-error rate L2-error rate L2-error rate

32 × 32 6.291E-07 — 2.321E-04 — 2.322E-04 —

64 × 64 1.595E-07 1.98 6.007E-05 1.95 6.001E-05 1.95

128 × 128 3.960E-08 2.01 1.523E-05 1.98 1.521E-05 1.98

256 × 256 9.764E-09 2.02 3.781E-06 2.01 3.776E-06 2.01

Table 6.2: L2-error and convergence rates obtained for the pressure, velocity and temperature solutions in the accuracy test example of a coupled
Darcy and transport problem at two different times.

Time t = 1

Pressure p Velocity u Velocity v Temperature Θ

Mesh L2-error rate L2-error rate L2-error rate L2-error rate

32 × 32 6.942E-07 — 3.451E-04 — 3.450E-04 — 5.927E-04 —

64 × 64 1.797E-07 1.95 9.119E-05 1.92 9.117E-05 1.92 1.502E-04 1.98

128 × 128 4.619E-08 1.96 2.360E-05 1.95 2.359E-05 1.95 3.781E-05 1.99

256 × 256 1.155E-08 2.0 5.941E-06 1.98 5.939E-06 1.98 9.387E-06 2.01

Time t = 2

Pressure p Velocity u Velocity v Temperature Θ

Mesh L2-error rate L2-error rate L2-error rate L2-error rate

32 × 32 8.321E-07 — 3.951E-04 — 3.953E-04 — 8.847E-04 —

64 × 64 2.154E-07 1.95 1.059E-04 1.90 1.052E-04 1.91 2.289E-04 1.95

128 × 128 5.536E-08 1.96 2.779E-05 1.93 2.761E-05 1.93 5.843E-05 1.97

256 × 256 1.403E-08 1.98 7.094E-06 1.97 6.999E-06 1.96 1.481E-05 1.98

subject to the following boundary conditions

(Θu − ν∇Θ) · n = Θinu · n, on Γin,
(6.3)

ν∇Θ · n = 0, on Γout,

and initial condition
Θ(x, y, 0) = Θ0(x, y), in Ω, (6.4)
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Table 6.3: Mesh statistics, relative errors and computational times for the test problem of moving thermal fronts in a channel without obstacles.

# of elements # of nodes Error in p Error in u CPU time (in minutes)

Mesh A 1566 3283 1.503E-03 6.815E-04 1.45

Mesh B 3098 6377 3.890E-04 1.703E-04 3.65

Mesh C 6216 12733 9.393E-05 3.972E-05 7.83

Mesh D 12430 25211 2.190E-05 8.644E-06 15.01

Mesh E 24933 50470 4.934E-06 1.755E-06 32.52

where the boundary regions Γin and Γout are defined as

Γin =
{
x ∈ Γ : u · n < 0

}
, Γout =

{
x ∈ Γ : u · n ≥ 0

}
.

with n is the unit outward normal vector to Γ. Here, we solve the system (6.2)-(6.4) in the unit squareΩ = [0, 1]×[0, 1]
with ν = 10−3 and µ = 0.1. The source terms q(x, y, t) and f(x, y, t) are calculated such the exact solution of (6.2)-(6.4)
is given by

p(x, y, t) = 2
√
µ cos

(
ω +

x
2
√
µ

)
exp

(
y

2
√
µ

)
, Θ(x, y, t) =

(
cos (πx) + cos (πy)

) t
π
,

u =


sin

(
ω +

x
2
√
µ

)
exp

(
y

2
√
µ

)

− cos
(
ω +

x
2
√
µ

)
exp

(
y

2
√
µ

)
 ,

where ω = 1.05. A similar test example has been studied in [40] using a local discontinuous Galerkin finite element
method. In our simulations we use a fixed time step ∆t = 10−3 and different structured meshes. The obtained results
for the L2-error and convergence rates at times t = 1 and t = 2 are summarized in Table 6.2. As in the previous test
example, the L2-error decreases as the mesh is refined from one level to the other for all solution variables. These
errors have shown similar trend for both considered instants t = 1 and t = 2. It is also evident that the proposed
Galerkin-characteristic unified finite element method preserves the second-order accuracy for all the solutions. Under
the considered conditions, the a second-order accuracy is obtained for the pressure, velocity and temperature solutions.

6.3. Moving fronts around an array of circular obstacles

In this example, we consider a Darcian flow in a channel of height H and length L = H/4 with different numbers
of circular obstacles regularly placed in the second quarter of the channel as shown in Figure 6.1. The sizes of the
obstacles are chosen in a way that the space occupied by them is the same for all cases and the distance between the
wall and the obstacles nearest to the wall is always half the distance between the obstacles. Thus, when increasing
the number of obstacles, this test case represents a flow problem of systematically increasing geometrical complexity.
Similar computational domain has been investigated in [41] using the incompressible Navier-Stokes equations but
for squared obstacles. In our computations, we assume no volumetric flow rate source and the mean temperature i.e.
q = 0 and Θ0 = 0. In addition, the non-dimensionless parameters are fixed to Rp = 7, Z = 10, Le = 0.8, δ = 10−8 and
a fixed time step ∆t = 10−3 is used in our simulations.

First we examine the grid convergence in the proposed Galerkin-characteristic finite element method. To this end,
we consider five unstructured meshes with different element densities as depicted Figure 6.2. Their corresponding
statistics are listed in Table 6.3 along with the CPU times obtained using Mesh A, Mesh B, Mesh C, Mesh D and
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Figure 6.1: Illustration of the geometry used for the problem of moving fronts. An array of circular obstacles is inserted in the channel.
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Figure 6.2: Meshes used in the simulations for moving thermal fronts in a channel without obstacles.
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Figure 6.3: Comparison of cross-sections at x = 0.5 of the temperature at time t = 0.2 using different meshes for the test problem of moving
thermal fronts in a channel without obstacles.

Mesh E. A very fine reference mesh with 48392 elements and 109847 nodes is also used in our simulations to quantify
errors in the obtained solutions obtained at time t = 0.2. As can be seen, for the last two mesh levels Mesh D and
Mesh E the differences in errors obtained for the pressure p and velocity u in Table 6.3 are very small. To further
qualify the results for these meshes we plot in Figure 6.3 the cross-section results of the temperature obtained using
the unified finite element method at the mid-height of the channel x = 0.5. It is easy to see that solutions obtained
using the Mesh A are far from those obtained by the other meshes. Increasing the density of elements, the results for
the Mesh D and Mesh E are roughly similar. Results obtained using the obstacles in the channel and not reported here
for brevity, show the same trends. This ensures grid convergence of the numerical results. Hence, the Mesh D is used
in all our next computations. The reasons for choosing this mesh structure lie essentially on the computational cost
required for each mesh configuration and also on the numerical resolution obtained.

In Figure 6.4 and Figure 6.4, we display the results obtained for the temperature and velocity fields at four different
instants namely, t = 0.05, t = 0.1, t = 0.15 and t = 0.2.To examine effects of obstacles in the moving thermal front,
we present numerical results for the channel without obstacles, with 1 × 1 cylinder, 2 × 2 cylinders, 4 × 4 cylinders
and 8 × 8 cylinders. It is clear that both the temperature patterns and velocity fields are influenced by the inclusion of
obstacles in the channel. Increasing the number of cylinders in the computational domain results in a more diffusive
thermal front moving downstream. It should be noted that the numerical resolution of computational results have
not been deteriorated by the cylinders included in the domain. For instance, the symmetry in these results is fully
preserved for all the obstacles accounted for in our simulations. For emphasis these features we illustrate in Figure
6.6 cross-sections of the temperature at y = 1.75 obtained in the channel without obstacles and different number of
cylinders at time t = 0.1. As can be seen from these results, a faster thermal front is detected for simulations without
obstacles compared to other simulations with cylinders in the channel. It should be pointed out that the performance
of the proposed Galerkin-characteristics unified finite element method is very attractive since the computed solutions
remain stable and highly accurate even when coarse meshes are used without requiring nonlinear solvers or small time
steps to be taken in the simulations.
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Figure 6.4: Temperature distributions obtained at t = 0.05 (first row), t = 0.1 (second row), t = 0.15 (third row), and t = 0.2 (fourth row) obtained
in the channel without obstacles (first column), with 1× 1 cylinder (second column), 2× 2 cylinders (third column) 4× 4 cylinders (fourth column)
and 8 × 8 cylinders (fifth column).
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Figure 6.5: Velocity fields obtained at t = 0.05 (first row), t = 0.1 (second row), t = 0.15 (third row), and t = 0.2 (fourth row) obtained in the
channel without obstacles (first column), with 1 × 1 cylinder (second column), 2 × 2 cylinders (third column) 4 × 4 cylinders (fourth column) and
8 × 8 cylinders (fifth column).
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Figure 6.6: Cross-sections of the temperature at y = 1.75 obtained in the channel without obstacles and different number of cylinders at time
t = 0.1.

7. Conclusions

In this study, we have presented a class of unified finite element methods for the numerical simulation of moving
thermal fronts in porous media with natural convection. The governing equations consist of the Darcy problem and
two convection-diffusion-reaction equations. The coupled system has been integrated using a Galerkin-characteristic
finite element method, that combines the semi-Lagrangian method for the time integration with the Galerkin finite
element method for the space discretization. A study of stability and convergence have been then carried out and
an optimal a priori error estimate has been derived for the numerical scheme used. To improve the accuracy of the
approach we have considered an L2-projection method using an interpolating procedure by tracking the feet of the
characteristic lines from the integration nodes. Specific details were given on the implementation of the unified finite
element method using unstructured triangular meshes. The main advantage of this method lies on the fact that the
pressure and the temperature belong to the same finite element space. The method is stable, accurate, and it can be
used to solve both reacting and non-reacting moving thermal fronts. Numerical results have been presented for a test
example of moving fronts in a porous media with an array of cylinders. The presented numerical results demonstrate
the accuracy of the proposed unified finite element method and its capability to simulate moving fronts in the thermal
regimes considered. The effect of increasing the number of cylinders in the flow domain has also been investigated.
Future work will concentrate on extension of these techniques to the moving reacting fronts in three-dimensional
porous media.
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[37] E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-stokes equations., Numer. Math. 53 (1988)
1025–1039.

[38] V. Maz’ya, Sobolev spaces, Springer, 2013.
[39] J. Heywood, R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem: Part III, SIAM Journal of Numerical

Analysis. 25, 489-512 (1988).
[40] D. Vassilev, I. Yotov, Coupling Stokes-darcy flow with transport, SIAM Journal on Scientific Computing 31(5):3661-3684 (2009).
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