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Abstract 

Laminates experience three-dimensional singular stress near their free edges due to elastic 

mismatches between layers, which can cause delamination. This paper critically evaluates 

methods for predicting free edge delamination and highlights the limitations of conventional 

strength-of-materials and fracture mechanics approaches. The Theory of Critical Distances 

(TCD) uses a material-dependent critical distance parameter, while Finite Fracture Mechanics 

(FFM) employs a combined stress-energy criterion without needing a predefined length 

parameter. This review compares TCD and FFM, also discussing Cohesive Zone Models and 

Phase-Field Models, and aims to guide the selection of appropriate methods for analysing free 

edge delamination.  
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Nomenclature 

 

𝑐𝑐𝑜𝑜  Critical distance in Point Method  

𝑑𝑑𝑜𝑜  Critical distance in Line Method 

𝑑𝑑  Damage Variable 

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿  Axial stiffness (tangent modulus) of symmetric uncracked laminate 

𝐸𝐸𝑖𝑖   Axial stiffness of 𝑖𝑖𝑡𝑡ℎ sublaminate  

𝐸𝐸∗  Axial stiffness of completely delaminated laminate  
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𝐺𝐺𝑐𝑐               Fracture toughness 

𝐺𝐺                Energy release rate 

𝐼𝐼/𝐼𝐼𝐼𝐼/𝐼𝐼𝐼𝐼𝐼𝐼     Different modes of fracture  

𝑘𝑘𝑐𝑐  Critical stress intensity factor   

𝑘𝑘  Stress intensity factor  

𝐾𝐾  Penalty stiffness 

n  Normalised effective ply thickness  

𝑆𝑆  Strength 

𝑆𝑆𝑥𝑥, 𝑆𝑆𝑦𝑦   Interlaminar shear strengths for 𝜎𝜎𝑥𝑥𝑥𝑥, 𝜎𝜎𝑦𝑦𝑥𝑥, 𝜎𝜎𝑥𝑥𝑥𝑥 

𝑆𝑆𝑥𝑥  Interlaminar normal tensile strength for 𝜎𝜎𝑥𝑥𝑥𝑥 

𝑆𝑆𝑥𝑥𝑐𝑐  Interlaminar normal compressive strength for 𝜎𝜎𝑥𝑥𝑥𝑥 

𝑡𝑡  Laminate thickness 

𝑡𝑡𝑖𝑖  Thickness of 𝑖𝑖𝑡𝑡ℎ sublaminate 

𝑥𝑥,𝑦𝑦, 𝑧𝑧       Global coordinate system 

𝛿𝛿  Remote tensile displacement 

∆  Separation  

∆𝑎𝑎  Finite crack extension 

∆𝑇𝑇𝑓𝑓  Critical thermal load 

∆𝑜𝑜  Damage onset separation 

∆𝑓𝑓  Critical opening  

𝜀𝜀  Nominal strain  

𝜀𝜀𝑐𝑐  Delamination onset strain 

𝜃𝜃  Ply orientation  

𝜎𝜎  Stress 

𝜎𝜎𝑥𝑥𝑦𝑦  In-plane shear stress  

𝜎𝜎𝑦𝑦𝑦𝑦  Transverse normal stress  

𝜎𝜎𝑖𝑖𝑥𝑥  Interlaminar stress component 

𝜎𝜎𝑖𝑖𝑥𝑥  Average interlaminar stress component 

𝜏𝜏   Traction between the potential crack surfaces 

𝜏𝜏𝑜𝑜  Material strength 

CLPT           Classical Laminate Plate Theory  
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CZM   Cohesive Zone Models 

ERR          Energy Release Rate  

FCE   Finite Crack Extension 

FEA          Finite Element Analysis 

FEM          Finite Element Method  

FFM   Finite Facture Mechanics 

ICM   Imaginary Crack Method 

LEFM   Linear Elastic Fracture Mechanics  

LM   Line Method 

PFM   Phase-Field Models 

PM   Point Method 

SIF   Stress Intensity Factor 

TCD   Theory of Critical Distances 
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1. Introduction  

In recent years, lightweight engineering has emerged as a pivotal technology essential for 

achieving high energy efficiency and enhanced fuel economy across all industries, aligning 

with the global vision of attaining climate neutrality by 2050 [1]. As a lightweight material, 

fibre-reinforced polymer composites due to possessing exceptional properties, including 

superior fatigue life, outstanding corrosive resistance, high specific strength, and stiffness, have 

been widely utilised in aerospace, marine, automobile, and construction industries [2–5]. 

However, despite numerous benefits and advantages, composite laminates are susceptible to 

complex failure modes, with delamination standing out as the most concerning one. 

Interlaminar stresses that arise in the vicinity of various material and/or geometric 

discontinuities, as depicted in  Fig. 1, are highly localised with steep gradients and therefore 

may lead to delamination. 

 

Fig. 1. Interlaminar stresses that arise from different material and geometric discontinuities. 

1.1. Background 

One prominent example of singular interlaminar stresses that emerge due to a mismatch in 

elastic properties of the individual plies is the so-called free edge effect. To clarify the singular 

nature of interlaminar stresses at the free edge of the laminate, a symmetric four-layer laminate, 

as illustrated in Fig. 2, is considered. Since Composite Laminate Plate Theory (CLPT) is two-

dimensional, it is unable to capture interlaminar stresses. Shear deformation theories, such as 
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[6], and layerwise theories, such as [7], provide significant improvements over CLPT in 

addressing these limitations. Although the occurrences of interlaminar stresses near the free 

edge can be readily explained through the scenarios illustrated in Fig. 3 for cross-ply and Fig. 

4 for angle-ply laminates. Moreover, it is noted that their occurrences in a laminate with a 

general layup can be explained in the same way as those in cross-ply or angle-ply laminates. 

 

Fig. 2. A schematic diagram of a four-layer symmetric laminate with free edge.  

In the case of unbounded 0° and 90° layers in a cross-ply [0/90]s laminate (Fig. 3), the 

difference in Poisson’s ratios results in different transverse deformations when subjected to 

uniform remote tensile displacement 𝛿𝛿. When bonded together, displacement compatibility at 

the interface of 0° and 90° layers induce interlaminar shear stress 𝜎𝜎𝑦𝑦𝑥𝑥. This 𝜎𝜎𝑦𝑦𝑥𝑥 tends to expand 

0° layer and contract 90° layer laterally. The accompanying free body diagram in the figure 

shows the development of interlaminar stresses at the 0/90 interface, including a normal stress 

𝜎𝜎𝑦𝑦𝑦𝑦 in the 𝑦𝑦-direction. While 𝜎𝜎𝑦𝑦𝑦𝑦 balances the transverse forces with 𝜎𝜎𝑦𝑦𝑥𝑥, a moment is 

generated in the 𝑦𝑦𝑧𝑧-plane due to their different lines of action. This moment is equilibrated by 

the moment induced by interlaminar normal stress 𝜎𝜎𝑥𝑥𝑥𝑥, which exerts no net force in the through-

the-thickness 𝑧𝑧-direction but exhibits a mathematical singularity at the free edge, making the 

interface prone to delamination. The distribution of interlaminar stresses at the 0/90 interface 

is illustrated in the bottom right of the same figure.  
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Fig. 3. The free edge effect in cross-ply laminate.  

At the dissimilar 𝜃𝜃/−𝜃𝜃 interface in angle ply laminate [±𝜃𝜃]s, different state of interlaminar 

stresses manifest. When subjected to uniform remote tensile displacement 𝛿𝛿 and considered 

unbounded (see Fig. 4), the layers undergo in-plane shear deformation. Upon bounded together, 

the compatibility of resultant displacement induces the interlaminar shear stress 𝜎𝜎𝑥𝑥𝑥𝑥 at the 

𝜃𝜃/−𝜃𝜃 interface. This 𝜎𝜎𝑥𝑥𝑥𝑥 is balanced by in-plane shear 𝜎𝜎𝑥𝑥𝑦𝑦 in the longitudinal 𝑥𝑥-direction of 

the laminate, as shown in the free body diagram. Notably, a mathematical singularity in the 

distribution of 𝜎𝜎𝑥𝑥𝑥𝑥 occurs at the free edge of the dissimilar 𝜃𝜃/−𝜃𝜃 interface, as depicted in the 

bottom right of the same figure, making angle-ply laminates susceptible to delamination.   

Unbounded layers Bounded layers Laminate
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Fig. 4. The free edge effect in angle-ply laminate.  

Since the interlaminar stresses may lead to free edge delamination, it has attained a high 

practical significance and attention from the scientific community. Since Hayashi’s [8] first 

description of the free edge effect in the late 1960s, the topic has been extensively studied. 

Despite this, no exact solution exists for the elasticity equations governing the free edge effect 

[9] due to the intrinsic complexities associated with the problem. As a result, various 

approaches have been presented to address this effect. Pagano and Pipes [10,11] as well as 

Kassapoglou and Lagace [12], utilised approximate closed-form techniques to study 

interlaminar stresses at free edges. Meanwhile, Wang and Choi [13,14] analysed the stress 

singularities order through an analytical approach. Recent closed-form analytical techniques 

[15,16] have utilised an inner solution approach based on CLPT and mathematical layers, 

acquired from the discretization of physical plies for the prediction of free edge effects. Studies 

[17–19] employed a layer-wise laminated theory and the improved first-order shear 
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deformation theory (IFSDT) for calculating interlaminar stresses. Tahani and Nosier [20] 

analytically investigated interlaminar stresses in cross-ply symmetric and unsymmetric 

laminates under mechanical and hygrothermal loadings with various boundary conditions using 

layerwise theory. According to Carrera’s Unified Formulation (CUF) [21], Wenzel et al. [22] 

employed CUF plate elements for identifying stress singularity at the free edge and assessed 

symmetric laminates for free edge effect under extension and bending. In contrast, some 

researchers adopted numerical methods, including the finite difference approach [23], a quasi-

2D plane strain model within the finite element method (FEM) framework [24], a 3D FEM 

[25,26] for examining stress singularities at free edges, and a boundary layer approach [27].  

There are other structural configurations closely related to the free edge effect that give rise to 

interlaminar stresses; however, the focus here is on a selection of key studies. Ahmadi [28] 

utilised and formulated the displacement-based layerwise laminate theory to investigate the 

interlaminar stresses at the free edge of a thick composite cylinder with general stacking of 

layers under uniform and non-uniform internal and external pressure. While Wang et al. [29] 

obtained elasticity solution of interlaminar stresses in a cylindrical shell stacked as a cross-ply 

under radial pressure by employing orthotopic elastic theory. Kappel et al. [30] introduced 

semi-analytical approaches for the free edge stresses in cross-ply cylindrical laminated shells 

under hygrothermomechanical loading conditions. Additionally, Shim and Lagacé [31] 

presented an analytical method for the determination of interlaminar stresses in laminates with 

ply drop-offs. By using the elastic-plastic finite element method, Ding et al. [32] investigated 

the interlaminar stresses along the hole edge at different interfaces of thick composite laminates 

under tension. A closed-form method for the determination of interlaminar stresses in the 

vicinity of reinforcement patch corner, rectangular in shape, of a cross-ply laminate subjected 

to thermal loading is presented by Wigger and Becker [33]. Motivated by the works of Ivanova 

et al. [34] in designing the bi-material piezoelectric laminate, Wu and Han [35] employed the 

state space approach in generalised plane strain piezoelasticity for the investigation of free edge 

effect. 

Furthermore, several review papers have covered this subject extensively (see Refs. [36–38]). 

A recent comprehensive review detailing developments in this area over the past two decades 

can be found in Ref. [9].  
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1.2. Problem statement, motivation, and scope of the paper 

The interlaminar fracture due to free edges can be induced under various loading conditions, 

including quasi-static, fatigue, thermal, or moisture exposure. This concern extends not only to 

monolithic composite laminates but also to hybrid metal/composite laminates [39]. To address 

delamination caused by interlaminar stresses, it is essential to use a suitable fracture criterion 

for crack initiation prediction at singular stress raisers, such as free edges.  

Given the presence of singular stresses at the free edge, the conventional local strength-of-

materials criterion is always satisfied. This criterion for the brittle or quasi-brittle materials, 

applicable in situations without stress singularity or existing crack, can be written as:   

𝜎𝜎 ≥ 𝑆𝑆. (1) 

It states that for a structure to fracture, the stress 𝜎𝜎 must be equal to or exceed the corresponding 

strength of the material 𝑆𝑆. 

On the other hand, Linear Elastic Fracture Mechanics (LEFM) relies on the existence of a crack 

to be applicable, making it inappropriate for structures that are free of cracks. Fracture 

mechanics Griffith’s [40] energy criterion is formulated for situations involving large cracks:   

𝐺𝐺 ≥ 𝐺𝐺𝑐𝑐,  (2) 

asserts that failure occurs when the energy release rate 𝐺𝐺, representing the driving force of the 

crack, equals or exceeds the material fracture toughness 𝐺𝐺𝑐𝑐.   

When the stress-based criterion (Eq.(1)) is applied to situations involving singularities, the 

condition is invariably satisfied for any given applied stress. Conversely, when a crack is absent 

then the fracture mechanics criterion (Eq.(2)) is never satisfied as the ERR is zero. This 

presents a paradox: while the former criterion dictates that fracture occurs near the singularity 

at whatever the applied load, the latter implies that failure never occurs. Consequently, both 

criteria yield contradictory predictions in situations involving singularities. Moreover, 

experimental evidence (see Refs. [41–43]) indicates that fracture initiation does indeed occur 

in the singularity region under finite loads, making both criteria invalid for cases, such as 

laminates with free edge effects, where singularities exist. 

As a result, both fracture criteria are considered inadequate for addressing the delamination 

due to free edge effects. Nevertheless, there are effective non-local methods available to predict 

free edge delamination. These methods are either stress or energy-based, depend on an 
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empirical characteristic length and are summarised by Taylor [44] as Theory of Critical 

Distances (TCD). To remove the dependency on this unknown length parameter, Leguillon 

[45] in the framework of Finite Fracture Mechanics (FFM), proposed a coupled stress-energy 

fracture criterion. This FFM eliminates the requirement of prior assessment of the characteristic 

length, relying solely on intrinsic material properties such as strength and fracture toughness. 

Although FFM is a relatively newer criterion, having been introduced just two decades ago, its 

scope continues to expand.  

Although several comprehensive review papers address the free edge effect in composite 

materials, as outlined in the preceding section, this paper specifically focuses on the 

delamination due to the free edge effect. Unlike previous works, this concise review critically 

examines the TCD and FFM approaches in addressing free edge delamination, offering an in-

depth comparison of their strengths and limitations. The primary objective of this paper is to 

offer a systematic review that guides researchers in selecting appropriate methodologies for 

modelling and predicting free edge delamination, particularly aiding those less familiar with 

the details of these approaches. 

The paper is organised as follows: Section 2 introduces the TCD framework, where stress- and 

energy-based methods are discussed in the context of free edge delamination. Section 3 

provides a detailed overview of the FFM approach, exploring its relevance to free edge 

delamination problem. In Section 4, related models such as Cohesive Zone Models (CZM) and 

Phase-Field Models (PFM) are briefly discussed, particularly their applicability to crack 

initiation near singularities. Finally, Section 5 presents a summary of the key conclusions 

derived from the critical analysis of the discussed methods. 

2. Theory of Critical Distances 

Theory of Critical Distances (TCD) is the name given by Taylor [44] to the group of theories 

that predict material failure in the presence of high-stress concentrations. These theories share 

common features: they are all continuum mechanics-based approaches, assume linear elastic 

material behaviour, and incorporate the characteristic length, which is considered a material 

property, known as the critical distance. In the following sections, TCD methods are discussed 

in detail. Among them, two methods are modifications of strength-of-materials-based criteria, 

while two are developments of fracture mechanics-based criteria.  
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2.1. Point Method and Line Method 
The Point Method (PM) states that failure occurs if stress at a critical distance (𝑐𝑐𝑜𝑜) from high-

stress gradient point equals the strength of the material. It is the simplest manifestation of TCD 

and is illustrated in Fig. 5(a). Mathematically it can be written as: 

𝜎𝜎𝑖𝑖𝑥𝑥(𝑦𝑦) ≥ 𝑆𝑆𝑖𝑖    ∀    𝑦𝑦 ∈ Ω𝑐𝑐        𝑖𝑖 ∈ {𝑥𝑥,𝑦𝑦, 𝑧𝑧}, (3) 

where 𝜎𝜎𝑖𝑖𝑥𝑥 is interlaminar stress component of the laminate with free edge effects, 𝑆𝑆𝑖𝑖 is 

corresponding interface strength, and Ω𝑐𝑐 is the set of all points on the potential crack Ω𝑐𝑐(𝑐𝑐𝑜𝑜). 

The PM requires the overloading of crack prior to the crack initiation.  

According to the Line Method (LM), failure occurs when the average stress within a certain 

distance from a singularity point equals or exceeds the corresponding strength: 

1
𝑑𝑑𝑜𝑜
� 𝜎𝜎𝑖𝑖𝑥𝑥(𝑦𝑦) 𝑑𝑑𝑦𝑦 = 𝜎𝜎𝑖𝑖𝑥𝑥 ≥ 𝑆𝑆𝑖𝑖

𝑑𝑑𝑜𝑜

0

,    (4) 

where 𝜎𝜎𝑖𝑖𝑥𝑥 represents the average interlaminar stress component, and 𝑑𝑑𝑜𝑜 is the critical distance 

(see Fig. 5(b)), that represents the material interface characteristic.  

 

(a) (b)  

Fig. 5. Critical distance in (a) Point Method (PM) and (b) Line Method (LM).  

The first among TCD methods to be introduced is LM by Neuber [46] in 1958, followed by 

PM, proposed by Peterson [47] in 1959. Both PM and LM are developed as a part of 

investigations into fatigue failure in metallic components containing notches. In 1974, Whitney 

and Nuismer [48] independently introduced PM and LM for predicting the uniaxial tensile 
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static strength of laminated composites containing notches, unaware of Neuber’s and 

Peterson’s earlier work. Drawing inspiration from Whitney and Nuismer, Kim and Soni [49] 

first implemented LM for predicting delamination initiation in composite laminates with free 

edges. Initially, Kim and Soni [49] applied LM only to the interlaminar normal stress 

distribution at the free edge. To take into account all three interlaminar stresses, they later 

introduced a criterion of the form [50]: 

�
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥
�
2

+ �
𝜎𝜎𝑦𝑦𝑥𝑥
𝑆𝑆𝑦𝑦
�
2

+ �
𝜎𝜎𝑥𝑥𝑥𝑥

2

𝑆𝑆𝑥𝑥 𝑆𝑆𝑥𝑥𝑐𝑐
� +  𝜎𝜎𝑥𝑥𝑥𝑥 �

1
𝑆𝑆𝑥𝑥
−

1
 𝑆𝑆𝑥𝑥𝑐𝑐
� ≥ 1, (5) 

where 𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑦𝑦 represent the interlaminar shear strengths for 𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑦𝑦𝑥𝑥, respectively, 𝑆𝑆𝑥𝑥 is 

the tensile interlaminar normal strength for 𝜎𝜎𝑥𝑥𝑥𝑥, and  𝑆𝑆𝑥𝑥𝑐𝑐 is compressive strength. Notably, 𝜎𝜎𝑥𝑥𝑥𝑥 

takes compression of the interface into consideration and assumes that it can delay the 

delamination.  

Brewer and Lagace [51] on the other hand, squared the interlaminar normal stress and assumed 

that the influence of compressive stress is insignificant compared to the quadratic terms and 

hence does not delay delamination:  

�
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥
�
2

+ �
𝜎𝜎𝑦𝑦𝑥𝑥
𝑆𝑆𝑦𝑦
�
2

+ �
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥
�
2

+ �
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥𝑐𝑐
�
2

≥ 1. (6) 

In Ye’s [52] fracture criterion, the interlaminar normal compressive stress is not considered. 

Therefore, the criterion is written as: 

�
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥
�
2

+ �
𝜎𝜎𝑦𝑦𝑥𝑥
𝑆𝑆𝑦𝑦
�
2

+ �
〈𝜎𝜎𝑥𝑥𝑥𝑥〉
𝑆𝑆𝑥𝑥

�
2

≥ 1, (7) 

where, by using MacAuley bracket, 〈𝜎𝜎𝑥𝑥𝑥𝑥〉 is be defined as: 

〈𝜎𝜎�𝑥𝑥𝑥𝑥〉 = �0,      𝜎𝜎�𝑥𝑥𝑥𝑥 < 0
𝜎𝜎�𝑥𝑥𝑥𝑥,   𝜎𝜎�𝑥𝑥𝑥𝑥 ≥ 0. (8) 

Furthermore, in the model discussed by Marion [53] the interlaminar compressive strength 𝑆𝑆𝑥𝑥𝑐𝑐 

is considered to be significantly greater (infinite) than the tensile strength 𝑆𝑆𝑥𝑥, causing the 

quadratic term related to 𝜎𝜎𝑥𝑥𝑥𝑥 to vanish. Nevertheless, the delay in delamination due to 

interlaminar compressive stress is considered. The interaction of the interlaminar stress 

components is expressed as: 
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�
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥
�
2

+ �
𝜎𝜎𝑦𝑦𝑥𝑥
𝑆𝑆𝑦𝑦
�
2

+
𝜎𝜎𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥

≥ 1. (9) 

Interestingly, in implementing the various LM versions (considering single or all three 

interlaminar stress components) discussed above for predicting free edge delamination, 

researchers have employed different approaches to determine the material interface 

characteristic critical distance 𝑑𝑑0. For instance, Kim and Soni [49], Ye [52], and Sun and Zhou 

[54] related this characteristic/critical length with the order of ply thickness. While Kim and 

Soni [49] define it to be equal to a single ply thickness, Ye [52] and Sun and Zhou [54] set it 

equal two ply thicknesses. Brewer and Lagace [51] recommended determining it from 

experimental results (edge delamination). Additionally, others such as Lagunegrand et al. [42] 

and Lorriot et al. [41] have also suggested experimental determination. 

2.2. Imaginary Crack Method and Finite Crack Extension    

The Imaginary Crack Method (ICM) is a fracture mechanics approach that assumes an inherent 

and imaginary flaw at the singularity. The ICM predicts the failure when the stress intensity 

factor (SIF) or equivalently energy release rate (ERR) at this imaginary crack becomes equal 

to the fracture toughness.  

In the context of free edge delamination initiation, O’Brien [55] pioneered a method that 

determines the onset of delamination load which has an implicit assumption of crack present 

at the interface that triggers delamination. O’Brien derived an elegant expression for 

determination of ERR (𝐺𝐺) that is independent of the delamination size: 

𝐺𝐺 =
𝜀𝜀2𝑡𝑡
2

(𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐸𝐸∗), (10) 

where 𝜀𝜀 is nominal strain and 𝑡𝑡 is laminate thickness. 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 is axial stiffness (tangent modulus) 

of a symmetric uncracked laminate and is calculated from laminate theory: 

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 =
1

𝑡𝑡𝑡𝑡11
, (11) 

where 𝑡𝑡11 is the first element of the inverse extensional stiffness matrix 𝐴𝐴𝑖𝑖𝑖𝑖−1(𝑖𝑖, 𝑗𝑗 = 1,2,3). 𝐸𝐸∗ 

is the axial stiffness of completely delaminated (at one or multiple interfaces) laminate: 

𝐸𝐸∗ =
1
𝑡𝑡
�𝐸𝐸𝑖𝑖𝑡𝑡𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (12) 

where 𝑚𝑚 is the number of sublaminates formed by delamination (see Fig. 6), and 𝐸𝐸𝑖𝑖 and 𝑡𝑡𝑖𝑖 are 

the axial stiffness and thickness of the 𝑖𝑖𝑡𝑡ℎ sublaminate, respectively.  
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Furthermore, Eq.(10) can be utilised to determine the delamination onset strain 𝜀𝜀𝑐𝑐, if the critical 

value of ERR 𝐺𝐺𝑐𝑐 is known, using: 

𝜀𝜀𝑐𝑐 = �
2𝐺𝐺𝑐𝑐

𝑡𝑡(𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐸𝐸∗)
. (13) 

In fact, O’Brien performed tension test of 11-ply [(±30)2/90/90����]s laminate to evaluate 𝜀𝜀𝑐𝑐 

and utilised Eq.(10) to determine 𝐺𝐺𝑐𝑐 for the onset of delamination. Subsequently, implementing 

this calculated 𝐺𝐺𝑐𝑐, O’Brien predicted the delamination onset strain of [+45n/−45n/0n/90n]s 

(n=1,2,3) laminates. O’Brien obtained good agreement between predictions and experimental 

test results.  

 
Fig. 6. Sublaminates formed due to free edge delamination.   

While O’Brien’s [55] expression (Eq.(10)), which is independent of crack size, may provide 

accurate predictions for delamination onset, it is important to note that it contradicts the fact 

that it is derived using an implicit assumption of inherent delamination.  

There are other approaches in the context of free edge delamination that can be categorised 

under ICM. Among these approaches, Rybicki et al. [56] investigated and modelled the 

initiation and stable growth of the delamination at the free edge by employing finite element 

analysis (FEA) to an existing flaw length. It is discussed that there is a need to determine a 

characteristic length of a crack to be utilised in fracture mechanics computation for 

delamination initiation. Rybicki et al. used ply thickness as a characteristic length and obtained 

predictions of delamination initiation within 1.7% of the measured value. Wang and Crossman 

[57] further developed the fracture mechanics approach proposed by Rybicki et al. [56] to 

model free edge delamination and transverse cracking, formulating a theory in each case. The 

initiation and growth behaviour of crack is described by superposing the ERR and R-curve of 

the material. Leguillon [58] proposed an asymptotic process for cross-ply laminates at 

interfaces along free edges which considers the existence of micro-cracks or notches. The 

characteristic fracture length, which Leguillon termed as process zone, is estimated using 

Laminate Completely delaminatedPartially delaminated
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interface fracture toughness. This length is found to be of the same order of magnitude as the 

characteristic inhomogeneity length, i.e., fibre diameter.  

The other theory that falls under energy based TCD approaches is Finite Crack Extension 

(FCE). It is a modification to the conventional fracture mechanics which considers crack 

growth as a discontinuous process that occurs through finite extension ∆𝑎𝑎 instead of 

infinitesimal extension 𝑑𝑑𝑎𝑎. This discontinuous crack growth is depicted in Fig. 7. FCE assumes 

the amount of crack extension ∆𝑎𝑎 to be a material constant. This theory is essentially analogous 

to LM but applied to thermodynamic energy-based condition between two states of structure 

that captures the finite crack extension. Mathematically FCE is written as: 

1
∆𝑎𝑎

� 𝐺𝐺𝑖𝑖(𝑎𝑎)
∆𝑎𝑎

0
𝑑𝑑𝑎𝑎 ≥ 𝐺𝐺𝑖𝑖𝑐𝑐 ,    𝑗𝑗 ∈ {𝐼𝐼, 𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝐼𝐼}    (14) 

where 𝑗𝑗 represents the different modes of fracture. The energy condition (Eq.(14)) can also be 

equivalently written in terms of SIF 𝑘𝑘 and relating it with the critical value of SIF 𝑘𝑘𝑐𝑐: 

1
∆𝑎𝑎

� (𝑘𝑘𝑖𝑖(𝑎𝑎))2
∆𝑎𝑎

0
𝑑𝑑𝑎𝑎 ≥ 𝑘𝑘𝑖𝑖𝑐𝑐2 . (15) 

 

Fig. 7. Illustration of discontinuous crack growth through finite crack extension. 

It is noted that the concept of crack propagation occurring in finite steps rather than 

continuously, as discussed in defining FCE, defines the framework of Finite Fracture 

Mechanics (FFM). However, the initialism ‘FFM’ is predominantly used in the literature to 

denote the coupled stress-energy criterion, which also falls within the FFM framework but lies 

outside of TCD. In fact, Eq.(14) or (15) is developed by Pugno and Ruoff [59] under the name 

of Quantized Fracture Mechanics (QFM) and by Taylor et al. [60] under the name Finite 

Fracture Mechanics (FFM). Therefore, to maintain consistency with existing literature and to 
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avoid confusion, the initialism ‘FFM’ in this paper refers specifically to the coupled stress-

energy criterion which is discussed in the following section.  

3. Finite Fracture Mechanics 

Hashin [61] introduced the Finite Fracture Mechanics (FFM) concept while analysing the 

development of multiple cracking in composites and demonstrated that the ERR of finite cracks 

can be utilised to a Griffth-like fracture condition. Nevertheless, the size of an unknown finite 

crack must be determined additionally besides unknown failure load.  

TCD approaches whether stress or energy-based depend on an unknown empirical 

characteristic length. This length parameter, which varies based on the material and geometry 

of the structure, must be determined beforehand through relevant experiments. Therefore, to 

eliminate the issue with an unknown characteristic length that has unclear physical meaning, 

Leguillon [45] proposed a novel coupled stress-energy criterion in the FFM framework, 

drawing inspiration from the  experimental observations of Parvizi et al. [62]. It supports the 

concept that, for fracture while stress and energy criteria are individually necessary, their 

combination provides a sufficient condition for it to occur. According to the FFM coupled 

criterion, a finite crack develops instantaneously upon initiation if both the stress and energy 

criteria are satisfied simultaneously: 

⎩
⎪
⎨

⎪
⎧𝑓𝑓 �

𝜎𝜎𝑖𝑖𝑥𝑥(𝑦𝑦)
𝑆𝑆𝑖𝑖

� ≥ 1      ∀     𝑦𝑦 ∈ Ω𝑐𝑐(∆𝑎𝑎)

1
∆𝑎𝑎

�
𝑔𝑔�𝐺𝐺𝑖𝑖(𝑎𝑎)�

𝐺𝐺𝑐𝑐

∆𝑎𝑎

0
𝑑𝑑𝑎𝑎 ≥ 1

 𝑖𝑖 ∈ {𝑥𝑥, 𝑦𝑦, 𝑧𝑧}, 𝑗𝑗 ∈ {𝐼𝐼, 𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝐼𝐼}, 

 

(16) 

where 𝐺𝐺𝑐𝑐 is a mixed-mode fracture toughness. Eq.(16) is a general form of FFM criterion that 

considers combining PM and FCE. Instead of utilising PM, Cornetti et al. [63] introduced a 

FFM coupled criterion that incorporates LM, whose general form can be written as: 

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓 �

𝜎𝜎𝑖𝑖𝑥𝑥
𝑆𝑆𝑖𝑖
� ≥ 1      

1
∆𝑎𝑎

�
𝑔𝑔�𝐺𝐺𝑖𝑖(𝑎𝑎)�

𝐺𝐺𝑐𝑐

∆𝑎𝑎

0
𝑑𝑑𝑎𝑎 ≥ 1

. 

 

(17) 

In the most general case, the FFM system of equations (16) or (17) leads to solving an 

optimisation problem to find the minimum load that satisfies both stress and energy conditions 

for all considered crack configurations. This enables the prediction of both the size of an 

unknown finite crack and its corresponding failure load, provided that the material intrinsic 

properties such as strength and fracture toughness are known. Consequently, avoiding 
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the requirement of a priori assessment of an unknown length parameter. The finite crack size 

in the FFM framework becomes the structural parameter that is no longer a material constant 

and is output to the FFM system ((16) or (17)), instead of being an input as in TCD. 

Furthermore, FFM generally provides improved solutions compared to TCD, especially when 

the structural size approaches or falls below the critical distance, where TCD breaks down. 

Stress-based TCD approaches are difficult to understand as to why they are effective since 

these fracture criteria utilise elastic stress at a certain distance (PM) or averaged over a region 

(LM) and therefore lacking strong theoretical foundation. In contrast, FFM represents a 

physical mechanism and real behaviour of cracking phenomenon, which is discontinuous crack 

growth through finite crack extension. In fact, this discontinuous crack growth is observable in 

various materials, such as aluminium alloy [64], bone [65], and polymers [66], particularly 

during the initial stages of the cracking process. This makes FFM theoretically robust, 

providing realistic and valid predictions. Therefore, PM and LM are simply effective because 

they provide approximate predictions to FCE [67], which is a simplified form of FFM.  

FFM incorporates the conventional strength-of-materials criterion as a limiting case, applicable 

when stress singularities are negligible, and fracture mechanics criterion as another limiting 

case, involving structures with strong singularities. Therefore, FFM bridges the gap between 

the two criteria and has far-reaching consequences. It has been implemented in various 

materials and structures across different scenarios, including both singular and non-singular 

stress concentrators, for predicting the initiation of cracks. Examples of these applications are 

V-notches [45,68,69], bolted joints [70], open-hole laminates [71–73], single-lap adhesive 

joints [74], solid oxide fuel cells under thermomechanical loading [75], and transverse cracking 

in cross-ply laminates [76]. In addition to defining the length and direction of a crack, as is the 

case with straight crack extension in 2D scenarios, initiation of a 3D crack poses a challenge 

due to the need to define an additional parameter, i.e., crack front, by using an infinite number 

of variables. The application of FFM models in 3D cases has been relatively limited. Following 

Leguillon’s [77] extension of FFM to the prediction of 3D bimaterial interface corner crack by 

utilising 3D singularity theory and matched asymptotic expansions, García et al. [76] 

investigated the initiation of transverse cracks in cross-ply laminates using the 3D FFM.  In the 

case of woven composites, Doitrand et al. [78] utilised it for the prediction of damage strain at 

initiation, which enabled the assessment of the configuration of a crack such as location, length, 

orientation, and decohesion length. To simplify the complexities related to actual crack shapes, 

both García et al. [76] and Doitrand et al. [78] used simplifying approximations for the shape 
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of the crack, which prevented the determination of true crack shape. In contrast, Doitrand and 

Leguillon [79] reasonably predicted the onset of crack in aluminium-epoxy specimens under 

four-point bending by employing interface normal stress isocontours to determine the shape of 

the crack using a single parameter. Later on, they used this method to predict the initiation of 

cracks in scarf adhesive joints [80], using the crack surface area to parameterise the crack 

shape. Additionally, Yosibash and Mittelman [81] expanded the FFM into a 3D case for sharp 

V-notches under mixed-mode I/II/III loadings and validated their model through experimental 

tests. Moreover, Weißgraeber et al. [82] and Doitrand et al. [83] present thorough reviews that 

explore both the theoretical foundations of FFM and its practical application.  

Some efforts have been made to implement FFM to address free edge delamination under 

remote tensile loads in layered structures, utilising a variety of techniques. Frey et al. [84] 

employed a closed-form analytical model based on the FFM criterion. Dölling et al. [85] 

combined FFM with the scaled boundary finite element method (SBFEM). Martin et al. [86] 

and Hebel et al. [87] used FEM to calculate energy and stresses. Under thermal loading, Dölling 

et al. [88] and Frey et al [89] predicted critical thermal loads of laminates exhibiting free edge 

effects. However, it is noted that all these aforementioned methods for addressing free edge 

delamination are based on the generalised plane strain condition. For this reason, Burhan et al. 

[90] recently implemented a 3D FFM criterion to predict free edge delamination in angle-ply 

laminates under remote tensile loading. By asserting the initiation of a semi-elliptically shaped 

crack from the free edge, it is demonstrated that accurate predictions can be obtained by 

hypothesising homothetic crack extension.  

Fig. 8 compares the predictions of free edge delamination stress as a function of normalised 

effective ply thickness n for the AS1/3501-6 material system with a [±15n]s layup sequence, 

using various fracture criteria: 3D FFM (Burhan et al. [90]), 2D FFM (Dölling et al. [85]), and 

LM, ICM (Brewer and Lagace [51]). These predictions are compared against edge 

delamination experimental data Brewer and Lagace [51]. All criteria show close agreement 

with the experimental results, except LM, which is slightly conservative at lower n values. 

Notably, for LM predictions of free edge delamination, Brewer and Lagace [51] assessed 

parameters such as interlaminar strength and critical length values for three different layup 

sequences ([±15n]s, [±15n/0n]s, [0n/±15n]s). Assessment of these parameters for a single 

layup sequence can yield more accurate LM predictions, as can be seen in the work of Lorriot 

et al. [41]. 
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Fig. 8. Comparison of delamination initiation stress due to free edge effect as a function of 
normalised effective ply thickness for the AS1/3501-6 material system with [±15n]s layup 

sequence, using 3D FFM (Burhan et al. [90]), LM, ICM, and edge delamination experimental 
test data from Brewer and Lagace [51], and 2D FFM (Dölling et al. [85]). 

4. Related fracture analysis theories 

The most related models that can be implemented for crack initiation problems in the vicinity 

of high stress gradients are Cohesive Zone Models (CZM) and Phase-Field Models (PFM). 

Both are discussed briefly in the following sections. 

4.1. Cohesive Zone Models  

Cohesive Zone Models (CZM) are a model based on damage mechanics which considers the 

inelastic effects that occur in a fracture process zone can be lumped into a surface, modelled as 

a cohesive zone. The CZM approach goes back to Barenblatt [91] and Dugdale [92] models. 

The traction 𝜏𝜏 between the potential crack surfaces in this cohesive zone is related to the 

separation ∆ through the constitutive traction-separation law 𝜏𝜏(∆). The shape of this 

constitutive law has to be identified along a pre-defined path. In case of the bilinear law, as 

illustrated in Fig. 9 for a laminate with free edge effects, traction 𝜏𝜏 increases with respect to 

separation ∆ within an initial elastic response until the material strength 𝜏𝜏𝑜𝑜 is reached before 

damage initiation. Penalty stiffness 𝐾𝐾 is defined to ensure the potential crack surfaces are stiff 

within elastic response regime. The material strength 𝜏𝜏𝑜𝑜 and penalty stiffness defines the 

damage onset separation ∆𝑜𝑜. From this point, stiffness degradation occurs which is controlled 

by a damage variable 𝑑𝑑. The traction 𝜏𝜏 linearly decreases with increasing separation ∆ 
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representing softening behaviour until the critical opening is achieved ∆𝑓𝑓. The irreversible 

bilinear constitutive law for the damage evolution can be defined as: 

𝜏𝜏(∆) = 𝐾𝐾(1 − 𝑑𝑑)∆      0 ≤ 𝑑𝑑 ≤ 1 (18) 

where value of 𝑑𝑑 as 0 and 1 depicting damage onset and critical opening, respectively. CZM, 

similar to FFM, require two material parameters: material strength 𝜏𝜏𝑜𝑜 and fracture toughness 

𝐺𝐺𝑐𝑐 representing the amount of energy dissipated until the critical opening is achieved ∆𝑓𝑓. This 

𝐺𝐺𝑐𝑐 can be determined using separation work: 

𝐺𝐺𝑐𝑐 = � 𝜏𝜏(∆)
∆𝑓𝑓

0
𝑑𝑑∆. (19) 

The CZM implementation offers one of the alternative approaches to predict crack initiation 

and growth. In the context of free edge delamination, the work of Turon et al. [93] is worth 

mentioning, along with those of others [94,95] and a recent study [96].  

 
(a) (b)  

Fig. 9. Schematic illustration of (a) Cohesive Zone Model at the free edge and (b) its 

corresponding bilinear constitutive law.  

Frey et al [89] predicted the critical thermal failure load �∆𝑇𝑇𝑓𝑓� due to free edge effect in the 

T800/914 material system using 2D FFM and compared these predictions with CZM, 

implemented as a secondary fracture criterion. Fig. 10 (a) illustrates the comparison with 

respect to normalised effective ply thickness n for a [±45n]s layup sequence, while Fig. 10 (b) 

shows the comparison with respect to ply orientation 𝜃𝜃 for a given n =16. The predictions of 

2D FFM closely match those of CZM, although CZM results are more conservative, with a 

maximum relative error of 19%. This deviation can be mitigated by using LM as a stress 

criterion, as Frey et al [89] used PM, or by choosing the shape of the traction-separation law in 

CZM.  
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It is important to note that CZM, along with issues related to identifying traction-separation 

law, necessitates overcoming difficulties with convergence in the respective FEA due to being 

highly non-linear.   

 

(a)                                                                         (b)    

Fig. 10. Comparison of thermal failure load �∆𝑇𝑇𝑓𝑓� of laminates exhibiting free edge effects, 
using 2D FFM and CZM for the T800/914 material system, with respect to (a) normalised 

effective ply thickness n and (b) ply orientation 𝜃𝜃 (Data from Frey et al [89]).  
4.2. Phase-Field Models 

Phase-Field Models (PFM) are based on a variational approach of brittle fracture that aims to 

determine the displacement field and a set of cracks simultaneously by minimising the total 

potential energy of the body. The linear elastic variational model is proposed by Francfort and 

Marigo [97] which quantified crack initiation as well as crack path. The numerical 

implementation of this fracture model is presented by Bourdin et al. [98] where cracks are 

approximated as smeared crack strips and to describe the damage state of a structure, a phase 

field variable 𝑑𝑑 ∈ [0,1] is introduced. For improving efficiency of the simulations, numerical 

implementation to obtain the solution of governing equations of PFM, which is of particular 

importance, is performed using FEM [99], peridynamics [100], and the meshless method [101]. 

FEM based implementation is the most commonly used and therefore numerous aspects of 

which are improved, such as computational efficiency [102] and numerical accuracy and 

stability [103,104]. 
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5. Concluding remarks  
The singular nature of interlaminar stresses at the free edge of a laminate makes both 

conventional strength-of-materials and fracture mechanics criteria unsuitable to implement. 

This paper discusses how these limitations led to the development of the Theory of Critical 

Distances (TCD), which introduces a critical distance—an experimentally determined material 

constant—to predict failure. TCD methods, whether stress- or energy-based, rely on this 

characteristic length which is an input to the fracture analysis in the model. 

Finite Fracture Mechanics (FFM), in contrast, combines the non-local strength of materials and 

fracture mechanics criteria and assumes spontaneous finite crack initiation when both stress 

and energy conditions are met simultaneously. FFM yields both the failure load and the size of 

the finite crack without requiring a pre-determined length parameter. Instead, finite crack size 

is a structural parameter that depends on both geometry and material in FFM and is an output 

of the analysis in the model. Additionally, other models such as Cohesive Zone Models (CZM) 

and Phase-Field Models (PFM) are briefly discussed as alternatives for predicting failure 

initiation at stress singularities. 

Moreover, the answer to the question of why TCD works lies in FFM. FCE, which is a 

simplified form of FFM, has a robust theoretical foundation, as it represents a physical 

mechanism of discontinuous crack growth through finite crack extension. Stress-based TCD 

theories are effective because they provide approximate predictions close to FFM. 

Furthermore, TCD has some drawbacks apart from an unknown length parameter whose 

physical meaning is not clear. It yields unreliable results, especially when the structural size 

falls below the critical distance. Although FFM overcomes this disadvantage, TCD can still be 

implemented in situations where structural size is significantly greater than the critical distance. 

In summary, based on the above-concluding remarks, FFM in its coupled form emerges as an 

advancement of TCD, representing a real behaviour of discontinuous cracking phenomenon 

unlike PM or LM, and does not require a priori determination of an unknown length parameter, 

a drawback inherent in all TCD methods. 
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