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ABSTRACT
Objectives Routine monitoring of renal and hepatic 
function during chemotherapy ensures that treatment- 
related organ damage has not occurred and clearance 
of subsequent treatment is not hindered; however, 
frequency and timing are not optimal. Model bias and 
data heterogeneity concerns have hampered the ability of 
machine learning (ML) to be deployed into clinical practice. 
This study aims to develop models that could support 
individualised decisions on the timing of renal and hepatic 
monitoring while exploring the effect of data shift on model 
performance.
Methods and analysis We used retrospective data from 
three UK hospitals to develop and validate ML models 
predicting unacceptable rises in creatinine/bilirubin post 
cycle 3 for patients undergoing treatment for the following 
cancers: breast, colorectal, lung, ovarian and diffuse large 
B- cell lymphoma.
Results We extracted 3614 patients with no missing 
blood test data across cycles 1–6 of chemotherapy 
treatment. We improved on previous work by including 
predictions post cycle 3. Optimised for sensitivity, we 
achieve F2 scores of 0.7773 (bilirubin) and 0.6893 
(creatinine) on unseen data. Performance is consistent on 
tumour types unseen during training (F2 bilirubin: 0.7423, 
F2 creatinine: 0.6820).
Conclusion Our technique highlights the effectiveness 
of ML in clinical settings, demonstrating the potential to 
improve the delivery of care. Notably, our ML models can 
generalise to unseen tumour types. We propose gold- 
standard bias mitigation steps for ML models: evaluation 
on multisite data, thorough patient population analysis, and 
both formalised bias measures and model performance 
comparisons on patient subgroups. We demonstrate 
that data aggregation techniques have unintended 
consequences on model bias.

BACKGROUND
Machine learning (ML) has seen rapid growth 
over the past decade,1 including within the 
field of healthcare.2 In the research setting, 
ML techniques have been successfully applied 
to a wide range of medical tasks, such as chest 
X- ray diagnosis,3 electronic health record 
analysis4 and computational biology,5 with 

some approaches beginning to outperform 
medical experts.6 However, this is yet to be 
translated to medical practice; although the 
US Food and Drugs Administration has thus 
far approved 343 ML- based medical devices,7 
this is eclipsed by the number of research 
papers published in the field that claim posi-
tive results.8

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Previous work has shown, as a proof of concept, that 
machine learning (ML) can be used to predict renal 
and hepatic dysfunction in chemotherapy patients 
at the third cycle of treatment. However, data were 
limited to a small number of patients and tumour 
types, and for a single cycle of treatment.

WHAT THIS STUDY ADDS
 ⇒ We propose improved modelling techniques that 
predict dysfunction at multiple cycles (cycles 3–6 
inclusive) and, through the inclusion of data from 
five cancer types, across three cancer departments 
in different hospitals, extensively analyse the gen-
eralisability and perceived bias of our technique. 
Our findings demonstrate the generalisability of our 
technique to cancer diagnoses and patient popula-
tions not included in the training data.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Our proposed chemotherapy risk stratification mod-
els improve the appropriateness of cancer care, 
meaning that patients would have more person-
alised blood monitoring before chemotherapy. This 
could significantly reduce pressure, particularly 
in areas with limited access to phlebotomy ser-
vices. The generalisability of our technique to un-
seen cancer diagnoses mitigates the requirement 
for extensive and expensive training on data that 
encompasses all types of tumours. Our work also 
shows that data shift and bias analysis methods 
should become standard practice in healthcare ML 
research due to the prevalence of these issues in 
medical data.
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Alongside advancements in applying ML to health-
care tasks, research working with clinicians, patients and 
policy- makers has attempted to codify necessary criteria 
for clinical deployment.9 Models must be transparent 
and interpretable,10 11 identify and mitigate bias12 and be 
robust and secure,13 all while maintaining high perfor-
mance. These are the main barriers that ML in healthcare 
faces; while all studies report their techniques’ perfor-
mance in terms of model accuracy, it is rare for these 
complementary criteria to be analysed, hindering their 
use in practice.

Indeed, many ML techniques suffer from problems 
that directly affect these areas. For example, it has been 
shown that deep- learning approaches are highly suscep-
tible to minor input changes14 and hyperparameter varia-
tions,15 16 raising concerns about model robustness. There 
is also an increasing awareness of neural networks making 
biased decisions,17 such as black patients being assigned 
the same risk level as white patients, despite being sicker 
than their white counterparts.18 While the underlying 
source of this bias can vary,19 a common culprit is the gap 
between the training data distribution and that of the real 
data to which it will be applied,20 along with the model’s 
ability to generalise well21 to this unseen data.

This mismatch (ie, data shift) between training and 
real- world data is especially prevalent in healthcare.22 The 
cost, time and privacy constraints associated with medical 
data limit access to diverse datasets, often leading to ML 
models trained on data from only a single hospital.23 This 
can lead to the model making biased decisions and limit 
generalisability, for example, due to varying patient popu-
lations (eg, the level of poverty in a hospital’s catchment 
area can greatly affect the general health of its patients24) 
or standard operating procedures that affect both patient 
outcomes and the type and quality of data collected. 
Furthermore, in terms of population health, behaviours, 
treatments and outcomes will gradually change over time, 
possibly resulting in the model’s accuracy decreasing 
should it not be continually updated.25

Limited diversity in publicly available healthcare data 
hinders bias identification and mitigation,26 and these 
data and research gaps often impede regulatory approval 
for clinical use.27 28 Although some techniques have been 
proposed to address bias29 30 these are very much still in 
their infancy. This paper explores these issues through the 
lens of chemotherapy patient risk stratification, providing 
concrete examples of when and why these issues occur, 
how to detect them and guidance for addressing them.

We achieve this by significantly building on existing 
work on ML- based chemotherapy risk stratification,31 
with the aim of detecting patients at risk of experiencing 
renal and/or hepatic dysfunction on commencement of 
treatment. These drug- related adverse effects occur in 
around 10% of patients31; the current model of care is 
to routinely undertake blood monitoring for all patients 
during a course of chemotherapy. This monitoring can 
result in lengthy delays for patients on the days they 
are receiving treatment.32 An ML model that is able to 

accurately stratify patients according to their risk of expe-
riencing renal or hepatic deterioration during treatment 
would allow only patients at high risk of adverse effects to 
undergo blood tests prior to every treatment, resulting in 
benefits for both the patient experience and the cost of 
delivering care.31 32

ML has been used in chemotherapy for tasks such as 
dose delay32 and mortality prediction,33 however, the esti-
mation of renal and hepatic dysfunction has gone rela-
tively unexplored. Previous studies31 were limited to a 
small number of patients, focused on a single treatment 
cycle and three types of cancer. Our aim was to improve 
on these methods by introducing ML models that can 
accurately predict renal and hepatic deterioration at 
cycles 3–6, and to extensively evaluate our techniques on 
retrospective data from three large cancer departments 
in hospitals in the UK, each with distinct patient popu-
lations. By using datasets from three distinct hospitals 
(n=3614), we created models that are more generalisable 
than previous techniques. Additionally, we explore data 
shifts in the models to understand implications for future 
use.

METHODS
We retrospectively collected patient data from cancer 
departments within three UK hospitals (hospitals 1–3), 
each situated in a different area of the UK; all data were 
anonymised and underwent local governance review and 
data sharing agreements. Patients were extracted from the 
electronic prescribing (EP) system according to the inclu-
sion criteria: patients were included if they were aged 18 
or over and were receiving first- line chemotherapy treat-
ment for colorectal cancer, diffuse large B- cell lymphoma 
(DLBCL) or early- stage (stages 1–3) breast cancer. 
Data were extracted for the period 1 January 2013–31 
December 2018. Patients were followed for the first six 
treatment cycles (though the sixth cycle is not necessarily 
their last) and were excluded if they only received one 
cycle of treatment or the second cycle was more than 60 
days after the first (online supplemental figure 1). These 
data extraction yielded 999, 530 and 1840 records from 
hospitals 1, 2 and 3, respectively. Patients with missing 
blood test data were then excluded (although missing 
demographic data, eg, comorbidities, were allowed); 
across all hospitals in the study, the rate of missing blood 
test data increased with treatment progression, espe-
cially in hospital 2 (online supplemental figure 2). After 
removing records with missing data, we were left with 
627 (hospital 1A), 144 (hospital 2) and 1280 (hospital 3) 
patients. To assess the impact of temporal data shift on 
our proposed techniques, as well as their performance 
on cancer types not included in the training data, we 
subsequently extracted an additional 1563 records from 
hospital 1 consisting of patients receiving chemotherapy 
for breast cancer, bowel cancer, lung cancer or ovarian 
cancer. These data were extracted for the period 3 
February 2020–8 November 2023. To distinguish between 
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the two datasets from hospital 1, we name the original 
data extraction hospital 1A and the second hospital 1B.

We extracted patient demographics, blood test results 
and treatment details from the EP system. Blood test 
results at each cycle of treatment, as well as a baseline 
collected prior to the treatment starting, are used that 
contain: creatinine, bilirubin, haemoglobin, absolute 
neutrophil count and alanine aminotransferase levels. 
These tests were selected for their routine inclusion in 
clinical practice and established roles in toxicity predic-
tion.33 34 Additional demographic data included age, sex, 
ethnicity, height, weight, cancer type, treatment regimen 
and relative dose intensity. The following comorbidities 
were extracted—diabetes, cardiovascular, thyroid, respi-
ratory, arthritis and autoimmune diseases—however, the 
degree to which these data are collected varied signifi-
cantly across hospitals. We conducted a comprehensive 
analysis of data shift, with summary statistics for each 
dataset presented in table 1. Online supplemental section 
2 further explores these data distributions and discusses 
potential explanations for hospital- specific variation 
as well as the importance of addressing data shift when 
training and validating healthcare ML models.

Improving on previous studies,31 35 we trained models 
to predict renal and/or hepatic dysfunction during cycles 
3–6 inclusive, exploring two approaches:
1. Predict dysfunction at cycle n using demographics and 

lab results from cycles 1 and 2.
2. Predict dysfunction at cycle n using demographics and 

lab results from cycles    and   .

We initially compared both and ultimately chose the 
best- performing technique to study in- depth in Results 
and Model Bias Analysis. The prediction of grade changes 
at cycle 3 onwards was chosen as many toxicities occur 
during the first cycle of treatment, and we believe that it 
would not be clinically acceptable to remove blood test 
monitoring at cycle 2.

Model training and evaluation
Instead of a single model, we framed the problem as two 
separate regression tasks, predicting blood creatinine and 
bilirubin levels; each model’s output then guides patient 
stratification into high- risk and low- risk groups. This 
allows fine- grained control over risk levels as the deci-
sion threshold (and thus sensitivity) of our technique can 
be easily adjusted—prioritising avoiding false negatives 
(FNs), which could lead to poorer outcomes than false 
positives (FP). This threshold is based on the Common 
Terminology Criteria for Adverse Events36 (CTCAE), 
which defines abnormal grade changes for both creati-
nine and bilirubin; Results reports the resulting thresh-
olds used after optimising for a lower FN rate. Online 
supplemental figure 3 presents a typical patient’s flow 
through the system.

We train Gradient Boosted Decision Trees (GBDTs) 
using the XGBoost library37 due to their state- of- 
the- art performance on tabular data38 39 and enhanced 
interpretability40 when compared with deep learning 
models. Furthermore, we chose GBDTs as they show 
increased performance when compared with multilayer 

Table 1 Summary statistics for each of the datasets used throughout the study

Parameter Hospital 1A Hospital 2 Hospital 3 Hospital 1B

Number of patients 627 144 1280 1563

Age Median: 55
Range: 18–88

Median: 62
Range: 18–84

Median: 60
Range: 18–86

Median: 64
Range: 
18–90

Sex Female: 440 (70.2%) 
Male: 187 (29.8%)

Female: 78 (54.2%) Male: 
66 (45.8%)

Female: 725 (59.0%) Male: 
525 (41.0%)

Female: 
1308 (83.7%) 
Male: 255 
(16.3%)

Tumour type Breast: 249 (39.7%)
Bowel: 216 (34.4%)
DLBCL: 162 (25.8%)
Lung: 0 (0%)
Ovarian: 0 (0%)

Breast: 19 (13.1%)
Bowel: 98 (68.1%)
DLBCL: 27 (18.8%)
Lung: 0 (0%)
Ovarian: 0 (0%)

Breast: 426 (33.3%)
Bowel: 744 (58.1%)
DLBCL: 110 (8.6%)
Lung: 0 (0%)
Ovarian: 0 (0%)

Breast: 470 
(30.1%)
Bowel: 358 
(22.9%)
DLBCL: 0 
(0%)
Lung: 126 
(8.1%)
Ovarian: 609 
(38.9%)

Creatinine grade changes 36 (4%) 17 (12%) 215 (17%) 104 (7%)

Bilirubin grade changes 59 (11%) 24 (17%) 184 (14%) 92 (6%)

Patients with any missing blood test data in cycles 1–6 have been removed. Creatinine/bilirubin grade changes are only recorded if they are 
towards toxicity; if a patient experiences multiple grade changes (ie, at different cycles), they are only recorded once (at the cycle of their first 
change).
DLBCL, diffuse large B- cell lymphoma.
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perceptrons on our task (online supplemental section 2). 
For both creatinine and bilirubin prediction, we trained 
three separate GBDTs: (1) trained on hospital 1A data 
only, (2) trained on hospital 3 data only and (3) trained 
on combined data from hospitals 1A and 3. Comparing 
each of these models allowed us to investigate the impact 
of training data distribution on model performance.

Data from hospitals 1A and 3 were split 80/20 for 
training/testing, while hospital 1B and hospital 2 data 
were used as an unseen validation set to assess temporal 
and intersite generalisability, respectively. Hospital 1B 
data were further stratified by cancer diagnosis; the first 
set comprised patients with breast cancer, bowel cancer 
or DLBCL, while the second set included patients with 
lung or ovarian cancers. As lung and ovarian tumours 
were unrepresented in the training data, this specifically 
evaluated the model’s ability to generalise to unseen 
tumour types. All data were standardised by removing the 
mean and scaling to unit variance prior to being used and 
10- fold cross- validation was used for training, along with a 
Tree Parzen Estimator- based hyperparameter search. The 
hyperparameter search space is shown in online supple-
mental table 4, and the final model hyperparameters are 
in online supplemental table 5. Due to the small number 
of features available in our dataset, no feature selection 
techniques were used.

We initially focused on predicting cycle 3 grade changes 
only for direct comparison with previous work,31 35 later 
extending models to cycles 4–6. We primarily used the F2 
score as a measure of performance, as this metric gives 
more weight to recall than precision (ie, it favours more 
conservative models that make FPs rather than FNs). The 
F2 score is defined as:

 
F2 = (1+22)×true positives

(1+22)×true positives+false positives+22×false negatives  

Precision is the proportion of true positives among all 
positive predictions (ie, positive predictive value) and 
recall is the proportion of correct positive predictions (ie, 
sensitivity). Model performance is presented in Results, 
while Model Bias Analysis focuses on model bias and data 
shift.

Bias analysis and mitigation
We evaluate model bias through analysis of model perfor-
mance on population subgroups, as well as with formalised 
measures of bias such as the Generalised Entropy Index 
(GEI).41 GEI is used to measure both group- based fair-
ness (ie, how model performance differs between demo-
graphic groups) and individual fairness (ie, how the 
model treats patients who deserve similar outcomes). GEI 
uses the notion of benefit, which is defined as

bi=M(xi) - yi+1
where yi is the ground- truth outcome for a patient with 

features xi and M(xi) is the output of the predictive model. 
This definition gives patients with FN classifications the 
highest penalty, and patients with FP classifications the 
lowest. Benefit is calculated across the whole validation 

set (b = (b1,b2,…,bn), where n is the size of the validation 
set) to calculate the GEI as I2(b):

 
Iα(b) =

1
nα(α− 1)

n∑
i=1

(
bi

µ
)α − 1

  

where µ is the mean benefit across the whole validation 
set. This definition is then extended to measure between- 
group fairness where, for a given group of patients g ∈ G 
with ng patients, between- group fairness is defined as I2(b) 
where:

 

Iαβ(b) =

∣∣G∣∣∑
g=1

ng

nα(α− 1)
((

µg

µ
)α − 1)

  

For the purposes of our experiments, we defined G 
based on the demographics of our validation cohort.

To investigate differences between patient populations 
across our four datasets, we extensively compare each 
feature’s distribution across all populations. Notably, we 
extend this to all available features rather than just patient 
demographics as is standard practice42; as explained in 
Supplementary Section 1, this analysis uncovered inter-
esting (and previously unrecognised) differences in 
patient’s baseline creatinine values across the different 
study sites. To create an accurate picture of model perfor-
mance on under- represented patients, we also evaluate 
model performance (using the same metrics as above) 
across patient subgroups to identify any groups where 
our techniques underperform (if, indeed, there are any 
such groups). For this, we use the patient’s reported 
sex, age (grouped into decades) and ethnicity (grouped 
using the UK’s Office for National Statistics (ONS) 
groupings43). However, in subgroups with extremely low 
patient numbers, these metrics can be misleading—a 
large enough sample size is needed in order to accurately 
estimate model performance. Therefore, we omit any 
subgroups with fewer than 10 samples.

We also experiment with using this subgroup aggrega-
tion as a bias mitigation technique, wherein we use broad 
ethnicity and treatment groups during model training 
and evaluation, rather than the exact ethnicity/treat-
ment. To create the groups, we use the broad ethnicity 
categories defined by the ONS43 (eg, white, Asian), and 
group treatments by the number of regimens included 
singlet, doublet or triplet. The analysis of these methods, 
as well as the motivation behind their use, is in Subgroup 
Aggregation Strategies.

Patient and public involvement
Through the development of our models, we conducted 
two focus groups with patients with cancer who have 
received chemotherapy. These were to understand the 
impact of blood monitoring on their lives and the accept-
ability of ML in practice. Patients were aware that data 
used in the development of models may not be repre-
sentative, and therefore, supported the aims of these 
experiments.
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RESULTS
There is a significant data shift between the three hospi-
tals due to differing patient populations. Table 1 shows 
how patient age, sex, tumour type and number of creati-
nine/bilirubin grade changes differ between each of our 
four datasets. Supplementary Section 1 explores this data 
shift further, with detailed analyses of patient ethnicity, 
tumour incidences, age, and creatinine/bilirubin value 
distributions, as well as offering some hypotheses as to 
why these differences may exist. To allow for the analysis 
of how this data shift affects our models, we report results 
of evaluation on hold- out sets from hospitals 1A and 3, 
as well as the entire hospital 1B and hospital 2 datasets. 
Predicting Renal and Hepatic Dysfunction at Cycles 3- 6 
reports results of our risk stratification models trained 
to predict risk at cycles 3–6. Supplementary Section 2 
provides an in- depth analysis of models trained on cycle 
3 only, across different combinations of our training data, 
allowing for direct comparison with previous work.31

Predicting renal and hepatic dysfunction at cycles 3–6
Figure 1a and online supplemental figure 4 present the 
performance of GBDTs predicting cycle  n  creatinine and 
bilirubin values based solely on demographics and cycle 1 
and cycle 2 lab results (F2 creatinine: 0.4600, F2 bilirubin: 
0.5294). As detailed in Method, models were tuned to 

have higher sensitivity than precision due to the greater 
potential harm of missed high- risk patients. This involved 
tuning decision thresholds for high- risk predictions, 
based on CTCAE guidance, to be more conservative; for 
creatinine the final grade boundaries are 1.4 × baseline or 
1.4 × ULN, and for bilirubin the grade boundary used is 
1.4 × ULN. Notably, model performance decreased with 
later cycles, likely due to the increase in time between 
the predicted cycle and the data available to the model. 
This effect is much more pronounced for creatinine than 
bilirubin.

On the other hand, figure 1b and online supplemental 
figure 5 show that models using data from the two cycles 
immediately preceding the prediction demonstrate 
strong performance across both creatinine and bilirubin 
(F2 creatinine: 0.6893, F2 bilirubin: 0.7773); although 
with the creatinine and bilirubin performance gap that 
is observed across all experiments. Unlike models using 
cycles 1 and 2 (figure 1a), performance remained stable 
throughout treatment, except for a slight dip in cycle 5 
creatinine prediction. As these models were trained on 
a combined training set from hospitals 1 and 3, they 
performed consistently across all three validation sets 
despite their differing populations. Interestingly, they 
even slightly outperform those in online supplemental 

Figure 1 F2 metric across all predicted cycles of (A) models trained using data from cycles 1 and 2, and (B) models trained on 
cycles n−1, n−2. Hospital 1A, 2 and 3 data contain only tumour types seen by the models during training. Hospital 1B data have 
been stratified into two subgroups: records containing only cancer diagnoses during training (DLBCL, bowel and breast) and 
those that were not included during training (lung and ovarian). DLBCL, diffuse large B- cell lymphoma.
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section 2 on cycle 3 prediction. We hypothesise that this 
stems from the larger training set that arises from treating 
each patient- cycle combination as a separate sample. 
This unified model likely learns features common across 
all cycles, leading to better generalisability. Figure 1b 
demonstrates our model’s robustness to temporal data 
shift; performance on Hospital 1B data is comparable to 
performance on all other data despite Hospital 1B data 
being collected significantly later than the other data-
sets. Additionally, the models successfully generalise to 
tumour types unseen during training; Figure 1b shows 
that performance on records with lung or ovarian cancers 
(which are unrepresented in the training data) is similar 
to that observed on DLBCL, bowel cancer and breast 
cancer data. The trade- off between precision and recall is 
seen in online supplemental table 2, where sensitivity (ie, 
recall) is higher than precision—this is also seen by the 
fact that the F2 scores are higher than the F1 scores across 
all models and targets.

MODEL BIAS ANALYSIS
Despite strong performance (Results) and generalis-
ability across hospitals, time and tumour types, some 
prediction failures remain. Analysing these failures is 
crucial both clinically (ensuring real- world effectiveness 

across diverse patient groups) and for understanding 
data shift. This section evaluates the perceived bias in 
the best- performing techniques presented in Predicting 
renal and hepatic dysfunction at cycles 3–6 (ie, prediction 
using the previous two cycles’ data) and examines how 
bias mitigation techniques may unintentionally affect 
model performance.

Model fairness evaluation
Figure 2 highlights performance differences across 
patient subgroups; combined with hospital population 
knowledge, they can be used to draw numerous insights. 
For example, bilirubin prediction performs worse for 
women than men, and both creatinine and bilirubin 
models performed better on older patients. However, 
these trends are subtle and are likely due to limited 
training data size (especially in comparison to modern 
ML practice). Supporting this, both overall and subgroup- 
specific performance improved when training on hospital 
1A and 3 data (as shown by Supplementary Figure 13); an 
encouraging sign for future studies which aim to collect 
more data for both model training and validation.

Figure 3 plots both  I
2(b) and I2

β(b)  against sensitivity. All 
models showed low levels of unfairness, with  I2(b) ≤ 0.14  
and  I

2
β ≤ 0.05  across all cycles, with only small differences 

Figure 2 F2 score of each model on subgroups of the unseen combined test data. Dashed lines separate groups—from left 
to right they are: sex, ethnicity, age, cancer type. Bars are labelled with the number of test records in the subgroup, noting that 
there is a record for each individual cycle of treatment received (so a patient receiving five cycles of chemotherapy contributes 
five to the group count). Subgroups with fewer than 10 samples are not plotted.
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in estimated levels of fairness between cycles and only 
slight increases in later cycles. Conversely, the bilirubin 
model exhibits higher GEI than the creatinine model, 
aligning with the subgroup performance variations 
observed in figure 2.

Subgroup aggregation strategies
It is common to aggregate smaller subgroups into larger 
ones—for example, one may aggregate all white ethnic 
subgroups (English, Irish, British, etc) into a single 
white group.43 Similarly, chemotherapy regimens can be 
grouped by the type of treatment—that is, as doublet, 
triplet or quartet regimens. While this can both assist the 
analysis of results (by increasing the number of samples 
in each subgroup) and ease the burden of data collec-
tion, our experiments show it can alter healthcare model 
performance and biases. Figure 4, which compares 
models trained on fine- grained subgroups (eg, individual 
ethnicities) versus wider groups, highlights this phenom-
enon. While the overall performance of the two models 
was near- identical, subgroup performance varied signifi-
cantly; as an example, the fine- grained model performed 
better on female patients and Indian/Pakistani patients. 

On the other hand, the broader group model performed 
better on older patients and male patients.

Although reasons for these discrepancies are not imme-
diately clear and warrant future clinical work to investi-
gate the interactions between patient demographics and 
outcomes, we can infer some possible relationships. For 
instance, the fine- grained model performed significantly 
better on female patients than its counterpart. This may 
stem from its high breast cancer performance—which 
could be due to more granular treatment information. 
Whereas the fine- grained model had information on the 
specific treatment regimen, the broad- subgroups model 
only knew regimen type (ie, doublet, triplet, quartet)—
as all breast cancer treatments included in the study are 
doublet regimens, this could have led to significant infor-
mation loss.

DISCUSSION
This work introduces models that predict creatinine and bili-
rubin changes across cycles 3–6, improving on and outper-
forming existing techniques31 focused solely on cycle 3. 
Notably, these experiments have shown that using only data 
from cycles 1–2 for later predictions is ineffective, suggesting 

Figure 3 Generalised Entropy Index (GEI) (top) and between- group GEI (bottom) of each model across the whole unseen 
validation set, calculated at different thresholds. A perfect model would yield a single point at (0,1), the lower right- hand corner 
of the plot.
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deterioration can occur at any point during treatment and 
that early responses may not predict later ones. These long- 
term predictions are complex and hence require more data 
points. We observed that this effect is more pronounced 
for creatinine than bilirubin, possibly due to greater day- 
to- day variations in creatinine than bilirubin. However, we 
have shown that leveraging the previous two cycles accu-
rately predicts current cycle renal/hepatic deterioration 
(F2 creatinine: 0.7423, F2 bilirubin: 0.6820). These high F2 
scores, which are a result of high sensitivity values, indicate 
an extremely low number of FN results—crucial for ensuring 
patient safety were the model to be deployed in clinical prac-
tice. This can potentially improve the appropriateness of care 
when compared with current standards: predicted low- risk 
patients may not require precycle blood test results available 
immediately, and high- risk patients can thus undergo more 
intensive monitoring. Once validated and approved, our tech-
niques would also significantly impact care in regions with 
limited phlebotomy services.44 45 Evaluation of our models on 
tumour types that were held out during model training high-
lights the generalisability of our technique and alleviates the 
need for costly data collection and model training across all 
possible cancer diagnoses.

This study underscores the significance of data shift for 
the broader healthcare ML community. We have shown 
that patient populations can vary significantly between 
hospitals and, in Model Bias Analysis, how this affects model 
training. We strongly believe that similar analyses should 
be standard practice in future medical ML projects, with 
projects moving beyond single- site studies and rigorously 
evaluating inherent data and model biases. Data shift is 
an unavoidable consequence of medical care as hospitals 
generally serve patients from their own catchment area, 
each with different demographic characteristics. As Model 
Bias Analysis has shown, data shift can significantly impact 

model performance on specific patient subgroups, and so 
addressing and understanding data shift is crucial before 
clinical deployment.

Furthermore, we have shown that common data aggre-
gation strategies can disproportionately affect model 
bias—in both positive and negative ways. While they do 
simplify data collection and enable broader model deploy-
ment across non- standardised settings,46 our results show 
that care must be taken when deciding which features 
to aggregate, ensuring that they do not negatively affect 
the fairness or performance of the final model. Indeed, 
Model Bias Analysis proposes a standard set of analyses to 
detect and mitigate bias in medical ML studies, leading to 
successful final models:
1. A classical statistical analysis of the available dataset 

should be completed. Where possible, data should be 
collected from as many distinct sites as possible to en-
sure the diversity of the dataset.

2. Where studies are multisite, the data distributions for 
each individual site should be compared. If feasible, 
data from a whole site should be reserved for unseen 
validation.

3. A subset of data from each hospital used for training 
should be used as hold- out validation data. Perfor-
mance metrics should be averaged across hospitals, to 
ensure reported metrics are not biased to a single site.

4. Model bias should be analysed through the use of both 
formalised fairness measures (eg, GEI), as well as the 
comparison of traditional performance metrics on at- 
risk and protected subgroups.

5. Where models are shown to work on some populations 
but not others (eg, due to data limitations), it may be 
appropriate to restrict deployment to suitable patient 
populations until future studies can be conducted (eg, 
our proposed technique is not suited to patients with 

Figure 4 Comparison of model performance (on hospital 2 validation data) on patient subgroups of a model trained on 
fine- grained subgroups (left) and wider subgroups (right). Bars are labelled with the number of test records in the subgroup, 
noting that there is a record for each individual cycle of treatment received (so a patient receiving five cycles of chemotherapy 
contributes five to the group count). Subgroups with fewer than 10 samples are not included.
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abnormal baseline blood tests, as discussed in Model 
Bias Analysis).

6. Where data aggregation techniques are used, the ef-
fect on perceived model bias should be explored. 
Importantly, in clinical settings, any information loss 
that this may result in should be considered.

While many of these proposed analyses would be straightfor-
ward to implement, recent research showing the prevalence 
of biased ML models18 47 48 highlights their underutilisation. 
While reporting guidelines that are required by many jour-
nals prior to publication, such as Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD)42 and its Artifical Intelligence (AI) 
variant, TRIPOD+AI,49 mandate thorough reporting of 
dataset statistics they do not go as far as to require formal 
model bias analysis and mitigation techniques. Importantly, 
our proposed analysis steps are specifically aimed at studies 
that evaluate ML models on data from multiple different 
clinical sites/populations with the aim of investigating model 
generalisability. As such, our proposed steps go above and 
beyond those required by TRIPOD, TRIPOD+AI and other 
similar reporting checklists. This paper has also conclusively 
shown that this type of analysis is necessary, and we hope 
future researchers find its recommendations useful.

CONCLUSION
The main contributions of this paper are twofold. First, we 
have introduced refined risk stratification models for breast, 
bowel, lung, ovarian and DLBCL patients undergoing chemo-
therapy, accurately predicting renal and hepatic dysfunction 
across cycles 3–6. This advances beyond existing approaches 
focused solely on cycle 3, potentially enabling more appro-
priate care at later treatment stages. On cycle 3 prediction 
only, our proposed models outperform the current baseline 
techniques (supplementary Section 2. Our models have 
been shown to generalise to new cancer types that were not 
included in training data, potentially allowing for more wide-
spread adoption. When compared with the current practice 
of requiring blood tests for all patients, at all cycles of treat-
ment, the integration of our proposed model into clinical 
practice could both improve the appropriateness of care 
and reduce blood test- related delays to treatment. As chemo-
therapy services continue to be challenged with the growing 
number of patients with cancer and treatments available, 
the utilisation of ML is critical. Second, we have emphasised 
the prevalence of data shifts in healthcare and its impact on 
model fairness. We have proposed and demonstrated a gold- 
standard set of recommendations that should be followed 
when applying ML techniques to medical settings, showing 
that they can be successfully used to uncover and deal with 
biases present in the model.

We hope future work will extend the development of our 
chemotherapy risk stratification models to even more sites. 
This will address identified limitations and allow for model 
recalibration, aiming to reduce FPs while maintaining high 
sensitivity as achieved in this study. While our study has specif-
ically evaluated model performance on unseen cancer types, 

data limitations meant this was only possible for lung and 
ovarian tumours. Future studies should extend this anal-
ysis to a wider range of cancers and treatment regimens to 
ensure wider clinical applicability. Furthermore, while our 
techniques are able to handle missing data, throughout our 
experiments, we have assumed that all blood tests are avail-
able—it would be prudent to evaluate model performance 
with increasing levels of missing data to better understand 
requirements for clinical deployment. We also hope that 
this work inspires future researchers to evaluate their tech-
niques in similar ways, hopefully increasing the number of 
safe and effective ways that ML is applied (and subsequently 
deployed) to healthcare settings.
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