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A B S T R A C T 

Weak gravitational lensing is a powerful tool for precision tests of cosmology. As the expected deflection angles are small, 
predictions based on non-linear N -body simulations are commonly computed with the Born approximation. Here, we examine 
this assumption using DORIAN, a newly developed full-sky ray-tracing scheme applied to high-resolution mass-shell outputs 
of the two largest simulations in the MillenniumTNG suite, each with a 3000 Mpc box containing almost 1.1 trillion cold dark 

matter particles in addition to 16.7 billion particles representing massive neutrinos. We examine simple two-point statistics like 
the angular power spectrum of the convergence field, as well as statistics sensitive to higher order correlations such as peak and 

minimum statistics, void statistics, and Minkowski functionals of the conv ergence maps. Ov erall, we find only small differences 
between the Born approximation and a full ray-tracing treatment. While these are negligibly small at po wer-spectrum le vel, some 
higher order statistics show more sizeable effects; ray-tracing is necessary to achieve per cent level precision. At the resolution 

reached here, full-sky maps with 0.8 billion pixels and an angular resolution of 0.43 arcmin, we find that interpolation accuracy 

can introduce appreciable errors in ray-tracing results. We therefore implemented an interpolation method based on non-uniform 

fast Fourier transforms (NUFFT) along with more traditional methods. Bilinear interpolation introduces significant smoothing, 
while nearest grid point sampling agrees well with NUFFT, at least for our fiducial source redshift, z s = 1 . 0, and for the 1 arcmin 

smoothing we use for higher order statistics. 
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 I N T RO D U C T I O N  

istant galaxies appear weakly sheared to the observer due to the 
ifferential deflection of light by the foreground matter distribution. 
his ef fect, kno wn as weak gravitational lensing (hereafter WL; 

or re vie ws see e.g. Bartelmann & Schneider 2001 ; Hoekstra &
ain 2008 ; Kilbinger 2015 ; Mandelbaum 2018 ) is among the most
ele v ant physical processes that help us to investigate and understand
he cosmic matter distribution. WL surv e ys of the previous decade,
ike the stage-III projects Subaru Hyper Suprime-Cam (HSC; Aihara 
t al. 2022 ), Dark Energy Surv e y (DES; Abbott et al. 2022 ), and
ilo Degree Survey (KiDS; Heymans et al. 2021 ), have already 
roduced important constraints on the cosmological parameters, 
uggesting a tension with the value of S 8 inferred from microwave 
ackground observations (Hildebrandt et al. 2016 ), as well as 
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nsights into the nature of dark matter (DM) and dark energy.The
ext generation of WL surveys (named stage-IV), including Ru- 
in (LSST Science Collaboration 2009 ), Euclid (Amendola et al. 
018 ), and Roman (Spergel et al. 2015 ), will provide a substantial
ncrease both in sky coverage and in angular resolution, thereby 
ncreasing constraining power substantially. To fully exploit these 
ich and complex data, it is crucial to develop high-fidelity mod-
lling techniques for WL observables, based on accurate numerical 
imulations. 

At present, the most popular WL cosmological probe is the so-
alled ‘3 ×2pt’ statistic (see e.g. Abbott et al. 2018 ). This combines
hree two-point correlation functions: galaxy clustering, WL galaxy 
hear, and the galaxy–shear cross-correlation. Additionally, higher 
rder WL statistics have gained popularity and shown their efficacy 
or extracting complementary cosmological information. Some ex- 
mples include: one-point probability distribution function (PDF; 
iu & Madhavacheril 2019 ; Boyle et al. 2021 ), counts of peaks
nd/or minima (Martinet et al. 2018 ; Coulton et al. 2020 ; Davies
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t al. 2022 ; Marques et al. 2024 ), Minkowski functionals (MFs;
rewal et al. 2022 ), voids (Davies et al. 2021 ; Boschetti et al. 2023 ),
ispectrum (Rizzato et al. 2019 ), trispectrum (Munshi et al. 2022 ),
perture mass statistic (Schmalzing & Gorski 1998 ; Martinet et al.
021 ), three-point correlation function (Takada & Jain 2003 ), and
ntegrated three-point correlation function (Halder et al. 2023 ). 

Accurately computing the abo v e statistics, either numerically or
nalytically, is a significant challenge, as many approximations need
o be employed. A non-e xhaustiv e list of assumptions often made in
umerical WL experiments includes: the Limber and flat-sky approx-
mations (Lemos, Challinor & Efstathiou 2017 ); the projection of 3D

ass distributions into infinitely thin planes, i.e. the thin lens approx-
mation (Frittelli & Kling 2011 ; Mood, Firouzjaee & Mansouri 2013 ;
hou et al. 2024 ); neglecting higher order image distortions beyond
on vergence and shear , e.g. flexions (Schneider & Er 2008 ); the use
f DM-only simulations rather than including full baryonic physics
Semboloni et al. 2011 ; Yang et al. 2013 ; Osato, Liu & Haiman
021 ; Ferlito et al. 2023 ; Broxterman et al. 2024 ); and simplifying
ssumptions for the sample redshift distribution n ( s) (Zhang et al.
023 ). 
Finally, one of the most common approximations used in calculat-

ng WL from simulations is the Born approximation. This assumes
hat the perturbations to the light path induced by gravitational
ensing are negligible, so that it can be well-approximated by an
ndeflected straight line. Carrying out a WL simulation in the Born
pproximation requires significantly less memory and computational
ffort than tracing the paths of rays explicitly (see e.g. Petri,
aiman & May 2017 ), making it particularly attractive. The accuracy
f the Born approximation in WL simulations has previously been
tudied for square maps (Petri et al. 2017 ), and, in the case of lensing
f the cosmic microwave background (CMB), also for full-sky maps
Fabbian, Calabrese & Carbone 2018 ). These studies have shown its
mpact to be ef fecti v ely ne gligible at the lev el of the power spectrum
see also e.g. Fabbian, Lewis & Beck 2019 ; Hilbert et al. 2020 ).
evertheless, it has also been found to have a non-negligible impact
n higher moments of the convergence PDF; i.e. the skewness and
urtosis (Petri et al. 2017 ; Fabbian et al. 2018 ; Barthelemy, Codis &
ernardeau 2020 ). 
In this work, we revisit this question and develop a full-sky ray-

racing scheme that works on the light-cone mass-shell outputs
roduced by the GADGET-4 code (Springel et al. 2021 ) for the
illenniumTNG simulation suite. This allows us to explicitly test

he Born approximation, not only on the power spectrum and
DF, but also on a set of popular higher order statistics: counts
f peaks and minima, the abundance and profiles of voids, and
Fs. 
This paper is organized as follows. In Section 2 , we give a theoreti-

al o v erview of weak gravitational lensing. In Section 3 , we describe
he numerical simulations and methods employed in this work. We
rst introduce the MillenniumTNG simulations and their mass-shell
utput (Section 3.1 ), we discuss our implementation of a ray-tracing
cheme (Section 3.2 ), and we then focus on the spherical harmonics
elations (Section 3.3 ) and the interpolation schemes (Section 3.4 )
sed. At the end of the section, we provide additional details rele v ant
o the computation of observables (Section 3.5 ). In Section 4 , after
 qualitative discussion of our full-sky maps, we show the impact of
ay-tracing on the following statistics: the angular power spectrum
Section 4.2 ); the PDF and counts of peaks and minima of the conver-
ence (Sections 4.3 , 4.4 ); void statistics (Section 4.5 ); and MFs (Sec-
ion 4.6 ). Finally, in Section 5, we summarize our conclusions, and in
ppendix A we discuss in further detail the effects caused by bilinear

nterpolation. 
NRAS 533, 3209–3221 (2024) 
 T H E O R E T I C A L  B  AC K G R  O U N D  

n this section, we first introduce the key quantities of weak
ensing. Then we present expressions for these quantities in the
pherical harmonics domain, as this will be required to describe
he implementation of ray-tracing in Section 3.2 . 

.1 Weak gravitational lensing formalism 

e adopt the Friedmann–Lema ̂ ıtre–Robertson–Walker cosmology
ith small scalar inhomogeneous perturbations that can be expressed

n terms of the Newtonian gravitational potential � (see e.g. Kaiser
998 ) to describe our lensing system. We use the lens equation from
eometric optics to relate the observed angular position θ to the true
ngular position β of a ray of light that, encountering a lens (or a
ystem of lenses), is deflected by an angle α: 

= θ − α . (1) 

In the context of gravitational lensing, matter acts as a lens, thus
eading to the gravitational lens equation, which tells us that the
bserved position of a light ray starting from redshift z s will depend
n the surrounding matter field during its travel to the observer. The
eflection angle is then: 

( θ , z s ) = θ − 2 

c 2 

∫ χs 

0 
d χd 

f ds 

f d f s 
∇ β� ( β( θ, χd ) , χd , z d ) , (2) 

here we have introduced the speed of light c, the angular gradient
 β , the comoving line-of-sight distance χ , and the comoving

ngular diameter distance f K 

( χ ). The subscripts ‘s’ and ‘d’ refer,
espectively, to the source and the lens; hence the geometric factors
re f ds = f K 

( χs − χd ), f d = f K 

( χd ), and f s = f K 

( χs ). 
The distortion of an image, formed by the ray at θ and the ones

earby, can be described by the distortion matrix A , obtained by
ifferentiating the previous equation with respect to θ : 

 ij ≡ ∂ βi ( θ , z s ) 

∂ θj 

= δij − 2 

c 2 

∫ χs 

0 
d χd 

f ds 

f d f s 

× ∂ 2 � ( β( θ , χd ) , χd ) 

∂ βi ∂ βk 

∂ βk β( θ , χd ) 

∂ θj 

, (3) 

here δij is the Kronecker delta. This matrix can be decomposed as
ollows: 

 ≡
(

cos ω sin ω 

− sin ω cos ω 

)(
1 − κ − γ1 −γ2 

−γ2 1 − κ + γ1 

)

≈
(

1 − κ − γ1 −γ2 + ω 

−γ2 − ω 1 − κ + γ1 

)
, (4) 

here we have introduced three fundamental WL quantities: the
onvergence κ , the rotation ω, and the shear γ = γ1 + i γ2 . In the
L regime, the distortion of images is small; i.e. the distortion
atrix is close to the identity matrix. In such a regime, the rotation

f images is tiny, justifying the approximation in the abo v e equation.
A common way to approach the integral in equation ( 3 ), known as

he Born approximation, consists of integrating along an unperturbed
traight light path; i.e. directly o v er θ instead of β. This significantly
implifies the equation, leading to: 

∂ βi ( θ , z s ) 

∂ θj 

= δij − 2 

c 2 

∫ χs 

0 
d χd 

f ds 

f d f s 

∂ 2 � ( θ, χd ) 

∂ θi ∂ θj 

. (5) 

his approximation, valid when the light rays experience little
eflection, makes it possible to directly relate the convergence to
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he matter density contrast δm 

: 

born ( θ , z s ) = 

∫ χs 

0 
d χd 

3 H 

2 
0 �m 

2c 2 
(1 + z d ) 

f d f ds 

f s 
δm 

( θ , χd , z d ) . (6) 

ere, we have neglected boundary terms at the observer and source, 
nd assumed that the universe is in a matter-dominated epoch. 

The Born approximation is obtained by expanding equation ( 3 ) to
inear order in terms of � . By expanding to the quadratic order, one
ould obtain the following two additional terms: 

= κborn + κll + κgeo + O( � 

3 ) . (7) 

e refer the reader to equations (9) and (10) of Petri et al. ( 2017 ) for
he e xplicit e xpressions of κll and κgeo , respectiv ely. In the following,
e briefly describe the physical meaning of these two terms. The 
rst post-Born term, κll , accounts for non-local couplings between 

enses at the quadratic level; in other words, it considers that light
s not perturbed independently by the series of deflectors along the 
ine of sight, but rather that the deformation from background lenses
s progressively distorted by the foreground lenses. This term is the 
owest order one to introduce a non-zero rotation. The second post-
orn term, κgeo , accounts for the actual bending of light rays by

ntegrating the matter density contrast along the corrected path at 
he lowest order in the geodesic deflections, as opposed to a straight
rajectory. For this reason, it is sometimes called the Born correction 
see e.g. Cooray & Hu 2002 ). 

 M E T H O D S  

.1 Simulations 

he simulations used in this work are a subset of the MillenniumTNG
MTNG) project, a recent simulation suite consisting both of large 
M only simulations (some additionally with massive neutrinos), as 
ell as matching fully hydrodynamical simulations in comparatively 

arge volumes. We refer the reader to Hern ́andez-Aguayo et al. ( 2023 )
or an o v erview of the simulation suite, and to Pakmor et al. ( 2023 ) for
etails regarding the full-hydro run. First MTNG results on intrinsic 
alaxy alignments can be found in Delgado et al. ( 2023 ), on the
lustering of galaxies in Barrera et al. ( 2023 ) and Bose et al. ( 2023 ),
n improving the accuracy of the halo occupation distribution (HOD) 
ormalism in Hadzhiyska et al. ( 2023a , b ), on the high-redshift
alaxy population in Kannan et al. ( 2023 ), and on cosmological
arameter inferences in Contreras et al. ( 2023 ). In order to a v oid
epetitions of the simulation volume along the line of sight and to
aximize statistical robustness, we employ the simulations of the 
TNG suite which feature the biggest box size together with the 

ighest particle number. These are the A- and B-realizations of the 
 -body cosmological run MTNG3000-DM-0.1 ν, which feature DM 

nd massive neutrinos with a summed mass of 
m ν = 100 meV .
oth simulations were performed with the GADGET-4 code (Springel 
t al. 2021 ) and are characterized by a periodic box size of side length
 . 04 h 

−1 Gpc = 3 Gpc , and a number of particles used for cold DM
nd neutrinos equal to N cdm 

= 10240 3 and N ν = 2560 3 , respectively.
The gravitational softening for the DM particles has been set 

o εcdm 

= 4 h 

−1 kpc , corresponding roughly to 1 / 50th of the mean
nterparticle separation. The effect of massive neutrinos is imple- 
ented via the δf method proposed by Elbers et al. ( 2021 ). The

eader is referred to Hern ́andez-Aguayo et al. ( 2024 ) for further
etails on our implementation of neutrino physics. The simulations 
sed the following cosmological parameters: �m 

= �cdm 

+ �b = 

 . 3037, �b = 0 . 0487, �� 

= 0 . 6939, h = 0 . 68, σ8 = 0 . 804, and
 s = 0 . 9667. The initial conditions, set at z = 63, are generated via
econd-order Lagrangian perturbation theory with an updated version 
f the N-GENIC code as part of GADGET-4 . The initial conditions of the
wo runs employ the fixed-and-paired technique for cosmic variance 
uppression proposed by Angulo & Pontzen ( 2016 ). 

In continuation of Ferlito et al. ( 2023 ), the main simulation product
f interest for WL applications is the ‘mass-shell’ output: a collection
f concentric HEALPIX maps (G ́orski et al. 2005 ) produced during the
imulation on the fly in an onion-lik e f ashion with fixed comoving
hickness. F or each shell, ev ery pix el stores the cumulativ e mass
f particles intersecting the time-evolving hypersurface of the light- 
one of a putative observer. In this work, we use a HEALPIX parameter
f N side = 8192, corresponding to 8 . 053 × 10 8 pixels and an angular
esolution of 0.43 arcmin. 

.2 Implementation of ray-tracing 

ur ray-tracing implementation, dubbed DORIAN 

1 , is a PYTHON code 
ased on the multiple-lens-plane approximation (e.g. Blandford & 

arayan 1986 ; Schneider, Ehlers & Falco 1992 ; Jain, Seljak & White
000 ), which has been adopted in a number of codes (see e.g. Hilbert
t al. 2009 ; Becker 2013 ; Petri 2016 ; Fabbian et al. 2018 ). In our
et-up, each mass–shell (as described in the previous section), here 
abelled with an index k, constitutes a thin lens. The surface mass
ensity distribution of the lens is given by 

 

( k) ( β) = 

M( β) 

A pix 
. (8) 

This is obtained by dividing the mass assigned to each pixel by
he pixel area A pix = 4 π/N pix (in steradians). Using equation ( 6 ), we
an compute an approximation of the convergence at the kth lens
lane as 

( k) ( β) = 

4 πG 

c 2 
(1 + z 

( k) 
d ) 

f 
( k) 
K 

[

 

( k) ( θ ) − 
̄ 

( k) 
]

, (9) 

here f ( k) 
K 

= f K 

( χ( k) ). We introduce the lensing potential ψ as the
D projection of the Newtonian gravitational potential on to the kth
ens surface 

 

( k) ( β) = 

2 

c 2 f 
( k) 
K 

∫ χk + �χ/ 2 

χk −�χ/ 2 
� ( β)d χ, (10) 

here �χ is the comoving thickness of each shell. The above 
uantity is related to κ ( k) through the Poisson equation: 

 

2 
βψ 

( k) ( β) = 2 κ ( k) ( β) , (11) 

here ∇ 

2 
β is the Laplacian operator. The multiple lens plane approx-

mation neglects modes along the line of sight larger than the shell
hickness, and therefore is expected to become unreliable as the lens
lanes become too thin (Das & Bode 2008 ). This moti v ates us to
et the shell thickness to �χ = 100 h 

−1 Mpc in this work (see also
orrilla Matilla, Waterval & Haiman 2020 ). We refer the reader to
ection 2.2 of Becker ( 2013 ) and appendix B of Takahashi et al.
 2017 ) for a more detailed discussion. 

By taking the first deri v ati ve of the lensing potential, one obtains
he deflection angle at the kth lens plane 

( k) ( β) = 

∂ ψ 

( k) ( β) 

∂ βi 

. (12) 
MNRAS 533, 3209–3221 (2024) 
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he second deri v ati ves of the lensing potential gi ve the shear matrix
 at the k th lens plane 

 

( k) 
ij ( β) = 

∂ 2 ψ 

( k) ( β) 

∂ βi ∂ βj 

= 

∂ α
( k) 
i ( β) 

∂ βj 

. (13) 

We note that, since we are dealing with quantities on the curved
ky, partial deri v ati ve operators are promoted to covariant derivatives
Becker 2013 ). We have now introduced all the quantities needed for
 numerical implementation of equations ( 2 ) and ( 3 ). In particular,
he integrals can be carried out as a discrete summation o v er N 

pherical lens planes, which leads to the following expressions for β
nd A , respectively: 

( N) ( θ) = θ −
N−1 ∑ 

k= 0 

f 
( k,N) 
K 

f 
( N) 
K 

α( k) ( β ( k) ) , (14) 

 

( N) 
ij ( θ ) = δij −

N−1 ∑ 

k= 0 

f 
( k,N) 
K 

f 
( N) 
K 

U 

( k) 
il A 

( k) 
lj , (15) 

here f ( k,N) 
K 

≡ f K 

( χ ( N) − χ ( k) ). 
Using the abo v e formulae with high-resolution maps would

o we ver require a large number of operations, and most importantly,
he memory needs would be prohibitively large. Hilbert et al. ( 2009 )
eformulated these equations to allow the quantities to be calculated
ith an iterative procedure that requires only information about the
revious two lens planes: 

( k+ 1) = 

( 

1 − f 
( k) 
K 

f 
( k+ 1) 
K 

f 
( k −1 ,k + 1) 
K 

f 
( k −1 ,k ) 
K 

) 

β ( k−1) 

+ 

f 
( k) 
K 

f k+ 1 
K 

f 
( k −1 ,k + 1) 
K 

f 
( k −1 ,k ) 
K 

β ( k) − f 
( k ,k + 1) 
K 

f 
( k+ 1) 
K 

α( k) ( β ( k) ) , (16) 

 

( k+ 1) 
ij = 

( 

1 − f 
( k) 
K 

f 
( k+ 1) 
K 

f 
( k −1 ,k + 1) 
K 

f 
( k −1 ,k ) 
K 

) 

A 

( k−1) 
ij 

+ 

f 
( k) 
K 

f k+ 1 
K 

f 
( k −1 ,k + 1) 
K 

f 
( k −1 ,k ) 
K 

A 

( k) 
ij − f 

( k ,k + 1) 
K 

f 
( k+ 1) 
K 

U 

( k) 
il A 

( k) 
lj . (17) 

ere, the initial conditions at the first lens plane are set to β ( −1) =
(0) = θ and A 

( −1) 
ij = A 

(0) 
ij = δij ; i.e. we perform backward-in-time

ay-tracing from the observer to the source plane. 
As noted by Becker ( 2013 ), when working with spherical lens

lanes, one has to parallel transport the distortion matrix (a tensor
n the sphere) along the geodesic connecting the angular positions
f the ray at consecutive planes, which takes into account the change
n the local tensor basis. 

.3 Spherical harmonics relations 

ince we are working with full-sky maps, the optimal way to compute
he deri v ati ves in equations ( 12 ) and ( 13 ) is by performing them in
he spin-weighted spherical harmonics domain (see Varshalovich,

oskalev & Khersonskii 1988 , for a standard reference). In this
ection, we will discuss how we compute α and U at each lens plane
y making use of the relations derived in Hu ( 2000 ). 
Once κ , a spin-0 (i.e. scalar) quantity, is computed from equation

 9 ) (in this section we omit the superscript k for clarity), we can obtain
ts spherical harmonic coefficients κ�m 

using the HEALPIX map2alm
outine. The key relation is then 

( β) = 

∞ ∑ 

� = 0 

� ∑ 

m =−� 

κ�m 

Y 

m 

l ( β) , (18) 
NRAS 533, 3209–3221 (2024) 
here Y 

m 

l are the spin-0 spherical harmonics. The Poisson equa-
ion on the surface of the sphere, i.e. equation ( 11 ), takes the following
orm in the spherical harmonics domain: 

�m 

= −� ( � + 1) 

2 
ψ �m 

, (19) 

hile the deri v ati ve in equation ( 12 ) yields the spin-1 (i.e. tangential
ector) field 

lm 

= −
√ 

� ( � + 1) ψ �m 

. (20) 

We point out that one can skip the computation of the potential
nd obtain the deflection field directly from the convergence by
ombining equations ( 19 ) and ( 20 ) 

lm 

= 

2 √ 

� ( � + 1) 
κ�m 

. (21) 

Regarding the shear matrix, we combine equations (7) and (8) of
astro, Heavens & Kitching ( 2005 ), yielding 

 ij ( β) = κ( β) δij + [ γ1 ( β) σ3 + γ2 ( β) σ1 ] ij , (22) 

here σ1 and σ3 are the Pauli matrices. Therefore, the only additional
uantity we need to obtain for the shear matrix is the shear, a spin-2
uantity which can be computed from κ as follows: 

lm 

= −
√ 

( � + 2)( � − 1) / ( � ( � + 1)) κ�m 

, (23) 

nder the assumption that the B-modes of the shear (which have com-
arable power to the rotation) can be neglected (see e.g. Hadzhiyska
t al. 2023c ). 

.4 Interpolation on HEALPIX maps 

s one can see from equations ( 16 ) and ( 17 ), α( k) and U 

( k) have
o be e v aluated at the angular position β ( k) for each ray, which
n general will not coincide (apart from the first iteration) with
he centre of a HEALPIX pixel. A classic approach to this problem
onsists of transforming the quantities back to real-space with the
EALPIX alm2map spin routine, and then performing interpolation

n the resulting maps, with the simplest choices being nearest grid
oint (NGP; e.g. Fabbian et al. 2018 ) and bilinear (e.g. Broxterman
t al. 2024 ) interpolation. The first is faster but less precise, while
he second is in principle more precise, but at the cost of being
lower and introducing significant smoothing. We discuss the impact
f the additional ef fecti ve smoothing from bilinear interpolation in
ppendix A . 
A no v el, more accurate and faster approach, based on the non-

niform fast Fourier transform (NUFFT; cf. Fessler & Sutton
003 ; Barnett, Magland & af Klinteberg 2019 ) algorithm, has been
fficiently implemented in the context of gravitational lensing by
einecke, Belkner & Carron ( 2023 ). The idea is to accurately syn-

hesize the fields at the desired angular positions by first computing a
ap on an equiangular grid from the spherical harmonic coefficients

sing a conventional spherical harmonic transform algorithm, then
xtending this map to 2 π in the θ direction (which results in a map
hat is periodic along both coordinate axes), and finally interpolating
he result to the desired locations using non-uniform FFTs. 

In this work we will compare NGP, bilinear, and NUFFT interpo-
ated ray-tracing simulations to the Born approximation. This will
llow us to evaluate not only the impact of ray-tracing as opposed to
he Born approximation, but also to capture and study the differences
etween the three different interpolation schemes employed. 
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.5 Computation of the WL statistics 

he power spectra are computed with the HEALPIX routine anafast , 
nd binned into 80 equally spaced logarithmic bins in the range 
 ∈ [1 , 2 . 5 × 10 4 ]. Before computing all the other statistics, every
ap is smoothed with the HEALPIX smoothing routine with a 
aussian symmetric beam characterized by a standard deviation 
f 1 arcmin , consistent with Ferlito et al. ( 2023 ) and with other
imilar studies. For the convergence PDF, we bin all pixels in 
00 linearly spaced bins in the range κ ∈ [ −0 . 15 , 0 . 25]. Peaks and
inima are computed as the pixels that are, respectively, greater 

r smaller than their 8 neighbours 2 , which are retrieved using the
EALPIX get all neighbours routine. For the peaks, we set 25 

inearly spaced bins in the range κ ∈ [ −0 . 04 , 0 . 2], while for the
inima 30 linearly spaced bins in the range κ ∈ [ −0 . 045 , 0 . 045]

re used. Void statistics were computed following Davies, Cautun & 

i ( 2018 ). In particular, for the v oid ab undance, we set 25 linearly
paced bins in the range R v ∈ [0 , 0 . 2] deg where R v is the void radius,
nd for the stacked void profiles, we use 20 linearly spaced bins in
he range r/R v ∈ [0 , 2], where r/R v is the distance from the void
entre ( r) in units of void radius. Finally, MFs were computed with
he publicly available PYTHON package PYNKOWSKI (Carones et al. 
024 ), using 130 linearly spaced bins in the range κ ∈ [ −0 . 03 , 0 . 11].
or all of the abo v e statistics, the value at each bin is computed as

he average of the A- and B-realizations of our MTNG simulations.
n the case of the void profiles and the third MF, in the lower sub-
anel of the respective plots, we decided to show the difference with
espect to the Born approximation. The reason being that since these 
wo statistics cross the zero value, the ratio would diverge to infinity,
aking the plot somewhat more difficult to interpret. For all the 

ther statistics, the lower sub-panel shows the ratio with respect to 
he Born approximation. 

 RESULTS  

e begin the presentation of our results with an o v erview of some key
uantities produced by our simulations, we then mo v e our focus to
he impact of the Born approximation on the following WL statistics:
ower spectrum, PDF, Peaks, Minima, Void statistics, and MFs. For 
efiniteness, all the WL statistics in this work are computed assuming
 source redshift of z s = 1 . 0. 

.1 Ov er view of WL quantities 

igs 1 and 2 show maps of some essential WL quantities, as computed
ith our ray-tracing code using the NUFFT interpolation. We start 
y looking at the amplitude of the deflection field (bottom panel 
f Fig. 1 ), which is defined as the difference between the observed
ngular position θ and the original angular position β. We see that 
he characteristic angular scale of fluctuations is larger than that of
he convergence field (top panel of Fig. 1 ): this is expected as the
onvergence is the deri v ati ve with respect to the angular position
f the deflection. Features that cause the strongest deflection, i.e. 
ith an intensity � 2 arcmin (coloured in red), reach an angular

ize of ≈5 ◦–10 ◦. This reflects the fact that for cosmological WL,
he dominant component of the deflection field is generated from the 
arge-scale structure of the Universe, rather than single objects. To 
etter quantify the magnitude of the deflection field, we can look 
t its PDF in Fig. 3 . We notice that the median deflection that a
 In the HEALPIX tessellation, every pixel has 8 neighbours, except for a small 
inority of pixels, for which it can be 7 or 6. 

o  

t  

f  

r

ay experiences along its path from the source to the observer is
0 . 79 arcmin, which is almost twice the angular size of a pixel in

ur setting. Interestingly, only 1 per cent of the rays experience a 
eflection greater than ≈ 2 . 1 arcmin. 
By comparing the full-sky map of | α| with the one of the

onvergence difference (centre panel of Fig. 1 ), we can perform
 qualitativ e consistenc y check by noticing that the regions where
he rays experience the least deflection (coloured from dark blue to
lack) correspond to the regions where the difference between the 
orn approximation and ray-tracing is the closest to zero (coloured 

rom light grey to white). This becomes even more evident by looking
t the zoomed-in region, where a low-deflection region is seen in the
eft half of the panel. 

In the top panel of Fig. 2 , we show the ‘effective’ lensing
otential ψ eff , computed by plugging the convergence field (the 
nal product of our code) into equation ( 19 ). Consistent with

heoretical expectations, a flatter potential will correspond to a 
maller deflection (e.g. left half of the zoomed panel). Conversely, 
here the potential has strong variation, the deflection will be greater

e.g. right half of the zoomed panel). Analogously to the relation
etween convergence and deflection, we notice that the characteristic 
ngular scales of fluctuations of the lensing potential are larger than
hose of the deflection, which is its deri v ati ve with respect to angular
osition. 
In the centre and bottom panels of Fig. 2 , we show the shear

mplitude | γ | = 

√ 

γ 2 
1 + γ 2 

2 and the rotation ω, respectively. Both 
uantities are obtained from the distortion matrix A computed 
ith our ray-tracing code. By looking at the zoomed regions of

onvergence and shear, we can recognize the same underlying 
osmic structure in both fields. But the two fields show strikingly
ifferent features: the convergence field is dominated by a huge 
umber of single objects which will result in many peaks with
ifferent intensities; on the other hand, the shear intensity field 
hows a more interconnected structure, in which filaments and 
alls are clearly visible. Finally, we observe that the rotation field

hows a very similar morphology to the one of the shear intensity
eld. 

.2 Power spectrum 

n the top left panel of Fig. 4 , we show the angular power spectra
f WL convergence and rotation. As expected from theoretical 
redictions, the power of the rotation field is ∼2–3 orders of
agnitude smaller than the one of the convergence field. The 
ost striking feature that can be observed for both quantities 

s the progressive power suppression at smaller angular scales. 
his suppression, observed when the ray-tracing scheme with 
ilinear interpolation is used, is around ≈ 1 per cent at � ≈
500. As we discuss in more detail in Appendix A , this effect
s not directly connected to the ray-tracing, but rather arises 
hen performing a series of bilinear interpolations on a HEALPIX 

rid. 
Next, in the lower sub-panel, we show the ratio between the

onvergence spectra with ray-tracing and Born approximation. In the 
ase of ray-tracing performed with NGP interpolation, we see that 
he fluctuations with respect to the Born approximation never exceed 
 . 2 per cent , at least until � ≈ 10 4 where we see a suppression of 0.25
er cent, followed by a steep increase in power. This effect, which
ccurs at approximately the pixel scale, could also be connected to
he interpolation scheme. We have verified this by checking that this
eature mo v es to lower multipoles when we decrease the angular
esolution of the corresponding HEALPIX maps. Finally, in the case 
MNRAS 533, 3209–3221 (2024) 
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Figur e 1. Top row : Conver gence field computed with our ray-tracing code using NUFFT interpolation. Middle row : Difference of the convergence field when 
computed with ray-tracing instead of the Born approximation. Bottom row : Amplitude of the deflection field α, computed as the difference between the observed 
angular position θ and the original angular position β. In each case, the panels on the right-hand side show enlargements with a size of 10 ◦ on a side. They may 
also be compared to the corresponding regions in the fields shown in Fig. 2 . 
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f ray-tracing performed with NUFFT interpolation, we see that
uctuations never exceed 0 . 1 per cent at every scale, until the very

ast bin, at � ≈ 2 . 3 × 10 4 , where a ≈ 1 per cent suppression is found.
We conclude that, modulo some � 0 . 2 per cent fluctuations

consistent with Hilbert et al. 2020 ), the effects on the power spectrum
NRAS 533, 3209–3221 (2024) 
hen performing ray-tracing instead of the Born approximation
re dominated by the interpolation schemes, rather than from the
mpro v ed modelling of the physical process. For this reason, NUFFT
s found to be a preferable scheme, as it introduces the least power
istortions. 
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Figure 2. Top row : Ef fecti ve lensing potential, computed by plugging the convergence field into equation ( 19 ). Middle row : Shear field amplitude | γ | = √ 

γ 2 
1 + γ 2 

2 . Bottom row : Rotation field. All quantities were computed with our ray-tracing code using NUFFT interpolation. In each case, the panels on the 
right-hand side show enlargements with a size of 10 ◦ on a side. They may also be compared to the corresponding regions in the fields shown in Fig. 1 . 
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.3 Conv er gence PDF 

aving verified that ray-tracing has a negligible impact with respect 
o the Born approximation at the level of the power spectrum, we next
nvestigate whether this is also true for higher order statistics. We start 
ith the convergence one-point PDF, shown in the top right panel of
ig. 4 . By looking at the lower sub-panel, which shows the ratio of the
ay-tracing schemes to the Born approximation, we see that for NGP
nd NUFFT the central region is minimally distorted, with deviations 
ev er e xceeding ≈ 1 per cent in the range −0 . 015 < κ < 0 . 07.
onversely, the outer regions of the distribution exhibit two opposite 

rends: for κ � 0 . 04 there is a weak but progressive suppression that
eaches ≈ 1 . 5 per cent at κ ≈ 0 . 09; for κ � −0 . 015, we see a steep
MNRAS 533, 3209–3221 (2024) 
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Figure 3. PDF of the deflection field α, computed with our ray-tracing code 
using NUFFT interpolation as the difference between the observed angular 
position θ and the original angular position β. The dashed lines indicate the 
median and the 99 per cent percentile. 
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nhancement that reaches ≈ 10 per cent at κ ≈ −0 . 025. In the case
f ray-tracing with bilinear interpolation, there is a larger suppression
f the high- κ tail, which reaches ≈ 4 per cent at κ ≈ 0 . 09, while
he steep upturn in the low- κ tail is shifted to smaller values. The
iscrepancy between this last ray-tracing method and the previous
wo can be explained by taking into account the smoothing introduced
y the bilinear interpolation, which narrows the PDF. Our conclusion
s that the Born approximation is likely to mildly o v erestimate the
igh- κ tail and significantly underestimate the low- κ part of the PDF.
In contrast to the power spectrum, the features here are not

ominated by the interpolation schemes. In particular, a smoothing
f the PDF will lead to a suppression at ne gativ e κ , whereas we see
he opposite in this case. Additionally, while for the power spectrum
he three interpolation schemes have noticeably different effects, for
he PDF the impact is similar in all cases, indicating that this is driven
y a common underlying process. 
An interpretation of this result can be given by referring to the

eading order post-Born corrections introduced in equation ( 7 ). Both
he geodesic correction and the lens–lens coupling contribute to

aking the convergence distribution more Gaussian. This can be
irectly seen by considering the Gaussian fit (dashed grey line). The
ormer does this by repeatedly displacing the ray positions along
irections tangential to the line of sight. The latter by progressively
rocessing the light signal through a system of lenses that are not
orrelated on sufficiently large scales. 

We note that our results found in the case of NGP interpolation
re qualitatively consistent with the numerical study of Fabbian et al.
 2018 ) and the theoretical work of Barthelemy et al. ( 2020 ). While
hey found somewhat stronger effects, this is to be expected as they
tudied CMB lensing. 

.4 Peaks and minima 

n the bottom left and bottom right panels of Fig. 4 , we show our
esults regarding peaks and minima counts. In the case of ray-
racing with bilinear interpolation, we observe for both a uniform

2 . 5 per cent suppression of the counts of peaks and minima at all
alues of κ . For a better comparison, this effect was remo v ed in our
gures by normalizing the count distributions to unity. 
Let us first discuss the peak counts. We see that the o v erall results

re qualitatively similar to what we found for the PDF. In this case,
he most rele v ant ef fect is the suppression of the high- κ tail which,
NRAS 533, 3209–3221 (2024) 
n the case of the ray-tracing with NGP and NUFFT interpolation,
eaches ≈ 1 . 5 per cent at κ ≈ 0 . 15. The additional suppression in
he tails of the distribution in the case of ray-tracing with bilinear
nterpolation is explained by the smoothing that such a scheme
ntroduces. 

In the case of the minima counts, we observe that both tails of
he distribution are distorted quite significantly. In particular, in the
ase of ray-tracing with NGP and NUFFT interpolation, the low- κ
ail experiences a steep enhancement amounting to ≈ 15 per cent at
≈ −0 . 025, while the high- κ tail is suppressed by ≈ 7 per cent at
≈ 0 . 03. Similarly to the case of the PDF, ray-tracing with bilinear

nterpolation introduces a delay in the enhancement of the low- κ tail,
hich can again be explained in terms of the smoothing introduced
y the interpolation. 
Overall, it is interesting that the effects of Gaussianization induced

y ray-tracing are stronger for minima. This appears clearer by noting
hat the red and orange curves (NGP and NUFFT, respectively) are
he ones deviating more from the Born approximation, while, in the
ase of the peaks, it is the green curve (bilinear) that has the stronger
eviation, indicating that the smoothing from bilinear interpolation
s dominating o v er the post-Born effects. 

.5 Void statistics 

e continue our investigation by considering WL tunnel voids, a
L higher order statistic that is sensitive to extended underdense

egions and has been shown to have promising constraining power on
osmological parameters (Davies et al. 2021 ). The voids are defined
s large underdense regions in the convergence field. The void-
nding method used here is the tunnel algorithm, which identifies

he largest circles that are empty of suitably defined tracers. In the
resent case, the tracers are the WL peaks of the convergence field.
he corresponding void abundance and profiles are shown in the left
nd right panels of Fig. 5 , respectively. 

From the void abundance, we find that ray-tracing with bilinear
nterpolation distorts the distribution by shifting it towards larger void
adii R v , which is consistent with the induced additional smoothing.
n particular, we observe a ≈ 20 per cent suppression in the low radii
ail at R v ≈ 0 . 02 deg, and a ≈ 40 per cent enhancement in the high
adii tail at R v ≈ 0 . 14 deg. In the case of ray-tracing with NGP and
UFFT interpolation, we only find a much smaller effect, namely a

uppression at R v ≈ 0 . 15 deg amounting to around ≈ 10 per cent ,
nd deviations at the most extreme bins of the distribution, at R v <

 . 02 deg and R v < 0 . 16 deg. 
Moving to the stacked radial void profiles, we find that also in

his case ray-tracing with bilinear interpolation has the strongest
mpact: it enhances the inner and outer regions while suppressing
ntermediate radii by ≈ 5 per cent , at the peak of the convergence.
his flattening of the profile can be explained by the ef fecti ve
moothing introduced by bilinear interpolation. The effect of ray-
racing with NGP and NUFFT interpolation is significantly weaker,
ith the most noticeable feature being a ≈ 0 . 5 per cent suppression
f the convergence in the innermost regions of the voids. This effect
an be connected to the enhancement we observe in the low tail
f the PDF of the minima distribution. In the case of NUFFT
nterpolation, we observe additional ≈ 1 per cent deviations at
/R v ≈ 1. 

In general, we find that, modulo the artificial smoothing effects
ntroduced by the bilinear interpolation, the post-Born corrections do
ot have a significant impact on void statistics. We tested the abo v e
tatistics for a range of peak catalogue thresholds (Davies et al. 2018 )
nd found qualitatively similar results. 
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Figure 4. Top left : Angular power spectrum; top right : PDF; bottom left : WL peak counts; bottom right : minimum counts. All the observables are computed 
adopting a fiducial source redshift of z s = 1 . 0. The statistics are extracted from WL convergence maps computed in the Born approximation (blue), as well as 
with our ray-tracing code, by using NGP (red), bilinear (green), and NUFFT (orange) interpolation. The lower sub-panel of each plot shows the ratio of these 
three ray-tracing results with respect to the Born approximation. In the case of the angular power spectrum, we also show the WL rotation computed with the 
ray-tracing code using NGP (purple) and bilinear (brown) interpolation. In the case of the PDF, we also include a Gaussian fit to the map obtained with the Born 
approximation (dashed gre y). We observ e that the power spectrum is not significantly affected by the Born approximation, while the convergence PDF is slightly 
Gaussianized by ray-tracing, and peaks and minima counts are impacted correspondingly. We also notice that, for all the observables, bilinear interpolation 
introduces a smoothing that significantly distorts the effects of ray-tracing itself. 
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.6 Minkowski functionals 

inally, we investigate the impact of the Born approximation on the 
Fs. These are in general a set of N + 1 morphological descriptors

nvariant under rotations and translations, that characterize a field 
n an N -dimensional space. The MFs are defined on an excursion 
et 
( ν) = κ > νσ0 ; i.e. for the set of pixels whose values exceed
a

 certain threshold νσ0 . Here, σ0 is conventionally chosen as the 
tandard deviation of the field. 

In our case we are dealing with a 2D field on the surface of the
phere, therefore we have the following three MFs: V 0 is simply
he total area of the excursion set; V 1 is one-fourth of the total
erimeter of the excursion set; and finally V 2 , called ‘genus’, is
ssociated with the number of connected regions minus the number 
MNRAS 533, 3209–3221 (2024) 
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Figure 5. Left : Void ab undance distrib ution; right left : stacked v oid profiles. The statistics are extracted from WL convergence maps computed in the Born 
approximation (blue), as well as with our ray-tracing code, by using NGP (red), bilinear (green), and NUFFT (orange) interpolation. The maps have a source 
redshift of z s = 1 . 0. The lower sub-panel of each plot shows the ratio (or the difference, in the case of the profiles) of these three ray-tracing results with respect 
to the Born approximation. Neither statistic is significantly affected by the Born approximation. We also notice that bilinear interpolation introduces a smoothing 
that mo v es the v oid ab undance distrib ution toward larger radii and flattens the v oid profiles. 
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f topological holes of the excursion set. We refer the reader to
quations (2.5), (2.6), and (2.7) of Marques et al. ( 2024 ) for the
athematical expressions of V 0 , V 1 , and V 2 . Since MFs encode

nformation from all the moments of the distributions of a field, they
re highly sensitive to non-Gaussianities and have thus been proposed
s a powerful cosmological statistic in a number of different studies
see e.g. Schmalzing & Gorski 1998 ; Springel et al. 1998 ; Hikage
t al. 2008 ; Ducout et al. 2013 ). 

We show our results for the V 0 , V 1 , and V 2 functionals in the top,
iddle, and bottom panels of Fig. 6 , respectively. In general, also in

his case, we note that any discrepancy between bilinear interpolation
green curve) with respect to the other two methods, NGP and
UFFT (red and orange curves), helps us to disentangle the impact
f an additional smoothing introduced by bilinear interpolation, from
he impact of post-Born corrections themselves. 

Let us recall that, by definition, V 0 is the cumulative PDF. Indeed,
he impact of the three ray-tracing schemes can be directly related to
hat we observed for the PDF earlier (top right panel of Fig. 4 ). All
f the ray-tracing schemes sho w qualitati vely the same trend, with an
nitial tiny suppression, followed by a small enhancement, and then
y a stronger suppression. At κ ≈ 0 . 1 this reaches ≈ 2 . 5 per cent
or the bilinear interpolation, and ≈ 1 . 2 per cent for the NGP and
UFFT interpolation. 
In the case of V 1 , at κ ≈ −0 . 028, we see an enhancement of
35 per cent for ray-tracing with bilinear interpolation and of ≈

5 per cent in the case of NGP and NUFFT. With increasing values
f κ there is a progressive suppression that, at κ ≈ 0 . 1, reaches

4 per cent for bilinear interpolation and ≈ 1 per cent for NGP
nd NUFFT. 

In the case of V 2 , the genus statistic, we notice that ray-tracing
ith bilinear interpolation results in notably different effects: we

ee an enhancement of ≈ 3 . 5 per cent at κ ≈ −0 . 01, followed by
 suppression of ≈ 2 . 5 per cent at κ ≈ 0 . 01 that then progressively
NRAS 533, 3209–3221 (2024) 
iminishes, and eventually fades completely. For NGP and NUFFT
nterpolation, the effects are smaller. These are a suppression
f ≈ 3 per cent at κ ≈ −0 . 02, followed by an enhancement of
 . 5 per cent in the range −0 . 015 � κ � 0 . 04. 
Also in this case, the effects of smoothing by bilinear interpolation

ominate the post-Born corrections. In particular, as expected,
moothing will shift the distribution to lower thresholds for the
erimeter, while for the genus, it will dampen the amplitude. 

 C O N C L U S I O N S  A N D  O U T L O O K  

n this paper, we present our methodology for computing full-sky ray-
raced weak lensing maps, starting from the mass-shell outputs of
ADGET-4 and applying our code to a sub-set of the MillenniumTNG
imulation suite. After having qualitatively inspected key WL quan-
ities such as convergence, deflection, shear, and rotation, we test the
mpact of the Born approximation against three ray-tracing schemes
hat employ NGP, bilinear, and NUFFT interpolation, respectively.
hese tests were performed on the power spectrum, as well as on a
umber of popular higher order WL statistics. 
We confirm, in line with theoretical predictions, that post-Born

ffects tend to Gaussianize the convergence PDF and consequently
mpact higher order statistics as well. Regarding the use of different
nterpolation approaches in ray-tracing schemes, we interestingly
nd that although bilinear interpolation is in principle more accurate

han NGP, the ef fecti ve smoothing that this introduces at our grid res-
lution dominates the post-Born ef fects, e ven when using a HEALPIX

ap with the maximum resolution of N side = 8192. Additionally, we
nd that NUFFT interpolation, which is the most accurate method,
grees well with the NGP scheme in this study. We can explain this
y noting that a 1 arcmin smoothing, applied before the computation
f all the higher order statistics, tends to wash out information at
he smallest angular scales, where the differences between these two
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Figure 6. Top : First MF (area); middle : second MF (perimeter); bottom : 
third MF (genus). The statistics are extracted from WL convergence maps 
computed in the Born approximation (blue), as well as with our ray- 
tracing code, by using NGP (red), bilinear (green), and NUFFT (orange) 
interpolation. The maps have a source redshift of z s = 1 . 0. The lower sub- 
panel of each plot shows the ratio (or the difference, in the case of the genus) 
of these three ray-tracing results with respect to the Born approximation. We 
see that the three MFs are affected to different degrees and that the bilinear 
interpolation introduces a smoothing that significantly distorts the effects of 
ray-tracing itself. 
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ethods are expected to become appreciable. We note that since 
he accuracy of NGP interpolation strongly depends on the HEALPIX 

esolution, we expect the agreement with NUFFT to be degraded for
o wer v alues of N side . 

We summarize the impact of using a ray-tracing scheme instead 
f the Born approximation for the different statistics as follows: 

(i) The angular power spectrum is not significantly affected by the 
orn approximation. Smoothing due the use of bilinear interpolation 

n a ray-tracing approach suppresses the power at progressively 
maller scales. 

(ii) The convergence PDF is slightly Gaussianized by ray-tracing, 
hich enhances the low- κ tail and suppresses the high- κ tail. We find
eviations at κ ≈ −0 . 025 of ≈ 10 per cent when NGP and NUFFT
nterpolation are used, and of ≈ 4 per cent and bilinear interpolation 
re used. 

(iii) Peaks counts are suppressed, at κ 
 0 . 15, by ≈ 1 . 5 per cent
or ray-tracing with NGP and NUFFT interpolation and by ≈
 . 5 per cent for bilinear interpolation. 
(iv) Minima counts on the other hand are mainly enhanced, at 
≈ −0 . 025, by ≈ 15 per cent for NGP and NUFFT interpolation 

nd by ≈ 7 per cent for bilinear interpolation. 
(v) The void abundance and the void profiles are not significantly 

nfluenced by the Born approximation. Ho we ver, smoothing due to
ilinear interpolation distorts the void abundance with deviations up 
o ≈ 40 per cent , and it flattens the void profiles with deviations up
o ≈ 5 per cent . 

(vi) The three 2D MFs we investigated are affected to differ- 
nt degrees. Most noticeably, V 1 is enhanced at κ ≈ −0 . 028 by

35 per cent for ray-tracing with bilinear and by ≈ 25 per cent 
or ray-tracing with NGP and NUFFT interpolation. 

Overall, we find only very subtle consequences due to the use of
he Born approximation. Ho we ver, for higher order statistics, they
ecome sizable enough that the use of ray-tracing is necessary if
xquisite precision is required. The need for interpolation arising 
n ray-tracing schemes typically introduces the technical problem 

f additional discreteness effects that can diminish or even defeat 
he accurac y impro v ements that ray-tracing in principle offers. Such
roblems can be o v ercome by adopting a no v el interpolation scheme
ased on NUFFT. For currently achie v able all-sky HEALPIX resolu-
ions, we find that low-order NGP interpolation agrees well with the
UFFT scheme, especially when a 1 arcmin smoothing is adopted. 
n the other end, the bilinear interpolation is found to be unreliable

s it introduces sizable smoothing effects. Ultimately, in the limit of
nfinite resolution, we would expect the three interpolation schemes 
o agree. 

Note that the impact of post-Born corrections will increase 
ith increasing source redshift. F or WL surv e ys, source redshift
istributions are smooth functions that vary between z = 0 up to
pproximately z ≈ 3, peaking at z ≈ 1. In this work, our source
edshift distribution corresponds to a δ-function at z = 1, which is
oughly the median source redshift of typical Stage-IV WL surv e ys.
herefore, we expect the results presented here to be indicative of
hat can be expected for more realistic redshift source distributions. 
We conclude that harvesting the accuracy benefits of ray-tracing is 

ltimately r equir ed in full-sky WL simulations in order to accurately
odel higher order statistics to the per cent level. 
The methods presented and tested in this work pave the way to

everal applications in the context of high-fidelity modelling in the 
ra of precision cosmology. One possible development could be to 
ompute, from the simulations used in this work, a detailed and
ealistic full-sky galaxy mock catalogue based on the latest version 
MNRAS 533, 3209–3221 (2024) 
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f the semi-analytic galaxy formation code L-GALAXIES (Barrera
t al. 2023 ) which can be then combined with our ray-tracing code
o obtain highly accurate predictions for the 3 ×2pt as well as higher
rder statistics. Another possibility consists of using the full-hydro
TNG run to extract the galaxy intrinsic alignment signal (a key

ontaminant of cosmological WL) from the light-cone (in a similar
ay to Delgado et al. 2023 ) and to compare/combine it with the shear

ignal computed with our ray-tracing code. 
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PPEN D IX  A :  I M PAC T  O F  BILINEAR  

NTER P OLATION  

n this work, one of our ray-tracing set-ups features bilinear in-
erpolation on HEALPIX maps, which introduces a smoothing that 
rogressively suppresses the power on small scales. This also narrows 
he PDF of the convergence, as well as the peaks and minima counts
istributions. 
In the case of a field like the convergence, in which values can

ary drastically from pixel to pixel, interpolating on points that are 
igure A1. Left panel : Angular power spectrum; right panel : PDF of the conver
f z s = 1 . 0. The solid lines indicate maps that were computed by interpolating fr
ixel centres were shifted longitudinally by an angle �φ, which was systematicall
onvergence maps computed with ray-tracing and bilinear interpolation, for compa
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 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
ar from pixel centres introduces a significantly stronger smoothing 
ith respect to points close to pixel centres. To better quantify this

ffect we performed the following numerical test. We start with a
onvergence map, based on a HEALPIX grid with N side = 1024. We
hen computed a new map by performing a bilinear interpolation 
n the original map where we ef fecti vely rotated the underlying
EALPIX grid along the equator by �φ, a fraction of the pixel angular
ize φpix . By repeating the abo v e operation with increasing values
f �φ, we interpolated on angular positions that are progressively 
nd coherently farther away from the pixel centres. In the left and
ight panels of Fig. A1 , we show the resulting power spectra and the
DF of the convergence maps that have been rotated and interpolated
ccording to the abo v e procedure. 

In our ray-tracing scheme, all the rays start from an observed
ngular position that coincides with the pixel centres, but as these
re propagated from plane to plane, their angular positions will be
isplaced at every step. We therefore expect the overall smoothing 
ffect of bilinear interpolation for each ray and for each lens plane to
orrespond to an ef fecti v e smoothing o v er an intermediate angular
ffset from the pixel centres. This is exactly what we observe in
oth panels of Fig. A1 , where the line referring to ray-tracing
ith bilinear interpolation lies consistently within the set of lines 

ndicating increasing values of �φ, closely sticking to the line with
φ = 0 . 2 φpix . 
MNRAS 533, 3209–3221 (2024) 

gence field. These observables are computed for a fiducial source redshift 
om a convergence map in the Born approximation, but using a grid whose 
y varied from 0 to the pixel size φpix , as labelled. The dashed line indicates 
rison. 
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