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ABSTRACT

We present a method for modelling the cluster—galaxy correlation function in redshift space, down to ~ Mpc scales. The method
builds upon the so-called galaxy infall kinematics (GIK) model, a parametric model for the pairwise velocities of galaxies with
respect to nearby galaxy clusters. We fit the parameters of the GIK model to a suite of simulations run with different cosmologies,
and use Gaussian processes to emulate how the GIK parameters depend upon cosmology. This emulator can then be combined
with knowledge of the real-space clustering of clusters and galaxies, to predict the cluster—galaxy correlation function in redshift
space, &,. Fitting this model to an observed &, enables the extraction of cosmological parameter constraints, and we present
forecasts for a survey like that currently being done by the Dark Energy Spectroscopic Instrument (DESI). We also perform tests
of the robustness of our constraints from fitting to mock data extracted from N-body simulations, finding that fitting to scales
< 3 h~! Mpc leads to a biased inference on cosmology, due to model mis-specification on these scales. Finally, we discuss what

steps will need to be taken in order to apply our method to real data.

Key words: galaxies: clusters: general — galaxies: haloes —large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

Understanding the cause of the accelerated expansion of the late-
time Universe is one of the primary goals of 21st century cosmology
(Frieman, Turner & Huterer 2008). While current observational
data appears to be consistent with the expansion being driven
by a cosmological constant, A, an exciting alternative is that the
accelerated expansion is pointing towards gravity behaving in a
different manner from the predictions of general relativity (GR;
Joyce, Lombriser & Schmidt 2016). There are numerous modified
gravity theories, which — as well as providing potential explanations
for the accelerated expansion — generally predict regimes in which
there are enhancements to the total gravitational force, above that
expected with GR.

Because gravity on the scale of the Solar system is known to
be consistent with GR to high precision, these additional forces
must somehow be screened within the Solar system. Screening
mechanisms typically lead to the enhancements to gravity disap-
pearing in high-density, or deep gravitational potential environments
(Brax 2013). In this context, the infall of galaxies onto galaxy
clusters provides an interesting test of these modified gravity theories,
because galaxies will transition from being unscreened to screened
as they fall into the cluster potential (Zu et al. 2014).

Clusters and their masses are also an interesting area for current
exploration, because of current tensions between measurements of
cosmological parameters from cluster abundance studies and mea-
surements made using other methods. For example, the Dark Energy
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Survey’s (DES) Year 1 Results indicated that the number and/or
masses of galaxy clusters disagreed with that expected from the
cosmology fit to combined cosmic shear, galaxy—galaxy lensing, and
photometric galaxy clustering (Abbott et al. 2020). To quantitatively
explain these results, the masses inferred through weak lensing for
DES’s lowest richness clusters would have to be 30—40 per cent lower
than expected from the DES 3 x 2pt cosmology, or else the richness-
selected sample of clusters must be highly (~50 per cent) incomplete.

The cluster—galaxy cross-correlation function in redshift space,

og» is an observable quantity that depends both on the clustering
of galaxies around galaxy clusters, and on the relative velocities
of galaxies with respect to nearby clusters. These velocities in turn
depend upon the mass distribution of clusters, as well as the theory
of gravity. Sjg(r,,, r,) measures the excess probability (above that
expected for randomly distributed clusters and galaxies) of measuring
cluster galaxy pairs with an inferred separation along the line of sight
of r,, and a separation perpendicular to this of r,. Cluster—galaxy
pairwise velocities get imprinted into &.,(rp, rz) because the line-
of-sight separations between cluster—galaxy pairs are inferred from
differences in their redshifts, which — as well as depending upon
the true line-of-sight separations — receive a contribution from the
line-of-sight components of their peculiar velocities. The effects of
peculiar velocities on the observed clustering signal are known as
redshift-space distortions (RSDs).

If we wish to use RSD in the cluster—galaxy correlation function to
probe cluster mass distributions as well as modifications to GR, then
we need to include data from the small scales on which the cluster
potential makes a significant contribution to the galaxy velocities.
Clustering on these small scales also contains a large fraction of the
statistical constraining power from current and future surveys, mak-
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ing the accurate modelling of redshift-space clustering on these scales
a crucial ingredient for extracting the maximum amount of infor-
mation. For example, for a BOSS-like survey, the constraints on the
growth rate of structure from r < 30 h~! Mpc scales alone are nearly
a factor of two tighter than those from the fiducial Baryon Oscillation
Spectroscopic Survey (BOSS) analysis of redshift-space clustering
using perturbation theory on larger scales (Zhai et al. 2019).

Given the ever increasing volume and resolution of N-body simu-
lations, one approach to modelling galaxy clustering on small scales
is to directly use the results from a simulation with a given cosmology
as the model prediction for that cosmology. In practice, simulations
are still too time consuming to run one for every likelihood evaluation
in a cosmological likelihood analysis. However, assuming that the
simulated data vector varies smoothly as the cosmological parameters
are varied, some sort of interpolation scheme can be used to predict
the data vector at an arbitrary cosmology, from the data vector
calculated from simulations run at other cosmologies.

This procedure is known as emulation (see Euclid Collaboration
2019; Zhai et al. 2019; Yuan et al. 2022, for a few different examples
in cosmology). Emulating some cosmological observable from sim-
ulations requires that we trust the simulations to reliably predict the
observable. It also requires simulation volumes comparable with or
larger than observed survey volumes, so that noise in the simulations
does not dominate the error budget — although there have been recent
developments to suppress the variance in simulation predictions (e.g.
Angulo & Pontzen 2016; Maion, Angulo & Zennaro 2022; Kokron
et al. 2022).

Here, we explore an alternative to directly emulating observables,
which s to use a physically motivated model, the parameters of which
we expect to depend systematically on the values of the cosmological
parameters. We can then build an emulator for the parameters of the
model, rather than for the observed data vector itself. This approach
has some advantages and disadvantages over straight emulation of the
data vector (discussed in Section 5.1). In short, a physical model can
suppress noise and also aids with physical understanding, but opens
the door to the potential for model mis-specification. We build such
a model for the redshift-space cluster—galaxy correlation function,
employing the galaxy infall kinematics (GIK) model from Zu &
Weinberg (2013, ZW13 hereafter) to describe the distribution of
cluster—galaxy pairwise velocities. We build an emulator for the
parameters of the GIK model using the FORGE suite of f(R) modified
gravity simulations (Arnold et al. 2022), and then demonstrate fitting
this to mock observations of the cluster—galaxy correlation function
in redshift space.

This paper is structured as follows. In Section 2, we provide some
basic definitions useful in the rest of the paper. Then in Section 3,
we introduce the GIK model from ZW13, highlighting some small
changes that we have made. In Section 4, we demonstrate how to
combine the real-space correlation function with the GIK model
in order to calculate the redshift-space correlation function. Then
in Section 5, we describe using simulations run with different
cosmological parameters to build an emulator for the GIK model
parameters. In Section 6, we demonstrate the efficacy of our model,
by fitting it to mock data. In Section 7, we outline some of the
advancements required before our method could be applied to real
observational clustering data, before concluding in Section 8.

2 THE CLUSTER-GALAXY CORRELATION
FUNCTION IN REDSHIFT SPACE

The cluster-galaxy correlation function in real space, &.(r), is
defined such that for a sample of galaxies with number density ng
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and galaxy clusters with number density 7.,
APy = neng [1 + ()] dVe dV, (1)

is the joint probability of finding a galaxy cluster in the volume
dV. and a galaxy in the volume dV,, where the separation between
the two (small) volumes is r. This probability (and hence &.4(r))
depends only on the distance between the two volumes (and not on
the direction of their separation or their absolute positions) because
of the assumptions of isotropy and homogeneity.

Calculating &.,(r) is rather simple for the case of clusters and
galaxies found within a cosmological simulation in a cubic (periodic)
box. For some definition of ‘galaxy’ and ‘galaxy cluster’, we can
count the number of galaxy—cluster pairs that have a separation
between r and r + dr, which we call dN;ig"‘. Assuming that the
total simulation volume is V, the expected number of clusters is
n.V. If we just consider one of these clusters, then the expected
number of galaxies (if they were randomly distributed) a distance
between r and r + dr away from the cluster is 47 r2dr ng, such that
when accounting for all clusters we expect chrg“d = 4nridr ngncV
pairs. Our estimate for the cluster—galaxy correlation function is then
Ecg(r) = ANG™ /ANZM — 1.

This same notion can be extended to the case of anisotropic
clustering in redshift space, where the isotropic nature of galaxy
clustering is broken by RSD. In an analogous manner to the real-space
clustering case discussed above, we can count the number of cluster—
galaxy pairs that have a separation with line-of-sight component in
the range [r, rr + dr,], and a plane-of-sky component in the range
[rp, rp +dr,], and compare this with the expectation in the case of
randomly distributed clusters and galaxies to find §2o(rp, Iz), where
the superscript s denotes that this correlation function is measured
in redshift space.

2.1 The INDRA simulations

We use the publicly available INDRA suite of simulations (Falck
et al. 2021). These will be useful for first elucidating some of
the workings of the GIK model, and then later for calculating
a covariance matrix for §eo(rp, I). The INDRA suite consists of
384 simulations, all run with the same cosmological parameters as
one another, but with different random phases used for the initial
conditions. The simulations are dark-matter-only (DMO), and are
of boxes with a side length of 1h~! Gpc, with a particle mass of
7 x 10'° k=1 Mg, In total, each INDRA simulation has 64 snapshots
saved from the time of the initial conditions (at a redshift of z = 127)
down to z = 0, but for simplicity we focus only on z = 0 in this
paper.

The INDRA snapshots were analysed with the standard friends-of-
friends (FOF) algorithm (Davis et al. 1985), after which the SUBFIND
algorithm (Springel et al. 2001) was run, which calculates spherical
overdensity quantities such as My for each FOF group,' and
also identifies gravitationally bound substructures within the FOF
groups.

While there are numerous possible ways that one could populate
a DMO simulation with galaxies, and then also identify galaxy
clusters, for now we will take a simplistic approach. We consider
galaxy clusters to be all FOF groups with My in some range,
while galaxies are all SUBFIND subhaloes with v, above some

!Centred on the most gravitationally bound particle in the FOF group, we
define 109 as the radius within which the mean enclosed density is 200 X pcrit,
with the mass enclosed within r209 being Magp.
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Figure 1. The measured small-scale cluster—galaxy correlation function
from the z = 0 snapshot of an INDRA simulation. The left-hand panel shows
the correlation function in real space, with y the true line-of-sight separation
between cluster—galaxy pairs, while the right-hand panel uses the inferred
line-of-sight separation (i.e. the separation in redshift space), 7.

threshold value. Here, vn. is the maximum value of the circular
velocity, v (r) = /GM(< r)/r, where M(< r) is the mass en-
closed within a radius r. Note that SUBFIND subhaloes include the
central subhalo in each FOF group, so being tied to ‘subhaloes’
does not imply that our galaxies are necessarily substructures of
something larger. Our galaxy assignment scheme can be thought
of as subhalo abundance matching (SHAM), using vm.x as the
abundance matching parameter and with zero scatter (Reddick et al.
2013).

For a cluster and galaxy at locations r. and ry, and with peculiar
velocities ve and vg, respectively, we definer = rg — rcandv = vy —
v, as the relative position and velocity of the galaxy with respect to the
cluster. We also define the scalar cluster—galaxy separation, r = |r|.
We denote a unit vector along the line of sight as y, with the line-
of-sight separation between the cluster and galaxy being y =r - 3,
and the separation perpendicular to this being r, = |r — y§|. The
line-of-sight component of the relative velocity between the cluster
and galaxy is vy = v - §. The relative velocity along the line-of-sight
changes the apparent line-of-sight separation between the galaxy and
cluster to be r; =y + (1 4+ z)v,/H(z), where the factor of 1 4z
accounts for the fact that we define 7, and y in comoving coordinates.

For a minimum galaxy vy of 250 kms™!, and clusters with
14.1 < log;y Mago/h ™' Mg < 14.2, we plot the cluster—galaxy cor-
relation function in Fig. 1. For this purpose, we adopt one of the
Cartesian axes of the simulation box as the line of sight, and then
show the results both in real space (where the clustering is isotropic)?
and in redshift space, where Kaiser (1987) squashing enhances the
clustering at intermediate-r, and low-r,, and the fingers of god
spread low-r cluster—galaxy pairs along the line of sight.

This cluster definition leads to ~ 3000 clusters in each
(1 h~" Gpc) INDRA volume, while the number density of galaxies is
ng ~ 1073 (h=! Mpc)~3. This galaxy number density is comparable
with what is expected for some upcoming galaxy redshift survey

2While the mean clustering signal is isotropic, the noise is not because (e.g.) a
pixel at (r, = 10.5 h~"Mpc, y = 0.5h~! Mpc) covers a larger volume than
the pixel at (r, = 0.5 h~!Mpc, y = 10.5 h~! Mpc), such that the first of these
has smaller fractional error due to Poisson counts.

RSD in the cluster—galaxy cross correlation
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samples, such as DESI’s Luminous Red Galaxies which will have
ng & 0.5 x 1072 (h~! Mpc)~ (Zhou et al. 2023).

3 THE ‘GALAXY INFALL KINEMATICS’ (GIK)
MODEL

Our approach to modelling &, is built upon the GIK model introduced
in ZW13. The GIK model describes the velocity distribution of
galaxies with respect to nearby clusters, as a function of cluster—
galaxy separation. At each cluster—galaxy separation, there are seven
parameters. We will call these seven parameters the GIK functions,
because they are functions of the cluster—galaxy separation, r, and
because this allows us to use the term GIK parameters for another
set of parameters that we will describe shortly.

3.1 The GIK functions

The seven GIK functions specify the joint probability distribution of
radial and tangential velocity components, P(v,, v,|r). Continuing
on from our definitions of r and v above, we define a unit vector
in the separation direction, # = r/r. Then, v, = v - F* is the radial
velocity for this cluster—galaxy pair, where negative v, represents a
galaxy moving towards (i.e. falling in to) a cluster. Note that because
we use peculiar velocities, the Hubble flow does not contribute to v, ;
put another way, a cluster—galaxy pair with v, = 0 will have a proper
separation that is growing in time due to the expanding universe. The
total tangential velocity is vy = v — v, F. For the purpose of the GIK
model, it is useful to follow ZW13 in defining the tangential velocity,
vy, as the projection of vy onto the plane containing the cluster
galaxy separation, r, and the adopted line of sight, §. Specifically,
v, = (v-y — v, sinf)/ cos 6, where 6 is the angle between r and the
plane of the sky, that is, sin@ =r - y/r.

A diagram of these various vector definitions is provided in fig. 2
of ZW13. To aid with intuition, we note that with v, and v, defined in
this manner, if the distribution of v is a zero-mean 3D Gaussian with
equal dispersion along three orthogonal axes, then P(v,, v,) will be
a 2D Gaussian, centred on v, = v, = 0, and with equal dispersion in
the v, and v, directions.

In Fig. 2, we show P(v,, v,) for cluster—galaxy separations in the
range 1 < r/h~' Mpc < 1.25, for a stack of cluster—galaxy pairs
from 24 INDRA simulations, using the same cluster and galaxy
definitions as before. This radial shell corresponds to galaxies at
distances close to the clusters’ virial radii, and an interesting feature
of P(v,, v,) is that it is bimodal (see also Garcia et al. 2023). This
demonstrates the motivation for the functional form of P(v,, v,) in
the GIK model, which is the sum of two distinct components: a
virialized component, making up a fraction f,; of galaxies in this
radial shell, and an infalling component, which makes up the rest.
The expectation is that fy; is only appreciably non-zero at small
radii, approximately within the splashback radii (More, Diemer &
Kravtsov 2015) of the clusters.

The virialized component is modelled with a simple velocity
distribution, which is an isotropic Gaussian, with a dispersion
along each orthogonal direction of oy;.. The infalling component
has a more complex velocity distribution, known as a skewed-t
distribution (Azzalini & Capitanio 2009). The expression for the
infalling component’s velocity distribution is

T(U) = 2[2(1) — Up,es dof, E)
(O{(U, — V) dof + 2
XT1 -
Orad Qv + dof

;dof —|—2> R 2)
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Figure 2. A corner plot showing the posterior distribution for the GIK functions fit to data generated from a stack of 24 INDRA simulations. The cluster sample
is all haloes with 14.1 < log;q Mago/h~' Mg < 14.2, with galaxies defined as subhaloes with vpmax > 250kms™!, and is for cluster—galaxy separations in the
range 1 < r/h~! Mpc < 1.25. The data and best-fitting model for P(v,, v;) are plotted, using the same colour scale in the two panels. The normalized residuals
(data minus model, divided by a Gaussian approximation to the Poisson uncertainty) are plotted in the top right, with red corresponding to positive residuals,

and blue negative.

where #, is the density function of a 2D ¢-variate with dof degrees
of freedom,? T is the cumulative distribution function for a scalar z-
variate with dof + 2 degrees of freedom,* vy, = (U, 0)is atypical
infall velocity (equal to the mean infall velocity for the case of zero

3Implememed using the pdf method of a scipy.stats.
multivariate_t object.
4Implemented using the cdf method of a scipy.stats.t object.
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skewness), and Q, = (v — v,,.)T 7! (v — v, ), where

¥ = (“rﬁd 0 > 3)
0 Orad

The basic idea is that #,(v — v, .; dof, ¥) is a 2D ¢-distribution,

which looks Gaussian in the limit dof — oo, but is leptokurtic

(i.e. with fatter tails than a Gaussian with the same variance)

for finite dof. This 2D ¢-distribution has variances of o2, and

a
o2, in the radial and tangential directions, respectively. The f,
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distribution is symmetric about the typical infall velocity, v, ., with
the skewness in 7 (v) introduced through multiplying #, by the
cumulative distribution function 7.

The probability density function d7)(x; dof + 2)/dx is symmet-
ric about x = 0, such that Ty(x;dof +2) is 0 as x - —o0, 1 as
x — oo and 1/2 at x = 0. o controls the skewness of the velocity
distribution (in the v, direction), with @ = 0 producing a distribution
with no skewness, and positive o producing a distribution with a
lengthened tail towards positive v,.

The complete velocity distribution reads

P() = fur 6(0) + (1 = fur)T (), @

where G(v) is a 2D isotropic Gaussian centred on v = 0. In summary,
the seven GIK functions are:

(i) oraq — the velocity dispersion of the infalling component in the
radial direction.

(ii) own — the velocity dispersion of the infalling component in the
tangential direction.

(iil) v, . — the typical radial velocity of the infalling component.

(iv) dof - the degrees of freedom associated with the infalling
component’s 2D ¢ distribution.

(v) o — the skewness in the radial direction of the infalling
component’s velocity distribution.

(vi) fyir — the fraction of galaxies in the virialized component.

(vii) oy;; —the 1D velocity dispersion of the virialized component.

In Fig. 2, we show the posterior distribution for the seven GIK
functions fit to the data shown in the same figure. For a given radial
bin, we measure the galaxy velocity distribution by counting galaxies
in velocity bins, with 60 x 60 equal-sized bins covering v, and v,
in the range —1500kms™' < v,, v, < 1500kms~!. We label the
galaxy count in a given pixel n;;, where i and j index the pixels
along the v, and v, directions respectively. To evaluate the likelihood
for a given set of GIK function values, we calculate the probability of
getting the measured set of ;; assuming that the number of galaxies
in a pixel is a Poisson process with an expectation given by the model
probability density at the centre of the pixel multiplied by the pixel
area and the total number of cluster—galaxy pairs in this radial bin.
Specifically, the likelihood is

£ =[] x; exp(=ni)/mi™ )
ij

where  A;; = P(v,;, v,,j)(Sv)zN, with  8v = (v, 41 — V) =
(vr.j+1 — v ;) =50kms™! the side length of a velocity-space
pixel, and N the number of cluster—galaxy pairs in this radial shell.
Combining this likelihood with flat priors on the seven GIK functions
covering a range considerably broader than the resulting posteriors,
we use the Markov chain Monte Carlo (MCMC) sampler EMCEE
(Foreman-Mackey et al. 2013) to find the posterior distribution for
the GIK functions.

We note that in Fig. 2 the model does a reasonable job of capturing
the general features of the measured P (v,, v,), however it clearly does
not fit the data down to the noise level (associated with a stack of 24
(1 =" Gpc)? simulation volumes), with there being clear structure
in the map of the residuals. In particular, the infalling component
in the data has curvature in the v,—v, plane, such that galaxies
falling in with larger (negative) radial velocities tend to have lower
tangential velocities, which is not something that can be captured by
the functional form of 7 (v) in equation (2).

RSD in the cluster—galaxy cross correlation
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3.2 The GIK parameters

If we perform a fit similar to that shown in Fig. 2 for a set of r
bins, we can then see how the GIK functions vary with radius. An
example of this is shown by the markers in Fig. 3, where now the
results are for a single INDRA simulation (as opposed to the stack
used for Fig. 2, to highlight subtle deficiencies in the model), and
we plot the results for three different cluster mass bins, all with the
same galaxy definition of any subhalo with v, > 250kms™!.

As well as introducing the form for the velocity distribution in
terms of the GIK functions (equation 4), ZW 13 presented parametric
models for how the GIK functions vary with radius. For example, in
ZW 13 the functional form for o,,4(r), 6an(r), a(r), and dof(r) are
all the same:

fr)y=q—

-
Yo ©
where ¢, p, r;, and B are free parameters (which take on different
values for each of the four GIK functions to which this functional
form is applied). We note that, written in this way, this particular
functional form has the undesirable property that the dimensions of
p depend on B. For this, as well as some other reasons discussed
below, we choose to reparametrize this equation. In particular, we
write equation (6) as

r ﬂrmin p
(7) ; )
Fmin \7 + (B — 1) rmin

where ryi, = r; /(B — 1) is the radius at which f(r) is minimized,
and & can be expressed in terms of p, r;, and 8. While this new
expression appears more complex than the one it replaces, it leads to
free parameters with better characteristics than those of equation (6).
In particular, g and & have the same dimensions as f [e.g. they are
velocities when f(r) is oy, (r)], and the minimum of f(r) occurs
at r = rmm, With f(0) = ¢ and f(rmin) = ¢ — h. Aside from the
reparametrization being useful for one’s intuition (rp;, has a clear
meaning, while r; did not), it also decreases the covariance between
the model parameters in the fit. As an example, the location of the
minimum of o,,4() in Fig. 3 is clearly well constrained by the data,
such that we get a tight constraint on rp;,, whereas this would
correspond to some degenerate set of solutions in terms of r; and

B

fr)y=q—h

For similar reasons, we reparametrized the functional forms for
the majority of GIK functions from those that appear in ZW13. We
describe this in Appendix A. In total, we end up with 24 parameters
that describe the variation of the seven GIK functions with radius;
we call these 24 parameters the GIK parameters.

Note that if one simply fits the seven GIK functions to P(v,, v;)
at large radii (= 102! Mpc) the values of fi; tend to be fairly
large (2 0.3). Physically, these clearly do not correspond to galaxies
‘virialized” within the cluster, but instead result from the fact that
sufficiently far from the cluster the infalling component has a small
mean radial velocity, such that it can be approximately described
by the G(v) function centred on v, = 0. For the purpose of plotting
the GIK function posteriors (points with error bars) in Fig. 3, we
circumvent this problem by first fitting the full seven parameter model
for P(v,, v,) in our radial bins and finding the radius at which f; is
smallest, which we label r ;. We then fit just a five parameter model
(with fyir = 0) to all radial bins with r > r/.

3.2.1 Fitting for the GIK parameters

While the process visualized in Fig. 3 — of measuring the seven GIK
functions in different r bins — is useful conceptually, in practice

MNRAS 533, 4081-4103 (2024)
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Figure 3. The variation of the GIK functions with radius. The points with error bars represent the mean =+ one standard deviation of the marginalized posteriors
from fitting the GIK functions — separately at each radius — to P(v,, v;) (e.g. as shown in Fig. 2). Generating posterior samples for the GIK parameters (using
MCMC) and then calculating the corresponding GIK functions produces the solid lines with shaded regions. For each GIK parameter sample, we calculate
vr.o(r), fyir(r), etc., and then the shaded region covers the 2.5th—97.5th percentiles of the GIK function at each radius, with the solid line being the median (50th
percentile). The functional forms of the GIK functions are detailed in Appendix A. We note that ov;, is poorly constrained at radii where fyi; ~ 0, which leads

to the vertical line (an error bar extending off the figure) in the oy;; panel.

we fit the 24 GIK parameters directly to the P(v,, v,|r) data,
simultaneously fitting to all radial bins. As a default we use 40 r
bins, with the bin edges uniformly spaced from 0 to 20 A~! Mpc.
The likelihood we use is the product over the different radial bins of
the likelihood defined in equation (5), with the model P (v,, v,) at all
radii calculated directly from a common set of GIK parameters.
This direct fitting procedure has a number of advantages over a
two-step process of finding the GIK functions at different radii and
then fitting the GIK parameters to these (which would amount to
fitting the curves described by the GIK parameters to the points with
error bars in Fig. 3). In particular, we can naturally account for the
covariance between the different GIK parameters, even those relating
to different GIK functions; we avoid the need to fix f,;; = Oatlarger;
we avoid the need to define priors on the GIK functions, instead only
requiring priors on the GIK parameters; and we also avoid taking
the (potentially) non-Gaussian GIK function posteriors, and treating
them as Gaussian for the purpose of then fitting the GIK parameters.

3.2.2 Fitting the GIK parameters without binning

An alternative to the likelihood defined in equation (5) is just a
product over all cluster—galaxy pairs of the GIK model’s probability
density for each pair’s velocity,

L=]]rwin. o. @®

where P(v;) is defined in equation (4) and depends on the set of GIK
parameters (g) and the separation of cluster—galaxy pair i (r;). The
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fact that we could define a likelihood that did not require either
radial or velocity-space binning only occurred to us late in this
project, and so the work throughout this paper uses the likelihood
from equation (5). Nevertheless, we mention the alternative in case
it is useful for other people trying to implement a similar modelling
method. We tested that the likelihoods in equations (5) and (8)
produced consistent measurements of the GIK parameters for a
fiducial INDRA simulation volume, finding that the differences in best-
fitting parameters were negligible, with the no-binning likelihood
leading to slightly tighter constraints on some GIK parameters,
presumably due to information loss when binning. This test is
described further in Appendix B.

3.3 Convergence of the GIK parameters

As described later in this paper, we will ultimately use N-body
simulations run with different cosmologies to predict how the GIK
parameters depend upon cosmology. It is therefore important to
understand how robust the GIK parameters measured from an N-
body simulation are. To address this, we use publicly available
simulations from the IllustrisTNG project (Nelson et al. 2019). In
particular, we use variants of the TNG300 simulations, to assess how
robust the GIK parameters are to changing simulation resolution,
as well as whether the GIK parameters change between DMO
simulations and simulations including baryonic physics.

For this section, we use the TNG300-1 simulation (which we call
‘TNG300’) as our fiducial simulation. This simulation includes both
dark matter and baryons, with dark matter particle masses of 5.9 x
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Figure 4. The GIK functions measured from three different TNG300 simulations. The inclusion of baryonic physics or not seems to have little impact on
the GIK functions, while the lower resolution simulation has slight differences, including a suppression of the radial and tangential velocity dispersion of the

infalling component.

107 My and initial gas masses of 1.1 x 10" Mg. The TNG300-3
simulation (which we call “TNG300 low-res’) employs the same
physics, but with 64 times fewer particles than TNG300-1, leading
to DM masses of 3.8 x 10° Mg and gas masses of 7.0 x 10® Mg,
Finally, TNG300-1-Dark (which we call “TNG300 DMO’) isa DMO
version of TNG300-1, with a dark matter particle mass of 7.0 x
107 M.

For each of these simulations we used the method described in
Section 3.2.1 to fit for the GIK parameters. We ran an MCMC
to generate samples from the posterior distribution for the GIK
parameters. By calculating the corresponding GIK functions for each
MCMC sample, we generate draws of the GIK functions from this
posterior. These are plotted in Fig. 4, where the solid lines show the
median values of the GIK functions, while the shaded regions cover
the 16th—84th percentiles of the GIK function posteriors.

In Fig. 4, the differences between the fiducial and DMO simu-
lations are negligible. The lower resolution simulation does appear
to have somewhat different GIK functions, although the differences
(except for oy, at large radii) are typically less than the uncertainty,
where the size of the uncertainty comes from the relatively small box
size of the TNG300 simulations.

In Fig. 5, we plot the real-space clustering from these three
different TNG300 simulations. As described in detail in Section 4,
the combination of the real-space clustering and the GIK functions
(or some other description of the pairwise velocity distribution) are
all that is required to calculate &,. We see that, as was the case for the
GIK functions, TNG300 and TNG300 DMO produce similar results,
with TNG300 low-res being more discrepant.

We note that the GIK parameter differences between DMO
versus hydro simulations, or high-resolution versus low-resolution,

—— TNG300
—— TNG300 bMO
101 | TNG300 low-res
S
RIS’
100
10714 . : .
0 5 10 15 20
r/ Mpc/h

Figure 5. The real-space clustering measured from three different TNG300
simulations. The inclusion of baryonic physics has little impact, while the
lower resolution simulation has suppressed clustering at large separations. The
correlation function was measured by counting cluster—galaxy pairs in bins of
separation and comparing with the expectation if clusters and galaxies were
randomly distributed. The shaded region is an indication of the uncertainty
on the correlation function measurement, from assuming that the pair counts
follow Poisson statistics.

are significantly less important than the differences in real-space
clustering between those same simulations for evaluating a model

oe- This is quantified in Appendix C, and suggests that relying on
simulations to predict the GIK parameters — while using some other
method for the real-space clustering — is a sensible approach. This
is what we do throughout the rest of the paper, where (because we
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are dealing with simulations) we know the real-space clustering and
so use the true real-space clustering in our models for &;,. With
real observational data, we would instead need a model for the real-
space clustering, or to obtain it from observations of the projected
clustering. These possibilities are discussed in Section 7.1.2.

4 CALCULATING ¢, WITH THE GIK MODEL

In the previous section, we described the GIK model from ZW13,
and presented a method to fit the GIK parameters to the positions
and velocities of clusters and galaxies extracted from a simulation.
We will now show how, with the GIK parameters determined, we
can predict the clustering in redshift-space given the real-space
clustering.

We begin with the expression for the redshift-space clustering in
terms of the real-space clustering and the probability distribution
for r, — y (i.e. for how a cluster—galaxy pair’s separation is shifted
when moving from real to redshift space). This usually goes by the
name of the streaming model, and can be written as (Peebles 1980;
Scoccimarro 2004; Kuruvilla & Porciani 2018)

1 +€§g(”p,”n) =/

—00

o0

(14 &L, p(rz = ylrp. y)dy, ©)

where r = /r2 + y2, and p(r; — ylrp, y) = p(vylrp, V) H(2)/(1 +
7) is the probability density associated with a given pairwise velocity
along the line of sight, where the factor of H(z)/(1 + z) comes from
dry /dv,.

The distribution of radial and tangential velocities at a given
separation, p(v,, v/|r), is what is specified by the GIK model. The
conversion from (v,, v;) to v, depends on the angle between the
line of sight and the cluster—galaxy separation, and so depends on
rp and y. Mathematically, we have v, = v, sin€ + v, cos 6, where
6 =tan"! y/r, is the angle between the plane-of-the-sky and the
cluster—galaxy separation. This leads to p(v,|r,, y) being expressible
as an integral:

(10)

vy — v, sinfé ' do,
cos 6

o0
p(uylry, y) = / P (vr, v =
oo cos 6

Combining equations (9) and (10), and integrating only out to finite
limits, we have

; H(z)
]+Eég(rpvrﬂ)% 1+2
Ymax | 4 EF (r) Umax
x/ —= - p vy, vr) dv, dy, (11)
Ymin cos @ Umin

where again v; = (vy —v,sinf)/cosf and v, = H(Z)(ry —
¥)/(1 4+ z). In order for equation (11) to be exact, the integration
limits should cover an infinite range of y and v,. However, for the
purpose of calculating §eo(rp, 1) for r,,ry <20 h~! Mpc (which
we do here) we found that Y = — ymin = 402~ Mpc and vpay =
—Umin = 2500 kms~! were sufficient. We note that the reason for
using finite limits was that to speed up the calculation, we did not
use a generic numerical integration routine (which could potentially
handle infinite limits), instead using fixed v,, v,, and y grids and
evaluating equation (11) for a large number of r, (but fixed value of
rp) simultaneously, by summing up the integrand evaluated over the
grids. This process is much faster because multiple evaluations of
p(v,, v,|r) with a particular r can be made simultaneously.5 We use

5Due to how the pdf method of the scipy.stats.multivariate_t
class is written, it is much faster to evaluate p(v,, v;|r) with thousands of
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1000 equally spaced v bins (with 5 kms~! spacing) and an adaptive
number of y bins, that we double until successive iterations agree
on all values of gg(rp, ) to within a specified tolerance, which by
default we set to be a fractional agreement of better than 1 per cent.

5 BUILDING AN EMULATOR FOR THE GIK
PARAMETERS

One might hope that the GIK functions and their dependence on
cosmological parameters can be predicted from theory (i.e. ‘with
pen and paper’). However, even predicting the mean infall velocity
onto clusters (closely related to v, ) from first principles is not easy,
with simple spherical infall models failing to correctly predict the
results of N-body simulations for the mean infall velocity of dark
matter particles as a function of their distance from the centres of
clusters (e.g. fig. 3 of Villumsen & Davis 1986). However, the fact
that the GIK functions at fixed cosmology seem not to be too sensitive
to the physics employed within the simulation, or to the numerical
resolution at which the simulation was run (see Fig. 4), suggests that
the GIK functions can be inferred from N-body simulations in a
reasonably reliable manner.

This motivates using suites of simulations (run with different
cosmological parameters) to build an emulator that can predict how
the GIK parameters depend upon cosmology. Combining such an
emulator with knowledge of the real-space clustering of galaxies
and clusters, &,(r), allows us to predict the redshift-space clustering
as a function of cosmology, and therefore to fit the cosmological
parameters to an observed &, data vector.

5.1 Comparison with directly emulating the ggg data vector

There have been a number of recent attempts to model redshift-
space galaxy clustering on small scales using emulators trained
on N-body simulations (Zhai et al. 2019; Yuan et al. 2022; Lange
et al. 2023; Kwan et al. 2023). Aside from the fact that these have
focused on galaxy-galaxy rather than cluster—galaxy correlations,
our approach is also conceptually quite different. In particular, these
other works directly measure observables (e.g. §;, on a grid of r,,
Tz, or multipoles of ég"g) from simulations, and then build emulators
for these observables as a function of the cosmological parameters,’
while we break up the calculation into two distinct parts (obtaining
the real-space clustering, and then modelling the RSD effects on
this), with an emulator used to do the second part.’

5.1.1 Reducing noise with the GIK model

One considerable benefit of our approach is that assuming a func-
tional form for the pairwise velocity distribution of cluster—galaxy
pairs acts to reduce the effects of noise in each simulation used to
build the emulator. This enables the use of smaller simulations than

different (v,, v;) combinations simultaneously, than to make thousands of
separate calls to p(v,, v;|r).

SFor brevity, we refer only to the cosmological parameters, but the emulators
also include parameters for the so-called galaxy—halo connection (Wechsler &
Tinker 2018), which describes how galaxies populate dark matter haloes.
7We note that this approach is similar to that described in Cuesta-Lazaro et al.
(2023), where they present an emulator for real-space clustering, that they
intend to combine with an emulator for a parametrized velocity distribution
similar to the ‘infalling’ part of the GIK model (equation 2), described in
Cuesta-Lazaro et al. (2020).
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Figure 6. Maps of the normalized residuals, comparing &, from one example
INDRA simulation, to the average over all INDRA simulations. In the left-hand
panel, &, from the single simulation is calculated directly from the cluster
and galaxy positions in redshift space in the simulation, while in the right-
hand panel, the GIK parameters are fit to the simulation data, which is then
combined with the real-space clustering to produce ggg, This second procedure
dramatically decreases the amount of noise on £, measured from a single
simulation, though model mis-specification leads to systematic residuals at
low rp.

would be required if one simply ‘observes’ each simulation in a
similar manner to how the real observations will be made.

To demonstrate the benefit of this quantitatively, we begin by
defining £5%, the o data vector calculated directly from the kth
INDRA simulation (with an example plotted in the right-hand panel
of Fig. 1). We additionally define the data vector calculated by
combining the real-space clustering from the kth INDRA simulation,
£7K(r), with the maximum-likelihood GIK parameters from the
kth INDRA simulation, as 5&’{;(. We also define the INDRA-derived
covariance matrix for the elements of éjg as Cgim,. This is calculated
from the set of £2% (with some Jackknifing, described in Section 6.1).
The inverse of Cgp, is the precision matrix, Vg, = C;nlq, with the
elements of Wy, that relate to the first 20 elements of our flattened
data vector (which is all those with , = 0.5 h~! Mpc) set to zero.
This means that we give no weight to the lowest r;, column of the &,
maps, because the parametric GIK functions do not agree with the
measured GIK functions on scales below 147! Mpc (see Fig. 3). In
addition, we define the values along the diagonal of Cg;, to be 052.

With these definitions, we can assess how precisely we can use
a single INDRA simulation to estimate the true &, for the INDRA
cosmology, which we assume is well approximated by < Sk where
the expectation value is an average over all of the INDRA simulations.

In particular, we define
Kam = (&im = (&im)) " Waim (&5 — (&im))
Xk = (Eeik — (&) "W (Ecik — (€n))-

Calculating these x 2 values for each INDRA simulation, we find that

(x2k) =301, while (xgx) = 27. This means that employing the

GIK model, we can calculate a model &, data vector from a single

(12)

INDRA simulation that is much closer (by a factor of ~ 10 in x?) to
the average &, directly measured from all INDRA simulations, than
o directly measured from any one INDRA simulation is to the INDRA
average.
For some intuition as to how this works, in Fig. 6 we plot the
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normalized residuals for one example INDRA simulation, which we
define as the difference between a &% predicted from one simulation
and the average £5% over all INDRA simulations, divided by the
simulation-to-simulations noise (o). In the left-hand panel, we do
this for a case where the one-simulation prediction is measured
directly from the simulation (Sssih’;), while in the right-hand panel, the
one-simulation prediction uses the GIK model (£3). As expected,
the map on the left consists of many fluctuations of order 1o, while
employing the GIK model smooths over this noise in a physically

motivated way.

5.1.2 Model mis-specification error

The main drawback of our approach is also highlighted in Fig. 6,
and is the possibility for model mis-specification error. In particular,
if the GIK model does not adequately describe the pairwise velocity
distribution of cluster—galaxy pairs, then using this model to map
from real- to redshift-space clustering can introduce systematic
errors. The residuals seen at r, < 3 h~' Mpc in the right-hand panel
of Fig. 6 demonstrate some deficiency of the GIK model, and could
arise for two primary reasons. One is if the seven GIK functions do
not adequately describe P(v,, v,|r) at fixed radius, while the other
is if the 24 GIK parameters do not adequately describe the radial
dependence of the GIK functions.

We have already observed that with a sufficiently large simulated
volume, deviations between P(v,, v;|r) from simulations, and the
seven-parameter velocity distribution function at the heart of the
GIK model (equation 4) can be detected, as demonstrated in the
residuals panel of Fig. 2. In Appendix D, we investigate the relative
importance of these two effects, finding that the GIK parameters’
inability to perfectly describe the GIK functions explains about half
(in a x 2 sense) of the residuals, with the remaining half coming from
the seven-parameter model for P(v,, v,|r).

Realistic surveys are likely to have significantly greater uncertain-
ties on these small scales than implied by o, because spectroscopic
surveys face significant observational challenges when dealing with
close pairs of galaxies (e.g. Bianchi & Percival 2017). This suggests
that the model mis-specification errors that appear highly salient
in Fig. 6 may not matter so much in a real survey. Also, the
model mis-specification errors are confined to a restricted region
of the r,—r, plane, so an analysis using the GIK model could cut
out the unreliable regions without much difficulty. Depending on
the accuracy requirements for the model &, when applied to real
observational data, it may be that alternative functional forms that
can better describe the velocity distribution are required, which we
leave to future work.

5.1.3 Separating out real-space clustering from RSD effects

Our approach of building a model for the mapping from real-
to redshift-space clustering and then combining this with some
model/measurement of the real-space clustering to get &, is con-
ceptually appealing, because physically the real-space clustering
and the RSD are separate processes. This makes our model more
interpretable than an emulator that directly predicts &;,, and aids when
trying to understand intuitively the effects of different cosmological
parameters/models on &,

Additionally, there are observables that depend on the real-space
clustering (such as cosmic shear, Kilbinger 2015), as opposed to
the redshift-space clustering. Our approach means that when doing
a joint analysis of different cosmological observables, consistent
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real-space clustering can be used in the modelling of the different
observables, whereas when directly emulating &;,, the underlying
real-space clustering may be inconsistent with that used elsewhere
in the analysis.

5.1.4 Simpler cosmological parameter dependence of emulated
quantities

While we do not attempt to quantify it here, another potential
advantage of emulating the GIK functions (rather than &;, directly)
is that they are simpler physical quantities than &, in a particular
(rp, rz) pixel. This means that one would expect the GIK parameters
describing the GIK functions to vary in a more systematic way
with variations to the cosmological parameters than the redshift-
space correlation function does. For example, if increasing some
cosmological parameter leads to an increase in the infall velocities,
[V |, this would lead to systematic shifts in the relevant GIK
parameters. But in terms of values of gg at particular (r,, r5),
this could behave in a non-monotonic manner, with (e.g.) ‘Kaiser
squashing’ enhancing the clustering, before ‘fingers of god’ decrease
it. While Gaussian processes are flexible enough to model more
complex functions, emulation of simpler functions can be done with
less thought given to the Gaussian process kernels, and should require
fewer training data locations to produce a robust emulator.

5.2 The FORGE simulations

One of the major goals of modern cosmology is to understand
what drives the accelerated expansion of the Universe at late times
(Weinberg et al. 2013), with modified gravity theories being a popular
alternative to GR plus a cosmological constant. f(R) gravity (first
proposed in Buchdahl 1970) is one popular modified gravity theory,
which we investigate here as an example of how one would use
the GIK model to constrain the parameters of a particular theory of
gravity. We note that of the many modified gravity theories that have
been proposed, we do not hold f(R) in any special regard, but choose
to focus on f(R) in the first instance due to the fact that the GIK
parameters have already been shown to differ in f(R) and GR (Zu
et al. 2014), and due to the existence of FORGE (Arnold et al. 2022),
a suite of cosmological simulations run with different f(R) models.

The FORGE simulations were run with 50 different combinations of
cosmological parameters in Hu—Sawicki f(R) gravity (Hu & Sawicki
2007), including various values for fio,® as well as Qy,, g, and /. For
each simulated cosmology, there are both high- and low-resolution
simulations. We only use the high-resolution simulations, which are
of cubic volumes with a comoving side length of 500 2~! Mpc. The
particle mass used in these simulations is 9.1 x 10° h~! Mg, with
a gravitational softening length of 154~ ! kpc. We do not use the
large volume, low-resolution, simulations because the comparatively
poor mass resolution (mpy = 1.5 x 102 p~! M) means that the
(sub-)structures capable of hosting galaxies of interest to us are
not all resolved. As such, we would need a different method of
populating our simulations with galaxies in order to calculate the
GIK parameters.’

8 fro is the background value of the scalar degree of freedom at z = 0 and
controls the potential depth threshold at which the chameleon screening
becomes active and GR-like forces are recovered. Larger values of | frol
correspond to larger deviations away from GR.

These larger volume simulations could, for example, be used in conjunction
with a halo occupation distribution (HOD) model (e.g. Peacock & Smith
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The FORGE cosmologies are primarily arranged in a latin hyper-
cube, with 49 of the 50 simulations uniformly covering the following
parameter ranges:

(i) @ from 0.11 to 0.55;

(i) Sg = 03 X (2mn/0.3)%3 from 0.60 to 0.90;
(iii) A from 0.60 to 0.82;

(iv) log,q | fro| from —6.2 to —4.5;

the remaining simulation is a ACDM one, that is, it has | fge| = 0.
Because the majority of the FORGE simulations are evenly distributed
in log,, | fro| rather than | fgo|, it makes sense to treat log,, | fro| as
the f(R) parameter in our emulator. However, this then leads to
the value for the ACDM simulation being undefined. To avoid this,
we instead use log;,(| frol + 10%) as the f(R) parameter in our
emulator.

For each of the 50 FORGE simulations, we calculate a posterior
distribution for the GIK parameters following the method described
in Section 3.2.1. The priors on the GIK parameters are given in
Appendix A. We continue to define galaxies as haloes/subhaloes with
Umax > 250kms™!, and we evaluate the GIK parameters for seven
different cluster mass bins for each cosmology. Each mass bin spans
0.1 dex in mass, covering the range 13.8 < log;o Mago/h~! Mg <
14.5. For each cluster mass bin, we consider the cluster mass
associated with that bin to be the geometric mean of the mass of the
upper and lower edges of the bin, such that the bin containing haloes
with 14.1 < log,, Mago/h~! Mg < 14.2 is considered to correspond
to clusters of mass 10'*15 =1 M.

5.3 Emulation with Gaussian processes

The aim of our emulator is to predict the cluster—galaxy pair-
wise velocity distribution (and its dependence on cluster—galaxy
separation) as a function of the cosmological parameters plus the
cluster mass (going forward we will refer to cluster mass as an
additional ‘cosmological parameter’ for brevity, such that we have
350 different simulated ‘cosmologies’). Within the GIK model, the
velocity distribution at all radii is specified by the 24 GIK parameters,
and so we emulate the velocity distribution by separately emulating
each of the 24 GIK parameters.

For the purpose of emulating each GIK parameter, g;, we use a
Gaussian process, using the PYTHON package GEORGE (Ambikasaran
et al. 2015). A Gaussian process is a prior over possible functions,
which, when conditioned on a set of (potentially uncertain) obser-
vations of the function (which we will call the training data), can
produce a posterior distribution for the target function. In our case,
the functions for which we would like to infer the posteriors are the
gi(0), with i (ranging from 1 to 24) being the index for a particular
GIK parameter, and @ being a vector of cosmological parameters:

0 = {Qm, Ss, 1. log,y (I frol +107°) , log;g Mao/h™' Mo }. (13)

A detailed description of Gaussian processes can be found in
Rasmussen & Williams (2006).'° In general, when combined with
training data (in our case a mean and Gaussian uncertainty on each

2000), although doing this in the context of extracting the GIK parameters
— particularly those important for the velocity distribution at small cluster—
galaxy separations — would be somewhat circular, as HOD galaxies are typ-
ically assigned velocities drawn from simple Gaussian velocity distributions
(e.g Guo et al. 2015).

19For intuition on how and why Gaussian processes work, we recommend an
excellent lecture by Richard Turner, available on YouTube.
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of the g;(#;), where the set of @; are the 350 input cosmologies at
which we have fit for the GIK parameters) a Gaussian process can
make a prediction for how the output of a function depends on the
input parameters [i.e g;(@) for arbitrary 0].

Specifying a Gaussian process requires that we specify an a priori
most-likely mean function, m(@), as well as a covariance function,
often referred to as the kernel. This kernel, K (6, 0,), describes how
correlated we expect g;(#,) and g;(6,) to be, as a function of the
separation between 6, and #,. The kernel is used to specify the
notion that we expect g;(#) to vary smoothly with the cosmological
parameters, such that two similar values of # will have similar values
for g;(#). We use a squared-exponential kernel, which can be written
as

1
K(0,,0,) = o exp (—5(01—92)”:}1(91—92)) . (14)
We assume that X g is a diagonal matrix, with elements
i = diag (B, B0 . By By ) - (15)

where (e.g.) Is, is a length-scale in terms of the parameter Sg.
The intuition one should have is that our prior will substantially
downweight functions where g; fluctuates as Sg is varied, if the
length-scale of the fluctuations is shorter than [g,. The value of ok
determines the prior expectation on the amplitude of variations in g;
as one varies 6.

We build a separate Gaussian process to emulate each of the 24
GIK parameters. For a single GIK parameter, g;, the inputs to our
Gaussian process are:

(i) The estimates of g; evaluated for each of our seven cluster mass
bins, at each of the 50 FORGE cosmologies (g;(6;)), for which we
use the mean of the marginalized posterior on this particular GIK
parameter.

(ii) The Gaussian uncertainty on each g;( ;), which we calculate
as the square root of the variance of the relevant marginalized
posterior.

(iii) A kernel function (equation 14), with its associated hyperpa-
rameters.

(iv) A mean function, which we assume to be a constant (i.e.
independent of #), and which we set equal to (g;(#;));, the mean
value of g; over the 350 ‘cosmologies’ where the GIK parameters
have been fit.

5.4 Selecting kernel hyperparameters

For each of our GIK parameters, we have six kernel hyperparameters
(ok in equation 14, and the five length-scales in equation 15). In
order to set these hyperparameters in an objective manner, we find
(separately for each i) the set of hyperparameters that maximize
the marginal likelihood of the input data (see equation 5.8 of
Rasmussen & Williams 2006). Considering the combination of our
kernel function (with a specific set of hyperparameters) and mean
function as defining a prior on the function g;(#), the marginal
likelihood is the probability density associated with having drawn
our input data from this prior, and can be calculated by GEORGE.
We note that some work in the literature alternatively determines
the optimal hyperparameters using leave one out tests (called ‘cross-
validation’ in Rasmussen & Williams 2006). This involves building
one Gaussian process per piece of training data, where each Gaussian
process is trained on all but one, left out, piece of training data. Each
Gaussian process is then used to predict the value of the relevant
left out training data. This can be done for a variety of different
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kernel hyperparameters, with the predicted and true values of the left
out data compared, and the hyperparameters that lead to the most
accurate predictions for the left out data chosen. We implemented
such a method, and found best-fitting hyperparameters that were
similar to those from maximizing the marginal likelihood. As this
method is slow (it requires building a separate Gaussian process for
each piece of training data) we used the marginal-likelihood approach
for this work.

6 FITTING THE EMULATOR MODEL TO
MOCK &, DATA

Combining an emulator for the GIK parameters as a function of the
cosmological parameters, with knowledge of the real-space cluster—
galaxy correlation function, we are able to predict &, as a function
of cosmology. By comparing these model predictions with some
observed ggg data vector, we can then constrain the cosmological
parameters. In order to make this comparison, we need to define
a likelihood of having obtained a particular observed &£, given a
model sgg. ‘We assume this likelihood is Gaussian, with

s
cg’

L(0) o exp <_% (ggéd —& (0))T c! (Egéd ~ &, (0))) . (16)

where ECS; is the observed data vector, £.,(6) is the model-predicted
data vector for the cosmological parameter vector @, and C is the
data covariance matrix.

6.1 Covariance matrix for &,

Even if adopting the correct cosmological parameters, with a perfect
cosmological model, we would not expect the model data vector
to match the observed one. Instead, we would expect the observed
data vector to look like a random draw from a multivariate Gaussian
distribution that has a mean value equal to the model data vector
and some covariance matrix.!! This covariance matrix describes
the amount of noise on each element of the observed data vector,
as well as correlations between the noise on different elements
of the data vector. If we could generate an infinite number of
independent realizations of a Gaussian distributed data vector, d, then
the covariance matrix ford would be C;; = ((d; — (d;))(d; — (d;)) ),
where (d) is the mean of the data vectors, and d; is the ith element
of d.

To estimate a covariance matrix suitable for our purposes, we
use the INDRA simulations that were described in Section 2.1. The
data vector we use when fitting for the cosmological parameters is
&ey(rp,rz) on a 15 x 20 grid of (rp, ry), with (1 h~! Mpc)? pixels,
meaning that we have a data vector with nqg = 300 elements. For
the purposes of discussing the covariance matrix, it is simpler to
consider our data vector to be 1D. In order to facilitate this, we
flatten our 2D data vector, such that elements 1-20 run from small
to large r, with r, = 0.5 h~! Mpc, elements 21-40 are the same at
rp = 1.5h~ ' Mpc, etc. We label this flattened version of the data
vector &, with &; the ith element, with i running from 1 to 300.

In total there are ny = 384INDRA simulations, each a 1h~! Gpc
on-a-side box, all run with the same cosmological parameters. We
can use each INDRA simulation to calculate a redshift-space cluster—
galaxy correlation function data vector, Ek , with k indicating the
index of the INDRA simulation. These can then be used to produce an

" This is what is meant by assuming that our ‘likelihood is Gaussian’.
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unbiased estimate for the data covariance matrix

~ 1 s
Cij= (6 — (&) (6] — (&) a7

ng— 1
§ k=1

where the ng — 1 factor in the denominator (as opposed to simply
ng) accounts for the fact that we have estimated the mean & from the
data itself. .

While C is an unbiased estimate of C, C  is not an unbiased
estimate of the precision matrix W = C~'. However, we can achieve
an unbiased estimate of W as (Hartlap, Simon & Schneider 2007)
R R (18)

ng—1

Note that at a minimum, one requires ng > ng + 2 in order for C to
be invertible. However, if 4 is only slightly larger than n4 + 2, while
equation (18) gives an unbiased estimate of the precision matrix,
the uncertainty on this estimate will be large (Taylor, Joachimi &
Kitching 2013). One generally requires that n; is considerably larger
than ng in order for ¥ to be precisely determined. In our case, we
have a length-300 data vector, with only 384 simulations, which
would lead to significant uncertainty on the covariance matrix.

Without access to a larger number of simulations, or analytic
estimates for the covariance matrix, we can instead turn to resampling
techniques. These techniques include the subsample, bootstrap, and
Jackknife methods (Norberg et al. 2009). They are usually applied
when fitting to an observed data vector, and involve using the data
itself (split up into subregions) to estimate the data covariance.
Similar techniques can also be used to decrease the number of
independent simulations required to compute a covariance matrix
to some prescribed level of accuracy. For example, Escoffier et al.
(2016) performed Jackknife resampling over a set of independent
simulations, finding that this reduced the requirement on the number
of simulations (in their case) by a factor of seven.

We follow Escoffier et al. (2016) and calculate a covariance
matrix from each of our individual simulations, using the delete-
d Jackknife scheme (Shao & Wu 1989).'2 We split each simulation
into N, = 8 subregions, by splitting the box in half along each of the
three Cartesian axes. Each Jackknife configuration, ¢, then leaves
out N; = 2 of the N; regions, and we evaluate the corresponding
correlation function, &¢, by adopting the simulation z-axis as the
line-of-sight direction, and using the cluster and galaxy definitions
given in Section 2.1. Note that whether a particular cluster—galaxy
pair was included in a Jackknife region was based upon the po-
sition of the cluster, such that clusters close to the boundary of
a ‘deleted’” subregion, can appear in pairs with galaxies from the
deleted region. The covariance matrix estimate from each simulation
is
A~ lsim N N. N = IVd al c
Cij = N, N Z (‘5 < >) ’ 19

where Ny = ( 11\\,';) is the number of possible Jackknife configurations.

Having evaluated a separate c fsim from each INDRA simulation, our
estimate for the data covariance matrix is the average of all of these,
and our estimate for the inverse data covariance matrix is just the
inverse of this average (without any factor like that in equation 18,
following Escoffier et al. 2016).

The covariance matrix evaluated in this way is appropriate for the
(127" Gpc)® volume of an INDRA simulation. Where necessary, we

12We note that a similar strategy was used in Hang et al. (2022).
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assume that the covariance matrix scales inversely with volume (e.g.
Howlett & Percival 2017), in order to calculate a covariance matrix
appropriate for other volumes.

In Fig. 7, we plot the correlation matrix, which is closely related to
the covariance matrix just described. The correlation matrix measures
the Pearson correlation coefficient between all pairs of elements,

and is defined as Corr(§;, §;) = 6,-/-/\/ 6,—,-6“-. In the right-hand
panel of Fig. 7, one can see that neighbouring pixels of &,(r,, rz)
are quite correlated,’> suggesting that this particular data vector
may not be the most efficient compression of the set of small-
scale (r,, ) separations for cluster—galaxy pairs. One could instead
consider multipoles of the correlation function (e.g. Zhai et al.
2019), clustering wedges (e.g. Kazin, Sdnchez & Blanton 2012),
or different numbers of pixels and/or different spacing of bin edges
(such as the logarithmically spaced r,, bin edges in Yuan et al. 2022).
An advantage of these alternatives is that they generally lead to a
smaller number of data vector elements, decreasing the requirements
on the number of simulations required to evaluate the covariance
matrix. However, we leave investigating these alternatives to future
work.

In the left-hand panel of Fig. 7, we plot a map of the signal-to-noise
ratio (SNR) from the ensemble of INDRA simulations. The signal in
this case is the mean value of f}jg over the different INDR

A subvolumes, while the noise is the square root of the diagonal
elements of C, which we label O3, - Both the signal and noise increase
as one approaches the origin (i.e. r, = r, = 0), but the SNR peak is
at low r, with r, ~ 4h~" Mpc.

6.2 Including model uncertainty in the covariance matrix

The covariance matrix calculated from the INDRA simulations, which
we here label Cinpra, describes how large the variations typically are
between &, calculated from any one particular INDRA simulation,
and the average of all the INDRA simulations (which, given the large
number of INDRA simulations, we can think of as being a good
approximation to the ‘noise-free’ prediction for &, at the INDRA
cosmology).

This means that 1f our model for & (0) could produce the ‘noise-
free’ prediction for &, as a function of cosmological parameters, we
could set C in equatlon (16) equal to Cyata = Cinora/(Vdata/ Vinora)s
with Vg, the effective volume of our survey, and Vipra =
(1 h~' Gpc)*. However, our emulator for the GIK parameters is built
from simulations with a finite volume, which leads to uncertainty
on the GIK parameters (which can be visualized, e.g. by the shaded
regions around the GIK function lines in Fig. 3).

Recall that we have a separate Gaussian process emulator for
predicting each element, g;, of the GIK parameter vector, g, as a
function of #, and that these predictions take the form of a Gaussian
probability distribution, specified by a mean prediction (g;(0)), and
a standard deviation oy, (6). This can also be expressed as having
a predicted mean GIK parameter vector, (g(#)), and a covariance
matrix for g(@), which we label X,. For now X, is diagonal (with
the diagonal elements equal to the ngi (0)), because we have built
a separate emulator for each element of g, and therefore cannot
account for any covariance between the different elements of g.

3Given the order in which we flatten §l,(rp, rx) to get &, neighbouring
indices correspond to neighbouring pixels in the r, direction, while indices
separated by 20 correspond to neighbouring pixels in the r,, direction.
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Figure 7. Left: a map of the SNR in the INDRAEZ, maps. This is calculated by dividing (pixel-by-pixel) the mean value of &, from the various INDRA subvolumes

by the standard deviation of fgg over the subvolumes. Note that the values of aszs are equal to the diagonals of the covariance matrix, Cixpra- Right: the correlation
C}

matrix, corresponding to the covariance matrix, Ciypra. The values along the diagonal are (by definition) all equal to 1, but we use a smaller range for the colour

map to highlight the correlations between many of the pixel values.

6.2.1 ‘Diagonalized’ GIK parameters

While there has been work on how to formulate multi-output
Gaussian processes (e.g Wang & Chen 2015; Parra & Tobar 2017),
we are not aware of any available Gaussian process software that can
take vector-valued training data such as the values of g( ;) for a set
of #;, along with correlated uncertainties on each element of g(@ ),
and then make predictions for g(#) along with X,(#). By building
a separate emulator for each element of g, we implicitly ignore the
off-diagonal elements of the uncertainty on the measurements of the
£(0), and force X, to be diagonal.

Given that the posterior distributions on the g(#;) do have quite
considerable degeneracies between the different elements of g,
it would be better not to ignore them. We can circumvent the
requirement for implementing a multi-output Gaussian process, by
finding a linear transformation, g’ = Lg, such that the posterior
distribution for g’ is approximately a separable function of each
element of g’, which is to say that the posterior for each g’ in our set
of training data has little covariance between the different elements.

We define the covariance matrix for a GIK parameter posterior
distribution as
M= ((g—(g)g—(gh"). (20)
where the expectation values can be estimated from an MCMC
chain of GIK parameter vectors. Then, defining V as a matrix
whose columns are the unit-length eigenvectors of M, we have that
g'=VTg.

The idea then, is that because each piece of training data (in terms
of g’) has only minimal covariance between the different elements,
that building a separate Gaussian process emulator for each element
of g’ (rather than g), and propagating the uncertainties on the training
data g’s through the Gaussian process, allows us to more faithfully
include the covariance in our training data between the different
elements of g. The Gaussian processes then return an estimate of g’

along with a diagonal covariance matrix, X, and from this we can
evaluate g = Vg’ and X, = VX, VT (which can now have non-
zero off-diagonal elements, representing the covariance between the
different elements of g).

6.2.2 Mapping GIK parameter uncertainties into uncertainties on
e

In order to evaluate the likelihood for a particular 8 (equation 16), we
need to find the GIK model-predicted §,(9), which is done following
the procedure described in Section 4. What we would then like to
know is how uncertainty on g(6) (described by the covariance X,),
maps in to uncertainty on §2,(), such that this uncertainty on the
model prediction for sgg(o) can be accounted for in our covariance
matrix. To do this, we consider small perturbations to the GIK
parameter vector about some reference value, g,. We assume that
the correlation function in such a case can be well approximated by

§~ A(g — g0 t+ &0, 2n

where & is the data vector evaluated for the GIK parameter vector
go- The matrix A is the gradient of & with respect to g, A;; =
0&;/0g;. This can be calculated using a finite-difference approach,
by evaluating &(g) over a grid of g-points around g,,. The covariance
matrix for & due to uncertainties on g is then C, = AX AT, where
we evaluate A at a fiducial cosmology (and treat it as independent
of cosmology), while X,(#) is returned by our Gaussian processes,
alongside g(0).

We note that not doing our diagonalization procedure would be a
conservative choice. This is because the GIK parameter posteriors
can have quite tight parameter degeneracies. If we consider two
highly degenerate parameters, then their individual marginal distri-
butions can be quite broad, while some combination of them is well
constrained. If we ignore the fact that there is a well-constrained
combination, and instead set their joint distribution equal to the
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Figure 8. The posterior distribution for the cosmological parameters when
fitting to a data vector generated by our emulator. The input cosmology is
marked by the dashed lines, and the “DESI-like covariance matrix” contours
contain 68 per cent and 95 per cent of the posterior distribution when using a
covariance matrix (within our likelihood) that corresponds to the INDRA data
covariance rescaled for an effective volume of 20 (h~! Gpc)3. The “including
GIK parameter uncertainty” contours show the results when adding terms
to the covariance matrix to account for the fact that we only know the GIK
parameters as a function of cosmology to some finite level of precision, which
is described in Section 6.2.

product of the two marginals, then this creates more freedom for the
parameters to take different values, and therefore more uncertainty
on the GIK functions, and a resulting increased model uncertainty
on &g,

To demonstrate this quantitatively, we calculated a x> between
a fiducial gg (from g(@) at the mean FORGE cosmology), and the
&, evaluated for the best-fitting GIK parameters for each of the 50
FORGE simulations. Doing this with and without ‘diagonalization’,
we found that the mean x? without diagonalization is ~70 per cent
of that with diagonalization.

6.3 Fitting to mock data generated by the emulator

As a first demonstration of using our emulator to fit to a &, data
vector, we fit to a data vector generated by the emulator itself. Such
an exercise only partially tests our emulation procedure, but has the
advantage that the data vector being fit to can be generated ‘noise
free’, or with some other level of noise that we specify. This differs
from a data vector constructed from an N-body simulation, which
will necessarily have a level of noise set by the finite volume of the
simulation.

In Fig. 8, we show the cosmological constraints from such an
exercise. We build an emulator using the 50 FORGE simulations, and
then use the emulator to predict a model data vector at a particular
point in our cosmological parameter space (marked by the vertical
and horizontal dashed lines in Fig. 8). We then use MCMC to sample
from the posterior distribution for 6, with flat priors on each element
of @ (see equation 13) covering the range of # over which FORGE
simulations were run, and using a data covariance matrix that is
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equal to that calculated for (1 2~! Gpc)® from the INDRA simulations,
but scaled down by a factor of 20, such that it is approximately
appropriate for the effective volume of a survey such as DESI (DESI
Collaboration 2016), which we take to have an effective volume of
20 (h~! Gpc)? following Grove et al. (2022).

Fig. 8 reveals some interesting degeneracies between the different
cosmological parameters. Perhaps the most striking is the degeneracy
between the cluster mass associated with our cluster sample and fro.
In particular, a large cluster mass with a low value for log | frol,
produces a similar &, to a smaller cluster mass with a higher value
for log | fro|. Given that we expect the gravitational attraction of
more massive clusters to be stronger, and that a larger log | frol
means an increased enhancement in the gravitational forces, this
degeneracy makes intuitive sense, in that an enhancement to gravity
can make clusters appear more massive than they actually are.
It also suggests that combining the modelling of &, with some
independent measurement of cluster masses will be a fruitful avenue
for constraining the nature of gravity. For example, weak lensing can
measure the mass of clusters in a manner that is unaffected by frg
(because the modifications to gravity do not affect the propagation
of photons in f(R) gravity). Such a measurement would break
the My — fro degeneracy seen in Fig. 8, leading to an improved
constraint on fxo.

Another feature of Fig. 8 is that we can see the impact that
including the GIK parameter uncertainty into the covariance matrix
(following Section 6.2) has on the cosmological constraints. In par-
ticular, while not dominant over the data covariance, the constraints
are broadened somewhat when accounting for the GIK parameter
uncertainty. This means that for a DESI-like survey one would ideally
want larger volume simulations than the FORGE simulations we used
here, in order for this model uncertainty to be negligible for the
derived constraints. We stress that the ability for (5004~! Mpc)?
volume simulations to be used in the modelling of a 20 (h~! Gpc)?
data vector, without the model uncertainty being dominant over the
data covariance, is possible only because of employing the GIK
model (as opposed to directly emulating the data vector extracted
from the set of simulations) and the resulting advantages described
in Section 5.1.

6.4 Fitting to mock data extracted from simulations

As described above, while fitting to emulator-generated data provides
some tests of our analysis pipeline, and also acts as a forecast
for the constraining power expected with a particular experiment
(which enters through the covariance matrix), it does not provide an
exhaustive test of our modelling procedure. For example, we have
seen in Fig. 2 that the functional form that we use for P(v,, v,|r)
does not perfectly describe the galaxy—cluster pairwise velocity
distribution. To assess the extent to which this mismatch could lead
to biased results, we also want to test fitting to data vectors measured
directly from simulations (as in, to ‘observe’ our simulations much
like we observe the real Universe).

6.4.1 Stacked INDRAS,

One problem with testing on data vectors measured from simulations,
is that simulations with sufficient resolution that we can populate
them with galaxies using an SHAM-like scheme are typically not of
comparable volume to future surveys. This means that while we can
test that the model gives reasonable results with a modest volume
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Figure 9. The posterior distribution for the cosmological parameters when
fitting to a data vector calculated from a stack of the INDRA simulations. The
different contours correspond to fitting the f}: data vector down to different
minimum 7. The INDRA cosmology is marked by the dashed lines. Because
the INDRA simulations were run with GR, they have frg = 0, corresponding to
logyg |fro + 107%| = —6, which is on the edge of our cosmological parameter
prior.

of data, we cannot test that it returns results that are unbiased at the
level of precision that will be afforded by future data sets.

To get around this, we return to the INDRA suite of simulations,
which comprises many simulations, each of which hasa (1 2~! Gpc)?
volume. These simulations were all run with the same cosmology,
and so we can combine the oe(Tps ) from many of them to get a
simulated data vector, at the INDRA cosmology, from a large simulated
volume.'# Specifically, we calculate &5, (rp, rz) from each INDRA
simulation (using our fiducial cluster and galaxy definitions), and
then take the mean of this over the different INDRA simulations to
get our stacked INDRA data vector (this is the same as (£5%) from
Section 5.1).

We fit to this stacked INDRA data vector using MCMC, with the
model ggg(()) calculated from our FORGE-trained emulator for the
GIK parameters, along with the true real-space clustering (for which
we use the mean over the different INDRA simulations of Ecrg(r)). The
resulting posterior distribution is shown in Fig. 9, where the different
colours correspond to different minimum r, values down to which
we fit the data.

A key takeaway from Fig. 9 is that if we make our fidu-
cial choice of fitting to &, over the range 1 < rp/h~" Mpc < 15,
0 < r,/h~ " Mpc < 20, then we confidently infer a cosmology that
is inconsistent with the true cosmology used to run the INDRA
simulations. This inconsistency goes down —both due to a broadening
of the posterior, and due to a shifting of the mean of the posterior
— if we increase the minimum value of r, down to which we fit

“We note that this is not quite equivalent to having run a single large
volume simulation, primarily due to the absence of density fluctuations with
wavelengths larger than the boxsize in each of the INDRA simulations.
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the data. The fact that using the GIK model to predict &, on scales
< 3 h~! Mpc can lead to biases in the inferred cosmology should not
come as a surprise given the evidence for model mis-specification
that we saw on these scales in Fig. 6.

It is interesting to consider why the constraints are noticeably
tighter when one includes scales down to 1 4~! Mpc. This suggests
that there is considerable cosmological information contained in the
velocities of galaxies 1 —3/~! Mpc away from clusters. We hy-
pothesize that this is because the radius at which f(R)’s Chameleon
screening turns on (and so inside of which, the usual GR forces are
obtained) is of order an Mpc. For example, at z = 0, and in a halo
slightly less massive than the clusters we consider here, the screening
radius is between 1 and 2 Mpc when log,, | fro| = —6 (see fig. 7 of
Moran, Teyssier & Li 2015). If some enhancement to gravity happens
everywhere, then it is hard to distinguish between a more massive
cluster and enhanced gravity. However, with data that spans regions
that — with f(R) — would be both screened and unscreened, it is
no longer the case that enhancing gravity (in only the unscreened
regions) is equivalent to increasing the cluster mass.

We should stress that the GIK parameter emulator used with
these different minimum 7, values was subtly different. We had
originally fit the GIK parameters for each FORGE simulation over the
radial range 1 < r/h~! Mpc < 20, and used these GIK parameter
posteriors when training our GIK parameter emulator. However, we
found that when only fitting to the &, data vectoratr, > 3 h~!' Mpc,
we got a less biased result if our GIK parameter emulator was trained
using GIK parameters fit to the radial range 3 < r/h~' Mpc < 20
rather than 1 < r/h*IMpc < 20. This makes sense, because if
the GIK parameters returned by fitting to » > 1 and > 37~ Mpc
are different, the r > 3 7~ Mpc case must be a better description
of the cluster—galaxy pairwise velocity distribution at large radii.
Forcing the same set of GIK parameters to simultaneously explain
the velocity distribution within 1 < r/h~'Mpc < 3 (where we
know the model is not an accurate description of the velocity
distribution) then degrades how well the GIK model describes
the velocity distribution at large radii. Given that &, at some
rp is affected only by the clustering and velocity distribution at
3D radii r > rp, if we only need to model the data vector at
Tp > Tmin, then it makes sense to only fit the GIK parameters to
radii 7 > Fin.

An avenue for future work would be to improve the GIK model
such that it provides a better description of P(v,, v,|r) at small r. This
could involve both improving upon the seven-parameter model for
the velocity distribution at a single radius (equation 4), which we have
seen in Fig. 2 is not a perfect description of the velocity distribution
found in N-body simulations, as well as finding improved functional
forms for how these seven GIK functions vary with radius (e.g. the
form of equation 7).

For now, we note that while our GIK model-based emulator
allows for the extraction of cosmological information from RSD
on scales below that at which linear theory predictions break
down, it does not appear that we can use it to model cluster—
galaxy clustering, all the way down to scales below the virial
radii of the clusters. This is somewhat disappointing given that
one of the key features of the GIK model is that the veloc-
ity distribution has two components, one of which describes
galaxies that are virialized within galaxy cluster potentials (and
which is only relevant on scales around and below cluster virial
radii).

Another potential explanation for the biased cosmological param-
eter inference seen in Fig. 9 is differences between the FORGE and
INDRA simulations. If the INDRA and FORGE simulations predicted
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different GIK parameters for the same cosmology, then using a
FORGE-trained emulator to fit to INDRA mock data would lead to
such a bias.”> While this effect is almost certainly present at some
level, the reasonable convergence of the GIK functions with respect
to numerical resolution seen in Fig. 4 suggests that the differences
between INDRA and FORGE (most notably that INDRA has eight times
worse mass resolution) should not lead to dramatic differences.

To be more quantitative about this, we inspected the GIK parame-
ters predicted by our FORGE-trained emulator, at the INDRA cosmol-
ogy (there is no FORGE simulation run at the INDRA cosmology). We
define the following:

(1) grorge(@mora), the GIK parameters predicted by the FORGE-
trained emulator, at the cosmology of the INDRA simulations.

(i) gXoras the GIK parameters measured for the kth INDRA
simulation.

(iii) (g%, s, the mean of the GIK parameters from the different
INDRA simulations.

@iv) Oggg, the maximum-likelihood cosmological parameters when
fitting to the stacked—lNDRAEjg data vector (the ‘r, > 1 h~!Mpc’ fit
in Fig. 9).

(V) grorge(0zs,), the GIK parameters predicted by the FORGE-
trained emulator, at 0:,. These are the GIK parameters being used
in the best-fitting model to the stacked-INDRAE?, .

(vi) Z;NDRA, the covariance matrix for g calculated from the set of

k
&inpRrA*

Then, defining x°(g,.g,) as (g, — &) (3" (g, —
g,), we find that x%(grorce(@mora): (gf‘NDRA)) =177, while
x*(groroe(0zs,)s (€hora)) = 571. So the difference between 0y,
and Onprs is not because grorge(fe,) does a better job than
grorge(@inora) of producing GIK functions that look like those found
in INDRA. This points towards the dominant effect being model mis-
specification, that results in the optimal set of GIK parameters to
describe &, not being the same as those one gets by fitting the GIK
parameters directly to the position/velocity data from simulations.

Nevertheless,  x2(grorae(@mora)s (8hora)) = 177 (compared
with an expectation of ~ 24 if the FORGE prediction at the IN-
DRA cosmology looked like the GIK parameters from a random
INDRA volume) suggests there are systematic differences between
INDRA and FORGE, and/or errors induced by the emulation pro-
cess. In order to get a sense of how robust the GIK parame-
ters are to the details of the simulations, in the future it would
be good to compare the GIK parameters fit to different simu-
lations run with the same cosmology, and also to build emula-
tors with different suites of simulations and compare their re-
sults.

7 DISCUSSION

The procedure that we have presented, combining an emulator for
the cluster—galaxy pairwise velocity distribution with some external
knowledge (or model) for the real-space clustering, is an interesting
alternative to more direct emulation of redshift-space clustering data
vectors from simulations. As described in Section 5.1 it has distinct
advantages and disadvantages, and so is worth considering as the
community tackles how to maximally extract small-scale information
from the next generation of redshift surveys.

15This would also suggest that the GIK parameters are not robustly predicted
by simulations, which would be bad for the prospects of applying this model
to observational data.
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7.1 Required developments

Before a method like the one we have described here can be applied to
real observational data, there is some additional work that is required.
We outline some of these developments now.

7.1.1 Variations in the galaxy—halo connection

On sufficiently large scales, galaxies are expected to be almost
unbiased tracers of the cosmic velocity field (Chen et al. 2018).
However, effects like dynamical friction (which affects dark matter
haloes, but not individual dark matter particles) can lead to haloes
(and hence galaxies) having velocity distributions that differ from
that of the matter distribution on smaller scales (e.g. Armitage et al.
2018).

In this work we used (sub)haloes as our galaxies, which should
produce a more realistic velocity bias than had we simply used dark
matter particles. However, exactly which haloes get populated with
galaxies could potentially alter the velocity bias, leading to different
GIK parameters for different galaxy samples. This means that in
order to apply our method to real data, it would be important to
populate the simulations — used to train the GIK parameter emulator
— with galaxies in a manner that is close to how the real Universe
populated its dark matter haloes with galaxies.

Exactly which galaxies are selected in some survey (and therefore
how those galaxies populate the underlying dark matter structures)
is expected to lead to differences in their kinematics. For example,
Orsi & Angulo (2018) found that populating a DMO simulation with
galaxies using a semi-analytic model lead to different kinematics for
stellar mass selected galaxies and galaxies with prominent emission
lines. As a simple example, if part of what quenches star formation
in galaxies and leads them to turn from blue to red is environmental
effects, one expects some blue galaxies that fall into a cluster will
be made red once inside. Within the GIK model this would produce
quite different f,;(r) for red and blue galaxies, with (at fixed radius)
blue galaxies more likely to be infalling, and red galaxies more likely
to be virialized within the cluster potential.

Potentially better than trying to put galaxies into the simulations in
the ‘correct’ way, would be to use a parametrized model to populate
the simulations with galaxies, populating each simulation numerous
times using different galaxy—halo connection parameters. The GIK
parameter emulator could then be built to cover variations in both
cosmological and galaxy—halo connection parameters. Then, the
galaxy-halo connection parameters could be left free in the fit, and
marginalized over when drawing conclusions about cosmological
parameters. This sort of approach is what is done when directly
emulating redshift-space clustering data vectors from simulations
(Zhai et al. 2019; Yuan et al. 2022; Lange et al. 2023; Kwan et al.
2023). In our case, it would be non-trivial, because fitting for the
GIK parameters is a reasonably computationally expensive step, so
doing this many times over with different galaxy—halo connection
parameters for each simulated cosmology would require a consid-
erable amount of computing time. Nevertheless, such an endeavour
would be important to properly incorporate how uncertainty on the
way galaxies trace dark matter leads to uncertainties on the GIK
parameters for a given cosmology.

7.1.2 Prescription for the real-space clustering

Throughout this paper, we have assumed that the real-space clus-
tering is known, and that we only need to model the effects of
RSD on this to get &;,. When applying this method to real data,
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the real-space clustering will not be known a priori, and must either
be measured or modelled. Measuring the real-space clustering could
be done by measuring the projected correlation function (usually
denoted we(6), which expresses the cross-correlation between the
positions-on-the-sky of clusters and galaxies) and applying an inverse
Abel transform (e.g. Hickstein et al. 2019) to get &, (). Modelling
§:,(r) could involve using an emulator for the real-space clustering’s
dependence on cosmology (e.g. Cuesta-Lazaro et al. 2023), or just
using a flexible parametric model for S{g(r) and adding w.(0) to
the data vector being fit to, in order to help constrain this model’s
parameters.

We note that inferring the real-space clustering has some associ-
ated challenges. For example, the projected clustering

Weg(ry) = / £,y 1) (22)
integrates over the line of sight, removing any dependence on RSD.
However, this is only exactly true for infinite 7, max, and Hang et al.
(2022) (when fitting models to the galaxy—group cross-correlation
from the Galaxy and Mass Assembly (GAMA) survey) found that a
large enough 7, max to achieve results that were independent of RSD
effects, lead to measurements that were too noisy to be useful.

In addition, the projected clustering faces observational challenges
associated with how galaxy spectra are obtained. For example,
both the Sloane Digital Sky Survey (SDSS) and now DESI cannot
obtain spectra for sufficiently nearby pairs of galaxies without
multiple observations of the same field (Hahn et al. 2017; Smith
et al. 2019). The bias to the measured correlation function that
would come from preferentially missing galaxy pairs with small
separations can be corrected for (e.g. Bianchi & Percival 2017),
but these observational systematic effects nevertheless increase the
uncertainties on small-scale clustering. This means that our inferred
real-space clustering may have significant uncertainty, which would
translate into increased uncertainty on the velocity distribution (and
hence the cosmological parameters) when fitting the GIK model to

£,

7.1.3 Distribution of cluster masses

At present, we measure the GIK parameters from simulations
for multiple narrow cluster mass bins, and use this to build an
emulator for p(v,, v,|r, M) (the cluster—galaxy pairwise velocity
distribution, for a given cluster—galaxy separation and cluster mass).
A realistic cluster sample, selected on a property like richness or X-
ray luminosity, would be expected to have a sizeable range of cluster
masses. If we have a sample of clusters with a number density per
unit cluster mass of dn/dM, then one might imagine that we can find
the GIK parameters appropriate for this sample of clusters as some
sort of weighted average of the GIK parameters for different cluster
masses. If we take equation (11) and make explicit the dependence
of various quantities on the mass of the galaxy clusters (M), we have
at a particular mass that

L+ £,(rp. r | M)

_ H@ X/1+ e r1M)
T 142 cos 6

p (v, v|r, M) dv,dy.  (23)

The average redshift-space cross-correlation with galaxies for our
sample of clusters is

(£ (rp 1)) = / £5,(rp. 1| M)p(M) dM, 24
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where p(M) = {&/ [ {£dM is the normalized probability density
associated with the cluster mass distribution. Similarly, the real-space
clustering of our cluster sample is

(&L(r) = / EL(rIM)p(M)dM. (25)

Putting equation (23) into equation (24), we get

H
L (80 ) = 1

1+ &L, (rIM)
« [ | [ S

The form of this integral means that we cannot simply calcu-
late (‘;‘gg(r,,,r,,)) using (écrg(r)) and some appropriately averaged
(p(v,, v¢|r)). To properly calculate a model ( gg(r,,, ry)) for a broad
cluster mass distribution, we would need to have a model for
‘;‘C’g(r|M), a model for p (v,, v,|r, M) (which our emulator for the
GIK parameters provides), and a model for p(M).

This is problematic for the approach (described in Section 7.1.2)
of using the observed projected clustering to infer £,,(r), as this
would produce a measurement of ( C’g(r)) — averaged over the cluster
sample — without knowing about its mass dependence. For cluster
mass distributions that are reasonably narrow, it may be sufficiently
accurate to combine some sort of mass-averaged p (v,, v(|r) with
(§c5(r)). Generating cluster samples with suitably narrow mass
distributions will be helped by the ongoing development of low-
scatter cluster mass proxies (e.g. Eckert et al. 2020), but we leave an
investigation of how well this would work, and how one would best
average p (v,, v;|r, M), to future work.

If one instead takes the approach of having a parametrized model
for SC’g(r) and including w(0) in the data vector being fit to, then
this could be extended to have a parametrized model for ‘;‘C’g(r|M )
as well as p(M). Combining these with p (v,, v;|r, M) from the
GIK parameter emulator we can then calculate both the redshift-
space and projected correlation functions, allowing the parameters
of the C’g(r|M ) and p(M) models to be constrained by the clustering
data.

p (., vlr, M) dv, dy| dM.(26)

7.1.4 Extension to higher redshifts

In this work, our GIK parameter emulator was built only using
simulation data from z = 0. Extending this to work at different
redshifts would simply require using simulation outputs at different
redshifts. We could either build an emulator for the specific effective
redshift of some target survey, or we could build the emulator with
redshift being an additional input parameter along with cosmology
and cluster mass, and use simulation outputs at many different
redshifts in the GIK parameter training data. This emulator could
then be applied to data from any redshift (including clustering data
in different redshift bins).

7.1.5 Selection effects

Our model for redshift-space clustering assumes that the real-space
clustering is isotropic, and that RSD due to cluster/galaxy velocities
breaks this. However, the selection of our clusters and/or galaxies
may break this assumption of isotropy. For example, the processes
involved in optical cluster selection typically lead to the overdensities
selected as clusters being preferentially elongated along the line of
sight (Dietrich et al. 2014). If the cluster shape is correlated with the
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distribution of galaxies around it, then this would lead to the real-
space clustering of galaxies around clusters already being anisotropic
(with respect to the line of sight to the cluster) before accounting for
RSD.

Assessing the potential impact of this, as well as testing any
mitigation strategies, would most-likely require realistic mock data
to which cluster selection algorithms could be applied and a mock
analyses performed. For example, the Cardinal mock galaxy cat-
alogues (To et al. 2023) accurately reproduce the abundance of
galaxy clusters, and could be used to assess how selection effects
(especially orientation-dependent ones) might lead to biases in the
inferred cosmological parameters.

7.1.6 Artificial disruption in simulations

Our approach relies on N-body simulations faithfully reproducing
the cluster—galaxy pairwise velocity distribution. There has been
recent literature about artificial disruption/destruction of subhaloes in
simulations (e.g. van den Bosch et al. 2018; van den Bosch & Ogiya
2018; Green, van den Bosch & Jiang 2021; Diemer, Behroozi &
Mansfield 2023), with claims that a significant fraction of sub-
haloes that should survive are destroyed due to numerical effects.
If the subhaloes artificially destroyed preferentially have certain
orbits, their destruction would bias the inferred GIK parameters,
although this effect should primarily be on small scales (within
approximately the cluster virial radii) where the GIK model cannot
currently be applied to infer unbiased cosmological constraints
anyway.

Fully understanding the potential impact of this would require a
dedicated simulation study. Here, we note that the relatively good
agreement in Fig. 4 between the GIK functions for TNG300, and
a simulation with 64 times worse mass resolution, is a cause for
optimism. That said, van den Bosch & Ogiya (2018) warn that
because of the way in which both softening and particle mass are
typically varied as simulation resolution is changed, it is possible for
results to appear converged while not having converged to the true
(infinite resolution) result.

7.1.7 The effects of simulation box size

As previously stated, a key advantage of our method is that it does
not suffer too much from the noise associated with relatively small
simulation volumes (see Section 5.1), enabling the use of small
simulations to build an emulator for the pairwise velocities. However,
small volume simulations do not just provide noisier estimates of
quantities compared with their larger box-size counterparts, but
can produce biased estimates. This arises if large-scale density
fluctuations (not present in smaller volume simulations) impact the
quantities of interest.

Large-scale power is certainly important for the distribution of
the peculiar velocities of dark matter haloes (see e.g. fig. 9 of Cole
1997). However, it is not clear whether the pairwise velocities of
haloes/subhaloes with separations much smaller than the box-size
are appreciably impacted by the finite box-size and the associated
absence of large-scale power. Maleubre et al. (2023) recently pre-
sented results for the pairwise velocities of the matter field, from
‘scale-free’ simulations, which have power-law power spectra. Box
size effects were found to be strongly dependent on the spectral
index of the power spectrum in these simulations, making it hard to
extrapolate to the case of ACDM-like universes, in which the power
spectrum is not scale free. We are not aware of work looking at this in
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a ACDM context, but a future measurement of the pairwise velocity
distribution as a function of box size is one of the steps that should
be taken before a method like ours is applied to real data, in order
to demonstrate the level at which the GIK parameters inferred from
simulations might be biased by the box size of the simulations used.

7.2 Null tests of general relativity

Here, we have built an emulator for a specific theory of modified
gravity, f(R). This is just one of many alternatives to GR, and tying
our modelling procedure to a particular modified gravity theory is
somewhat undesirable. To understand alternative strategies to test
theories of gravity, it is instructive to consider the case of RSD on
larger scales. On large scales, we can make use of linear theory, for
which the matter power spectrum in redshift space, P} (k, i), is given
by (Kaiser 1987)

Prtk, 1) = (1 + f1®)* Pr(k), 27

where P} (k) is the (isotropic) real-space power spectrum, p = k-2
is the cosine of the angle between wave vector k and the line-of-
sight direction, and f is the linear growth rate (for a definition,
see e.g. Hamilton 2001). Within a ACDM + GR universe, the
value of f is closely approximated by f ~ Q% (Linder 2005).
Nevertheless, when fitting to observational data, f and €2, can be
treated as independent parameters. The inferred values of f and 2,
can then be compared, to see if the relationship between them is that
expected in a ACDM 4 GR universe, or if they appear inconsistent
with this. Treating the standard cosmological model as some sort of
null hypothesis, and then seeing if there is evidence for deviations to
this, is attractive because it does not tie the analysis to any particular
alternative, but just seeks to investigate whether there is evidence for
some departure from ACDM + GR.

On the face of it, our method for modelling &, is not so amenable to
this style of analysis, because the emulator is essentially interpolating
between a set of self-consistent simulations, and so it cannot produce
predictions that are not self-consistent (such as a ACDM + GR
universe with £ % QU:5%). It is interesting to consider how we could
extend our modelling procedure to be more analogous to the case
described above (where f and 2, are treated as being independent
when modelling RSD on linear scales). One possibility would be to
treat our RSD model primarily as a way to measure the mass of the
cluster sample, assuming GR within the model. We could build an
emulator using ACDM + GR simulations (which, no longer having
a variable fgo, would no longer suffer the Mag— fro degeneracy that
we see in our results). We could then use this emulator to fit to an
observed data vector. Comparing the mass inferred from fitting to &,
with that inferred using an independent method (with weak lensing
being an obvious choice), we could then see if these two masses
agree or not, with a disagreement hinting towards non-GR gravity.

Another alternative, would be to again build an emulator for the
GIK parameters using ACDM + GR simulations, but then introduce
one or more rescaling parameters that would shift the GIK function
curves. For example, one could imagine a single rescaling parameter,
fvela such that Ure = fvel Ur,cs Orad —> fvel Otad» and Otan —> fvel Otan-
Fitting for the cosmological parameters alongside f., evidence that
fvel # 1 would point towards some sort of modification to gravity.

8 CONCLUSIONS

We have presented a method to model the cluster—galaxy cross-
correlation function in redshift space, &,, based upon a slightly

modified version of the GIK model from ZW13. We demonstrated
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how to find the posterior distribution for the parameters of the GIK
model from 3D simulation data, with the data required being both
positions and velocities of clusters and galaxies extracted from N-
body simulations. Repeating this procedure for simulations run with
different cosmologies (from the FORGE simulations, that simulate
different f(R) modified gravity cosmologies), we built up training
data for the cosmology dependence of the GIK parameters.

We used this training data to build Gaussian process emulators for
how the different GIK parameters depend upon the cosmological pa-
rameters and the theory of gravity. Combining these GIK parameter
emulators with knowledge of the real-space cluster—galaxy cross-
correlation, allowed us to calculate gg as a function of cosmological
parameters. Comparing these model predictions with an observed
data vector, we can then make inferences about the cosmological
parameters.

The finite volume of the simulations, leads to uncertainties on our
training data. We presented a method to propagate uncertainty on
the GIK parameters from the training data, through to uncertainty
on the model data vector. This included a procedure that we call
‘GIK parameter diagonalization’, a linear transform of the GIK
parameter vector that allows separate Gaussian Processes (one for
each ‘diagonalized’ GIK parameter) to properly account for the
covariance between uncertainties on the different GIK parameters
in the training data.

Fitting our model to mock data generated by the model itself,
we showed forecasts for the cosmological constraining power that
RSD in the cluster—galaxy correlation function on small scales
will provide with data from a survey like DESI. We found that
a combination of the typical mass of our cluster sample and the
strength of modifications to gravity was tightly constrained, such
that an independent measurement of cluster mass (which could be
provided by weak gravitational lensing) will enable RSD to tightly
constrain theories of gravity.

Finally, we applied our method to mock data extracted directly
from N-body simulations. We found that our procedure leads to
a biased inference on the cosmological parameters if fitting the
correlation function all the way down to a scale of 1 2~ Mpc. How-
ever, these biases are strongly reduced when cutting out the smallest
scales (< 3 h~! Mpc), at the expense of broadened constraints on the
cosmological parameters. We attribute these biases to deficiencies
in the model on a scale of 1 — 3 h~! Mpc, with these deficiencies
visible in both Figs 2 and 6.

A large fraction of the cosmological constraining power from
current and future redshift surveys comes from small scales, which
will most likely require modelling methods based around the use of
N-body simulations. Our approach — of using simulations to build
an emulator for the RSD kernel, which can be combined with some
other model for the real-space clustering — is quite different from
other approaches in the literature that directly measure the redshift-
space correlation function from simulations (Zhai et al. 2019; Yuan
et al. 2022; Lange et al. 2023; Kwan et al. 2023). Advantages of our
approach include:

(i) It separates out the two conceptually different components that
produce the redshift-space clustering: the real-space clustering and
the RSD kernel. This allows developments to be made to either
component independently, and can also help with understanding and
intuition.

(i1) It allows simulations with substantially smaller volumes than
observational surveys to be used in the modelling of those large
surveys, because imposing a functional form for the RSD kernel
reduces the impact of noise in the simulations (see Fig. 6). This
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means that more simulations can be run, covering a wider range of
possible cosmologies.

(iii) It uses simulations to predict the ingredient of small-scale
redshift-space clustering that they appear to predict more robustly.
As discussed in Appendix C, for the TNG300 simulations: the
RSD kernel’s contribution to &, is better converged with respect
to numerical resolution than the real-space clustering’s contribution
to &, is.

The main drawback of our approach is that it relies on the GIK
model being a good description of the true pairwise velocities. While
this generally seems to be true, there is evidence that at radii <
3h~! Mpc the ‘infalling’ component of the GIK model does not
adequately describe the velocities from simulations (see the ‘banana-
shaped’ P(v,, v;) data and best-fitting model in Fig. 2). An avenue for
future research would be to investigate modifications to the functional
form for P(v,, v;) that allow it to better describe the simulation data,
with the goal being a model that could be applied down to very
small scales without leading to biased inferences of the cosmological
parameters.
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APPENDIX A: FUNCTIONAL FORM OF THE
GIK FUNCTIONS

As discussed in Section 3.2, the variation of the GIK functions with
radius is described by the set of GIK parameters. In Table Al,
we provide the parametric forms for the GIK functions. We note
that:

(i) The functional forms for o,,q, Oan, dof, and « are all the same
as one another (and the same as that used by ZW13 for these GIK
functions), but we parametrize them slightly differently based on our
experience of parameter degeneracies when fitting these functions to
simulation data.

(@i1) For f,;; we use the same functional form as in ZW13, but we
fix y = 2 rather than y = 3.

(iii) We use a different functional form for o;, from that in ZW13.
This was because the form listed in ZW 13, equation (9) did not seem
to agree with what was plotted in ZW13, fig. 6. The functional form
we used was inspired by Aung et al. (2023).
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Table A1. The functional forms for the various GIK functions, with the corresponding free parameters (the ‘GIK paramaters’) listed. A GIK parameter vector,
g, is the set of 24 dimensionless numbers listed in the ‘GIK parameters’ column, working from the top down. Our prior on g (used when measuring the GIK
parameters directly from position/velocity data from simulations) is a separable function of each GIK parameter, and is a uniform prior in each case, with the
upper and lower limits enclosed in square brackets in the ‘Prior’ column.

GIK function GIK parameters Prior Notes on GIK function
. [

ona(r)=q —qf;— (H_(ﬁr_%) log,q/kms™! [2,3.5]
f [0,0.99]
logyy B [0.04,1.7]
1o, Fmin/h ™" Mpc [—0.5,2]

r Brmin B —1 . P

oan(r) = q — ‘Ifﬁ <m) log;y A/kms [1.5,3] A is the minimum
f [0,0.99] value of o,y (r), given
logo B [0.04,1.7] by A=q(l— f)
1og,o Fmin/h ™" Mpc [—0.5,2]

\B

V() =g —1 (+ ) ¢/kms~! [—1000, 1000]
log;o t/kms™! [1.4]
8 [0.1,4]
log, ri/h~" Mpc [—1.5,2]

]

dof() =1+ —af ;= () A [0,10] A=q(l—f)
f [0,1] dof > 1
logy B [0.1,4]
log ;o min/h ! Mpc [—0.5,2]

. ]

a=q-qf ;5 () g [-3. 10] h="rg
h [—10, 10]
logjo B [0.04,1.7]
10g rmin/h ™" Mpc [—0.5,2]

Foine(r) = exp (—(r/ro)") ro/h™" Mpc [0,10] We fix y =2

owir(r) = a0 (1 +q exp (;)) oo/kms! [100,2000] Inspired by Aung et al. (2022)
q [0,2]
rvir/h ™! Mpc [0,5]

APPENDIX B: ALTERNATIVE LIKELIHOOD
FOR FITTING GIK PARAMETERS TO A
SIMULATION

For our fiducial INDRA simulation volume (for which &;, is plotted
in Fig. 1), we tested whether our inferred GIK parameter vector, g,
was different if we used the likelihoods defined in equation (5) or
(8). For the first of these, the data that we fit to is calculated by
binning cluster—galaxy pairs into radial shells and then within each
radial shell further binning them in velocity (v,, v,) space. We then
used MCMC to fit g to these binned counts, assuming that the counts
obey Poisson statistics, with an expectation value for each pixel that
depends on g. For the second likelihood, the data are simply the set
of r, v,, and v, for each cluster—galaxy pair, with the likelihood being
the product over all cluster—galaxy pairs of the probability density
P(v,, v/ |r).

The results of these MCMCs are chains of samples drawn from the
posteriors on the GIK parameters, which we can map into draws from

the posteriors on the GIK functions by evaluating the functions at the
locations of the GIK parameter samples. In Fig. B1, we plot these GIK
function posteriors, showing the median GIK function values as well
as the 20 uncertainties. The results are virtually indistinguishable
between using the two different likelihoods.

In terms of how important the small differences in Fig. Bl
are to our use case of using the GIK model to make model
predictions for &, we performed the following test. Keeping
the real-space clustering fixed, we used the maximum-likelihood
GIK parameters from both the binned and no-binned likelihood
approaches to calculate &7,. The difference between these two
e model data vectors, when expressed as a x? using the data
covariance matrix described in Section 6.1, is 0.16, very small
compared with the differences one gets when calculating &,
through the GIK model using INDRA simulations run with the
same cosmology but with different random initial conditions (see
Section 5.1).
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Figure B1. The GIK function posteriors, from fitting for the GIK parameters using the binned and no-binned likelihoods described in Appendix B. The solid
lines show the median GIK functions as a function of radius, while the shaded regions show the 20" uncertainty (the 2.5th—97.5th percentiles of the GIK functions

at each radius).

APPENDIX C: THE IMPACT OF SIMULATION
RESOLUTION AND THE INCLUSION OF
BARYONIC PHYSICS ON THE PREDICTED &,

In Section 3.3, we presented the results for both the GIK functions
and the real-space clustering of different variants of the TNG300 sim-
ulation. Here, we show the relative importance of these differences
for the calculation of a model &,.

For each simulation, we measured the maximum-likelihood GIK
parameters, g, as well as the real-space clustering, &.,(r). We then
used combinations of g and &, measured from different simulations
to calculate various model &,. The similarity of two different &,
say &5, ; and &, », was then assessed in terms of xt= o1 c! g 20
using the data covariance matrix, C, described in Section 6.1
(rescaled for the ~ (300 Mpc)® volume of a TNG300 simulation).

The results of various combinations were as follows:

(a) When keeping the real-space clustering fixed to &/, from
TNG300, but using g from TNG300 or TNG300 low-tes, the x>
difference was 1.0.

(b) When keeping g fixed to that from TNG300, but using &,
from TNG300 or TNG300 low-res, the x? difference was 18.

(c) When keeping the real-space clustering fixed to &/, from
TNG300, but using g from TNG300 or g from TNG300 DMO,
the x? difference was 0.12.

(d) When keeping g fixed to that from TNG300, but using &,

from TNG300 or TNG300 DMO, the x? difference was 1.7.
Comparison of (a) and (b) with (c) and (d) shows that (fg is more

affected by a factor 64 change in resolution than baryons versus no
baryons. Comparing (a) with (b) we see that using low-resolution
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simulation GIK parameters leads to a better estimate of the high-
resolution £, than if using low-resolution simulation real-space
clustering. And comparing (c) with (d) tells us that the same is
true when considering a hydrodynamical simulation versus a DMO

one.

APPENDIX D: WHAT IS THE PRIMARY
SOURCE OF MODEL MIS-SPECIFICATION
ERROR?

The right-hand panel of Fig. 6 made clear that there is substantial
model mis-specification on small scales (< 3 2~ Mpc). This means
that the 24 GIK parameters are not adequately describing the velocity
distribution at small radii. There are two obvious culprits for this,
one is that the seven GIK functions do not adequately describe the
pairwise velocity distribution at fixed radius, and the second is that the
GIK parameters do not adequately describe the radial dependence of
the GIK functions. Knowing the relevant importance of these sources
of model mis-specification should aid with future efforts to improve
the GIK model.

To assess this, we calculated model &, data vectors that did not
make use of the GIK parameter description of how the GIK functions
vary with radius. Instead, having fit for the GIK functions in many
radial shells, we directly used the GIK functions to describe the
velocity distribution at radii within the relevant shell. Specifically,
the GIK functions used to calculate a model &7, were (over the radial
range [r;, 7;+1]) the maximum-likelihood set of GIK functions fit to
the {v,, v,} data for cluster—galaxy pairs with separation in the range
[r;, riy1]. We used radial shells that were 1 h! Mpc thick.

We generated model &, using both our fiducial approach (*GIK
parameters’) and the approach just described (‘GIK functions’) for
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Figure D1. Maps of the normalized residuals, similar to those in Fig. 6. Each
panel shows the mean result over 24 INDRA simulations. The mean égg from
the GIK models is compared with the mean &, measured directly from the
INDRA simulations. In the left-hand panel, the model ggg is calculated in the
usual way (where the velocity distribution at all radii is described by the 24
‘GIK parameters’). In the right-hand panel, the pairwise velocity distribution
used for the model &, treats each GIK function as constant within 14~! Mpc
thick radial shells, with the values of the GIK functions within each radial
shell obtained as the maximum-likelihood values from fitting to the {v,, v;}
data in that shell.

each of 24 INDRA simulations for which we had fit the GIK functions
to the velocity data in spherical shells. Fig. D1 shows the residuals
between the mean of these 24 model &, and the mean &, measured
directly from the INDRA simulations, normalized by an error map, o
(defined in Section 5.1.1). The ‘GIK functions’ residuals plot shows

© 2024 The Author(s).
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similar structure on small scales to the ‘GIK parameters’ one, which
means that a deficiency in the GIK functions is at least partly to
blame for the mismatch between model and data £, on small scales.
Nevertheless, the residuals are less pronounced in the ‘GIK functions’
case than the ‘GIK parameters’ one, which means that the model
could be improved somewhat without altering the seven parameter
model describing P(v,, v,) at fixed radius, but simply by improving
the description of how this varies with radius. Quantitatively, we
found that the corresponding x? (using the covariance matrix from
Section 6.1, whichignores pixels in the lowest r, bin) for the residuals
plotted in Fig. D1 were 23 and 11, for the ‘GIK parameters’ and ‘GIK
functions’ cases, respectively.

Achieving an improvement to the radial dependence of the GIK
functions could be a case of devising better functional forms, that may
then require more GIK parameters. An alternative, would be to use the
Gaussian processes that currently model the cosmology dependence
of the GIK parameters, to also model the radial dependence of the
GIK functions. In essence, one would use a suite of simulations
to measure the GIK functions at different points in cosmological
parameter space, as well as for different cluster masses and different
cluster—galaxy separations. Then, a Gaussian process could be
constructed for each of the GIK functions, that predicts the value
of this GIK function as a function of cosmology, halo mass, and
separation. Such a procedure could only improve the model so
far though, given that the right-hand panel of Fig. D1 still shows
residuals, that would require an improvement to the GIK functions
themselves to remove. As noted in Section 5.1.2, the comparison

between the data and model P(v,,v,) in Fig. 6 provides some
guidance as to how the current GIK functions are deficient at small

scales.
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