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A B S T R A C T 

We present a method for modelling the cluster–galaxy correlation function in redshift space, down to ∼ Mpc scales. The method 

builds upon the so-called galaxy infall kinematics (GIK) model, a parametric model for the pairwise velocities of galaxies with 

respect to nearby galaxy clusters. We fit the parameters of the GIK model to a suite of simulations run with different cosmologies, 
and use Gaussian processes to emulate how the GIK parameters depend upon cosmology. This emulator can then be combined 

with knowledge of the real-space clustering of clusters and galaxies, to predict the cluster–galaxy correlation function in redshift 
space, ξ s 

cg . Fitting this model to an observed ξ s 
cg enables the extraction of cosmological parameter constraints, and we present 

forecasts for a surv e y like that currently being done by the Dark Energy Spectroscopic Instrument (DESI). We also perform tests 
of the robustness of our constraints from fitting to mock data extracted from N -body simulations, finding that fitting to scales 
� 3 h 

−1 Mpc leads to a biased inference on cosmology, due to model mis-specification on these scales. Finally, we discuss what 
steps will need to be taken in order to apply our method to real data. 

Key words: galaxies: clusters: general – galaxies: haloes – large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

nderstanding the cause of the accelerated expansion of the late- 
ime Universe is one of the primary goals of 21st century cosmology
Frieman, Turner & Huterer 2008 ). While current observational 
ata appears to be consistent with the expansion being driven 
y a cosmological constant, � , an e xciting alternativ e is that the
ccelerated expansion is pointing towards gravity behaving in a 
ifferent manner from the predictions of general relativity (GR; 
oyce, Lombriser & Schmidt 2016 ). There are numerous modified 
ravity theories, which – as well as providing potential explanations 
or the accelerated expansion – generally predict regimes in which 
here are enhancements to the total gravitational force, abo v e that
xpected with GR. 

Because gravity on the scale of the Solar system is known to
e consistent with GR to high precision, these additional forces 
ust somehow be screened within the Solar system. Screening 
echanisms typically lead to the enhancements to gravity disap- 

earing in high-density, or deep gravitational potential environments 
Brax 2013 ). In this context, the infall of galaxies onto galaxy
lusters provides an interesting test of these modified gravity theories, 
ecause galaxies will transition from being unscreened to screened 
s they fall into the cluster potential (Zu et al. 2014 ). 

Clusters and their masses are also an interesting area for current 
xploration, because of current tensions between measurements of 
osmological parameters from cluster abundance studies and mea- 
urements made using other methods. F or e xample, the Dark Energy
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urv e y’s (DES) Year 1 Results indicated that the number and/or
asses of galaxy clusters disagreed with that expected from the 

osmology fit to combined cosmic shear, g alaxy–g alaxy lensing, and
hotometric galaxy clustering (Abbott et al. 2020 ). To quantitatively 
xplain these results, the masses inferred through weak lensing for 
ES’s lowest richness clusters would have to be 30–40 per cent lower

han expected from the DES 3 × 2pt cosmology, or else the richness-
elected sample of clusters must be highly ( ∼50 per cent) incomplete.

The cluster–galaxy cross-correlation function in redshift space, 
s 
cg , is an observable quantity that depends both on the clustering
f galaxies around galaxy clusters, and on the relative velocities 
f galaxies with respect to nearby clusters. These velocities in turn
epend upon the mass distribution of clusters, as well as the theory
f gravity. ξ s 

cg ( r p , r π ) measures the excess probability (abo v e that
xpected for randomly distributed clusters and galaxies) of measuring 
luster galaxy pairs with an inferred separation along the line of sight
f r π , and a separation perpendicular to this of r p . Cluster–galaxy
airwise velocities get imprinted into ξ s 

cg ( r p , r π ) because the line-
f-sight separations between cluster–galaxy pairs are inferred from 

ifferences in their redshifts, which – as well as depending upon 
he true line-of-sight separations – receive a contribution from the 
ine-of-sight components of their peculiar velocities. The effects of 
eculiar velocities on the observed clustering signal are known as 
edshift-space distortions (RSDs). 

If we wish to use RSD in the cluster–galaxy correlation function to
robe cluster mass distributions as well as modifications to GR, then
e need to include data from the small scales on which the cluster
otential makes a significant contribution to the galaxy velocities. 
lustering on these small scales also contains a large fraction of the

tatistical constraining power from current and future surv e ys, mak-
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1 Centred on the most gravitationally bound particle in the FOF group, we 
define r 200 as the radius within which the mean enclosed density is 200 × ρcrit , 
with the mass enclosed within r 200 being M 200 . 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/4/4081/7738386 by guest on 07 N
ovem

ber 2024
ng the accurate modelling of redshift-space clustering on these scales
 crucial ingredient for extracting the maximum amount of infor-
ation. F or e xample, for a BOSS-like surv e y, the constraints on the

rowth rate of structure from r < 30 h 

−1 Mpc scales alone are nearly
 factor of two tighter than those from the fiducial Baryon Oscillation
pectroscopic Surv e y (BOSS) analysis of redshift-space clustering
sing perturbation theory on larger scales (Zhai et al. 2019 ). 
Gi ven the e ver increasing volume and resolution of N -body simu-

ations, one approach to modelling galaxy clustering on small scales
s to directly use the results from a simulation with a given cosmology
s the model prediction for that cosmology. In practice, simulations
re still too time consuming to run one for every likelihood e v aluation
n a cosmological likelihood analysis. Ho we ver, assuming that the
imulated data vector varies smoothly as the cosmological parameters
re varied, some sort of interpolation scheme can be used to predict
he data vector at an arbitrary cosmology, from the data vector
alculated from simulations run at other cosmologies. 

This procedure is known as emulation (see Euclid Collaboration
019 ; Zhai et al. 2019 ; Yuan et al. 2022 , for a few different examples
n cosmology). Emulating some cosmological observable from sim-
lations requires that we trust the simulations to reliably predict the
bservable. It also requires simulation volumes comparable with or
arger than observ ed surv e y volumes, so that noise in the simulations
oes not dominate the error budget – although there have been recent
evelopments to suppress the variance in simulation predictions (e.g.
ngulo & Pontzen 2016 ; Maion, Angulo & Zennaro 2022 ; Kokron

t al. 2022 ). 
Here, we explore an alternative to directly emulating observables,

hich is to use a physically moti v ated model, the parameters of which
e expect to depend systematically on the values of the cosmological
arameters. We can then build an emulator for the parameters of the
odel, rather than for the observed data vector itself. This approach

as some advantages and disadvantages o v er straight emulation of the
ata vector (discussed in Section 5.1 ). In short, a physical model can
uppress noise and also aids with physical understanding, but opens
he door to the potential for model mis-specification. We build such
 model for the redshift-space cluster–galaxy correlation function,
mploying the galaxy infall kinematics (GIK) model from Zu &
einberg ( 2013 , ZW13 hereafter) to describe the distribution of

luster–galaxy pairwise velocities. We build an emulator for the
arameters of the GIK model using the FORGE suite of f ( R) modified
ravity simulations (Arnold et al. 2022 ), and then demonstrate fitting
his to mock observations of the cluster–galaxy correlation function
n redshift space. 

This paper is structured as follows. In Section 2 , we provide some
asic definitions useful in the rest of the paper. Then in Section 3 ,
e introduce the GIK model from ZW13, highlighting some small

hanges that we have made. In Section 4 , we demonstrate how to
ombine the real-space correlation function with the GIK model
n order to calculate the redshift-space correlation function. Then
n Section 5 , we describe using simulations run with different
osmological parameters to build an emulator for the GIK model
arameters. In Section 6 , we demonstrate the efficacy of our model,
y fitting it to mock data. In Section 7 , we outline some of the
dvancements required before our method could be applied to real
bservational clustering data, before concluding in Section 8 . 

 T H E  C L U S T E R – G A L A X Y  C O R R E L AT I O N  

U N C T I O N  IN  REDSHIFT  SPAC E  

he cluster–galaxy correlation function in real space, ξcg ( r), is
efined such that for a sample of galaxies with number density n g 
NRAS 533, 4081–4103 (2024) 
nd galaxy clusters with number density n c , 

 P cg = n c n g 
[
1 + ξcg ( r) 

]
d V c d V g (1) 

s the joint probability of finding a galaxy cluster in the volume
 V c and a galaxy in the volume d V g , where the separation between
he two (small) volumes is r . This probability (and hence ξcg ( r))
epends only on the distance between the two volumes (and not on
he direction of their separation or their absolute positions) because
f the assumptions of isotropy and homogeneity. 
Calculating ξcg ( r) is rather simple for the case of clusters and

alaxies found within a cosmological simulation in a cubic (periodic)
ox. For some definition of ‘galaxy’ and ‘galaxy cluster’, we can
ount the number of galaxy–cluster pairs that have a separation
etween r and r + d r , which we call d N 

sim 

cg . Assuming that the
otal simulation volume is V , the expected number of clusters is
 c V . If we just consider one of these clusters, then the expected
umber of galaxies (if they were randomly distributed) a distance
etween r and r + d r away from the cluster is 4 πr 2 d r n g , such that
hen accounting for all clusters we expect d N 

rand 
cg = 4 πr 2 d r n g n c V 

airs. Our estimate for the cluster–galaxy correlation function is then
cg ( r) = d N 

sim 

cg / d N 

rand 
cg − 1. 

This same notion can be extended to the case of anisotropic
lustering in redshift space, where the isotropic nature of galaxy
lustering is broken by RSD. In an analogous manner to the real-space
lustering case discussed abo v e, we can count the number of cluster–
alaxy pairs that have a separation with line-of-sight component in
he range [ r π , r π + d r π ] , and a plane-of-sky component in the range
r p , r p + d r p 

]
, and compare this with the expectation in the case of

andomly distributed clusters and galaxies to find ξ s 
cg ( r p , r π ), where

he superscript s denotes that this correlation function is measured
n redshift space. 

.1 The INDRA simulations 

e use the publicly available INDRA suite of simulations (Falck
t al. 2021 ). These will be useful for first elucidating some of
he workings of the GIK model, and then later for calculating
 covariance matrix for ξ s 

cg ( r p , r π ). The INDRA suite consists of
84 simulations, all run with the same cosmological parameters as
ne another, but with different random phases used for the initial
onditions. The simulations are dark-matter-only (DMO), and are
f boxes with a side length of 1 h 

−1 Gpc , with a particle mass of
 × 10 10 h 

−1 M �. In total, each INDRA simulation has 64 snapshots
aved from the time of the initial conditions (at a redshift of z = 127)
own to z = 0, but for simplicity we focus only on z = 0 in this
aper. 

The INDRA snapshots were analysed with the standard friends-of-
riends (FOF) algorithm (Davis et al. 1985 ), after which the SUBFIND

lgorithm (Springel et al. 2001 ) was run, which calculates spherical
 v erdensity quantities such as M 200 for each FOF group, 1 and
lso identifies gravitationally bound substructures within the FOF
roups. 
While there are numerous possible ways that one could populate

 DMO simulation with galaxies, and then also identify galaxy
lusters, for now we will take a simplistic approach. We consider
alaxy clusters to be all FOF groups with M 200 in some range,
hile galaxies are all SUBFIND subhaloes with v max abo v e some
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Figure 1. The measured small-scale cluster–galaxy correlation function 
from the z = 0 snapshot of an INDRA simulation. The left-hand panel shows 
the correlation function in real space, with y the true line-of-sight separation 
between cluster–galaxy pairs, while the right-hand panel uses the inferred 
line-of-sight separation (i.e. the separation in redshift space), r π . 
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hreshold value. Here, v max is the maximum value of the circular 
elocity, v circ ( r) = 

√ 

GM( < r) /r , where M( < r) is the mass en-
losed within a radius r . Note that SUBFIND subhaloes include the 
entral subhalo in each FOF group, so being tied to ‘subhaloes’
oes not imply that our galaxies are necessarily substructures of 
omething larger. Our galaxy assignment scheme can be thought 
f as subhalo abundance matching (SHAM), using v max as the 
bundance matching parameter and with zero scatter (Reddick et al. 
013 ). 
For a cluster and galaxy at locations r c and r g , and with peculiar

 elocities v c and v g , respectiv ely, we define r = r g − r c and v = v g −
 c as the relative position and velocity of the galaxy with respect to the 
luster. We also define the scalar cluster–galaxy separation, r = | r | .
e denote a unit vector along the line of sight as ˆ y , with the line-

f-sight separation between the cluster and galaxy being y = r · ˆ y , 
nd the separation perpendicular to this being r p = | r − y ̂  y | . The
ine-of-sight component of the relative velocity between the cluster 
nd galaxy is v y = v · ˆ y . The relativ e v elocity along the line-of-sight
hanges the apparent line-of-sight separation between the galaxy and 
luster to be r π = y + (1 + z ) v y /H ( z ), where the factor of 1 + z

ccounts for the fact that we define r π and y in comoving coordinates.
For a minimum galaxy v max of 250 km s −1 , and clusters with 

4 . 1 < log 10 M 200 /h 

−1 M � < 14 . 2, we plot the cluster–galaxy cor-
elation function in Fig. 1 . For this purpose, we adopt one of the
artesian axes of the simulation box as the line of sight, and then

how the results both in real space (where the clustering is isotropic) 2 

nd in redshift space, where Kaiser ( 1987 ) squashing enhances the
lustering at intermediate- r p and low- r π , and the fingers of god
pread low- r cluster–galaxy pairs along the line of sight. 

This cluster definition leads to ∼ 3000 clusters in each 
1 h 

−1 Gpc ) 3 INDRA volume, while the number density of galaxies is
 g ∼ 10 −3 ( h 

−1 Mpc ) −3 . This galaxy number density is comparable
ith what is expected for some upcoming galaxy redshift survey 
 While the mean clustering signal is isotropic, the noise is not because (e.g.) a 
ixel at ( r p = 10 . 5 h −1 Mpc , y = 0 . 5 h −1 Mpc ) co v ers a larger volume than 
he pixel at ( r p = 0 . 5 h −1 Mpc , y = 10 . 5 h −1 Mpc ), such that the first of these 
as smaller fractional error due to Poisson counts. 

d
i

T

amples, such as DESI’s Luminous Red Galaxies which will have 
 g ≈ 0 . 5 × 10 −3 ( h 

−1 Mpc ) −3 (Zhou et al. 2023 ). 

 T H E  ‘ G A L A X Y  I NFA LL  KINEMATICS’  ( G I K )  
O D E L  

ur approach to modelling ξ s 
cg is built upon the GIK model introduced

n ZW13. The GIK model describes the velocity distribution of 
alaxies with respect to nearby clusters, as a function of cluster–
alaxy separation. At each cluster–galaxy separation, there are seven 
arameters. We will call these seven parameters the GIK functions, 
ecause they are functions of the cluster–galaxy separation, r , and 
ecause this allows us to use the term GIK parameters for another
et of parameters that we will describe shortly. 

.1 The GIK functions 

he seven GIK functions specify the joint probability distribution of 
adial and tangential velocity components, P ( v r , v t | r). Continuing
n from our definitions of r and v abo v e, we define a unit vector
n the separation direction, ˆ r = r /r . Then, v r = v · ˆ r is the radial
elocity for this cluster–g alaxy pair, where neg ative v r represents a
alaxy moving towards (i.e. falling in to) a cluster. Note that because
e use peculiar velocities, the Hubble flow does not contribute to v r ;
ut another way, a cluster–galaxy pair with v r = 0 will have a proper
eparation that is growing in time due to the e xpanding univ erse. The
otal tangential velocity is v T = v − v r ˆ r . For the purpose of the GIK

odel, it is useful to follow ZW13 in defining the tangential velocity,
 t , as the projection of v T onto the plane containing the cluster
alaxy separation, r , and the adopted line of sight, ˆ y . Specifically,
 t = ( v · ˆ y − v r sin θ ) / cos θ , where θ is the angle between r and the
lane of the sky, that is, sin θ = r · ˆ y /r . 
A diagram of these various vector definitions is provided in fig. 2

f ZW13. To aid with intuition, we note that with v r and v t defined in
his manner, if the distribution of v is a zero-mean 3D Gaussian with
qual dispersion along three orthogonal axes, then P ( v r , v t ) will be
 2D Gaussian, centred on v r = v t = 0, and with equal dispersion in
he v r and v t directions. 

In Fig. 2 , we show P ( v r , v t ) for cluster–galaxy separations in the
ange 1 < r/h 

−1 Mpc < 1 . 25, for a stack of cluster–galaxy pairs
rom 24 INDRA simulations, using the same cluster and galaxy 
efinitions as before. This radial shell corresponds to galaxies at 
istances close to the clusters’ virial radii, and an interesting feature
f P ( v r , v t ) is that it is bimodal (see also Garc ́ıa et al. 2023 ). This
emonstrates the moti v ation for the functional form of P ( v r , v t ) in
he GIK model, which is the sum of two distinct components: a
irialized component, making up a fraction f vir of galaxies in this
adial shell, and an infalling component, which makes up the rest.
he expectation is that f vir is only appreciably non-zero at small

adii, approximately within the splashback radii (More, Diemer & 

ravtsov 2015 ) of the clusters. 
The virialized component is modelled with a simple velocity 

istribution, which is an isotropic Gaussian, with a dispersion 
long each orthogonal direction of σvir . The infalling component 
as a more complex velocity distribution, known as a skewed- t 
istribution (Azzalini & Capitanio 2009 ). The expression for the 
nfalling component’s velocity distribution is 

 ( v ) = 2 t 2 ( v − v r,c ; dof , 	) 

×T 1 

(
α( v r − v r,c ) 

σrad 

dof + 2 

Q v + dof 
; dof + 2 

)
, (2) 
MNRAS 533, 4081–4103 (2024) 
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M

Figure 2. A corner plot showing the posterior distribution for the GIK functions fit to data generated from a stack of 24 INDRA simulations. The cluster sample 
is all haloes with 14 . 1 < log 10 M 200 /h 

−1 M � < 14 . 2, with galaxies defined as subhaloes with v max > 250 km s −1 , and is for cluster–galaxy separations in the 
range 1 < r/h −1 Mpc < 1 . 25. The data and best-fitting model for P ( v r , v t ) are plotted, using the same colour scale in the two panels. The normalized residuals 
(data minus model, divided by a Gaussian approximation to the Poisson uncertainty) are plotted in the top right, with red corresponding to positive residuals, 
and blue ne gativ e. 
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here t 2 is the density function of a 2D t-variate with dof degrees
f freedom, 3 T 1 is the cumulative distribution function for a scalar t-
ariate with dof + 2 degrees of freedom, 4 v r,c = ( v r,c , 0) is a typical
nfall velocity (equal to the mean infall velocity for the case of zero
NRAS 533, 4081–4103 (2024) 

 Implemented using the pdf method of a scipy.stats. 
ultivariate t object. 
 Implemented using the cdf method of a scipy.stats.t object. 

 

w  

(  

f  

σ

kewness), and Q v = ( v − v r,c ) T 	 

−1 ( v − v r,c ), where 

 = 

(
σ 2 

rad 0 
0 σ 2 

rad 

)
. (3) 

The basic idea is that t 2 ( v − v r,c ; dof , 	) is a 2D t-distribution,
hich looks Gaussian in the limit dof → ∞ , but is leptokurtic

i.e. with fatter tails than a Gaussian with the same variance)
or finite dof . This 2D t-distribution has variances of σ 2 

rad and
2 
tan in the radial and tangential directions, respectively. The t 2 
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istribution is symmetric about the typical infall velocity, v r,c , with 
he skewness in T ( v ) introduced through multiplying t 2 by the
umulative distribution function T 1 . 

The probability density function d T 1 ( x; dof + 2) / d x is symmet-
ic about x = 0, such that T 1 ( x; dof + 2) is 0 as x → −∞ , 1 as
 → ∞ and 1 / 2 at x = 0. α controls the skewness of the velocity
istribution (in the v r direction), with α = 0 producing a distribution
ith no skewness, and positive α producing a distribution with a 

engthened tail towards positive v r . 
The complete velocity distribution reads 

 ( v ) = f vir G( v ) + (1 − f vir ) T ( v ) , (4) 

here G( v ) is a 2D isotropic Gaussian centred on v = 0. In summary,
he seven GIK functions are: 

(i) σrad – the velocity dispersion of the infalling component in the 
adial direction. 

(ii) σtan – the velocity dispersion of the infalling component in the 
angential direction. 

(iii) v r,c – the typical radial velocity of the infalling component. 
(iv) dof – the degrees of freedom associated with the infalling 

omponent’s 2D t distribution. 
(v) α – the skewness in the radial direction of the infalling 

omponent’s velocity distribution. 
(vi) f vir – the fraction of galaxies in the virialized component. 
(vii) σvir – the 1D velocity dispersion of the virialized component. 

In Fig. 2 , we show the posterior distribution for the seven GIK
unctions fit to the data shown in the same figure. For a given radial
in, we measure the galaxy velocity distribution by counting galaxies 
n velocity bins, with 60 × 60 equal-sized bins covering v r and v t 
n the range −1500 km s −1 ≤ v r , v t ≤ 1500 km s −1 . We label the
alaxy count in a giv en pix el n ij , where i and j index the pixels
long the v r and v t directions respectively. To evaluate the likelihood 
or a given set of GIK function values, we calculate the probability of
etting the measured set of n ij assuming that the number of galaxies
n a pixel is a Poisson process with an e xpectation giv en by the model
robability density at the centre of the pixel multiplied by the pixel
rea and the total number of cluster–galaxy pairs in this radial bin.
pecifically, the likelihood is 

 = 

∏ 

i,j 

λ
n ij 
ij exp ( −λij ) /n 

sim 

ij ! (5) 

here λij = P ( v r,i , v t,j )( δv ) 2 N , with δv = ( v r,i+ 1 − v r,i ) =
 v t,j+ 1 − v t,j ) = 50 km s −1 the side length of a velocity-space
ixel, and N the number of cluster–galaxy pairs in this radial shell.
ombining this likelihood with flat priors on the seven GIK functions 
o v ering a range considerably broader than the resulting posteriors,
e use the Markov chain Monte Carlo (MCMC) sampler EMCEE 

F oreman-Macke y et al. 2013 ) to find the posterior distribution for
he GIK functions. 

We note that in Fig. 2 the model does a reasonable job of capturing
he general features of the measured P ( v r , v t ), ho we ver it clearly does
ot fit the data down to the noise level (associated with a stack of 24
1 h 

−1 Gpc ) 3 simulation volumes), with there being clear structure 
n the map of the residuals. In particular, the infalling component 
n the data has curvature in the v r –v t plane, such that galaxies
alling in with larger (ne gativ e) radial v elocities tend to have lower
angential velocities, which is not something that can be captured by 
he functional form of T ( v ) in equation ( 2 ). 
.2 The GIK parameters 

f we perform a fit similar to that shown in Fig. 2 for a set of r 
ins, we can then see how the GIK functions vary with radius. An
xample of this is shown by the markers in Fig. 3 , where now the
esults are for a single INDRA simulation (as opposed to the stack
sed for Fig. 2 , to highlight subtle deficiencies in the model), and
e plot the results for three different cluster mass bins, all with the

ame galaxy definition of any subhalo with v max > 250 km s −1 . 
As well as introducing the form for the velocity distribution in

erms of the GIK functions (equation 4 ), ZW13 presented parametric
odels for how the GIK functions vary with radius. F or e xample, in
W13 the functional form for σrad ( r ) , σtan ( r ) , α( r ), and dof ( r ) are
ll the same: 

 ( r) = q − p 

r 

( r + r i ) β
, (6) 

here q, p, r i , and β are free parameters (which take on different
alues for each of the four GIK functions to which this functional
orm is applied). We note that, written in this way, this particular
unctional form has the undesirable property that the dimensions of 
 depend on β. For this, as well as some other reasons discussed
elow, we choose to reparametrize this equation. In particular, we 
rite equation ( 6 ) as 

 ( r) = q − h 

r 

r min 

(
β r min 

r + ( β − 1) r min 

)β

, (7) 

here r min = r i / ( β − 1) is the radius at which f ( r) is minimized,
nd h can be expressed in terms of p, r i , and β. While this new
xpression appears more complex than the one it replaces, it leads to
ree parameters with better characteristics than those of equation ( 6 ).
n particular, q and h have the same dimensions as f [e.g. they are
elocities when f ( r) is σtan ( r)], and the minimum of f ( r) occurs
t r = r min , with f (0) = q and f ( r min ) = q − h . Aside from the
eparametrization being useful for one’s intuition ( r min has a clear
eaning, while r i did not), it also decreases the covariance between

he model parameters in the fit. As an example, the location of the
inimum of σrad ( r) in Fig. 3 is clearly well constrained by the data,

uch that we get a tight constraint on r min , whereas this would
orrespond to some degenerate set of solutions in terms of r i and
. 
For similar reasons, we reparametrized the functional forms for 

he majority of GIK functions from those that appear in ZW13. We
escribe this in Appendix A . In total, we end up with 24 parameters
hat describe the variation of the seven GIK functions with radius;
e call these 24 parameters the GIK parameters. 
Note that if one simply fits the seven GIK functions to P ( v r , v t )

t large radii ( � 10 h 

−1 Mpc ) the values of f vir tend to be fairly
arge ( � 0 . 3). Physically, these clearly do not correspond to galaxies
virialized’ within the cluster, but instead result from the fact that
ufficiently far from the cluster the infalling component has a small
ean radial velocity, such that it can be approximately described 

y the G( v ) function centred on v r = 0. For the purpose of plotting
he GIK function posteriors (points with error bars) in Fig. 3 , we
ircumvent this problem by first fitting the full seven parameter model 
or P ( v r , v t ) in our radial bins and finding the radius at which f vir is
mallest, which we label r f . We then fit just a five parameter model
with f vir = 0) to all radial bins with r > r f . 

.2.1 Fitting for the GIK parameters 

hile the process visualized in Fig. 3 – of measuring the seven GIK
unctions in different r bins – is useful conceptually, in practice 
MNRAS 533, 4081–4103 (2024) 
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M

Figure 3. The variation of the GIK functions with radius. The points with error bars represent the mean ± one standard deviation of the marginalized posteriors 
from fitting the GIK functions – separately at each radius – to P ( v r , v t ) (e.g. as shown in Fig. 2 ). Generating posterior samples for the GIK parameters (using 
MCMC) and then calculating the corresponding GIK functions produces the solid lines with shaded re gions. F or each GIK parameter sample, we calculate 
v r,c ( r ), f vir ( r ), etc., and then the shaded re gion co v ers the 2.5th–97.5th percentiles of the GIK function at each radius, with the solid line being the median (50th 
percentile). The functional forms of the GIK functions are detailed in Appendix A . We note that σvir is poorly constrained at radii where f vir ≈ 0, which leads 
to the vertical line (an error bar extending off the figure) in the σvir panel. 
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e fit the 24 GIK parameters directly to the P ( v r , v t | r) data,
imultaneously fitting to all radial bins. As a default we use 40 r 
ins, with the bin edges uniformly spaced from 0 to 20 h 

−1 Mpc .
he likelihood we use is the product o v er the different radial bins of

he likelihood defined in equation ( 5 ), with the model P ( v r , v t ) at all
adii calculated directly from a common set of GIK parameters. 

This direct fitting procedure has a number of advantages o v er a
wo-step process of finding the GIK functions at different radii and
hen fitting the GIK parameters to these (which would amount to
tting the curves described by the GIK parameters to the points with
rror bars in Fig. 3 ). In particular, we can naturally account for the
ovariance between the different GIK parameters, even those relating
o different GIK functions; we a v oid the need to fix f vir = 0 at large r;
e a v oid the need to define priors on the GIK functions, instead only

equiring priors on the GIK parameters; and we also a v oid taking
he (potentially) non-Gaussian GIK function posteriors, and treating
hem as Gaussian for the purpose of then fitting the GIK parameters.

.2.2 Fitting the GIK parameters without binning 

n alternative to the likelihood defined in equation ( 5 ) is just a
roduct o v er all cluster–galaxy pairs of the GIK model’s probability
ensity for each pair’s velocity, 

 = 

∏ 

i 

P ( v i | r i , g ) , (8) 

here P ( v i ) is defined in equation ( 4 ) and depends on the set of GIK
arameters ( g ) and the separation of cluster–galaxy pair i ( r i ). The
NRAS 533, 4081–4103 (2024) 
act that we could define a likelihood that did not require either
adial or velocity-space binning only occurred to us late in this
roject, and so the work throughout this paper uses the likelihood
rom equation ( 5 ). Nevertheless, we mention the alternative in case
t is useful for other people trying to implement a similar modelling
ethod. We tested that the likelihoods in equations ( 5 ) and ( 8 )

roduced consistent measurements of the GIK parameters for a
ducial INDRA simulation volume, finding that the differences in best-
tting parameters were negligible, with the no-binning likelihood

eading to slightly tighter constraints on some GIK parameters,
resumably due to information loss when binning. This test is
escribed further in Appendix B . 

.3 Conv er gence of the GIK parameters 

s described later in this paper, we will ultimately use N -body
imulations run with different cosmologies to predict how the GIK
arameters depend upon cosmology. It is therefore important to
nderstand how robust the GIK parameters measured from an N -
ody simulation are. To address this, we use publicly available
imulations from the IllustrisTNG project (Nelson et al. 2019 ). In
articular, we use variants of the TNG300 simulations, to assess how
obust the GIK parameters are to changing simulation resolution,
s well as whether the GIK parameters change between DMO
imulations and simulations including baryonic physics. 

For this section, we use the TNG300-1 simulation (which we call
TNG300’) as our fiducial simulation. This simulation includes both
ark matter and baryons, with dark matter particle masses of 5 . 9 ×
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Figure 4. The GIK functions measured from three different TNG300 simulations. The inclusion of baryonic physics or not seems to have little impact on 
the GIK functions, while the lower resolution simulation has slight differences, including a suppression of the radial and tangential velocity dispersion of the 
infalling component. 
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randomly distributed. The shaded region is an indication of the uncertainty 
on the correlation function measurement, from assuming that the pair counts 
follow Poisson statistics. 
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0 7 M � and initial gas masses of 1 . 1 × 10 7 M �. The TNG300-3
imulation (which we call ‘TNG300 low-res’) employs the same 
hysics, but with 64 times fewer particles than TNG300-1, leading 
o DM masses of 3 . 8 × 10 9 M � and gas masses of 7 . 0 × 10 8 M �.
inally, TNG300-1-Dark (which we call ‘TNG300 DMO’) is a DMO 

ersion of TNG300-1, with a dark matter particle mass of 7 . 0 ×
0 7 M �. 
For each of these simulations we used the method described in 

ection 3.2.1 to fit for the GIK parameters. We ran an MCMC
o generate samples from the posterior distribution for the GIK 

arameters. By calculating the corresponding GIK functions for each 
CMC sample, we generate draws of the GIK functions from this

osterior. These are plotted in Fig. 4 , where the solid lines show the
edian values of the GIK functions, while the shaded regions cover 

he 16th–84th percentiles of the GIK function posteriors. 
In Fig. 4 , the differences between the fiducial and DMO simu-

ations are negligible. The lower resolution simulation does appear 
o have some what dif ferent GIK functions, although the differences 
except for σtan at large radii) are typically less than the uncertainty, 
here the size of the uncertainty comes from the relatively small box

ize of the TNG300 simulations. 
In Fig. 5 , we plot the real-space clustering from these three

ifferent TNG300 simulations. As described in detail in Section 4 , 
he combination of the real-space clustering and the GIK functions 
or some other description of the pairwise velocity distribution) are 
ll that is required to calculate ξ s 

cg . We see that, as was the case for the
IK functions, TNG300 and TNG300 DMO produce similar results, 
ith TNG300 low-res being more discrepant. 
We note that the GIK parameter differences between DMO 

ersus hydro simulations, or high-resolution versus low-resolution, 
re significantly less important than the differences in real-space 
lustering between those same simulations for e v aluating a model
s 
cg . This is quantified in Appendix C , and suggests that relying on
imulations to predict the GIK parameters – while using some other 
ethod for the real-space clustering – is a sensible approach. This 

s what we do throughout the rest of the paper, where (because we
MNRAS 533, 4081–4103 (2024) 
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build the emulator. This enables the use of smaller simulations than 

different ( v r , v t ) combinations simultaneously, than to make thousands of 
separate calls to p( v r , v t | r). 
6 For brevity, we refer only to the cosmological parameters, but the emulators 
also include parameters for the so-called galaxy–halo connection (Wechsler & 

Tinker 2018 ), which describes how galaxies populate dark matter haloes. 
7 We note that this approach is similar to that described in Cuesta-Lazaro et al. 
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re dealing with simulations) we know the real-space clustering and
o use the true real-space clustering in our models for ξ s 

cg . With
eal observational data, we would instead need a model for the real-
pace clustering, or to obtain it from observations of the projected
lustering. These possibilities are discussed in Section 7.1.2 . 

 C A L C U L AT I N G  ξ s 
cg WITH  T H E  G I K  M O D E L  

n the previous section, we described the GIK model from ZW13,
nd presented a method to fit the GIK parameters to the positions
nd velocities of clusters and galaxies extracted from a simulation.
e will now show how, with the GIK parameters determined, we

an predict the clustering in redshift-space given the real-space
lustering. 

We begin with the expression for the redshift-space clustering in
erms of the real-space clustering and the probability distribution
or r π − y (i.e. for how a cluster–galaxy pair’s separation is shifted
hen moving from real to redshift space). This usually goes by the
ame of the streaming model, and can be written as (Peebles 1980 ;
coccimarro 2004 ; Kuruvilla & Porciani 2018 ) 

 + ξ s 
cg ( r p , r π ) = 

∫ ∞ 

−∞ 

[
1 + ξ r 

cg ( r) 
]
p( r π − y | r p , y ) d y , (9) 

here r = 

√ 

r 2 p + y 2 , and p( r π − y | r p , y ) = p( v y | r p , y) H ( z) / (1 +
) is the probability density associated with a given pairwise velocity
long the line of sight, where the factor of H ( z) / (1 + z) comes from
 r π/ d v y . 
The distribution of radial and tangential velocities at a given

eparation, p( v r , v t | r), is what is specified by the GIK model. The
onversion from ( v r , v t ) to v y depends on the angle between the
ine of sight and the cluster–galaxy separation, and so depends on
 p and y. Mathematically, we have v y = v r sin θ + v t cos θ , where
= tan −1 y/r p is the angle between the plane-of-the-sky and the

luster–galaxy separation. This leads to p( v y | r p , y) being expressible
s an integral: 

( v y | r p , y) = 

∫ ∞ 

−∞ 

p 

(
v r , v t = 

v y − v r sin θ

cos θ
| r 
)

d v r 
cos θ

. (10) 

ombining equations ( 9 ) and ( 10 ), and integrating only out to finite
imits, we have 

1 + ξ s 
cg ( r p , r π ) ≈ H ( z) 

1 + z 

×
∫ y max 

y min 

1 + ξ r 
cg ( r) 

cos θ

∫ v max 

v min 

p ( v r , v t | r ) d v r d y, (11) 

here again v t = ( v y − v r sin θ ) / cos θ and v y = H ( z)( r π −
) / (1 + z). In order for equation ( 11 ) to be exact, the integration

imits should co v er an infinite range of y and v r . Ho we ver, for the
urpose of calculating ξ s 

cg ( r p , r π ) for r p , r π < 20 h 

−1 Mpc (which
e do here) we found that y max = −y min = 40 h 

−1 Mpc and v max =
v min = 2500 km s −1 were sufficient. We note that the reason for

sing finite limits was that to speed up the calculation, we did not
se a generic numerical integration routine (which could potentially
andle infinite limits), instead using fixed v r , v t , and y grids and
 v aluating equation ( 11 ) for a large number of r π (but fixed value of
 p ) simultaneously, by summing up the integrand e v aluated over the
rids. This process is much faster because multiple e v aluations of
( v r , v t | r) with a particular r can be made simultaneously. 5 We use
NRAS 533, 4081–4103 (2024) 

 Due to how the pdf method of the scipy.stats.multivariate t 
lass is written, it is much faster to e v aluate p( v r , v t | r) with thousands of 

(
i
s
C

000 equally spaced v bins (with 5 km s −1 spacing) and an adaptive
umber of y bins, that we double until successive iterations agree
n all values of ξ s 

cg ( r p , r π ) to within a specified tolerance, which by
efault we set to be a fractional agreement of better than 1 per cent. 

 BU I LDI NG  A N  E M U L ATO R  F O R  T H E  G I K  

A RAMETERS  

ne might hope that the GIK functions and their dependence on
osmological parameters can be predicted from theory (i.e. ‘with
en and paper’). Ho we ver, e ven predicting the mean infall velocity
nto clusters (closely related to v r,c ) from first principles is not easy,
ith simple spherical infall models failing to correctly predict the

esults of N -body simulations for the mean infall velocity of dark
atter particles as a function of their distance from the centres of

lusters (e.g. fig. 3 of Villumsen & Davis 1986 ). Ho we ver, the fact
hat the GIK functions at fixed cosmology seem not to be too sensitive
o the physics employed within the simulation, or to the numerical
esolution at which the simulation was run (see Fig. 4 ), suggests that
he GIK functions can be inferred from N -body simulations in a
easonably reliable manner. 

This moti v ates using suites of simulations (run with different
osmological parameters) to build an emulator that can predict how
he GIK parameters depend upon cosmology. Combining such an
mulator with knowledge of the real-space clustering of galaxies
nd clusters, ξ r 

cg ( r), allows us to predict the redshift-space clustering
s a function of cosmology, and therefore to fit the cosmological
arameters to an observed ξ s 

cg data vector. 

.1 Comparison with directly emulating the ξ s 
cg data vector 

here have been a number of recent attempts to model redshift-
pace galaxy clustering on small scales using emulators trained
n N -body simulations (Zhai et al. 2019 ; Yuan et al. 2022 ; Lange
t al. 2023 ; Kwan et al. 2023 ). Aside from the fact that these have
ocused on g alaxy-g alaxy rather than cluster–galaxy correlations,
ur approach is also conceptually quite different. In particular, these
ther works directly measure observables (e.g. ξ s 

gg on a grid of r p ,
 π , or multipoles of ξ s 

gg ) from simulations, and then build emulators
or these observables as a function of the cosmological parameters, 6 

hile we break up the calculation into two distinct parts (obtaining
he real-space clustering, and then modelling the RSD effects on
his), with an emulator used to do the second part. 7 

.1.1 Reducing noise with the GIK model 

ne considerable benefit of our approach is that assuming a func-
ional form for the pairwise velocity distribution of cluster–galaxy
airs acts to reduce the effects of noise in each simulation used to
 2023 ), where they present an emulator for real-space clustering, that they 
ntend to combine with an emulator for a parametrized velocity distribution 
imilar to the ‘infalling’ part of the GIK model (equation 2 ), described in 
uesta-Lazaro et al. ( 2020 ). 
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Figure 6. Maps of the normalized residuals, comparing ξ s 
cg from one example 

INDRA simulation, to the av erage o v er all INDRA simulations. In the left-hand 
panel, ξ s 

cg from the single simulation is calculated directly from the cluster 
and galaxy positions in redshift space in the simulation, while in the right- 
hand panel, the GIK parameters are fit to the simulation data, which is then 
combined with the real-space clustering to produce ξ s 

cg . This second procedure 
dramatically decreases the amount of noise on ξ s 

cg measured from a single 
simulation, though model mis-specification leads to systematic residuals at 
low r p . 
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ould be required if one simply ‘observes’ each simulation in a 
imilar manner to how the real observations will be made. 

To demonstrate the benefit of this quantitativ ely, we be gin by
efining ξ s,k 

sim 

, the ξ s 
cg data vector calculated directly from the kth 

NDRA simulation (with an example plotted in the right-hand panel 
f Fig. 1 ). We additionally define the data vector calculated by
ombining the real-space clustering from the kth INDRA simulation, 
r,k ( r), with the maximum-likelihood GIK parameters from the 
th INDRA simulation, as ξ s,k 

GIK . We also define the INDRA -derived 
ovariance matrix for the elements of ξ s 

cg as C sim 

. This is calculated
rom the set of ξ s,k 

sim 

(with some Jackknifing, described in Section 6.1 ).
he inverse of C sim 

is the precision matrix, � sim 

= C 

−1 
sim 

, with the
lements of � sim 

that relate to the first 20 elements of our flattened
ata vector (which is all those with r p = 0 . 5 h 

−1 Mpc ) set to zero.
his means that we give no weight to the lowest r p column of the ξ s 

cg 

aps, because the parametric GIK functions do not agree with the 
easured GIK functions on scales below 1 h 

−1 Mpc (see Fig. 3 ). In
ddition, we define the values along the diagonal of C sim 

to be σ 2 
ξ . 

With these definitions, we can assess how precisely we can use 
 single INDRA simulation to estimate the true ξ s 

cg for the INDRA 

osmology, which we assume is well approximated by 
〈
ξ s,k 

sim 

〉
, where 

he expectation value is an average over all of the INDRA simulations.
n particular, we define 

χ2 ,k 
sim 

= 

(
ξ s,k 

sim 

− 〈
ξ s,k 

sim 

〉)ᵀ 
� sim 

(
ξ s,k 

sim 

− 〈
ξ s,k 

sim 

〉)
χ

2 ,k 
GIK = 

(
ξ

s,k 
GIK −

〈
ξ s,k 

sim 

〉)ᵀ 
� sim 

(
ξ

s,k 
GIK −

〈
ξ s,k 

sim 

〉)
. 

(12) 

alculating these χ2 values for each INDRA simulation, we find that 
χ2 ,k 

sim 

〉 = 301, while 〈 χ2 ,k 
GIK 〉 = 27. This means that employing the

IK model, we can calculate a model ξ s 
cg data vector from a single

NDRA simulation that is much closer (by a factor of ∼ 10 in χ2 ) to
he average ξ s 

cg directly measured from all INDRA simulations, than 
s 
cg directly measured from any one INDRA simulation is to the INDRA 

verage. 
For some intuition as to how this works, in Fig. 6 we plot the
ormalized residuals for one example INDRA simulation, which we 
efine as the difference between a ξ s,k predicted from one simulation 
nd the average ξ s,k 

sim 

over all INDRA simulations, divided by the 
imulation-to-simulations noise ( σξ ). In the left-hand panel, we do 
his for a case where the one-simulation prediction is measured 
irectly from the simulation ( ξ s,k 

sim 

), while in the right-hand panel, the
ne-simulation prediction uses the GIK model ( ξ s,k 

GIK ). As expected, 
he map on the left consists of many fluctuations of order 1 σξ , while
mploying the GIK model smooths o v er this noise in a physically
oti v ated way. 

.1.2 Model mis-specification error 

he main drawback of our approach is also highlighted in Fig. 6 ,
nd is the possibility for model mis-specification error. In particular, 
f the GIK model does not adequately describe the pairwise velocity
istribution of cluster–galaxy pairs, then using this model to map 
rom real- to redshift-space clustering can introduce systematic 
rrors. The residuals seen at r p � 3 h 

−1 Mpc in the right-hand panel
f Fig. 6 demonstrate some deficiency of the GIK model, and could
rise for two primary reasons. One is if the seven GIK functions do
ot adequately describe P ( v r , v t | r) at fixed radius, while the other
s if the 24 GIK parameters do not adequately describe the radial
ependence of the GIK functions. 
We have already observed that with a sufficiently large simulated 

olume, deviations between P ( v r , v t | r) from simulations, and the
ev en-parameter v elocity distribution function at the heart of the
IK model (equation 4 ) can be detected, as demonstrated in the

esiduals panel of Fig. 2 . In Appendix D , we investigate the relative
mportance of these two effects, finding that the GIK parameters’ 
nability to perfectly describe the GIK functions explains about half 
in a χ2 sense) of the residuals, with the remaining half coming from
he seven-parameter model for P ( v r , v t | r). 

Realistic surv e ys are likely to hav e significantly greater uncertain-
ies on these small scales than implied by σξ , because spectroscopic
urv e ys face significant observational challenges when dealing with 
lose pairs of galaxies (e.g. Bianchi & Perci v al 2017 ). This suggests
hat the model mis-specification errors that appear highly salient 
n Fig. 6 may not matter so much in a real surv e y. Also, the
odel mis-specification errors are confined to a restricted region 

f the r p –r π plane, so an analysis using the GIK model could cut
ut the unreliable regions without much difficulty. Depending on 
he accuracy requirements for the model ξ s 

cg when applied to real 
bservational data, it may be that alternative functional forms that 
an better describe the velocity distribution are required, which we 
eave to future work. 

.1.3 Separating out real-space clustering from RSD effects 

ur approach of building a model for the mapping from real-
o redshift-space clustering and then combining this with some 
odel/measurement of the real-space clustering to get ξ s 

cg is con- 
eptually appealing, because physically the real-space clustering 
nd the RSD are separate processes. This makes our model more
nterpretable than an emulator that directly predicts ξ s 

cg , and aids when 
rying to understand intuitively the effects of different cosmological 
arameters/models on ξ s 

cg . 
Additionally, there are observables that depend on the real-space 

lustering (such as cosmic shear, Kilbinger 2015 ), as opposed to
he redshift-space clustering. Our approach means that when doing 
 joint analysis of different cosmological observables, consistent 
MNRAS 533, 4081–4103 (2024) 
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eal-space clustering can be used in the modelling of the different
bservables, whereas when directly emulating ξ s 

cg , the underlying
eal-space clustering may be inconsistent with that used elsewhere
n the analysis. 

.1.4 Simpler cosmological parameter dependence of emulated 
uantities 

hile we do not attempt to quantify it here, another potential
dvantage of emulating the GIK functions (rather than ξ s 

cg directly)
s that they are simpler physical quantities than ξ s 

cg in a particular
 r p , r π ) pixel. This means that one would expect the GIK parameters
escribing the GIK functions to vary in a more systematic way
ith variations to the cosmological parameters than the redshift-

pace correlation function does. For example, if increasing some
osmological parameter leads to an increase in the infall velocities,
 v r,c | , this would lead to systematic shifts in the rele v ant GIK
arameters. But in terms of values of ξ s 

cg at particular ( r p , r π ),
his could behave in a non-monotonic manner, with (e.g.) ‘Kaiser
quashing’ enhancing the clustering, before ‘fingers of god’ decrease
t. While Gaussian processes are flexible enough to model more
omplex functions, emulation of simpler functions can be done with
ess thought given to the Gaussian process kernels, and should require
ewer training data locations to produce a robust emulator. 

.2 The FORGE simulations 

ne of the major goals of modern cosmology is to understand
hat drives the accelerated expansion of the Universe at late times

Weinberg et al. 2013 ), with modified gravity theories being a popular
lternative to GR plus a cosmological constant. f ( R) gravity (first
roposed in Buchdahl 1970 ) is one popular modified gravity theory,
hich we investigate here as an example of how one would use

he GIK model to constrain the parameters of a particular theory of
ravity. We note that of the many modified gravity theories that have
een proposed, we do not hold f ( R) in any special regard, but choose
o focus on f ( R) in the first instance due to the fact that the GIK
arameters have already been shown to differ in f ( R) and GR (Zu
t al. 2014 ), and due to the existence of FORGE (Arnold et al. 2022 ),
 suite of cosmological simulations run with different f ( R) models.

The FORGE simulations were run with 50 different combinations of
osmological parameters in Hu–Sawicki f ( R) gravity (Hu & Sawicki
007 ), including v arious v alues for f̄ R0 , 8 as well as �m 

, σ8 , and h . For
ach simulated cosmology, there are both high- and low-resolution
imulations. We only use the high-resolution simulations, which are
f cubic volumes with a comoving side length of 500 h 

−1 Mpc . The
article mass used in these simulations is 9 . 1 × 10 9 h 

−1 M �, with
 gravitational softening length of 15 h 

−1 kpc . We do not use the
arge volume, low-resolution, simulations because the comparatively
oor mass resolution ( m DM 

= 1 . 5 × 10 12 h 

−1 M �) means that the
sub-)structures capable of hosting galaxies of interest to us are
ot all resolved. As such, we would need a different method of
opulating our simulations with galaxies in order to calculate the
IK parameters. 9 
NRAS 533, 4081–4103 (2024) 

 f̄ R0 is the background value of the scalar degree of freedom at z = 0 and 
ontrols the potential depth threshold at which the chameleon screening 
ecomes active and GR-like forces are recovered. Larger values of | f̄ R0 | 
orrespond to larger deviations away from GR. 
 These larger volume simulations could, for example, be used in conjunction 
ith a halo occupation distribution (HOD) model (e.g. Peacock & Smith 

2
–
g
i
(
1

e

The FORGE cosmologies are primarily arranged in a latin hyper-
ube, with 49 of the 50 simulations uniformly co v ering the following
arameter ranges: 

(i) �m 

from 0.11 to 0.55; 
(ii) S 8 ≡ σ8 × ( �m 

/ 0 . 3) 0 . 5 from 0.60 to 0.90; 
(iii) h from 0.60 to 0.82; 
(iv) log 10 | f̄ R0 | from −6.2 to −4.5; 

the remaining simulation is a � CDM one, that is, it has | f̄ R0 | = 0.
ecause the majority of the FORGE simulations are evenly distributed

n log 10 | f̄ R0 | rather than | f̄ R0 | , it makes sense to treat log 10 | f̄ R0 | as
he f ( R) parameter in our emulator. Ho we ver, this then leads to
he value for the � CDM simulation being undefined. To a v oid this,
e instead use log 10 ( | f̄ R0 | + 10 −6 ) as the f ( R) parameter in our

mulator. 
For each of the 50 FORGE simulations, we calculate a posterior

istribution for the GIK parameters following the method described
n Section 3.2.1 . The priors on the GIK parameters are given in
ppendix A . We continue to define galaxies as haloes/subhaloes with
 max > 250 km s −1 , and we e v aluate the GIK parameters for seven
ifferent cluster mass bins for each cosmology. Each mass bin spans
.1 dex in mass, covering the range 13 . 8 < log 10 M 200 /h 

−1 M � <

4 . 5. For each cluster mass bin, we consider the cluster mass
ssociated with that bin to be the geometric mean of the mass of the
pper and lower edges of the bin, such that the bin containing haloes
ith 14 . 1 < log 10 M 200 /h 

−1 M � < 14 . 2 is considered to correspond
o clusters of mass 10 14 . 15 h 

−1 M �. 

.3 Emulation with Gaussian processes 

he aim of our emulator is to predict the cluster–galaxy pair-
ise velocity distribution (and its dependence on cluster–galaxy

eparation) as a function of the cosmological parameters plus the
luster mass (going forward we will refer to cluster mass as an
dditional ‘cosmological parameter’ for brevity, such that we have
50 different simulated ‘cosmologies’). Within the GIK model, the
elocity distribution at all radii is specified by the 24 GIK parameters,
nd so we emulate the velocity distribution by separately emulating
ach of the 24 GIK parameters. 

For the purpose of emulating each GIK parameter, g i , we use a
aussian process, using the PYTHON package GEORGE (Ambikasaran

t al. 2015 ). A Gaussian process is a prior o v er possible functions,
hich, when conditioned on a set of (potentially uncertain) obser-
ations of the function (which we will call the training data), can
roduce a posterior distribution for the target function. In our case,
he functions for which we would like to infer the posteriors are the
 i ( θ), with i (ranging from 1 to 24) being the index for a particular
IK parameter, and θ being a vector of cosmological parameters: 

= 

{
�m 

, S 8 , h, log 10 

(| f̄ R0 | + 10 −6 
)
, log 10 M 200 /h 

−1 M �
}

. (13) 

A detailed description of Gaussian processes can be found in
asmussen & Williams ( 2006 ). 10 In general, when combined with

raining data (in our case a mean and Gaussian uncertainty on each
000 ), although doing this in the context of extracting the GIK parameters 
particularly those important for the velocity distribution at small cluster–

alaxy separations – would be somewhat circular, as HOD galaxies are typ- 
cally assigned velocities drawn from simple Gaussian velocity distributions 
e.g Guo et al. 2015 ). 
0 For intuition on how and why Gaussian processes work, we recommend an 
xcellent lecture by Richard Turner, available on YouTube . 

https://www.youtube.com/watch?v=92-98SYOdlY
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f the g i ( θ j ), where the set of θ j are the 350 input cosmologies at
hich we have fit for the GIK parameters) a Gaussian process can
ake a prediction for how the output of a function depends on the

nput parameters [i.e g i ( θ ) for arbitrary θ ]. 
Specifying a Gaussian process requires that we specify an a priori
ost-likely mean function, m ( θ ), as well as a covariance function,

ften referred to as the kernel. This kernel, K( θ1 , θ2 ), describes how
orrelated we expect g i ( θ1 ) and g i ( θ2 ) to be, as a function of the
eparation between θ1 and θ2 . The kernel is used to specify the 
otion that we expect g i ( θ ) to vary smoothly with the cosmological
arameters, such that two similar values of θ will have similar values 
or g i ( θ ). We use a squared-exponential kernel, which can be written
s 

( θ1 , θ2 ) = σ 2 
K 

exp 

(
−1 

2 
( θ1 − θ2 ) T

 � 

−1 
K 

( θ1 − θ2 ) 

)
. (14) 

e assume that � K 

is a diagonal matrix, with elements 

 K 

= diag 
(
l 2 �m 

, l 2 S 8 
, l 2 h , l 

2 
f̄ R0 

, l 2 M 200 

)
, (15) 

here (e.g.) l S 8 is a length-scale in terms of the parameter S 8 .
he intuition one should have is that our prior will substantially 
ownweight functions where g i fluctuates as S 8 is varied, if the 
ength-scale of the fluctuations is shorter than l S 8 . The value of σK 

etermines the prior expectation on the amplitude of variations in g i 
s one varies θ . 

We build a separate Gaussian process to emulate each of the 24
IK parameters. For a single GIK parameter, g i , the inputs to our
aussian process are: 

(i) The estimates of g i e v aluated for each of our seven cluster mass
ins, at each of the 50 FORGE cosmologies ( ̂  g i ( θ j )), for which we
se the mean of the marginalized posterior on this particular GIK 

arameter. 
(ii) The Gaussian uncertainty on each ˆ g i ( θ j ), which we calculate 

s the square root of the variance of the relevant marginalized 
osterior. 
(iii) A kernel function (equation 14 ), with its associated hyperpa- 

ameters. 
(iv) A mean function, which we assume to be a constant (i.e. 

ndependent of θ), and which we set equal to 〈 g i ( θ j ) 〉 j , the mean
alue of g i o v er the 350 ‘cosmologies’ where the GIK parameters
ave been fit. 

.4 Selecting kernel hyperparameters 

or each of our GIK parameters, we have six kernel hyperparameters 
 σK 

in equation 14 , and the five length-scales in equation 15 ). In
rder to set these hyperparameters in an objective manner, we find 
separately for each i) the set of hyperparameters that maximize 
he marginal likelihood of the input data (see equation 5.8 of
asmussen & Williams 2006 ). Considering the combination of our 
ernel function (with a specific set of hyperparameters) and mean 
unction as defining a prior on the function g i ( θ), the marginal
ikelihood is the probability density associated with having drawn 
ur input data from this prior, and can be calculated by GEORGE . 
We note that some work in the literature alternatively determines 

he optimal hyperparameters using leave one out tests (called ‘cross- 
alidation’ in Rasmussen & Williams 2006 ). This involves building 
ne Gaussian process per piece of training data, where each Gaussian 
rocess is trained on all but one, left out, piece of training data. Each
aussian process is then used to predict the value of the rele v ant

eft out training data. This can be done for a variety of different
ernel hyperparameters, with the predicted and true values of the left
ut data compared, and the hyperparameters that lead to the most
ccurate predictions for the left out data chosen. We implemented 
uch a method, and found best-fitting hyperparameters that were 
imilar to those from maximizing the marginal likelihood. As this 
ethod is slow (it requires building a separate Gaussian process for

ach piece of training data) we used the marginal-likelihood approach 
or this work. 

 FITTING  T H E  E M U L ATO R  M O D E L  TO  

O C K  ξ s 
cg DATA  

ombining an emulator for the GIK parameters as a function of the
osmological parameters, with knowledge of the real-space cluster–
alaxy correlation function, we are able to predict ξ s 

cg as a function
f cosmology. By comparing these model predictions with some 
bserved ξ s 

cg data vector, we can then constrain the cosmological 
arameters. In order to make this comparison, we need to define
 likelihood of having obtained a particular observ ed ξ s 

cg , giv en a
odel ξ s 

cg . We assume this likelihood is Gaussian, with 

 ( θ ) ∝ exp 

(
−1 

2 

(
ξ s, d 

cg − ξ s 
cg ( θ ) 

)ᵀ 
C 

−1 
(
ξ s, d 

cg − ξ s 
cg ( θ ) 

))
, (16) 

here ξ s, d 
cg is the observed data vector, ξ s 

cg ( θ) is the model-predicted
ata vector for the cosmological parameter vector θ , and C is the
ata covariance matrix. 

.1 Co v ariance matrix for ξ s 
cg 

ven if adopting the correct cosmological parameters, with a perfect 
osmological model, we would not expect the model data vector 
o match the observed one. Instead, we would expect the observed
ata vector to look like a random draw from a multi v ariate Gaussian
istribution that has a mean value equal to the model data vector
nd some covariance matrix. 11 This covariance matrix describes 
he amount of noise on each element of the observed data vector,
s well as correlations between the noise on different elements 
f the data vector. If we could generate an infinite number of
ndependent realizations of a Gaussian distributed data vector, d , then 
he covariance matrix for d would be C ij ≡ 〈 ( d i − 〈 d i 〉 )( d j − 〈 d j 〉 ) 〉 ,
here 〈 d 〉 is the mean of the data vectors, and d i is the ith element
f d . 
To estimate a covariance matrix suitable for our purposes, we 

se the INDRA simulations that were described in Section 2.1 . The
ata vector we use when fitting for the cosmological parameters is
s 
cg ( r p , r π ) on a 15 × 20 grid of ( r p , r π ), with (1 h 

−1 Mpc ) 2 pixels,
eaning that we have a data vector with n d = 300 elements. For

he purposes of discussing the covariance matrix, it is simpler to
onsider our data vector to be 1D. In order to facilitate this, we
atten our 2D data vector, such that elements 1–20 run from small

o large r π with r p = 0 . 5 h 

−1 Mpc , elements 21–40 are the same at
 p = 1 . 5 h 

−1 Mpc , etc. We label this flattened version of the data
ector ξ , with ξi the ith element, with i running from 1 to 300. 

In total there are n s = 384 INDRA simulations, each a 1 h 

−1 Gpc
n-a-side box, all run with the same cosmological parameters. We 
an use each INDRA simulation to calculate a redshift-space cluster–
alaxy correlation function data vector, ξ k , with k indicating the 
ndex of the INDRA simulation. These can then be used to produce an
MNRAS 533, 4081–4103 (2024) 
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nbiased estimate for the data covariance matrix 

̂ 
 ij = 

1 

n s − 1 

n s ∑ 

k= 1 

(
ξk 
i − 〈 ξi 〉 

) (
ξk 
j −

〈
ξj 

〉)
, (17) 

here the n s − 1 factor in the denominator (as opposed to simply
 s ) accounts for the fact that we have estimated the mean ξ from the
ata itself. 
While ̂ C is an unbiased estimate of C , ̂ C 

−1 
is not an unbiased

stimate of the precision matrix � ≡ C 

−1 . Ho we ver, we can achieve
n unbiased estimate of � as (Hartlap, Simon & Schneider 2007 ) 

̂ 
 = 

n s − n d − 2 

n s − 1 
̂ C 

−1 
. (18) 

ote that at a minimum, one requires n s > n d + 2 in order for ̂ C to
e invertible. Ho we ver, if n s is only slightly larger than n d + 2, while
quation ( 18 ) gives an unbiased estimate of the precision matrix,
he uncertainty on this estimate will be large (Taylor, Joachimi &
itching 2013 ). One generally requires that n s is considerably larger

han n d in order for � to be precisely determined. In our case, we
ave a length-300 data vector, with only 384 simulations, which
ould lead to significant uncertainty on the covariance matrix. 
Without access to a larger number of simulations, or analytic

stimates for the covariance matrix, we can instead turn to resampling
echniques. These techniques include the subsample, bootstrap, and
ackknife methods (Norberg et al. 2009 ). They are usually applied
hen fitting to an observed data vector , and in volve using the data

tself (split up into subregions) to estimate the data covariance.
imilar techniques can also be used to decrease the number of

ndependent simulations required to compute a covariance matrix
o some prescribed level of accuracy. For example, Escoffier et al.
 2016 ) performed Jackknife resampling o v er a set of independent
imulations, finding that this reduced the requirement on the number
f simulations (in their case) by a factor of seven. 
We follo w Escof fier et al. ( 2016 ) and calculate a cov ariance
atrix from each of our individual simulations, using the delete-
 Jackknife scheme (Shao & Wu 1989 ). 12 We split each simulation
nto N s = 8 subregions, by splitting the box in half along each of the
hree Cartesian axes. Each Jackknife configuration, c, then leaves
ut N d = 2 of the N s regions, and we e v aluate the corresponding
orrelation function, ξ c , by adopting the simulation z-axis as the
ine-of-sight direction, and using the cluster and galaxy definitions
iven in Section 2.1 . Note that whether a particular cluster–galaxy
air was included in a Jackknife region was based upon the po-
ition of the cluster, such that clusters close to the boundary of
 ‘deleted’ subregion, can appear in pairs with galaxies from the
eleted re gion. The co variance matrix estimate from each simulation
s 

̂ 
 

1 sim 

ij = 

N s − N d 

N d N JK 

N JK ∑ 

c= 1 

(
ξ c 
i − 〈 ξi 〉 

) (
ξ c 
j −

〈
ξj 

〉)
, (19) 

here N JK = 

(
N s 
N d 

)
is the number of possible Jackknife configurations.

aving e v aluated a separate ̂ C 

1 sim 

from each INDRA simulation, our
stimate for the data covariance matrix is the average of all of these,
nd our estimate for the inverse data covariance matrix is just the
nverse of this average (without any f actor lik e that in equation 18 ,
ollo wing Escof fier et al. 2016 ). 

The covariance matrix evaluated in this way is appropriate for the
1 h 

−1 Gpc ) 3 volume of an INDRA simulation. Where necessary, we
NRAS 533, 4081–4103 (2024) 

2 We note that a similar strategy was used in Hang et al. ( 2022 ). 

1

i
s

ssume that the covariance matrix scales inversely with volume (e.g.
owlett & Percival 2017 ), in order to calculate a covariance matrix

ppropriate for other volumes. 
In Fig. 7 , we plot the correlation matrix, which is closely related to

he covariance matrix just described. The correlation matrix measures
he Pearson correlation coefficient between all pairs of elements,

nd is defined as Corr ( ξi , ξj ) ≡ ̂ C ij / 

√ ̂ C ii ̂
 C jj . In the right-hand

anel of Fig. 7 , one can see that neighbouring pixels of ξ s 
cg ( r p , r π )

re quite correlated, 13 suggesting that this particular data vector
ay not be the most efficient compression of the set of small-

cale ( r p , r π ) separations for cluster–galaxy pairs. One could instead
onsider multipoles of the correlation function (e.g. Zhai et al.
019 ), clustering wedges (e.g. Kazin, S ́anchez & Blanton 2012 ),
r different numbers of pixels and/or different spacing of bin edges
such as the logarithmically spaced r p bin edges in Yuan et al. 2022 ).
n advantage of these alternatives is that they generally lead to a

maller number of data vector elements, decreasing the requirements
n the number of simulations required to e v aluate the covariance
atrix. Ho we v er, we leav e inv estigating these alternatives to future
ork. 
In the left-hand panel of Fig. 7 , we plot a map of the signal-to-noise

atio (SNR) from the ensemble of INDRA simulations. The signal in
his case is the mean value of ξ s 

cg o v er the different INDR 

A subvolumes, while the noise is the square root of the diagonal
lements of ̂  C , which we label σξs 

cg . Both the signal and noise increase
s one approaches the origin (i.e. r p = r π = 0), but the SNR peak is
t low r π , with r p ∼ 4 h 

−1 Mpc . 

.2 Including model uncertainty in the co v ariance matrix 

he covariance matrix calculated from the INDRA simulations, which
e here label C INDRA , describes how large the variations typically are
etween ξ s 

cg calculated from any one particular INDRA simulation,
nd the average of all the INDRA simulations (which, given the large
umber of INDRA simulations, we can think of as being a good
pproximation to the ‘noise-free’ prediction for ξ s 

cg at the INDRA

osmology). 
This means that if our model for ξ s 

cg ( θ ) could produce the ‘noise-
ree’ prediction for ξ s 

cg as a function of cosmological parameters, we
ould set C in equation ( 16 ) equal to C data = C INDRA / ( V data /V INDRA ),
ith V data the ef fecti v e volume of our surv e y, and V INDRA =

1 h 

−1 Gpc ) 3 . Ho we ver, our emulator for the GIK parameters is built
rom simulations with a finite volume, which leads to uncertainty
n the GIK parameters (which can be visualized, e.g. by the shaded
egions around the GIK function lines in Fig. 3 ). 

Recall that we have a separate Gaussian process emulator for
redicting each element, g i , of the GIK parameter vector, g , as a
unction of θ , and that these predictions take the form of a Gaussian
robability distribution, specified by a mean prediction 〈 g i ( θ) 〉 , and
 standard deviation σg i ( θ). This can also be expressed as having
 predicted mean GIK parameter vector, 〈 g ( θ ) 〉 , and a covariance
atrix for g ( θ ), which we label � g . For now � g is diagonal (with

he diagonal elements equal to the σ 2 
g i 

( θ)), because we have built
 separate emulator for each element of g , and therefore cannot
ccount for any covariance between the different elements of g . 
3 Given the order in which we flatten ξ s 
cg ( r p , r π ) to get ξ , neighbouring 

ndices correspond to neighbouring pixels in the r π direction, while indices 
eparated by 20 correspond to neighbouring pixels in the r p direction. 
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Figure 7. Left: a map of the SNR in the INDRA ξ s 
cg maps. This is calculated by dividing (pix el-by-pix el) the mean value of ξ s 

cg from the various INDRA subvolumes 

by the standard deviation of ξ s 
cg o v er the subvolumes. Note that the values of σ 2 

ξs 
cg 

are equal to the diagonals of the covariance matrix, C INDRA . Right: the correlation 

matrix, corresponding to the covariance matrix, C INDRA . The values along the diagonal are (by definition) all equal to 1, but we use a smaller range for the colour 
map to highlight the correlations between many of the pixel values. 
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.2.1 ‘Diagonalized’ GIK parameters 

hile there has been work on how to formulate multi-output 
aussian processes (e.g Wang & Chen 2015 ; Parra & Tobar 2017 ),
e are not aware of any available Gaussian process software that can

ake vector-valued training data such as the values of g ( θ j ) for a set
f θ j , along with correlated uncertainties on each element of g ( θ j ),
nd then make predictions for g ( θ ) along with � g ( θ). By building
 separate emulator for each element of g , we implicitly ignore the
ff-diagonal elements of the uncertainty on the measurements of the 

g ( θ j ), and force � g to be diagonal. 
Given that the posterior distributions on the g ( θ j ) do have quite

onsiderable degeneracies between the different elements of g , 
t would be better not to ignore them. We can circumvent the
equirement for implementing a multi-output Gaussian process, by 
nding a linear transformation, g ′ = L g , such that the posterior 
istribution for g ′ is approximately a separable function of each 
lement of g ′ , which is to say that the posterior for each g ′ in our set
f training data has little covariance between the different elements. 
We define the covariance matrix for a GIK parameter posterior 

istribution as 

M = 〈 ( g − 〈 g 〉 )( g − 〈 g 〉 ) T 〉 , (20) 

here the expectation values can be estimated from an MCMC 

hain of GIK parameter vectors. Then, defining V as a matrix 
hose columns are the unit-length eigenvectors of M , we have that 

g ′ = V T

 g . 
The idea then, is that because each piece of training data (in terms

f g ′ ) has only minimal covariance between the different elements, 
hat building a separate Gaussian process emulator for each element 
f g ′ (rather than g ), and propagating the uncertainties on the training 
ata g ′ s through the Gaussian process, allows us to more faithfully 
nclude the covariance in our training data between the different 
lements of g . The Gaussian processes then return an estimate of g ′ 
long with a diagonal covariance matrix, � g ′ , and from this we can
 v aluate g = V g ′ and � g = V � g ′ V T

 (which can no w have non-
ero off-diagonal elements, representing the covariance between the 
ifferent elements of g ). 

.2.2 Mapping GIK parameter uncertainties into uncertainties on 
s 
cg 

n order to e v aluate the likelihood for a particular θ (equation 16 ), we
eed to find the GIK model-predicted ξ s 

cg ( θ ), which is done following
he procedure described in Section 4 . What we would then like to
now is how uncertainty on g ( θ ) (described by the covariance � g ),
aps in to uncertainty on ξ s 

cg ( θ ), such that this uncertainty on the
odel prediction for ξ s 

cg ( θ) can be accounted for in our covariance
atrix. To do this, we consider small perturbations to the GIK

arameter vector about some reference value, g 0 . We assume that 
he correlation function in such a case can be well approximated by 

≈ A ( g − g 0 ) + ξ 0 , (21) 

here ξ 0 is the data vector e v aluated for the GIK parameter vector
g 0 . The matrix A is the gradient of ξ with respect to g , A ij =
 ξi /∂ g j . This can be calculated using a finite-difference approach,
y e v aluating ξ ( g ) o v er a grid of g -points around g 0 . The covariance
atrix for ξ due to uncertainties on g is then C g = A � g A T

 , where
e e v aluate A at a fiducial cosmology (and treat it as independent
f cosmology), while � g ( θ ) is returned by our Gaussian processes,
longside g ( θ ). 

We note that not doing our diagonalization procedure would be a
onserv ati ve choice. This is because the GIK parameter posteriors
an have quite tight parameter degeneracies. If we consider two 
ighly degenerate parameters, then their individual marginal distri- 
utions can be quite broad, while some combination of them is well
onstrained. If we ignore the fact that there is a well-constrained
ombination, and instead set their joint distribution equal to the 
MNRAS 533, 4081–4103 (2024) 
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M

Figure 8. The posterior distribution for the cosmological parameters when 
fitting to a data vector generated by our emulator. The input cosmology is 
marked by the dashed lines, and the “DESI-like covariance matrix” contours 
contain 68 per cent and 95 per cent of the posterior distribution when using a 
covariance matrix (within our likelihood) that corresponds to the INDRA data 
covariance rescaled for an effective volume of 20 ( h −1 Gpc ) 3 . The “including 
GIK parameter uncertainty” contours show the results when adding terms 
to the covariance matrix to account for the fact that we only know the GIK 

parameters as a function of cosmology to some finite level of precision, which 
is described in Section 6.2 . 
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roduct of the two marginals, then this creates more freedom for the
arameters to take dif ferent v alues, and therefore more uncertainty
n the GIK functions, and a resulting increased model uncertainty
n ξ s 

cg . 
To demonstrate this quantitatively, we calculated a χ2 between

 fiducial ξ s 
cg (from g ( θ ) at the mean FORGE cosmology), and the

s 
cg e v aluated for the best-fitting GIK parameters for each of the 50
ORGE simulations. Doing this with and without ‘diagonalization’,
e found that the mean χ2 without diagonalization is ∼70 per cent
f that with diagonalization. 

.3 Fitting to mock data generated by the emulator 

s a first demonstration of using our emulator to fit to a ξ s 
cg data

ector, we fit to a data vector generated by the emulator itself. Such
n e x ercise only partially tests our emulation procedure, but has the
dvantage that the data vector being fit to can be generated ‘noise
ree’, or with some other level of noise that we specify. This differs
rom a data vector constructed from an N -body simulation, which
ill necessarily have a level of noise set by the finite volume of the

imulation. 
In Fig. 8 , we show the cosmological constraints from such an

 x ercise. We build an emulator using the 50 FORGE simulations, and
hen use the emulator to predict a model data vector at a particular
oint in our cosmological parameter space (marked by the vertical
nd horizontal dashed lines in Fig. 8 ). We then use MCMC to sample
rom the posterior distribution for θ , with flat priors on each element
f θ (see equation 13 ) co v ering the range of θ o v er which FORGE

imulations were run, and using a data covariance matrix that is
NRAS 533, 4081–4103 (2024) 
qual to that calculated for (1 h 

−1 Gpc ) 3 from the INDRA simulations,
ut scaled down by a factor of 20, such that it is approximately
ppropriate for the ef fecti ve volume of a surv e y such as DESI (DESI
ollaboration 2016 ), which we take to have an ef fecti ve volume of
0 ( h 

−1 Gpc ) 3 following Gro v e et al. ( 2022 ). 
Fig. 8 reveals some interesting degeneracies between the different

osmological parameters. Perhaps the most striking is the de generac y
etween the cluster mass associated with our cluster sample and f̄ R0 .
n particular, a large cluster mass with a low value for log | f̄ R0 | ,
roduces a similar ξ s 

cg to a smaller cluster mass with a higher value
or log | f̄ R0 | . Given that we expect the gravitational attraction of
ore massive clusters to be stronger, and that a larger log | f̄ R0 |
eans an increased enhancement in the gravitational forces, this

e generac y makes intuitiv e sense, in that an enhancement to gravity
an make clusters appear more massive than they actually are.
t also suggests that combining the modelling of ξ s 

cg with some
ndependent measurement of cluster masses will be a fruitful avenue
or constraining the nature of gravity. For example, weak lensing can
easure the mass of clusters in a manner that is unaffected by f̄ R0 

because the modifications to gravity do not affect the propagation
f photons in f ( R) gravity). Such a measurement would break
he M 200 − f̄ R0 de generac y seen in Fig. 8 , leading to an impro v ed
onstraint on f̄ R0 . 

Another feature of Fig. 8 is that we can see the impact that
ncluding the GIK parameter uncertainty into the covariance matrix
following Section 6.2 ) has on the cosmological constraints. In par-
icular, while not dominant o v er the data covariance, the constraints
re broadened somewhat when accounting for the GIK parameter
ncertainty. This means that for a DESI-like surv e y one would ideally
ant larger volume simulations than the FORGE simulations we used
ere, in order for this model uncertainty to be negligible for the
erived constraints. We stress that the ability for (500 h 

−1 Mpc ) 3 

olume simulations to be used in the modelling of a 20 ( h 

−1 Gpc ) 3 

ata vector, without the model uncertainty being dominant o v er the
ata covariance, is possible only because of employing the GIK
odel (as opposed to directly emulating the data vector extracted

rom the set of simulations) and the resulting advantages described
n Section 5.1 . 

.4 Fitting to mock data extracted from simulations 

s described abo v e, while fitting to emulator-generated data provides
ome tests of our analysis pipeline, and also acts as a forecast
or the constraining power expected with a particular experiment
which enters through the covariance matrix), it does not provide an
 xhaustiv e test of our modelling procedure. F or e xample, we hav e
een in Fig. 2 that the functional form that we use for P ( v r , v t | r)
oes not perfectly describe the galaxy–cluster pairwise velocity
istribution. To assess the extent to which this mismatch could lead
o biased results, we also want to test fitting to data vectors measured
irectly from simulations (as in, to ‘observe’ our simulations much
ike we observe the real Universe). 

.4.1 Stacked INDRA ξ s 
cg 

ne problem with testing on data vectors measured from simulations,
s that simulations with sufficient resolution that we can populate
hem with galaxies using an SHAM-like scheme are typically not of
omparable volume to future surv e ys. This means that while we can
est that the model gives reasonable results with a modest volume
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Figure 9. The posterior distribution for the cosmological parameters when 
fitting to a data vector calculated from a stack of the INDRA simulations. The 
different contours correspond to fitting the ξ s 

cg data vector down to different 
minimum r p . The INDRA cosmology is marked by the dashed lines. Because 
the INDRA simulations were run with GR, they have f̄ R0 = 0, corresponding to 
log 10 | f̄ R0 + 10 −6 | = −6, which is on the edge of our cosmological parameter 
prior. 
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f data, we cannot test that it returns results that are unbiased at the
evel of precision that will be afforded by future data sets. 

To get around this, we return to the INDRA suite of simulations,
hich comprises many simulations, each of which has a (1 h 

−1 Gpc ) 3 

olume. These simulations were all run with the same cosmology, 
nd so we can combine the ξ s 

cg ( r p , r π ) from many of them to get a
imulated data vector, at the INDRA cosmology, from a large simulated 
olume. 14 Specifically, we calculate ξ s 

cg ( r p , r π ) from each INDRA

imulation (using our fiducial cluster and galaxy definitions), and 
hen take the mean of this o v er the different INDRA simulations to
et our stacked INDRA data vector (this is the same as 

〈
ξ s,k 

sim 

〉
from

ection 5.1 ). 
We fit to this stacked INDRA data vector using MCMC, with the
odel ξ s 

cg ( θ ) calculated from our FORGE -trained emulator for the 
IK parameters, along with the true real-space clustering (for which 
e use the mean o v er the different INDRA simulations of ξ r 

cg ( r)). The
esulting posterior distribution is shown in Fig. 9 , where the different
olours correspond to different minimum r p values down to which 
e fit the data. 
A k ey tak eaw ay from Fig. 9 is that if we make our fidu-

ial choice of fitting to ξ s 
cg o v er the range 1 ≤ r p /h 

−1 Mpc ≤ 15,
 ≤ r π/h 

−1 Mpc ≤ 20, then we confidently infer a cosmology that 
s inconsistent with the true cosmology used to run the INDRA 

imulations. This inconsistency goes down – both due to a broadening 
f the posterior, and due to a shifting of the mean of the posterior
if we increase the minimum value of r p down to which we fit
4 We note that this is not quite equi v alent to having run a single large 
olume simulation, primarily due to the absence of density fluctuations with 
avelengths larger than the boxsize in each of the INDRA simulations. 

w  

r

e  

I

he data. The fact that using the GIK model to predict ξ s 
cg on scales

 3 h 

−1 Mpc can lead to biases in the inferred cosmology should not
ome as a surprise given the evidence for model mis-specification 
hat we saw on these scales in Fig. 6 . 

It is interesting to consider why the constraints are noticeably 
ighter when one includes scales down to 1 h 

−1 Mpc . This suggests
hat there is considerable cosmological information contained in the 
elocities of galaxies 1 − 3 h 

−1 Mpc away from clusters. We hy-
othesize that this is because the radius at which f ( R)’s Chameleon
creening turns on (and so inside of which, the usual GR forces are
btained) is of order an Mpc. For example, at z = 0, and in a halo
lightly less massive than the clusters we consider here, the screening
adius is between 1 and 2 Mpc when log 10 | f̄ R0 | = −6 (see fig. 7 of

oran, Teyssier & Li 2015 ). If some enhancement to gravity happens
verywhere, then it is hard to distinguish between a more massive
luster and enhanced gravity. Ho we ver, with data that spans regions
hat – with f ( R) – would be both screened and unscreened, it is
o longer the case that enhancing gravity (in only the unscreened
egions) is equi v alent to increasing the cluster mass. 

We should stress that the GIK parameter emulator used with 
hese different minimum r p values was subtly different. We had 
riginally fit the GIK parameters for each FORGE simulation o v er the
adial range 1 < r/h 

−1 Mpc < 20, and used these GIK parameter
osteriors when training our GIK parameter emulator. Ho we ver, we
ound that when only fitting to the ξ s 

cg data vector at r p > 3 h 

−1 Mpc ,
e got a less biased result if our GIK parameter emulator was trained
sing GIK parameters fit to the radial range 3 < r/h 

−1 Mpc < 20
ather than 1 < r/h 

−1 Mpc < 20. This makes sense, because if
he GIK parameters returned by fitting to r > 1 and > 3 h 

−1 Mpc
re different, the r > 3 h 

−1 Mpc case must be a better description
f the cluster–galaxy pairwise velocity distribution at large radii. 
orcing the same set of GIK parameters to simultaneously explain 

he velocity distribution within 1 < r/h 

−1 Mpc < 3 (where we
now the model is not an accurate description of the velocity
istribution) then degrades how well the GIK model describes 
he velocity distribution at large radii. Given that ξ s 

cg at some 
 p is affected only by the clustering and velocity distribution at
D radii r ≥ r p , if we only need to model the data vector at
 p > r min , then it makes sense to only fit the GIK parameters to
adii r > r min . 

An avenue for future work would be to impro v e the GIK model
uch that it provides a better description of P ( v r , v t | r) at small r . This
ould involve both improving upon the seven-parameter model for 
he velocity distribution at a single radius (equation 4 ), which we have
een in Fig. 2 is not a perfect description of the velocity distribution
ound in N -body simulations, as well as finding impro v ed functional
orms for how these seven GIK functions vary with radius (e.g. the
orm of equation 7 ). 

For now, we note that while our GIK model-based emulator 
llows for the extraction of cosmological information from RSD 

n scales below that at which linear theory predictions break 
own, it does not appear that we can use it to model cluster–
alaxy clustering, all the way down to scales below the virial
adii of the clusters. This is somewhat disappointing given that 
ne of the key features of the GIK model is that the veloc-
ty distribution has two components, one of which describes 
alaxies that are virialized within galaxy cluster potentials (and 
hich is only rele v ant on scales around and below cluster virial

adii). 
Another potential explanation for the biased cosmological param- 

ter inference seen in Fig. 9 is differences between the FORGE and
NDRA simulations. If the INDRA and FORGE simulations predicted 
MNRAS 533, 4081–4103 (2024) 
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ifferent GIK parameters for the same cosmology, then using a
ORGE -trained emulator to fit to INDRA mock data would lead to
uch a bias. 15 While this effect is almost certainly present at some
ev el, the reasonable conv ergence of the GIK functions with respect
o numerical resolution seen in Fig. 4 suggests that the differences
etween INDRA and FORGE (most notably that INDRA has eight times
orse mass resolution) should not lead to dramatic differences. 
To be more quantitative about this, we inspected the GIK parame-

ers predicted by our FORGE -trained emulator, at the INDRA cosmol-
gy (there is no FORGE simulation run at the INDRA cosmology). We
efine the following: 

(i) g FORGE ( θ INDRA ), the GIK parameters predicted by the FORGE -
rained emulator, at the cosmology of the INDRA simulations. 

(ii) g k INDRA , the GIK parameters measured for the kth INDRA

imulation. 
(iii) 

〈
g k INDRA 

〉
, the mean of the GIK parameters from the different

NDRA simulations. 
(iv) θ ξs 

cg , the maximum-likelihood cosmological parameters when
tting to the stacked- INDRA ξ s 

cg data vector (the ‘ r p > 1 h 

−1 Mpc ’ fit
n Fig. 9 ). 

(v) g FORGE ( θ ξs 
cg ), the GIK parameters predicted by the FORGE -

rained emulator, at θ ξs 
cg . These are the GIK parameters being used

n the best-fitting model to the stacked- INDRA ξ s 
cg . 

(vi) � 

INDRA 
g , the covariance matrix for g calculated from the set of

g k INDRA . 

Then, defining χ2 ( g a , g b ) as ( g a − g b ) T
 ( � 

INDRA 
g ) −1 ( g a −

g b ), we find that χ2 ( g FORGE ( θ INDRA ) , 〈 g k INDRA 〉 ) = 177, while
2 ( g FORGE ( θ ξs 

cg ) , 〈 g k INDRA 〉 ) = 571. So the difference between θ ξs 
cg 

nd θ INDRA is not because g FORGE ( θ ξs 
cg ) does a better job than

g FORGE ( θ INDRA ) of producing GIK functions that look like those found
n INDRA . This points towards the dominant effect being model mis-
pecification, that results in the optimal set of GIK parameters to
escribe ξ s 

cg not being the same as those one gets by fitting the GIK
arameters directly to the position/velocity data from simulations. 
Nevertheless, χ2 ( g FORGE ( θ INDRA ) , 〈 g k INDRA 〉 ) = 177 (compared

ith an expectation of ∼ 24 if the FORGE prediction at the IN-
RA cosmology look ed lik e the GIK parameters from a random

NDRA volume) suggests there are systematic differences between
NDRA and FORGE , and/or errors induced by the emulation pro-
ess. In order to get a sense of how robust the GIK parame-
ers are to the details of the simulations, in the future it would
e good to compare the GIK parameters fit to different simu-
ations run with the same cosmology, and also to build emula-
ors with different suites of simulations and compare their re-
ults. 

 DISCUSSION  

he procedure that we have presented, combining an emulator for
he cluster–galaxy pairwise velocity distribution with some external
nowledge (or model) for the real-space clustering, is an interesting
lternative to more direct emulation of redshift-space clustering data
ectors from simulations. As described in Section 5.1 it has distinct
dvantages and disadvantages, and so is worth considering as the
ommunity tackles how to maximally extract small-scale information
rom the next generation of redshift surveys. 
NRAS 533, 4081–4103 (2024) 

5 This would also suggest that the GIK parameters are not robustly predicted 
y simulations, which would be bad for the prospects of applying this model 
o observational data. 
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.1 Required developments 

efore a method like the one we have described here can be applied to
eal observational data, there is some additional work that is required.

e outline some of these developments now. 

.1.1 Variations in the galaxy–halo connection 

n sufficiently large scales, galaxies are expected to be almost
nbiased tracers of the cosmic velocity field (Chen et al. 2018 ).
o we ver, ef fects like dynamical friction (which affects dark matter
aloes, but not individual dark matter particles) can lead to haloes
and hence galaxies) having velocity distributions that differ from
hat of the matter distribution on smaller scales (e.g. Armitage et al.
018 ). 
In this work we used (sub)haloes as our galaxies, which should

roduce a more realistic velocity bias than had we simply used dark
atter particles. Ho we v er, e xactly which haloes get populated with

alaxies could potentially alter the velocity bias, leading to different
IK parameters for different galaxy samples. This means that in
rder to apply our method to real data, it would be important to
opulate the simulations – used to train the GIK parameter emulator
with galaxies in a manner that is close to how the real Universe

opulated its dark matter haloes with galaxies. 
Exactly which galaxies are selected in some surv e y (and therefore

ow those galaxies populate the underlying dark matter structures)
s expected to lead to differences in their kinematics. For example,
rsi & Angulo ( 2018 ) found that populating a DMO simulation with
alaxies using a semi-analytic model lead to different kinematics for
tellar mass selected galaxies and galaxies with prominent emission
ines. As a simple example, if part of what quenches star formation
n galaxies and leads them to turn from blue to red is environmental
ffects, one expects some blue galaxies that fall into a cluster will
e made red once inside. Within the GIK model this would produce
uite different f vir ( r) for red and blue galaxies, with (at fixed radius)
lue galaxies more likely to be infalling, and red galaxies more likely
o be virialized within the cluster potential. 

Potentially better than trying to put galaxies into the simulations in
he ‘correct’ w ay, w ould be to use a parametrized model to populate
he simulations with galaxies, populating each simulation numerous
imes using different galaxy–halo connection parameters. The GIK
arameter emulator could then be built to co v er variations in both
osmological and galaxy–halo connection parameters. Then, the
alaxy–halo connection parameters could be left free in the fit, and
arginalized o v er when dra wing conclusions about cosmological

arameters. This sort of approach is what is done when directly
mulating redshift-space clustering data vectors from simulations
Zhai et al. 2019 ; Yuan et al. 2022 ; Lange et al. 2023 ; Kwan et al.
023 ). In our case, it would be non-trivial, because fitting for the
IK parameters is a reasonably computationally e xpensiv e step, so
oing this many times over with different galaxy–halo connection
arameters for each simulated cosmology would require a consid-
rable amount of computing time. Nevertheless, such an endea v our
ould be important to properly incorporate how uncertainty on the
ay galaxies trace dark matter leads to uncertainties on the GIK
arameters for a given cosmology. 

.1.2 Prescription for the real-space clustering 

hroughout this paper, we have assumed that the real-space clus-
ering is known, and that we only need to model the effects of
SD on this to get ξ s 

cg . When applying this method to real data,
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he real-space clustering will not be known a priori, and must either
e measured or modelled. Measuring the real-space clustering could 
e done by measuring the projected correlation function (usually 
enoted w cg ( θ ), which expresses the cross-correlation between the 
ositions-on-the-sky of clusters and galaxies) and applying an inverse 
bel transform (e.g. Hickstein et al. 2019 ) to get ξ r 

cg ( r). Modelling
r 
cg ( r) could involve using an emulator for the real-space clustering’s
ependence on cosmology (e.g. Cuesta-Lazaro et al. 2023 ), or just
sing a flexible parametric model for ξ r 

cg ( r) and adding w cg ( θ ) to
he data vector being fit to, in order to help constrain this model’s
arameters. 
We note that inferring the real-space clustering has some associ- 

ted challenges. For example, the projected clustering 

 cg ( r p ) = 

∫ r π, max 

−r π, max 

ξ s 
cg ( r p , r π ) (22) 

nte grates o v er the line of sight, remo ving an y dependence on RSD.
o we ver, this is only exactly true for infinite r π, max , and Hang et al.

 2022 ) (when fitting models to the galaxy–group cross-correlation 
rom the Galaxy and Mass Assembly (GAMA) surv e y) found that a
arge enough r π, max to achieve results that were independent of RSD
ffects, lead to measurements that were too noisy to be useful. 

In addition, the projected clustering faces observational challenges 
ssociated with how galaxy spectra are obtained. For example, 
oth the Sloane Digital Sky Survey (SDSS) and now DESI cannot 
btain spectra for sufficiently nearby pairs of galaxies without 
ultiple observations of the same field (Hahn et al. 2017 ; Smith

t al. 2019 ). The bias to the measured correlation function that
ould come from preferentially missing galaxy pairs with small 

eparations can be corrected for (e.g. Bianchi & Perci v al 2017 ),
ut these observational systematic effects nevertheless increase the 
ncertainties on small-scale clustering. This means that our inferred 
eal-space clustering may have significant uncertainty, which would 
ranslate into increased uncertainty on the velocity distribution (and 
ence the cosmological parameters) when fitting the GIK model to 
s 
cg . 

.1.3 Distribution of cluster masses 

t present, we measure the GIK parameters from simulations 
or multiple narrow cluster mass bins, and use this to build an
mulator for p( v r , v t | r, M) (the cluster–galaxy pairwise velocity
istribution, for a given cluster–galaxy separation and cluster mass). 
 realistic cluster sample, selected on a property like richness or X-

ay luminosity, would be expected to have a sizeable range of cluster
asses. If we have a sample of clusters with a number density per

nit cluster mass of d n/ d M , then one might imagine that we can find
he GIK parameters appropriate for this sample of clusters as some 
ort of weighted average of the GIK parameters for different cluster 
asses. If we take equation ( 11 ) and make explicit the dependence

f various quantities on the mass of the galaxy clusters ( M), we have
t a particular mass that 

1 + ξ s 
cg ( r p , r π | M) 

= 

H ( z) 

1 + z 
×

∫ 1 + ξ r 
cg ( r | M ) 

cos θ

∫ 
p ( v r , v t | r, M ) d v r d y. (23) 

he average redshift-space cross-correlation with galaxies for our 
ample of clusters is 

ξ s 
cg ( r p , r π ) 

〉 = 

∫ 
ξ s 

cg ( r p , r π | M ) p( M ) d M , (24) 
here p( M) = 

d n 
d M 

/ 
∫ 

d n 
d M 

d M is the normalized probability density
ssociated with the cluster mass distribution. Similarly, the real-space 
lustering of our cluster sample is 

ξ r 
cg ( r) 

〉 = 

∫ 
ξ r 

cg ( r| M) p( M) d M. (25) 

utting equation ( 23 ) into equation ( 24 ), we get 

1 + 

〈
ξ s 

cg ( r p , r π ) 
〉 = 

H ( z) 

1 + z 

×
∫ 

p( M) 

[∫ 1 + ξ r 
cg ( r| M) 

cos θ

∫ 
p ( v r , v t | r, M ) d v r d y 

]
d M. (26) 

he form of this integral means that we cannot simply calcu-
ate 〈 ξ s 

cg ( r p , r π ) 〉 using 〈 ξ r 
cg ( r) 〉 and some appropriately averaged

 p( v r , v t | r) 〉 . To properly calculate a model 〈 ξ s 
cg ( r p , r π ) 〉 for a broad

luster mass distribution, we would need to have a model for
r 
cg ( r | M ), a model for p ( v r , v t | r, M ) (which our emulator for the
IK parameters provides), and a model for p( M). 
This is problematic for the approach (described in Section 7.1.2 )

f using the observed projected clustering to infer ξ r 
cg ( r), as this

ould produce a measurement of 〈 ξ r 
cg ( r) 〉 – averaged over the cluster

ample – without knowing about its mass dependence. For cluster 
ass distributions that are reasonably narrow, it may be sufficiently 

ccurate to combine some sort of mass-averaged p ( v r , v t | r ) with 
 ξ r 

cg ( r) 〉 . Generating cluster samples with suitably narrow mass
istributions will be helped by the ongoing development of low- 
catter cluster mass proxies (e.g. Eckert et al. 2020 ), but we leave an
nvestigation of how well this w ould w ork, and how one w ould best
verage p ( v r , v t | r, M ) , to future work. 

If one instead takes the approach of having a parametrized model
or ξ r 

cg ( r) and including w( θ ) in the data vector being fit to, then
his could be extended to have a parametrized model for ξ r 

cg ( r | M )
s well as p( M). Combining these with p ( v r , v t | r, M ) from the
IK parameter emulator we can then calculate both the redshift- 

pace and projected correlation functions, allowing the parameters 
f the ξ r 

cg ( r | M ) and p( M) models to be constrained by the clustering
ata. 

.1.4 Extension to higher redshifts 

n this work, our GIK parameter emulator was built only using
imulation data from z = 0. Extending this to work at different
edshifts would simply require using simulation outputs at different 
edshifts. We could either build an emulator for the specific ef fecti ve
edshift of some target surv e y, or we could build the emulator with
edshift being an additional input parameter along with cosmology 
nd cluster mass, and use simulation outputs at many different 
edshifts in the GIK parameter training data. This emulator could 
hen be applied to data from any redshift (including clustering data
n different redshift bins). 

.1.5 Selection effects 

ur model for redshift-space clustering assumes that the real-space 
lustering is isotropic, and that RSD due to cluster/galaxy velocities 
reaks this. Ho we ver, the selection of our clusters and/or galaxies
ay break this assumption of isotropy. F or e xample, the processes

nvolved in optical cluster selection typically lead to the o v erdensities
elected as clusters being preferentially elongated along the line of 
ight (Dietrich et al. 2014 ). If the cluster shape is correlated with the
MNRAS 533, 4081–4103 (2024) 
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istribution of galaxies around it, then this would lead to the real-
pace clustering of galaxies around clusters already being anisotropic
with respect to the line of sight to the cluster) before accounting for
SD. 
Assessing the potential impact of this, as well as testing any
itigation strategies, w ould most-lik ely require realistic mock data

o which cluster selection algorithms could be applied and a mock
nalyses performed. For example, the Cardinal mock galaxy cat-
logues (To et al. 2023 ) accurately reproduce the abundance of
alaxy clusters, and could be used to assess how selection effects
especially orientation-dependent ones) might lead to biases in the
nferred cosmological parameters. 

.1.6 Artificial disruption in simulations 

ur approach relies on N -body simulations faithfully reproducing
he cluster–galaxy pairwise velocity distribution. There has been
ecent literature about artificial disruption/destruction of subhaloes in
imulations (e.g. van den Bosch et al. 2018 ; van den Bosch & Ogiya
018 ; Green, van den Bosch & Jiang 2021 ; Diemer, Behroozi &
ansfield 2023 ), with claims that a significant fraction of sub-

aloes that should survive are destroyed due to numerical effects.
f the subhaloes artificially destroyed preferentially have certain
rbits, their destruction would bias the inferred GIK parameters,
lthough this effect should primarily be on small scales (within
pproximately the cluster virial radii) where the GIK model cannot
urrently be applied to infer unbiased cosmological constraints
nyway. 

Fully understanding the potential impact of this would require a
edicated simulation study. Here, we note that the relatively good
greement in Fig. 4 between the GIK functions for TNG300, and
 simulation with 64 times worse mass resolution, is a cause for
ptimism. That said, van den Bosch & Ogiya ( 2018 ) warn that
ecause of the way in which both softening and particle mass are
ypically varied as simulation resolution is changed, it is possible for
esults to appear converged while not having converged to the true
infinite resolution) result. 

.1.7 The effects of simulation box size 

s previously stated, a key advantage of our method is that it does
ot suffer too much from the noise associated with relatively small
imulation volumes (see Section 5.1 ), enabling the use of small
imulations to build an emulator for the pairwise velocities. Ho we ver,
mall volume simulations do not just provide noisier estimates of
uantities compared with their larger box-size counterparts, but
an produce biased estimates. This arises if large-scale density
uctuations (not present in smaller volume simulations) impact the
uantities of interest. 
Large-scale power is certainly important for the distribution of

he peculiar velocities of dark matter haloes (see e.g. fig. 9 of Cole
997 ). Ho we ver, it is not clear whether the pairwise velocities of
aloes/subhaloes with separations much smaller than the box-size
re appreciably impacted by the finite box-size and the associated
bsence of large-scale power. Maleubre et al. ( 2023 ) recently pre-
ented results for the pairwise velocities of the matter field, from
scale-free’ simulations, which ha ve power -law power spectra. Box
ize effects were found to be strongly dependent on the spectral
ndex of the power spectrum in these simulations, making it hard to
xtrapolate to the case of � CDM-like universes, in which the power
pectrum is not scale free. We are not aware of work looking at this in
NRAS 533, 4081–4103 (2024) 
 � CDM context, but a future measurement of the pairwise velocity
istribution as a function of box size is one of the steps that should
e taken before a method like ours is applied to real data, in order
o demonstrate the level at which the GIK parameters inferred from
imulations might be biased by the box size of the simulations used.

.2 Null tests of general relativity 

ere, we ha ve b uilt an emulator for a specific theory of modified
ravity, f ( R). This is just one of many alternatives to GR, and tying
ur modelling procedure to a particular modified gravity theory is
omewhat undesirable. To understand alternativ e strate gies to test
heories of gravity, it is instructive to consider the case of RSD on
arger scales. On large scales, we can make use of linear theory, for
hich the matter power spectrum in redshift space, P 

s 
m 

( k, μ), is given
y (Kaiser 1987 ) 

 

s 
m 

( k, μ) = (1 + f μ2 ) 2 P 

r 
m 

( k) , (27) 

here P 

r 
m 

( k) is the (isotropic) real-space power spectrum, μ ≡ ˆ k · ˆ z
s the cosine of the angle between wave vector k and the line-of-
ight direction, and f is the linear growth rate (for a definition,
ee e.g. Hamilton 2001 ). Within a � CDM + GR universe, the
alue of f is closely approximated by f ≈ �0 . 55 

m 

(Linder 2005 ).
evertheless, when fitting to observational data, f and �m 

can be
reated as independent parameters. The inferred values of f and �m 

an then be compared, to see if the relationship between them is that
xpected in a � CDM + GR universe, or if they appear inconsistent
ith this. Treating the standard cosmological model as some sort of
ull hypothesis, and then seeing if there is evidence for deviations to
his, is attractive because it does not tie the analysis to any particular
lternative, but just seeks to investigate whether there is evidence for
ome departure from � CDM + GR. 

On the face of it, our method for modelling ξ s 
cg is not so amenable to

his style of analysis, because the emulator is essentially interpolating
etween a set of self-consistent simulations, and so it cannot produce
redictions that are not self-consistent (such as a � CDM + GR
niverse with f �≈ �0 . 55 

m 

). It is interesting to consider how we could
xtend our modelling procedure to be more analogous to the case
escribed abo v e (where f and �m 

are treated as being independent
hen modelling RSD on linear scales). One possibility would be to

reat our RSD model primarily as a way to measure the mass of the
luster sample, assuming GR within the model. We could build an
mulator using � CDM + GR simulations (which, no longer having
 variable f̄ R0 , would no longer suffer the M 200 –f̄ R0 de generac y that
e see in our results). We could then use this emulator to fit to an
bserv ed data v ector. Comparing the mass inferred from fitting to ξ s 

cg 
ith that inferred using an independent method (with weak lensing
eing an obvious choice), we could then see if these two masses
gree or not, with a disagreement hinting towards non-GR gravity. 

Another alternative, would be to again build an emulator for the
IK parameters using � CDM + GR simulations, but then introduce
ne or more rescaling parameters that would shift the GIK function
urv es. F or e xample, one could imagine a single rescaling parameter,
 vel , such that v r, c → f vel v r, c , σrad → f vel σrad , and σtan → f vel σtan .
itting for the cosmological parameters alongside f vel , evidence that
 vel �= 1 would point towards some sort of modification to gravity. 

 C O N C L U S I O N S  

e have presented a method to model the cluster–galaxy cross-
orrelation function in redshift space, ξ s 

cg , based upon a slightly
odified version of the GIK model from ZW13. We demonstrated
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ow to find the posterior distribution for the parameters of the GIK
odel from 3D simulation data, with the data required being both 

ositions and velocities of clusters and galaxies extracted from N - 
ody simulations. Repeating this procedure for simulations run with 
ifferent cosmologies (from the FORGE simulations, that simulate 
ifferent f ( R) modified gravity cosmologies), we built up training 
ata for the cosmology dependence of the GIK parameters. 
We used this training data to build Gaussian process emulators for

o w the dif ferent GIK parameters depend upon the cosmological pa-
ameters and the theory of gravity. Combining these GIK parameter 
mulators with knowledge of the real-space cluster–galaxy cross- 
orrelation, allowed us to calculate ξ s 

cg as a function of cosmological 
arameters. Comparing these model predictions with an observed 
ata vector, we can then make inferences about the cosmological 
arameters. 
The finite volume of the simulations, leads to uncertainties on our 

raining data. We presented a method to propagate uncertainty on 
he GIK parameters from the training data, through to uncertainty 
n the model data vector. This included a procedure that we call
GIK parameter diagonalization’, a linear transform of the GIK 

arameter vector that allows separate Gaussian Processes (one for 
ach ‘diagonalized’ GIK parameter) to properly account for the 
ovariance between uncertainties on the different GIK parameters 
n the training data. 

Fitting our model to mock data generated by the model itself,
e showed forecasts for the cosmological constraining power that 
SD in the cluster–galaxy correlation function on small scales 
ill provide with data from a surv e y like DESI. We found that
 combination of the typical mass of our cluster sample and the
trength of modifications to gravity was tightly constrained, such 
hat an independent measurement of cluster mass (which could be 
rovided by weak gravitational lensing) will enable RSD to tightly 
onstrain theories of gravity. 

Finally, we applied our method to mock data extracted directly 
rom N -body simulations. We found that our procedure leads to 
 biased inference on the cosmological parameters if fitting the 
orrelation function all the way down to a scale of 1 h 

−1 Mpc . How-
ver, these biases are strongly reduced when cutting out the smallest
cales ( < 3 h 

−1 Mpc ), at the expense of broadened constraints on the
osmological parameters. We attribute these biases to deficiencies 
n the model on a scale of 1 − 3 h 

−1 Mpc , with these deficiencies
isible in both Figs 2 and 6 . 
A large fraction of the cosmological constraining power from 

urrent and future redshift surv e ys comes from small scales, which
ill most likely require modelling methods based around the use of
-body simulations. Our approach – of using simulations to build 

n emulator for the RSD kernel, which can be combined with some
ther model for the real-space clustering – is quite different from 

ther approaches in the literature that directly measure the redshift- 
pace correlation function from simulations (Zhai et al. 2019 ; Yuan 
t al. 2022 ; Lange et al. 2023 ; Kwan et al. 2023 ). Advantages of our
pproach include: 

(i) It separates out the two conceptually different components that 
roduce the redshift-space clustering: the real-space clustering and 
he RSD kernel. This allo ws de velopments to be made to either
omponent independently, and can also help with understanding and 
ntuition. 

(ii) It allows simulations with substantially smaller volumes than 
bservational surv e ys to be used in the modelling of those large
urv e ys, because imposing a functional form for the RSD kernel
educes the impact of noise in the simulations (see Fig. 6 ). This
eans that more simulations can be run, co v ering a wider range of
ossible cosmologies. 
(iii) It uses simulations to predict the ingredient of small-scale 

edshift-space clustering that they appear to predict more robustly. 
s discussed in Appendix C , for the TNG300 simulations: the
SD kernel’s contribution to ξ s 

cg is better converged with respect 
o numerical resolution than the real-space clustering’s contribution 
o ξ s 

cg is. 

The main drawback of our approach is that it relies on the GIK
odel being a good description of the true pairwise velocities. While

his generally seems to be true, there is evidence that at radii �
 h 

−1 Mpc the ‘infalling’ component of the GIK model does not
dequately describe the velocities from simulations (see the ‘banana- 
haped’ P ( v r , v t ) data and best-fitting model in Fig. 2 ). An avenue for
uture research would be to investigate modifications to the functional 
orm for P ( v r , v t ) that allow it to better describe the simulation data,
ith the goal being a model that could be applied down to very

mall scales without leading to biased inferences of the cosmological 
arameters. 
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hat: 
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xperience of parameter degeneracies when fitting these functions to
imulation data. 
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(iii) We use a different functional form for σvir from that in ZW13.
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Table A1. The functional forms for the various GIK functions, with the corresponding free parameters (the ‘GIK paramaters’) listed. A GIK parameter vector, 
g , is the set of 24 dimensionless numbers listed in the ‘GIK parameters’ column, working from the top down. Our prior on g (used when measuring the GIK 

parameters directly from position/velocity data from simulations) is a separable function of each GIK parameter, and is a uniform prior in each case, with the 
upper and lower limits enclosed in square brackets in the ‘Prior’ column. 

GIK function GIK parameters Prior Notes on GIK function 

σrad ( r) = q − qf r 
r min 

(
βr min 

r+ ( β−1) r min 

)β

log 10 q/ km s −1 [2,3.5] 

f [0,0.99] 
log 10 β [0.04,1.7] 
log 10 r min /h 

−1 Mpc [ −0 . 5 , 2] 

σtan ( r) = q − qf r 
r min 

(
βr min 

r+ ( β−1) r min 

)β

log 10 A/ km s −1 [1.5,3] A is the minimum 

f [0,0.99] value of σtan ( r), given 
log 10 β [0.04,1.7] by A = q(1 − f ) 
log 10 r min /h 

−1 Mpc [ −0 . 5 , 2] 

v r,c ( r) = q − t 
(

r i 
r+ r i 

)β

q/ km s −1 [ −1000 , 1000] 

log 10 t/ km s −1 [1,4] 
β [0.1,4] 
log 10 r i /h 

−1 Mpc [ −1 . 5 , 2] 

dof ( r) = 1 + q − qf r 
r min 

(
βr min 

r+ ( β−1) r min 

)β

A [0,10] A = q(1 − f ) 

f [0,1] dof ≥ 1 
log 10 β [0.1,4] 
log 10 r min /h 

−1 Mpc [ −0 . 5 , 2] 

α = q − qf r 
r min 

(
βr min 

r+ ( β−1) r min 

)β

q [ −3 , 10] h = f q 

h [ −10 , 10] 
log 10 β [0.04,1.7] 
log 10 r min /h 

−1 Mpc [ −0 . 5 , 2] 

f vir ( r) = exp ( −( r/r 0 ) γ ) r 0 /h 
−1 Mpc [0,10] We fix γ = 2 

σvir ( r) = σ0 

(
1 + q exp 

(
−r 
r vir 

))
σ0 / km s −1 [100,2000] Inspired by Aung et al. ( 2022 ) 

q [0,2] 
r vir /h 

−1 Mpc [0,5] 
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PPENDIX  B:  A LT E R NAT I V E  L I K E L I H O O D  

O R  FITTING  G I K  PA R A M E T E R S  TO  A  

IMULATION  

or our fiducial INDRA simulation volume (for which ξ s 
cg is plotted 

n Fig. 1 ), we tested whether our inferred GIK parameter vector, g ,
as different if we used the likelihoods defined in equation ( 5 ) or

 8 ). For the first of these, the data that we fit to is calculated by
inning cluster–galaxy pairs into radial shells and then within each 
adial shell further binning them in velocity ( v r , v t ) space. We then
sed MCMC to fit g to these binned counts, assuming that the counts
bey Poisson statistics, with an expectation value for each pixel that 
epends on g . For the second likelihood, the data are simply the set
f r , v r , and v t for each cluster–galaxy pair, with the likelihood being
he product o v er all cluster–galaxy pairs of the probability density
 ( v r , v t | r). 
The results of these MCMCs are chains of samples drawn from the

osteriors on the GIK parameters, which we can map into draws from
he posteriors on the GIK functions by e v aluating the functions at the
ocations of the GIK parameter samples. In Fig. B1 , we plot these GIK
unction posteriors, showing the median GIK function values as well 
s the 2 σ uncertainties. The results are virtually indistinguishable 
etween using the two different likelihoods. 

In terms of how important the small differences in Fig. B1
re to our use case of using the GIK model to make model
redictions for ξ s 

cg , we performed the following test. Keeping 
he real-space clustering fixed, we used the maximum-likelihood 
IK parameters from both the binned and no-binned likelihood 

pproaches to calculate ξ s 
cg . The difference between these two 

s 
cg model data vectors, when expressed as a χ2 using the data 
ovariance matrix described in Section 6.1 , is 0.16, very small
ompared with the differences one gets when calculating ξ s 

cg 

hrough the GIK model using INDRA simulations run with the 
ame cosmology but with different random initial conditions (see 
ection 5.1 ). 
MNRAS 533, 4081–4103 (2024) 
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M

Figure B1. The GIK function posteriors, from fitting for the GIK parameters using the binned and no-binned likelihoods described in Appendix B . The solid 
lines show the median GIK functions as a function of radius, while the shaded regions show the 2 σ uncertainty (the 2.5th–97.5th percentiles of the GIK functions 
at each radius). 
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PPENDIX  C :  T H E  I M PAC T  O F  SIMULATION  

E SOLUTION  A N D  T H E  INCLUSION  O F  

A R  Y  O N I C  PHYSICS  O N  T H E  PREDICTED  ξ s 
cg 

n Section 3.3 , we presented the results for both the GIK functions
nd the real-space clustering of different variants of the TNG300 sim-
lation. Here, we show the relative importance of these differences
or the calculation of a model ξ s 

cg . 
For each simulation, we measured the maximum-likelihood GIK

arameters, g , as well as the real-space clustering, ξ r 
cg ( r). We then

sed combinations of g and ξ r 
cg measured from different simulations

o calculate various model ξ s 
cg . The similarity of two different ξ s 

cg ,

ay ξ s 
cg , 1 and ξ s 

cg , 2 , was then assessed in terms of χ2 = ξ s 
cg , 1 C 

−1 ξ s 
cg , 2 ,

sing the data covariance matrix, C , described in Section 6.1
rescaled for the ∼ (300 Mpc ) 3 volume of a TNG300 simulation).
he results of various combinations were as follows: 

(a) When keeping the real-space clustering fixed to ξ r 
cg from

NG300, but using g from TNG300 or TNG300 low-res, the χ2 

ifference was 1.0. 
(b) When keeping g fixed to that from TNG300, but using ξ r 

cg 

rom TNG300 or TNG300 low-res, the χ2 difference was 18. 
(c) When keeping the real-space clustering fixed to ξ r 

cg from
NG300, but using g from TNG300 or g from TNG300 DMO,

he χ2 difference was 0.12. 
(d) When keeping g fixed to that from TNG300, but using ξ r 

cg 

rom TNG300 or TNG300 DMO, the χ2 difference was 1.7. 

Comparison of (a) and (b) with (c) and (d) shows that ξ s 
cg is more

ffected by a factor 64 change in resolution than baryons versus no
aryons. Comparing (a) with (b) we see that using low-resolution
NRAS 533, 4081–4103 (2024) 
imulation GIK parameters leads to a better estimate of the high-
esolution ξ s 

cg , than if using low-resolution simulation real-space
lustering. And comparing (c) with (d) tells us that the same is
rue when considering a hydrodynamical simulation versus a DMO
ne. 

PPENDI X  D :  W H AT  IS  T H E  PRI MARY  

O U R C E  O F  M O D E L  MIS-SPECIFICATION  

R RO R ?  

he right-hand panel of Fig. 6 made clear that there is substantial
odel mis-specification on small scales ( � 3 h 

−1 Mpc ). This means
hat the 24 GIK parameters are not adequately describing the velocity
istribution at small radii. There are two obvious culprits for this,
ne is that the seven GIK functions do not adequately describe the
airwise velocity distribution at fixed radius, and the second is that the
IK parameters do not adequately describe the radial dependence of

he GIK functions. Knowing the relevant importance of these sources
f model mis-specification should aid with future efforts to impro v e
he GIK model. 

To assess this, we calculated model ξ s 
cg data vectors that did not

ake use of the GIK parameter description of how the GIK functions
ary with radius. Instead, having fit for the GIK functions in many
adial shells, we directly used the GIK functions to describe the
elocity distribution at radii within the rele v ant shell. Specifically,
he GIK functions used to calculate a model ξ s 

cg were (o v er the radial
ange [ r i , r i+ 1 ]) the maximum-likelihood set of GIK functions fit to
he { v r , v t } data for cluster–galaxy pairs with separation in the range
 r i , r i+ 1 ]. We used radial shells that were 1 h 

−1 Mpc thick. 
We generated model ξ s 

cg using both our fiducial approach (‘GIK
arameters’) and the approach just described (‘GIK functions’) for
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igure D1. Maps of the normalized residuals, similar to those in Fig. 6 . Each
anel shows the mean result o v er 24 INDRA simulations. The mean ξ s 

cg from
he GIK models is compared with the mean ξ s 

cg measured directly from the
NDRA simulations. In the left-hand panel, the model ξ s 

cg is calculated in the
sual way (where the velocity distribution at all radii is described by the 24
GIK parameters’). In the right-hand panel, the pairwise velocity distribution 
sed for the model ξ s 

cg treats each GIK function as constant within 1 h −1 Mpc
hick radial shells, with the values of the GIK functions within each radial
hell obtained as the maximum-likelihood values from fitting to the { v r , v t }
ata in that shell. 

ach of 24 INDRA simulations for which we had fit the GIK functions
o the velocity data in spherical shells. Fig. D1 shows the residuals
etween the mean of these 24 model ξ s 

cg , and the mean ξ s 
cg measured

irectly from the INDRA simulations, normalized by an error map, σξ

defined in Section 5.1.1 ). The ‘GIK functions’ residuals plot shows
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
imilar structure on small scales to the ‘GIK parameters’ one, which
eans that a deficiency in the GIK functions is at least partly to

lame for the mismatch between model and data ξ s 
cg on small scales.

evertheless, the residuals are less pronounced in the ‘GIK functions’ 
ase than the ‘GIK parameters’ one, which means that the model
ould be impro v ed somewhat without altering the seven parameter
odel describing P ( v r , v t ) at fixed radius, but simply by improving

he description of how this varies with radius. Quantitatively, we 
ound that the corresponding χ2 (using the covariance matrix from 

ection 6.1 , which ignores pixels in the lowest r p bin) for the residuals
lotted in Fig. D1 were 23 and 11, for the ‘GIK parameters’ and ‘GIK
unctions’ cases, respectively. 

Achieving an impro v ement to the radial dependence of the GIK
unctions could be a case of devising better functional forms, that may 
hen require more GIK parameters. An alternative, would be to use the 
aussian processes that currently model the cosmology dependence 
f the GIK parameters, to also model the radial dependence of the
IK functions. In essence, one would use a suite of simulations

o measure the GIK functions at different points in cosmological 
arameter space, as well as for different cluster masses and different
luster–galaxy separations. Then, a Gaussian process could be 
onstructed for each of the GIK functions, that predicts the value
f this GIK function as a function of cosmology, halo mass, and
eparation. Such a procedure could only impro v e the model so
ar though, given that the right-hand panel of Fig. D1 still shows
esiduals, that would require an impro v ement to the GIK functions
hemselves to remove. As noted in Section 5.1.2 , the comparison
etween the data and model P ( v r , v t ) in Fig. 6 provides some
uidance as to how the current GIK functions are deficient at small
cales. 
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