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1 Introduction

The exploration of the details of the Higgs phenomenon is one of the primary goals of the
high-luminosity LHC and its successor machines. The exploration of the Higgs potential is
an important part of that endeavour. Within the context of the standard model, where the
Lagrangian is limited to terms of mass dimension d ≤ 4, the Higgs potential is fully determined,

V (h) = 1
2M2

HH2 + λvH3 + 1
4λH4 , (1.1)

in terms of the Higgs boson mass, MH , and the Fermi constant, GF , where MH =
√
2λ v, and

GF /
√
2 = 1/(2v2). Beyond the standard model one can introduce operators of dimension

higher than four, and hence deviations from the simple form for the triple Higgs boson
coupling given in eq. (1.1). For a complete review we refer the reader to ref. [1].

Non-perturbative analyses [2] indicate that, at the observed mass of the Higgs boson,
the electroweak phase transition is a rapid crossover, but extensions of the standard model
can make it first order. A first order phase transition would be required, inter alia, for an
electroweak baryogenesis explanation of the baryon asymmetry of the universe. This explains
the intense interest in extending our knowledge of the Higgs potential, beyond the limited
information about the shape of the potential derived from quadratic excursions about the
minimum of the potential, governed by the Higgs boson mass.

Constraints on the triple Higgs boson coupling derive from measurements of both single
Higgs [3] and double Higgs boson production [4–7]. The production of Higgs boson pairs
gives direct access to the self-coupling of the Higgs boson. Deviations from the standard
model are most easily assessed in the kappa framework [8, 9], in which the standard model
triple Higgs boson coupling is allowed to float by an overall factor κλ. In ref. [10] the ATLAS
collaboration find limits on the triple Higgs boson coupling modification of −6.3 < κλ < 11.6
at 95% CL, using final states with leptons (including taus), and photons. A combination
limit from ATLAS in ref. [11] using final states including b-quarks, determines that κλ lies
in the range −1.2 < κλ < 7.2 at 95% CL. In ref. [12] the CMS collaboration exclude values
of the coupling modifier outside the range −1.2 < κλ < 7.5 at 95% CL, using results from
both Higgs boson pair production and single Higgs boson production.

These limits on the triple Higgs boson coupling rely on theoretical calculations of Higgs
boson processes at next-to-leading order (NLO) and beyond. NLO corrections to Higgs
boson pair production including full top quark mass dependence have been calculated in
refs. [13–16]. These calculations have been used to introduce top quark mass dependence
into NNLO calculations performed in the m → ∞ limit in refs. [17–19]. The theoretical
uncertainties due to renormalization and factorization scale choice, with a special focus on the
renormalization scheme for the top quark mass have been discussed in ref. [20]. The effects
of matching with a parton shower are described in refs. [21, 22]. The calculation of double
Higgs boson production at NLO has been further improved by combining the numerical fit
result, based on events with limited coverage of the high-energy region, with the high-energy
expansion, yielding a NLO result valid in the low, medium and high-energy regions [23]. For
a short recent review including Higgs boson pair production we refer the reader to ref. [24].
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In this paper we re-examine part of the NLO calculation of Higgs boson pair production,
namely the one-loop amplitudes for the processes,

0 → g(p1) + g(p2) + g(p3) + H(p4) + H(p5) , (1.2)
0 → q(p1) + q̄(p2) + g(p3) + H(p4) + H(p5) , (1.3)

retaining all the dependence on the top quark mass, m. All the results presented assume
that the two Higgs bosons are both on their mass shell. These processes represent the real
radiation contribution to the NLO Higgs boson pair production process. The motivation for
doing this is twofold. First, we hope to produce expressions which are faster to evaluate than
expressions generated with automatic tools.1 Second, in NLO calculations the real radiation
is probed in regions where the emitted parton is either soft or collinear with respect to the
initial partons and the one-loop expressions can be quite unstable. We achieve these goals
by simplifying the spinor expressions for our results using the techniques of refs. [25, 26].
This has benefits for the evaluation time, since the expressions for the coefficients are shorter,
and also for the stability of the results. This is the case since rational functions are for the
most part reduced to least common denominator form, and partial fraction decompositions
are used to reveal their underlying divergence structure.

In addition to presenting the analytic forms for the amplitudes, we perform a comparison
with matrix elements calculated using automatic procedures. By reusing the prior calculation
of the ggHH 2-loop contribution [21], we also present a new public implementation of the
NLO Higgs-pair production process in MCFM [27–29]. Additionally, this calculation is used
to provide a result that is accurate to NLO+NNLL at small transverse momentum of the
Higgs boson pair, which may be of interest at a future high-energy pp collider.

2 One-loop amplitude for ggHH

We first review the amplitude for the lowest order Higgs boson pair production process, which
at order αs in the strong coupling, occurs through the one-loop process,

0 → g(p1) + g(p2) + H(p3) + H(p4) . (2.1)

We present these results here for completeness and to introduce our notation. The full
one-loop amplitude, known for many years, is given in ref. [30]. This result supersedes an
earlier partial result in ref. [31]. Since much of the interest in this process derives from its
sensitivity to the trilinear coupling of the Higgs boson, we modify that term in the Lagrangian
by introducing a rescaling κλ,

LHiggs =
1
2∂µH∂µH − 1

2M2
HH2 − κλλvH3 + . . . . (2.2)

We have dropped the quartic coupling of the Higgs boson since it plays no part in the present
calculation. The full amplitude for the process in eq. (2.1) is given by,

−iAC1C2 = −1
2δC1C2 αs

αW

4M2
W

A(1g, 2g, 3H , 4H) , (2.3)

1In NLO corrections the two-loop virtual correction is represented by a fit [21], which is quite fast to
evaluate. In previous calculations the one-loop real contribution is responsible for a sizable part of the
computation time.
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where,

MW = 1
2gW v, αs = g2s

4π
, αW = g2W

4π
. (2.4)

C1 and C2 are the colour indices of the gluons, v ≃ 246GeV is the vacuum expectation
value of the Higgs field, MW is the mass of the W -boson, gW is the gauge coupling of the
SU(2)W weak gauge group, and gs is the gauge coupling of the SU(3) strong gauge group.
There are two independent helicity amplitudes,

A(1+g , 2+g , 3H , 4H) = (κλ g△1 + g□1 )
[1 2]2

s12
,

A(1+g , 2−g , 3H , 4H) = g□2
[1|3|2⟩2

s12p2T
, (2.5)

where we have defined,

s12 = (p1 + p2)2, M2
H = p23 = p24 ≡ (p1 + p2 + p3)2,

2p1 · p3 p2 · p3
p1 · p2

= p2T + M2
H , (2.6)

and MH is the Higgs boson mass. The remaining two helicity combinations are obtained from
eq. (2.5) by interchange. g△1 denotes the triangle-graph pieces of the amplitude, contributing
via the triple Higgs boson coupling. The determination of the triple Higgs boson coupling
provides much of the motivation for the experimental measurement of Higgs boson pair
production. In this equation [i j] and ⟨i|k|j] are Lorentz invariant contractions of the spinors
with momentum pi, pj and pk. The momenta pi and pj are lightlike, whereas p2k = M2

H . As a
reminder of its non-zero mass, in spinor products massive four-vectors are written in boldface.

⟨i j⟩ = ū−(pi)u+(pj), [i j] = ū+(pi)u−(pj), ⟨i|k|j] = ū−(pi)̸ku−(pj) . (2.7)

Full details of the spinor notation and more complicated spinor strings, such as ⟨1|4|5|2⟩
are given in appendix A.

The results for the coefficients g△1 , g□1 and g□2 are [30],

g△1 = 12m2M2
H

s12−M2
H

[
2+(4m2−s12)C0(p1,p2)

]
, (2.8)

g□1 =4m2
{

m2(8m2−s12−2M2
H)
(
D0(p1,p2,p3;m)+D0(p2,p1,p3;m)+D0(p1,p3,p2;m)

)
+(s13s23−M4

H)
s12

(4m2−M2
H)D0(p1,p3,p2;m)+2+4m2C0(p1,p2;m)

+ 2
s12

(M2
H−4m2)

(
(s13−M2

H)C0(p1,p3;m)+(s23−M2
H)C0(p2,p3;m)

)}
, (2.9)

g□2 =2m2
{
2(8m2+s12−2M2

H)

×
{
m2[D0(p1,p2,p3;m)+D0(p2,p1,p3;m)+D0(p1,p3,p2;m)]−C0(p3,p4;m)

}
−2
{
s12C0(p1,p2;m)+(s13−M2

H)C0(p1,p3;m)+(s23−M2
H)C0(p2,p3;m)

}
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+ 1
(s13s23−M4

H)

[
s12s23(8s23m2−s223−M4

H)D0(p1,p2,p3;m)

+s12s13(8s13m2−s213−M4
H)D0(p2,p1,p3;m)

+(8m2+s12−2M2
H)
{
s12(s12−2M2

H)C0(p1,p2;m)+s12(s12−4M2
H)C0(p3,p4;m)

+2s13(M2
H−s13)C0(p1,p3;m)+2s23(M2

H−s23)C0(p2,p3;m)
}]}

, (2.10)

with
s13 = (p1 + p3)2, s23 = (p2 + p3)2, (2.11)

and where m is the (top) quark mass. B0, C0 and D0 are bubble, triangle and box scalar
integrals respectively in a more-or-less standard notation [32]. Full details of the notation
for scalar integrals are given in appendix B. To emphasize that the momenta of the Higgs
bosons p3 (and p4) are not light-like, we denote their presence in scalar products in boldface,
thus, for example, s13 = (p1 + p3)2.

2.1 General decompositions of one-loop amplitudes

The one-loop amplitude for ggHH was naturally expressed in terms of (tadpole), bubble,
triangle and box scalar integrals, because the amplitude had four external lines. Scalar
integrals are loop integrals with no powers of the loop momentum in the numerator. The
tadpole integral is not needed since it can be eliminated in terms of a bubble integral and a
rational term. However it is more generally true that one loop amplitudes can be expressed
as a sum of bubble, triangle and box scalar integrals. Thus even in the case of higher point
amplitudes with a larger number of external legs it is still true that we may write,

A = µ̄4−n

rΓ

1
iπn/2

∫
dnℓ

Num(ℓ)∏
i di(ℓ)

=
∑
i,j,k

di×j×k(1h1 , 2h2 , 3h3)D0(pi, pj , pk;m)

+
∑
i,j

ci×j(1h1 , 2h2 , 3h3)C0(pi, pj ;m)

+
∑

i

bi(1h1 , 2h2 , 3h3)B0(pi;m) + r(1h1 , 2h2 , 3h3) . (2.12)

The scalar bubble (B0), triangle (C0), box (D0) integrals, and the constant rΓ, are defined
in appendix B. This decomposition has the merit that the number of loop integrals that
need to be evaluated is minimized.

For the case of the amplitude gggHH we have pentagon diagrams with 5 external legs,
but the general decomposition in eq. (2.12) still holds. Indeed in four dimensions, the scalar
pentagon integral, E0 is expressible as a sum of 5 scalar boxes obtained by removing the
denominators of E0 one at a time,

E0(p1, p2, p3, p4;m) = C1×2×3×4
1 D0(p2, p3, p4;m) + C1×2×3×4

2 D0(p12, p3, p4;m)
+ C1×2×3×4

3 D0(p1, p23, p4;m)
+ C1×2×3×4

4 D0(p1, p2, p34;m) + C1×2×3×4
5 D0(p1, p2, p3;m) . (2.13)
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Rules for calculating the coefficients C are given in section 7.1. Even though eq. (2.12) is
always true, we find that for the gggHH process there is merit in using a more general
decomposition that retains the pentagon integrals and yields more compact results for the
coefficients of the integrals. In this basis we have,

A = µ̄4−n

rΓ

1
iπn/2

∫
dnℓ

Num(ℓ)∏
i di(ℓ)

=
∑

i,j,k,l

êi×j×k×l(1h1 , 2h2 , 3h3)E0(pi, pj , pk, pl;m)

+
∑
i,j,k

d̂i×j×k(1h1 , 2h2 , 3h3)D0(pi, pj , pk;m)

+
∑
i,j

ci×j(1h1 , 2h2 , 3h3)C0(pi, pj ;m)

+
∑

i

bi(1h1 , 2h2 , 3h3)B0(pi;m) + r(1h1 , 2h2 , 3h3) . (2.14)

In our final results, expressions for the box coefficients di×j×k in eq. (2.12) are given in terms
of the appropriate sum of effective pentagon and remainder box coeffients, êi×j×k×l and
d̂i×j×k respectively, in eq. (2.14). This method of effective pentagons has also been used
in the description of the Hgggg process in ref. [33].

3 Advancements in analytic reconstruction techniques

The one-loop coefficients contributing to the process with an additional parton in the final
state, pp → HHj, are presented here in the form obtained through analytic reconstruction.
They are iteratively reconstructed one pole residue at a time, as described in ref. [25,
section 3.3]. The use of algebraic geometry ensures control over the analytic structure of
the coefficients, while p-adic numbers enable stable numerical evaluations [26]. See also
related work in refs. [34, 35].

Three new features of this process affect the complexity of the reconstruction procedures:
• the calculation assumes that the two Higgs bosons have equal mass, therefore an extra

equivalence relation, besides momentum conservation, has to be imposed;

• the presence of two massive particles complicates the construction of a minimal ansatz,
since the dependence on both their four-momenta cannot be removed by momentum
conservation;

• the dependence on the mass of the quark in the loop occurs, not just as a Taylor series,
but also mixed with kinematic poles.

We address these points in this section, with further details given in appendices C and D.
This was required to arrive at a form of the coefficients simple enough for them to be
presented in this article.

3.1 Spinor variables subject to additional constraints

In the first instance, the massive five-point process under consideration can be embedded
into a seven-point massless process. Thus, Lorentz-covariant polynomials can be taken to

– 6 –
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belong to the following polynomial ring,

S7 = F
[
|1⟩, [1|, . . . |7⟩, [7|

]
. (3.1)

Legs 4, 5 and 6, 7 can be thought of as fictitious massless scalar decay products of the two
Higgs bosons.

To account for equivalence relations, such as momentum conservation ∑
i |i⟩[i|, we

introduce a polynomial quotient ring. The quotient ring construction of ref. [26] can be easily
modified to account for the extra relation on the Higgs masses,

R7 = S7
/〈 7∑

i=1
|i⟩[i|, s45 − s67

〉
. (3.2)

When reconstructing the integral coefficients, it is crucial to work within the correct
quotient ring. For example, consider the box coefficient d4×1×23 (defined later in section 6). If
we were to forget the s45 − s67 constraint, the least common denominator (LCD) as obtained
from the generalized unitarity computation would involve the following invariants,

⟨13⟩, ⟨23⟩, [23], ⟨1|(4 + 5)|1], ⟨2|(4 + 5)|1], ⟨3|(4 + 5)|1], [1|(4 + 5)|(6 + 7)|1]2 , (3.3)

as well as two more invariants that also involve m2, the mass the quark in the loop. However,
once we impose the extra constraint s45 = s67, we are left only with 3 out of the 7 singularities
of eq. (3.3),

⟨23⟩, [23], [1|(4 + 5)|(6 + 7)|1]2 . (3.4)

This is a drastic simplification. Furthermore, if we were to analytically reconstruct the
numerators of these four extra poles, there is no guarantee that these would yield simple
expressions, given that the extra four poles effectively have residues proportional to (s45−s67),
meaning they could be arbitrarily complicated rewritings of zero.

3.1.1 Univariate interpolation with additional constraints

A key step in the reconstruction of multivariate rational functions is the determination of their
irreducible denominator factors. This can be achieved by univariate Thiele interpolation [36]
on a generic univariate slice in the multivariate space [37]. When spinor variables are involved,
such a univariate slice can be constructed from a BCFW shift [38, 39] simultaneously applied
to all holomorphic or anti-holomorphic spinors [40], i.e. an all-line shift,

|i⟩ → |i⟩+ t ci|η⟩, [i| → [i| , (3.5)

for a given constant |η⟩ and with generic ci’s that satisfy momentum conservation,∑
i

ci|η⟩ = 0 . (3.6)

A single such slice suffices to determine the denominators of functions of Mandelstam invariants
and tr5 = Tr {̸p1 ̸p2 ̸p3 ̸p4γ5} [41], while the holomorphic plus anti-holomorphic pair is required
to obtain denominators of spinor-helicity functions [42], since we need the univariate slice to

– 7 –
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intersect all codimension one varieties. The slice of eq. (3.5) does not intersect the purely
anti-holomorphic varieties associated to ideals generated by just square brackets, [ij].

Here we show that a single slice (instead of a pair) suffices, and that additional constraints
can also be imposed. To this end, we construct a shift that involves all variables,

|i⟩ → |i⟩+ t xi|η⟩, [i| → [i|+ t yi[η| . (3.7)

Now momentum conservation takes the form,∑
i

(
|i⟩[i|+ t

(
xi|η⟩[i|+ yi|i⟩[η|

)
+ t2xiyi|η⟩[η|

)
= 0 , (3.8)

where the t0 coefficient is automatically zero, as the starting point is assumed to be in R7.
Moreover, the extra constraint s45 − s67 becomes,[

−
(
⟨45⟩+ tx4⟨η5⟩+ tx5⟨4η⟩

)
×
(
⟨⟩ ↔ []

)]
−
[
{4, 5} ↔ {6, 7}

]
= 0 , (3.9)

which, once expanded, yields a quadratic polynomial in t, where, once again, the t0 co-
efficient is zero.

Collecting all coefficients in the t-polynomials, which in this case means the t and t2

coefficients, we obtain a system of equations in the variables xi, yi. A generic solution to this
system ensures the shifted line of eq. (3.7) lies entirely within R7 and crosses all relevant
codimension-one varieties. This allows the determination of the LCD by matching irreducible
denominator factors in t to a list of expected singularities.

Implementation. We implement the univariate slice using lips [43, 44], with the numeric
part relying on NumPy [45], and the analytic part on SymPy [46]. The package pyadic [47]
is used for its implementation of the number field F, taken to be either finite fields (Fp)
or p-adic number, (Qp), and of the Thiele and Newton interpolation algorithms [36]. The
generic solution to the system of equations in F

[
xi, yi

]
is obtained by a generalization of

the algorithm presented in ref. [26, section 3] for arbitrary polynomial (quotient) rings,
as implemented in syngular [48] (Ideal.point_on_variety). The required lexicographic
Gröbner bases are obtained from Singular [49].

Arbitrary quotient ring. It appears clear that the same procedure could be applied when
working in an arbitrary quotient ring,

F
[
X
]/〈

q1(X), . . . , qm(X)
〉

(3.10)

by performing a shift,

X → X + t Y , (3.11)

and substituting it into the ideal
〈
q1, . . . , qm

〉
. Then, the equations need to be expanded in

t and each coefficient in the t-polynomials needs to be set to zero by choosing appropriate
solutions for Y , such that the line lies in the quotient ring for arbitrary values of t.

This procedure has its limits. Namely, if the polynomial quotient ring is not a unique
factorization domain, i.e. if there exist irreducible polynomials that generate non-prime ideals,
then one has to be careful with determining the LCD, as it is not unique. This is actually
relevant for the determination of the effective pentagon coefficients discussed in section 2.1
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3.2 Minimal spinor ansatz for an arbitrary number of massive scalars

Minimal ansätze for the analytic reconstruction of an n-point process with a single massive
external scalar leg, such as single Higgs production in association with jets [33], can be
constructed by considering an (n − 1)-point process without momentum conservation. This
amounts to replacing every occurrence of the massive four-momentum with a sum over all
the massless ones. However, this is no longer possible in the presence of multiple massive
lines, since removing a massive four-momentum causes the introduction of another one.

Since the rings of eq. (3.1) and eq. (3.2) over-parametrise the space of the pp → HHj

coefficients, to construct a minimal ansatz, we need to consider the covariant ring without
fictitious decays,

S5 = F
[
|1⟩, [1|, |2⟩, [2|, |3⟩, [3|, 4, 5

]
, (3.12)

where the bold numbers denote rank two spinors, 4 = 4αα̇ and 5 = 5αα̇. The relation between
the seven massless legs of eq. (3.1) and three massless plus two massive ones of eq. (3.12) is,

1 → 1, 2 → 2, 3 → 3, 4 → 4 + 5, 5 → 6 + 7 . (3.13)

Because the external massive particles are scalars, the rank-two spinors never appear
decomposed as sums over two pairs of rank-one spinors, p = ∑

I |pI⟩[pI |. In fact, this
would be equivalent to the seven-point space of eqs. (3.1) and (3.2). It introduces 8 spinor
components in lieu of 4.

The four, four-momentum conservation equations read

Jmom. cons. =
〈
|1⟩[1|+ |2⟩[2|+ |3⟩[3|+ 4 + 5

〉
. (3.14)

We further impose the constraint that m4 = m5. In terms of the ring variables, the masses
can be written as tr(4|4) = 2m2

4, or det(4) = m2
4, and equivalently for 5. These are to be

understood as polynomials in the four components of the rank-two spinors.
The quotient ring is then,

R5 = S5/(Jmom. cons. + ⟨det(4)− det(5)⟩) . (3.15)

Since amplitudes are Lorentz invariant, we now need to convert to an invariant ring
following the elimination algorithm of ref. [26, section 2]. However, the standard spinor
brackets,

⟨ij⟩ and [ij] , (3.16)

are no longer sufficient, since i, j can only be in {1, 2, 3}. In addition, we must consider
contractions involving the rank-two spinors 4 and 5, both with the rank-one spinors and
among themselves. The former case reads,

⟨i|k|i] and ⟨i|k|j] , (3.17)

while the latter case requires the introduction of traces, now considered as variables in their
own right (i.e. no longer as polynomials in the components),

tr(k|k) and tr(k|l) , (3.18)
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with k, l in {4, 5}. Since we work with 2-component spinors, these are understood as traces
of 2× 2 matrices, explicitly tr(k|l) = kαα̇lα̇α. In terms of Mandelstam invariants and MH

they read tr(4|4) = 2M2
H , tr(4|5) = s123 − 2M2

H .
The invariants of eq. (3.16), eq. (3.17), and eq. (3.18) altogether can be used to define a

Lorentz invariant polynomial ring analogous to Sn of ref. [26, section 2.2, eq. 2.59],

SS5 = F
[
⟨ij⟩, [ij], ⟨i|k|i], ⟨i|k|j], tr(k|k), tr(k|l)

]
. (3.19)

Once again these variables are subject to equivalence relations, thus a polynomial quotient
ring, RR5, is needed. The equivalence relations now include Schouten identities, besides
momentum conservation and the equality between the two Higgs masses.

We can obtain all these relations among Lorentz invariant spinor brackets from those
among the Lorentz covariant spinors. To do this, we build an extended covariant plus
invariant polynomial ring with the variables from both S5 and SS5. Following the notation
of ref. [26] we have,

Σ5 = F
[
|1⟩, [1|, |2⟩, [2|, |3⟩, [3|, 4, 5, ⟨ij⟩, [ij], ⟨i|k|i], ⟨i|k|j], tr(k|k), tr(k|l)

]
. (3.20)

In this extended ring, we consider the ideal

κ[Jmom. cons. + ⟨det(4)− det(5)⟩] =
〈
|1⟩[1|+ |2⟩[2|+ |3⟩[3|+ 4 + 5,

det(4)− det(5), ⟨12⟩ − (λ1,0λ2,1 − λ2,0λ1,1, . . . )
〉

,

(3.21)

where the ellipsis contains all other equations defining the invariant spinor brackets as
contractions of the components of the covariant spinors. For clarity, we have expanded the
definition of the ⟨12⟩ bracket in terms of the components of the spinors |1⟩ = (λ1,0, λ1,1)
and |2⟩ = (λ2,0, λ2,1). The minus sign arises from the Levi-Civita tensor, which is the
metric in spinor space.

The invariant quotient ring, RR5, is obtained as

RR5 = SS5/
(
κ[Jmom. cons. + ⟨det(4)− det(5)⟩] ∩ SS5

)
, (3.22)

where the intersection of the ideal κ of Σ5 with the subring SS5 amounts to eliminating the
spinor component variables. That is, within a suitably chosen block-order, one picks the
subset of the Gröbner basis generated only by Lorentz invariant variables. This automatically
generates all equivalence relations among invariants. They are: a) the invariant equivalent of
Jmom. cons., i.e. the ideal generated by all contractions of the covariant generator of eq. (3.14);
b) tr(4|4) = tr(5|5), which comes from det(4) = det(5); c) all Schouten identities. These
are no longer the usual ones,

⟨ij⟩⟨kl⟩+ ⟨ik⟩⟨lj⟩+ ⟨il⟩⟨jk⟩ = 0 , (3.23)

since we have only three massless legs, instead we have ones of the form,

⟨j k⟩ ⟨i|l|k]− ⟨i k⟩ ⟨j|l|k] + ⟨i j⟩ ⟨k|l|k] = 0 . (3.24)
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mass dimension: 2 4 6 8 10 12
1. 0 → ggggg 5 16 40 85 161 280
2. 0 → gggggg 9 50 205 675 1886 4644
3. 0 → ggggggg 14 120 735 3486 13566 45178
4. 0 → ggggH 6 22 62 147 308 588
5. 0 → gggggH 10 60 265 940 2826 7470
6. 0 → gggHH 6 22 62 147 308 588
7. 0 → gggHH∗ 7 29 91 238 546 1134

Table 1. Ansatz dimensions at zero phase weights for various processes representative of external
kinematic configurations. The first column corresponds to the number of independent Mandelstam
invariants. Rows 1, 4, 6 and 7 involve a single independent tr5, thus their ansatz sizes saturate the
upper bound of ref. [50, eq. 3.2]. Row 2 reproduces ref. [25, table 1] (implementations differ). Rows
4 and 6 are identical, but represent different ansätze. For instance, the former may have non-zero
little-group weight associated with the fourth leg, but the latter cannot.

Constructing an ansatz then amounts to enumerating all independent monomials of
RR5 with a given mass dimension and little-group weight. Mass dimension and polynomial
degree now are related by a weight vector assigning weight 1 to the two-particle spinor
brackets, and weight 2 to the three-particle spinor brackets and traces. Polynomials are
still homogeneous, given this weight vector.

It is clear that this construction could be generalized to construct ansätze for an arbitrary
combination of m massless legs plus n massive scalar ones.

To conclude, we report the size of various ansätze in table 1. The ansatz sizes for the
process of interest in this work is given in row 6, while row 7 shows the closely related process
where the two Higgs bosons are not constrained to have the same mass. Comparing row
3 with row 6 demonstrates the importance of using the appropriate ansatz construction
for the present calculation. In fact, while the ansatz of row 3, representing polynomials
in R7, would have worked, it clearly becomes orders of magnitude more complex then the
minimal one for this process in row 6.

Implementation. We implement the ansatz construction via the described adaptation of
the algorithm of ref. [26, section 2.2] using lips for the spinor algebra [43, 44], Singular for
the Gröbner bases and variable elimination [49], and the CP-SAT solver from OR-Tools [51]
to enumerate the ansatz monomials.

Massive vector bosons. A similar construction, with appropriate modification, should be
suitable to build minimal ansätze for processes involving multiple bosons, including vector
ones. In a soon-to-appear publication [52], the two-loop amplitudes for the process pp → Wjj

are reconstructed in spinor-helicity variables. To do so, the ansatz for a single massive
scalar (row 4 of table 1) is modified to allow the spinors of the now non-fictitious decay
products, e.g. a charged lepton plus neutrino pair, to appear with a degree bound of one
(for more details see that article). The two constructions could be combined with suitable
degree bounds on the leptonic decays of the vector bosons to construct ansätze for processes
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involving e.g. WW , WZ, WH, ZZ or ZH. The computation of two-loop amplitudes for
such processes in association with a jet is now within reach [53].

3.3 Projective space in m

Besides the kinematic variables discussed so far, the mass of the quark running in the loop
also appears in the amplitude. The polynomial ring is thus,

S5[m] = F
[
|1⟩, [1|, |2⟩, [2|, |3⟩, [3|, 4, 5, m

]
. (3.25)

The quotient ring construction is unchanged, since no equivalence relation involves m, so we
simply have the covariant quotient ring R5[m] and the invariant one RR5[m].

It is clear that m has a special role in R5[m] and RR5[m]: it is the only variable not subject
to equivalence relations. It is then straightforward to consider this space as being projective
in m, since m can be taken to infinity independently. On the other hand, we remain in an
affine space for the spinors, since taking a spinor to infinity would require another one also
being either large (if additive in the equivalence relation) or small (if multiplicative). That
is, we include the point m → ∞, but not any point at infinity for the spinor variables. In a
projective space at the point at infinity the role of poles and zeros is inverted, a numerator
factor is a pole, while a denominator factor is a zero.

The box coefficients in the gggHH amplitude have a rich analytic structure in m. Since
performing four unitarity cuts can result in a fifth propagator being evaluated on the cut, the
kinematic and m dependence mix in the denominator. The large and small m limits provide
useful information on the general m expression, but do not directly translate to individual
terms of a Taylor expansion as in the case of the triangle coefficients. In appendix D we
investigate how the loop quark mass dependence affects various rewritings of a box coefficient,
especially in relation to the location of spurious singularities. In particular, we make the
interesting observation that there can be a spurious pole at m → ∞. This could provide an
even more numerically efficient way to write the box coefficients, if the size of the expressions
in that form can be contained. In fact, the mass m, when interpreted as the top-quark mass,
is large, but never truly approaches infinity — unlike some kinematic variables that may
need to approach zero. The compact form of the box coefficients that we present in section 7
is instead based on an effective pentagon decomposition, as discussed in section 2.1.

3.3.1 Effective pentagons as residues of mixed m-kinematic poles

There are two singularities (plus permutations) that mix the kinematic dependence with
the m dependence. Their origin is explained in section 7.1. For the purpose of the present
discussion, it is sufficient to anticipate the form of eq. (7.11) and eq. (7.20). For convenience,
we repeat one here,

|S1×2×3×4| = −s12s23 ⟨1|5|4|3⟩ [3|4|5|1] + m2 (tr5)2 . (3.26)

An advantage of the decomposition in eq. (2.13) is that the entire dependence on such mixed
mass-kinematic poles is captured by the coefficients C, leaving the effective pentagons êi×j×k×l

and effective boxes d̂i×j×k free of any m dependence in the denominator.
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The effective pentagons êi×j×k×l are defined as residues of these mixed mass-kinematic
singularities (up to the numerator part of the C’s). The residue of a simple pole in |S1×2×3×4|
is defined in the quotient ring,

S5/(Jmom. cons. +
〈
m2

4 − m2
5

〉
+
〈
|S1×2×3×4|

〉
) . (3.27)

This is not a unique factorization domain, because we can find an irreducible polynomial,
e.g. tr5, that generates a non-prime ideal. For instance, in the quotient ring of eq. (3.27),
we have

⟨tr5⟩ ∋ m2tr25 = s12s23 ⟨1|5|4|3⟩ [3|4|5|1] . (3.28)

Since none of the factors ⟨12⟩, [12], ⟨23⟩, [23], ⟨1|5|4|3⟩, and [3|4|5|1] belongs to ⟨tr5⟩ this
proves that ⟨tr5⟩ is not prime (in the quotient ring of eq. (3.27)).

This implies that the LCD of an effective pentagon coefficient is not unique. In practice,
we can shift its definition either additively by,

0 = −s12s23 ⟨1|5|4|3⟩ [3|4|5|1] + m2 (tr5)2 , (3.29)

or multiplicatively by,

1 =
m2 (tr5)2

s12s23 ⟨1|5|4|3⟩ [3|4|5|1]
, (3.30)

without affecting its validity in relation to eq. (2.13) and eq. (2.14).
We use the redundancy of eq. (3.29) to show that the effective pentagons can be

written without a double pole in tr5. This step was crucial to obtain expressions compact
enough to be presented in this article. The redundancy of eq. (3.30) could be used to
replace the spurious simple pole in tr5 with a zero in tr5, but with extra spurious poles in
s12, s23, ⟨1|5|4|3⟩ , [3|4|5|1]. Such re-definitions affect the form of the effective box coefficients,
as these are not defined as residues of the same pole.

3.3.2 Interpolation on leading p-adic digit

When reconstructing functions that depend on m, it is generally useful to consider the
behaviour at m = 0 and m → ∞. For functions where the m dependence is a Taylor
series, this allows the isolation of individual terms in the series. For functions that have m

dependence mixed with kinematic variables in the LCD, the small and large m limits still
yield useful information, but cannot be directly used to obtain the general m expression.

It is interesting to note that the univariate interpolation of section 3.1.1, traditionally
used with finite fields, can be equally well performed on a leading p-adic digit, by treating
it as if it was a Fp number [35]. This allows one to isolate the m = 0 contribution by
setting m ∝ p, and m → ∞ by setting m ∝ 1

p . If we were to work in Fp this would require
interpolation on a bi-variate slice. Since the ideal ⟨m⟩ is prime, the LCDs at m = 0 and
m → ∞ are uniquely determined by the slicing procedure.
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4 Results for the process 0 → qq̄gHH

4.1 Process 0 → qq̄gH∗

We first report on the contribution to Higgs boson pair production via the triple Higgs
boson coupling, due to the process,

0 → q(p1) + q̄(p2) + g(p3) + H∗(p4) , p4 = −p1 − p2 − p3 , p24 ̸= M2
H . (4.1)

The amplitude is given by,

−iAC3
i1i2

(1q, 2q̄, 3g; 4H∗) = − g3s
16π2

gW

2MW
tC3
i1i2

A(1h1
q , 2h2

q̄ , 3h3
g ; 4H∗) . (4.2)

The t matrices are the SU(N) matrices in the fundamental representation normalized such that,

tr(tatb) = δab , (4.3)

and N = 3. i1, i2 and C3 are thus the SU(3) indices of the quark, antiquark and gluon
respectively, The helicities are denoted by, h1, h2 and h3 for the outgoing quark, anti-quark
and gluon respectively. The result for the colour-stripped amplitude is,

A
(
1−q ,2+

q̄ ,3+
g ;4H∗

)
=−4⟨12⟩ [23]

2
m2

(s123−s12)2

[
B0 (p12)+

[(s123−s12)
2s12

−2m2

s12

]
C0(p3,p12)−

(s123−s12)
s12

]
.

(4.4)
For conciseness we have introduced modified (dimensionless) forms of the scalar integrals,

C0(p3, p12) = (2p3 · p12)C0(p3, p12;m)
B0(p12) = B0(p12;m)− B0(p123;m) . (4.5)

The amplitudes for the Higgs boson pair production cross section due to the triple Higgs
boson coupling are simply related to the above result,

AC3
i1i2

(1q, 2q̄, 3g;H∗ → 4H , 5H) = 3gW

2MW
κλ

M2
H

s123 − M2
H

AC3
i1i2

(1q, 2q̄, 3g; 4H∗) . (4.6)

By combining eqs. (4.4) and (4.6) one arrives at the result for this contribution to the full
amplitude, which is included in the expressions in the following section.

4.2 Process 0 → qq̄gHH

The contribution to the full physical amplitude for the process,

0 → q(p1) + q̄(p2) + g(p3) + H(p4) + H(p5) , (4.7)

is given by,

−iAC3
i1i2

(1h1
q , 2h2

q̄ , 3h3
g ; 4H , 5H) = − g3s

16π2
m2

v2
tC3
i1i2

A(1h1
q , 2h2

q̄ , 3h3
g ; 4H , 5H) . (4.8)
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The colour-ordered sub-amplitudes in eq. (4.8) can be expressed in terms of scalar integrals.
For the 0 → qq̄gHH colour-stripped sub-amplitude we have,

A(1h1
q , 2h2

q̄ , 3h3
g ; 4H , 5H) = µ̄4−n

rΓ

1
iπn/2

∫
dnℓ

Num(ℓ)∏
i di(ℓ)

=
∑
i,j,k

di×j×k(1h1 , 2h2 , 3h3)D0(pi, pj , pk;m)

+
∑
i,j

ci×j(1h1 , 2h2 , 3h3)C0(pi, pj ;m)

+
∑

i

bi(1h1 , 2h2 , 3h3)B0(pi;m) + r(1h1 , 2h2 , 3h3) . (4.9)

The scalar bubble (B0), triangle (C0), box (D0) integrals, and the constant rΓ, are defined in
appendix B. r(1h1 , 2h2 , 3h3) is the rational contribution to the amplitude. We can further
decompose the box and triangle coefficients according to the power of the quark mass running
in the loop,

di×j×k = d
(0)
i×j×k + m2 d

(2)
i×j×k + m4 d

(4)
i×j×k ,

ci×j = c
(0)
i×j + m2 c

(2)
i×j . (4.10)

We present results for the helicity choices h1 = −1, h2 = +1, h3 = +1. The other helicity
choices are obtained as follows,

A(1+, 2−, 3+) = A(2−, 1+, 3+)
A(1+, 2−, 3−) = A(1−, 2+, 3+)

∣∣
⟨⟩↔[] . (4.11)

4.2.1 Boxes

There are two independent box coefficients. The first one reads,

d
(0)
12×4×3(1−, 2+, 3+) = M2

H(s34s35 − M4
H)(⟨3|4|2]

2 + ⟨3|5|2]2)
[1 2] ⟨3|4|5|3⟩2

, (4.12)

d
(2)
12×4×3(1−, 2+, 3+) = 8⟨3|4|2] ⟨3|5|2] (s34s35 − M4

H)
[1 2] ⟨3|4|5|3⟩2

+ d̄(2)(1−, 2+, 3+) , (4.13)

with d̄(2)(1−, 2+, 3+) = 4⟨1|3|2] (⟨1|4|(1 + 2)|5|1]− ⟨1|5|(1 + 2)|4|1])
s12 ⟨3|4|5|3⟩

,

− 2(⟨1|4|(1 + 2)|5|2]− ⟨1|5|(1 + 2)|4|2])(s45 − 2s23 − 2M2
H)

s12 ⟨3|4|5|3⟩
,

(4.14)

d
(4)
12×4×3(1−, 2+, 3+) = −8⟨1 3⟩ ⟨1|(4 − 5)|3]

⟨1 2⟩ ⟨3|4|5|3⟩ − 8[2 3] ⟨3|(4 − 5)|2]
[1 2] ⟨3|4|5|3⟩ . (4.15)

The second one reads,

d
(0)
12×3×4(1−, 2+, 3+) = −(s34s45 − M2

Hs12)
(⟨1|5|4|3⟩2 + ⟨1 3⟩2 M4

H)
⟨1 2⟩ ⟨3|4|5|3⟩2

, (4.16)

d
(2)
12×3×4(1−, 2+, 3+) = −8⟨1 3⟩ ⟨1|5|4|3⟩ (s34s45 − M2

Hs12)
⟨1 2⟩ ⟨3|4|5|3⟩2

+ d̄(2)(1−, 2+, 3+) , (4.17)

d
(4)
12×3×4(1−, 2+, 3+) = d

(4)
12×4×3(1−, 2+, 3+) . (4.18)
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The third box coefficient is not independent,

d3×12×4(1−, 2+, 3+) = d12×3×4(1−, 2+, 3+)
∣∣
4↔5 . (4.19)

4.2.2 Triangles

In the limit m → 0 the box integrals, and a subset of the triangle integrals, develop poles in
the limit ϵ → 0. Since the result for the amplitude must be finite, this yields constraints on the
integral coefficients. The order m0 triangle coefficients are determined by these IR relations,

c
(0)
3×4

s34 − M2
H

= −
d
(0)
12×3×4

s34 s45 − M2
H s12

−
d
(0)
12×4×3

s34 s35 − M4
H

, (4.20)

c
(0)
3×124

s35 − M2
H

= −
d
(0)
3×12×4

s35 s45 − M2
H s12

−
d
(0)
12×4×3

s34 s35 − M4
H

, (4.21)

c̄
(0)
3×12

s45 − s12
= −

d
(0)
3×12×4

s35 s45 − M2
H s12

−
d
(0)
12×3×4

s34 s45 − M2
H s12

, (4.22)

where this last relation represents the triangle coefficient originating from diagrams that do
not involve the triple Higgs coupling. The full result for this coefficient is,

c
(0)
3×12 = c̄

(0)
3×12 + 6κλ

[2 3]2

[1 2]
M2

H

(s45 − M2
H) . (4.23)

The order m2 pieces for the triangles c3×12, c3×4 and c3×124 with one light-like external line are,

c
(2)
3×12(1−,2+,3+)= 8⟨13⟩2 (s45−s12)(s45−2M2

H)
⟨12⟩ ⟨3|4|5|3⟩2

+ 8[23]2

[21] (s45−s12)
[
1+κλ

3M2
H

(s45−M2
H)
]
,

(4.24)

c
(2)
3×4(1−,2+,3+)= 8 ⟨3|4|3]

⟨3|4|5|3⟩2
{⟨13⟩⟨1|5|4|3⟩

⟨12⟩ − ⟨3|4|2]⟨3|5|2]
[12]

}
, (4.25)

c
(2)
3×124= c

(2)
3×4(1−,2+,3+)

∣∣
4↔5 . (4.26)

The triangle coefficients for the triangles without a light-like external line are,

c4×123(1−, 2+, 3+) = (s45 − 2M2
H + 8m2)

×
{⟨1|(2 + 3)|(4 − 5)|3⟩

(
⟨1|4|5|3⟩ − ⟨1|5|4|3⟩

)
⟨1 2⟩ ⟨3|4|5|3⟩2

− 2 ⟨1|4|5|1⟩
⟨1 2⟩ ⟨3|4|5|3⟩

}
,

(4.27)

c4×12(1−, 2+, 3+) = (s45 − 2M2
H + 8m2)

{⟨1 3⟩ ⟨3|5|2]∆12|4|35

s12 ⟨3|4|5|3⟩2
− ⟨1|4|2] (s35 + s12 − M2

H)
s12 ⟨3|4|5|3⟩

}

+
[3 2]

{
⟨2|4|2]

(
⟨1|(1 + 2)|4|3⟩ − ⟨1|4|(1 + 2)|3⟩

)}
s12 ⟨3|5|4|3⟩

−
[3 2]

{
⟨1|4|2]

(
⟨2|(1 + 2)|4|3⟩ − ⟨2|4|(1 + 2)|3⟩

)}
s12 ⟨3|5|4|3⟩

+
(
⟨1|(1 + 2)|4|3⟩ − ⟨1|4|(1 + 2)|3⟩

)
⟨1|4|3]

⟨1 2⟩ ⟨3|5|4|3⟩ , (4.28)

c12×34(1−, 2+, 3+) = c4×12
∣∣
4↔5 , (4.29)
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and the Källén function is,

∆12|4|35 = (s12 + M2
H − s35)2 − 4s12M

2
H . (4.30)

4.2.3 Bubbles and rational pieces

The bubble coefficients and the rational terms are given by,

b123(1−,2+,3+)= 4 ⟨12⟩ [23]2

(s45−s12)2
[
1+κλ

3M2
H

(s45−M2
H)
]
, b12(1−,2+,3+)=−b123(1−,2+,3+) ,

(4.31)

r(1−,2+,3+)= 4[23]2

[21](s45−s12)
[
1+κλ

3M2
H

(s45−M2
H)
]
. (4.32)

This concludes the discussion of the quark-antiquark-gluon contribution to the Higgs boson
pair amplitudes.

5 Results for the process 0 → gggH∗(→ HH)

We first present results for the process involving a single Higgs boson [54, 55] which contribute
to the Higgs boson pair production via the Higgs boson self-coupling,

iAC1C2C3(gggH∗) =
(
i
√
2fC1C2C3

) g3s
16π2

gW

MW
s2123 A(1h1

g , 2h2
g , 3h3

g , 4H∗) , (5.1)

where p4 = −p1 − p2 − p3 and s12 = (p1 + p2)2, s13 = (p1 + p3)2, s23 = (p2 + p3)2, s123 =
(p1 + p2 + p3)2. With these definitions we have,

A(1+g , 2+g , 3+g , 4H∗) = 1
⟨1 2⟩ ⟨2 3⟩ ⟨3 1⟩A4(p1, p2, p3) , (5.2)

A(1+g , 2+g , 3−g , 4H∗) = [1 2]
⟨1 2⟩2 [1 3] [2 3]

A2(p1, p2, p3) . (5.3)

The remaining amplitudes can be obtained by symmetry operations,

A(1+g , 2−g , 3+g , 4H∗) = −A(1+g , 3+g , 2−g , 4H∗) , (5.4)
A(1−g , 2+g , 3+g , 4H∗) = −A(3+g , 2+g , 1−g , 4H∗) , (5.5)

A(1−h1
g , 2−h2

g , 3−h3
g , 4H∗) = −

[
A(1h1

g , 2h2
g , 3h3

g , 4H∗)
]
⟨ ⟩↔[ ]

. (5.6)

The two helicity amplitudes A2, A4 are given by [54],

A4 (p1,p2,p3)=

m2

s123

[
−2−

( m2

s123
− 1
4
){

D0(p1,p2,p3)+D0(p1,p3,p2)+D0(p2,p1,p3)

+2C0(p1,p23)+2C0(p2,p13)+2C0(p3,p12)
}]

, (5.7)
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A2 (p1,p2,p3)=

m2

s2123

[
s12 (s23−s12)

s12+s23
+ s12 (s13−s12)

s12+s13

−2s13s23
(2s12+s23)
(s12+s23)2

B0 (p13)−2s13s23
(2s12+s13)
(s12+s13)2

B0 (p23)

+
(

m2− s12
4

){
2C0 (p2,p13)+2C0 (p1,p23)−2C0 (p3,p12)−D0 (p1,p2,p3)−D0 (p2,p1,p3)

}
−2s212

[(
2m2

(s12+s23)2
− 1
2(s12+s23)

)
C0 (p2,p13)+

(
2m2

(s12+s13)2
− 1
2(s12+s13)

)
C0 (p1,p23)

]
+ s23s13

s12

(
C0 (p2,p13)+C0 (p1,p23)−C0 (p1,p3)−C0 (p2,p3)

)
− 1
4

(
s12−12m2− 4s23s13

s12

)
D0 (p1,p3,p2)

]
, (5.8)

where the reduced scalar integrals C0 and B0 are defined in eq. (4.5) and

D0(p1, p2, p3) = (4p1 · p2 p2 · p3)D0(p1, p2, p3;m) . (5.9)

We note that A2 is symmetric under the exchange p1 ↔ p2, whereas A4 is totally symmetric.
The amplitudes for the Higgs pair production cross section due to the triple Higgs boson

coupling are simply related to the above result,

AC1C2C3(gggHH) = 3gW

2MW
κλ

M2
H

s123 − M2
H

AC1C2C3(gggH∗) . (5.10)

Putting this together we arrive at the final form,

iAC1C2C3(gggHH)= 3gW

2MW
κλ

M2
H

s123−M2
H

(
i
√
2fC1C2C3

) g3
s

16π2
gW

MW
s2

123 A(1h1
g ,2h2

g ,3h3
g ,(4+5)H∗)

= g3
s

4π2
m2

v2
[
tr(tC1tC2tC3)−tr(tC3tC2tC1)

]
Hκ(1h1 ,2h2 ,3h3 ;H,H) , (5.11)

where we have extracted the overall Yukawa coupling factor from A for later convenience
and defined the auxiliary amplitude,

Hκ(1h1 , 2h2 , 3h3 ;H, H) = 3
2 κλ

M2
H

s123 − M2
H

s2123
A(1h1

g , 2h2
g , 3h3

g , (4 + 5)H∗)
m2 . (5.12)

6 Calculation methods for the process 0 → gggHH

In this section we introduce calculation details for the part of the process 0 → gggHH which
does not involve the triple Higgs coupling,

0 → g(p1) + g(p2) + g(p3) + H(p4) + H(p5) . (6.1)

Both Higgs bosons are radiated off the quark line, with p21 = p22 = p23 = 0 and p24 = p25 = M2
H .

The analytic results will be presented in section 7.
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6.1 Definition of colour amplitudes

The amplitude for the production of a pair of Higgs bosons and 3 gluons can be expressed
as colour-stripped sub-amplitudes as follows,

iHggg
n ({pi, hi}) =

g3s
4π2

m2

v2
[
tr (tC1tC2tC3)− tr (tC3tC2tC1)

]
H(1h1 , 2h2 , 3h3 ;H, H) . (6.2)

m is the mass of the quark circulating in the loop, and v is the vacuum expectation value.
Squaring the amplitude and summing over colours we have,∑

colours
|Hggg

n ({pi, hi})|2 = 2V N

(
g3s
4π2

m2

v2

)2 ∣∣∣H(1h1 , 2h2 , 3h3 ;H, H)
∣∣∣2 , (6.3)

where V = N2− 1. From eqs. (5.11) and (6.2) it is clear that we can account for all diagrams,
including the triple Higgs boson interaction, by simple modification,∑
colours

|Hggg
n ({pi,hi})|2=2V N

(
g3s
4π2

m2

v2

)2 ∣∣∣H(1h1 ,2h2 ,3h3 ;H,H)+Hκ(1h1 ,2h2 ,3h3 ;H,H)
∣∣∣2 .

(6.4)

6.2 Decomposition into scalar integrals

The colour-ordered sub-amplitudes can be expressed in terms of scalar integrals. For the
0 → gggHH sub-amplitude we have,

H(1h1 , 2h2 , 3h3 ; 4H5H) = µ̄4−n

rΓ

1
iπn/2

∫
dnℓ

Num(ℓ)∏
i di(ℓ)

=
∑
i,j,k

di×j×k(1h1 , 2h2 , 3h3)D0(pi, pj , pk;m)

+
∑
i,j

ci×j(1h1 , 2h2 , 3h3)C0(pi, pj ;m)

+
∑

i

bi(1h1 , 2h2 , 3h3)B0(pi;m) + r(1h1 , 2h2 , 3h3) . (6.5)

The scalar bubble (B0), triangle (C0), box (D0) integrals, and the constant rΓ, are defined in
appendix B. µ̄ is an arbitrary mass scale, and r are the rational terms. All scalar integrals
are well known and readily evaluated using existing libraries [56–58].

In order to obtain concise analytic expressions, we found that it was expedient to re-express
the box coefficients in terms of scalar pentagon integrals and a remainder. In order to perform
this separation we are forced to introduce a denominator factor of tr5, which is given by,

tr5 = Tr {̸p1 ̸p2 ̸p3 ̸p4γ5} . (6.6)

In infrared configurations involving p1, p2 and p3 this factor vanishes, giving rise to potential
numerical issues in these limits. However we have been able to eliminate all factors except
for a single pole in tr5, which mitigates these issues to a large extent.

6.3 Basis integrals

In section 7 we will present results for a minimal set of integral coefficients. The remaining
coefficients can be simply related to these by permutation of momentum labels. Here we
summarize the basic set and the permutations required to generate all coefficients.
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There are 2 independent bubbles:

• B0(p12;m) (× 3 perms) ;

• B0(p123;m) .

There are 5 independent triangles:

• C0(p1, p2;m) (× 3 perms) ;

• C0(p1, p4;m) (× 3 perms) ; with C0(p1, p234;m) obtained by 4 ↔ 5 (= 6 perms) ;

• C0(p3, p12;m) (× 3 perms) ;

• C0(p4, p12;m) (× 3 perms) ; with C0(p12, p34;m) obtained by 4 ↔ 5 (= 6 perms) ;

• C0(p4, p123;m) .

There are 5 independent boxes:

• D0(p1, p2, p3;m) (× 3 perms) ;

• D0(p1, p2, p4;m) (× 6 perms) ; with D0(p34, p1, p2;m) obtained by 4 ↔ 5 (= 12 perms) ;

• D0(p1, p4, p23;m) (× 3 perms) ;

• D0(p1, p4, p2;m) (× 3 perms) ; with D0(p2, p34, p1;m) obtained by 4 ↔ 5 (= 6 perms) ;

• D0(p4, p1, p23;m) (× 3 perms) ; with D0(p1, p23, p4;m) obtained by 4 ↔ 5 (= 6 perms) .

Additional permutations correspond to either the three cyclic choices of (1, 2, 3), or to all six
permutations. Some of these coefficients vanish for particular helicity choices.

Furthermore we can limit ourselves to the calculation of coefficients where no more
than one gluon has positive helicity:

c(1−, 2−, 3−; 4, 5), c(1−, 2−, 3+; 4, 5), c(1−, 2+, 3−; 4, 5) and c(1+, 2−, 3−; 4, 5) , (6.7)

where c represents any of the coefficients di×j×k, ci×j or bi. This is because parity relates
coefficients with opposite helicities,

c(1−h1 , 2−h2 , 3−h3 ; 4, 5) =
[
c(1h1 , 2h2 , 3h3 ; 4, 5)

]∗
. (6.8)

6.4 Strategy for integral coefficients

6.4.1 Bubbles and rational terms

The bubble coefficient b12 and rational term R are computed by a direct calculation using
Passarino-Veltman reduction. A generic tensor is constructed with free indices µ1, µ2,
µ3 corresponding to the currents for each of the gluons, eliminating terms that vanish
due to gauge invariance, (pµ1

1 = pµ2
2 = pµ3

3 = 0) and employing a cyclic choice of gauge,
(pµ1

2 = pµ2
3 = pµ3

1 = 0). The final result for the tensor is then simply contracted with the
appropriate polarization vectors.
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The coefficients of the bubbles b23 and b13 are obtained by cyclic permutation of
{p1, p2, p3}:

b23(1h1 , 2h2 , 3h3) = b12(2h2 , 3h3 , 1h1) , (6.9)
b13(1h1 , 2h2 , 3h3) = b12(3h3 , 1h1 , 2h2) . (6.10)

The remaining bubble coefficient is then determined by the ultra-violet finiteness of the
amplitude,

b123(1h1 , 2h2 , 3h3) = −b12(1h1 , 2h2 , 3h3)− b23(1h1 , 2h2 , 3h3)− b13(1h1 , 2h2 , 3h3) . (6.11)

6.4.2 Triangles

The triangle coefficient c1×2 and the m2 contributions to c3×12 and c1×4 are calculated in the
same fashion as the bubble and rational contributions. The triangle coefficients c4×12 and
c4×123 are obtained by the unitarity methods of Forde [59] and subsequently simplified.

The m0 contribution to c3×12 and c1×4 coefficients are obtained through infrared relations.
We perform a decomposition of the triangle coefficients,

cA×B = c
(0)
A×B + m2c

(2)
A×B , (6.12)

such that the first term is the result obtained when setting the mass of the circulating fermion
to zero, except in the Yukawa coupling to the Higgs bosons. We can again exploit the fact
that the amplitude must be infra-red finite in this limit to constrain the coefficients of box
and triangle integrals that develop poles as ϵ → 0. Specifically we find that c

(0)
1×4 is given

by a combination of box coefficients,

c
(0)
1×4

(s14−M2
H) =

2d
(0)
3×14×2

(s25 s35−s14 M2
H)−

2d
(0)
1×4×3

(s34 s14−s25 M2
H)−

2d
(0)
2×4×1

(s14 s24−s35 M2
H)−

d
(0)
23×4×1

(s15 s14−M4
H)

−
d
(0)
23×1×4

(s14 s45−M2
H s23)

+
d
(0)
14×2×3
s23 s35

+
d
(0)
14×3×2
s23 s25

−2
d
(0)
4×1×2

s12 s14
−2

d
(0)
3×1×4

s13 s14
. (6.13)

A second relation determines c
(0)
3×12 in terms of box coefficients and the result for c

(0)
1×2,

c
(0)
3×12

s13 + s23
=

c
(0)
1×2
s12

−
d
(0)
3×12×4

s35 s45 − M2
H s12

−
d
(0)
12×3×4

s34 s45 − M2
H s12

+
d
(0)
1×2×4

s12 s24
+

d
(0)
4×1×2

s12 s14
+

d
(0)
34×1×2
s12 s25

+
d
(0)
34×2×1
s12 s15

+ 2
d
(0)
1×2×3

s12 s23
+ 2

d
(0)
3×1×2

s12 s13
. (6.14)

6.4.3 Boxes

All the box coefficients are computed using unitarity cuts and subsequently simplified using
the analytic reconstruction techniques discussed in section 3. Although one might expect all
four helicities to be required for each of the five boxes, symmetry relations allow this number
to be reduced. We choose to use the basic set shown in table 2. Other helicity combinations,
or momentum configurations, can be obtained through permutations of these.
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Configuration Helicities
1× 2× 3 1− 2− 3− 1− 2− 3+ 1− 2+ 3−
1× 2× 4 1− 2− 3− 1− 2− 3+ 1− 2+ 3− 1+ 2− 3−
1× 4× 2 1− 2− 3− 1− 2− 3+ 1− 2+ 3−
1× 4× 23 1− 2− 3− 1− 2− 3+ 1+ 2− 3−
4× 1× 23 1− 2− 3− 1− 2− 3+ 1+ 2− 3−

Table 2. All box coefficient functions needed in the calculation of the 0 → gggHH amplitude.

7 Analytic results for the process 0 → gggHH

We now give detailed analytic results for the contributions to the process 0 → gggHH that
do not involve the triple Higgs coupling.

7.1 Scalar pentagons reduced to boxes

In the process 0 → gggHH we encounter for the first time pentagon integrals, so we now
discuss the treatment of such scalar pentagon integrals, which will be useful in the following.
In four dimensions the scalar pentagon integral can be reduced to a sum of the five box
integrals obtained by removing one propagator [60–62]. This decomposition is detailed for
the two pertinent cases below.

7.1.1 Case 1: adjacent Higgs bosons

For the pentagon scalar integral with two adjacent Higgs bosons we have,

E0(p1, p2, p3, p4;m) = C1×2×3×4
1 D0(p2, p3, p4;m) + C1×2×3×4

2 D0(p12, p3, p4;m)
+ C1×2×3×4

3 D0(p1, p23, p4;m)
+ C1×2×3×4

4 D0(p1, p2, p34;m) + C1×2×3×4
5 D0(p1, p2, p3;m) . (7.1)

In terms of the Cayley matrix the reduction coefficients are given by

Ci = −1
2
∑

j

S−1
ij . (7.2)

The Cayley matrix,
[
S1×2×3×4]

ij = [m2 − 1
2(qi−1 − qj−1)2] where qi is the offset (affine)

momentum is given by

S1×2×3×4 =


m2 m2 m2 − 1

2s12 m2 − 1
2s45 m2 − 1

2M2
H

m2 m2 m2 m2 − 1
2s23 m2 − 1

2s15
m2 − 1

2s12 m2 m2 m2 m2 − 1
2s34

m2 − 1
2s45 m2 − 1

2s23 m2 m2 m2 − 1
2M2

H

m2 − 1
2M2

H m2 − 1
2s15 m2 − 1

2s34 m2 − 1
2M2

H m2

 . (7.3)
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Explicit forms for the pentagon reduction coefficients, C1×2×3×4
i are (with sij = (pi + pj)2),

C1×2×3×4
1 =− 1

32 |S1×2×3×4|

[
s23
(
s34 (s15 s45+s23 s34−s34 s45−s12 s23+s12 s15)

+M2
H (s12 s34−s23 s34−2s12 s15)

)]
≡−s23

2[3|4|5|1]⟨1|5|4|3⟩−s34([13]⟨1|5|4|3⟩−⟨13⟩ [3|4|5|1])
32 |S1×2×3×4|

, (7.4)

C1×2×3×4
2 =− 1

32 |S1×2×3×4|

[
s34s45

(
s34 s45−s15 s45−s23 s34+s12 s23+s12 s15

)
+M2

H

(
s45 (s23 s34+s12 s15−2s12 s34)−s12 (s23 s34+s12 s23+s12 s15)

)
+M4

H s12 (s23+s12)
]

(7.5)

≡−2⟨3|(1+2)|3]⟨1|5|4|3⟩ [1|5|4|3]−⟨3|4|5|(1+2)|3] ([13]⟨1|5|4|3⟩−⟨13⟩ [3|4|5|1])
32 |S1×2×3×4|

,

C1×2×3×4
3 =− 1

32 |S1×2×3×4|

[
s15 s45

(
s15 s45+s23 s34+s12 s23−s34 s45−s12 s15)

+M2
H

(
s23 (s34 s45−s23 s34−s12 s23)+s15 (s12 s45−s12 s23−2s23 s45)

)
+M4

H s23 (s23+s12)
]

≡C1×2×3×4
2 (1↔ 3,4↔5) , (7.6)

C1×2×3×4
4 =− 1

32 |S1×2×3×4|

[
s12
(
s15 (s34 s45−s15 s45+s23 s34−s12 s23+s12 s15)

+M2
H (s15 s23−s12 s15−2s23 s34)

)]
≡C1×2×3×4

1 (1↔ 3,4↔5) , (7.7)

C1×2×3×4
5 =− 1

32 |S1×2×3×4|
s12 s23

[
s34 s45+s15 s45−s23 s34+s12 s23−s12 s15

−M2
H (s12+s23)

]
≡−s12s23

[13]⟨1|5|4|3⟩−⟨13⟩ [3|4|5|1]
32 |S1×2×3×4|

. (7.8)

C1×2×3×4
5 is unchanged under (1 ↔ 3, 4 ↔ 5) exchange. The alternative spinor expressions

given in eq. (7.4)–(7.8) have the merit that partial cancellations which occur in the m → 0
limit are made manifest, (see eq. (7.11) below).

The factor |S1×2×3×4| is the determinant of the Cayley matrix, eq. (7.3). It can be
written as,

16 |S1×2×3×4| = −s12 s23
(
s15 s34 s45−M2

H (s23 s34+s12 s15)
)
+16m2∆(p1, p2, p3, p4) , (7.9)

where

∆(p1,p2,p3,p4)= (p1.p2 p3.p4−p1.p3 p2.p4−p1.p4 p2.p3)2+2 p1.p3 p2.p3 (p1.p2 M2
H−2 p1.p4 p2.p4)

= 1
16 (tr5)2 , (7.10)
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where tr5 has been defined in eq. (6.6). This can be written as another useful relation,

16 |S1×2×3×4| = −s12 ⟨1|̸p5̸p4̸p3|2] ⟨2|̸p3̸p4̸p5|1] + m2 (tr5)2
= −s12s23 ⟨1|5|4|3⟩ [3|4|5|1] + m2 (tr5)2 . (7.11)

7.1.2 Case 2: non-adjacent Higgs bosons

For the case of a scalar pentagon integral with non-adjacent Higgs bosons, we denote the
coefficients for the reduction of the scalar pentagon to scalar boxes by C̄1×2×4×3

i ,

E0(p1, p2, p4, p3;m) = C̄1×2×4×3
1 D0(p2, p4, p3;m) + C̄1×2×4×3

2 D0(p12, p4, p3;m)
+ C̄1×2×4×3

3 D0(p1, p24, p3;m)
+ C̄1×2×4×3

4 D0(p1, p2, p34;m) + C̄1×2×4×3
5 D0(p1, p2, p4;m) . (7.12)

For the case where the Higgs boson are not adjacent the Cayley matrix is given by

S1×2×4×3 =


m2 m2 m2 − 1

2s12 m2 − 1
2s35 m2 − 1

2M2
H

m2 m2 m2 m2 − 1
2s24 m2 − 1

2s15
m2 − 1

2s12 m2 m2 m2 − 1
2M2

H m2 − 1
2s34

m2 − 1
2s35 m2 − 1

2s24 m2 − 1
2M2

H m2 m2

m2 − 1
2M2

H m2 − 1
2s15 m2 − 1

2s34 m2 m2

 . (7.13)

The reduction coefficients are given as before, using eq. (7.2),

C̄1×2×4×3
1 =− 1

32 |S1×2×4×3|

[
(s24 s34−M2

H s15)
(
s15 s35+s12 s15+s24 s34−s12 s24−s34 s35

−M2
H (s15+s24)+M4

H

)]
≡−⟨2|4|3]⟨3|4|2] 2⟨1|5|3]⟨3|5|1]+⟨3|4|1]⟨1|5|3]+⟨1|4|3]⟨3|5|1]

32 |S1×2×4×3|
, (7.14)

C̄1×2×4×3
2 =− 1

32 |S1×2×4×3|

[
s34 s35 (s34 s35−s15 s35−s24 s34+s12 s24+s12 s15)

+M2
H (s24 s34 s35+s15 s34 s35−2s12 s15 s35−2s12 s24 s34)

+M4
H (s12 s15+s15 s35+s24 s34+s12 s24−2s34 s35)−M6

H (s15+s24)+M8
H

]
≡−−2⟨3|5|1]⟨2|4|3]⟨1|5|3]⟨3|4|2]+(⟨3|5|2]⟨3|4|1]⟨1|5|3]⟨2|4|3])+(⟨⟩↔ [])

32 |S1×2×4×3|
,

(7.15)

C̄1×2×4×3
3 =− 1

32 |S1×2×4×3|

[
(s15 s35−M2

H s24)(s15 s35+s24 s34+s12 s24−s12 s15−s34 s35

−M2
H (s15+s24)+M4

H)
]

≡ C̄1×2×4×3
1 (1↔ 2,4↔5) , (7.16)

C̄1×2×4×3
4 =− 1

32 |S1×2×4×3|

[
s12
(
s15 (s34 s35−s15 s35+s24 s34+s12 s15−s12 s24)

+M2
H (s15 s24−s215−2s24 s34)+M4

H s15
)]

≡ s12(⟨1|5|2]⟨3|5|1]⟨2|4|3]+⟨2|5|1]⟨1|5|3]⟨3|4|2])
32 |S1×2×4×3|

, (7.17)
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C̄1×2×4×3
5 =− 1

32 |S1×2×4×3|

[
s12
(
s24 (s34 s35+s15 s35−s12 s15−s24 s34+s12 s24)

+M2
H (s15 s24−s224−2s15 s35)+M4

H s24
)]

≡ C̄1×2×4×3
4 (1↔ 2,4↔5) . (7.18)

C̄1×2×4×3
2 is symmetric under (1 ↔ 2, 4 ↔ 5). For the non-adjacent Higgs boson case, the

determinant of the Cayley matrix is,

16|S1×2×4×3|=−s12 (s24 s34−M2
H s15)(s15 s35−M2

H s24)+16m2∆(p1,p2,p3,p4) , (7.19)

or equivalently,

16|S1×2×4×3| = −s12 ⟨1|̸p5̸p3̸p4|2] ⟨2|̸p4̸p3̸p5|1] + m2 (tr5)2
= −s12 ⟨1|5|3] ⟨3|5|1] ⟨3|4|2] ⟨2|4|3] + m2 (tr5)2 . (7.20)

7.2 g−g−g−HH

7.2.1 Effective pentagons

We will write the box coefficients (d) in terms of a combination of effective pentagon (ê) and
box (d̂) coefficients. We begin by specifying the effective pentagon coefficients.

The effective pentagon coefficient (for adjacent Higgs bosons) is given by,

ê1×2×3×4(1−, 2−, 3−) = m2s12s23
4 tr5

(8m2 − s45 − 2M2
H) [1 3] ⟨1|5|4|3⟩ . (7.21)

The effective pentagon coefficient ê1×2×4×3(1−, 2−, 3−) (appropriate for the case where
the Higgs bosons are not adjacent) is,

ê1×2×4×3(1−,2−,3−)= m2

4 ⟨12⟩ [13] [23]

×
{
⟨12⟩⟨3|5|1]⟨3|4|2]

tr5
(8m2−s45−2M2

H)+⟨3|4|5|3⟩
}

. (7.22)

Note that ê1×2×4×3(1−, 2−, 3−) is manifestly symmetric under (1 ↔ 2, 4 ↔ 5).

7.2.2 Boxes

The box coefficient is written in terms of an effective pentagon coefficient (ê) plus a remainder
term, d̂1×2×3(1−, 2−, 3−) as,

d1×2×3(1−, 2−, 3−) =
{

1
[1 2] [2 3] [3 1]

[
C1×2×3×4
5 ê1×2×3×4(1−, 2−, 3−)

]}

+
{
4 ↔ 5

}
+ d̂1×2×3(1−, 2−, 3−) , (7.23)

where the remainder term is

d̂1×2×3(1−, 2−, 3−) = m2

2
⟨1 2⟩ ⟨2 3⟩

[3 1] . (7.24)

The reduction factor C1×2×3×4
5 is given in section 7.1.
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In a similar way we can write,

d1×2×4(1−,2−,3−)=
1

[12] [23] [31]
[
C3×1×2×4
1 ê1×2×3×4(3−,1−,2−)+C̄1×2×4×3

5 ê1×2×4×3(1−,2−,3−)
]
,

(7.25)

where in this case there is no remainder term,

d̂1×2×4(1−, 2−, 3−) = 0 . (7.26)

The effective pentagon coefficient ê1×2×3×4(3−, 1−, 2−) is obtained by simply permuting the
arguments in the defining eq. (7.21), noting also that tr5 does not flip sign under this even
permutation. The reduction coefficients are obtained similarly.

The remaining box coefficients are given by,

d1×4×2(1−,2−,3−)= 1
[12] [23] [31]

[
C̄3×2×4×1

1 ê1×2×4×3(3−,2−,1−)+C̄3×1×4×2
1 ê1×2×4×3(3−,1−,2−)

]
+d̂1×4×2(1−,2−,3−) , (7.27)

d̂1×4×2(1−,2−,3−)= (4m2−M2
H)(s14s24−M2

Hs35)
4 [12] [23] [31] , (7.28)

and,

d4×1×23(1−,2−,3−)= 1
[12] [23] [31]

[
C3×2×1×4

2 ê1×2×3×4(3−,2−,1−)+C2×3×1×4
2 ê1×2×3×4(2−,3−,1−)

]
+d̂4×1×23(1−,2−,3−) (7.29)

d̂4×1×23(1−,2−,3−)= ⟨23⟩⟨1|5|4|1⟩
[23]

m2

2tr5
(s45+2M2

H−8m2) , (7.30)

and,

d1×4×23(1−,2−,3−)= 1
[12] [23] [31]

[
C̄3×2×4×1

2 ê1×2×4×3(3−,2−,1−)+C̄2×3×4×1
2 ê1×2×4×3(2−,3−,1−)

+d̂1×4×23(1−,2−,3−) . (7.31)

Note that these last two boxes have the same remainder contribution.

d̂1×4×23(1−, 2−, 3−) = d̂4×1×23(1−, 2−, 3−) . (7.32)

This fully specifies the five integrals that enter the basis set indicated in table 2. The
remainder are related by,

d4×1×2(1−, 2−, 3−) = −d1×2×4(2−, 1−, 3−)
d34×1×2(1−, 2−, 3−) = d1×2×4(1−, 2−, 3−){4 ↔ 5}
d34×2×1(1−, 2−, 3−) = −d1×2×4(2−, 1−, 3−){4 ↔ 5}
d2×34×1(1−, 2−, 3−) = d1×4×2(1−, 2−, 3−){4 ↔ 5}
d1×23×4(1−, 2−, 3−) = d4×1×23(1−, 2−, 3−){4 ↔ 5} , (7.33)

with the full set obtained by performing cyclic permutations of (1, 2, 3).
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7.2.3 Triangles

The following triangle coefficients are all zero,

c4×12(1−, 2−, 3−) = 0 , c4×123(1−, 2−, 3−) = 0 , c1×2(1−, 2−, 3−) = 0 , (7.34)

whereas the following two triangle coefficients only have contributions at order m2

c
(0)
3×12(1−, 2−, 3−) = 0 , c

(2)
3×12(1−, 2−, 3−) = (s13 + s23)

[1 2] [2 3] [3 1] , (7.35)

c
(0)
1×4(1−, 2−, 3−) = 0 , c

(2)
1×4(1−, 2−, 3−) = −2 ⟨1|4|1]

[1 2] [2 3] [3 1] . (7.36)

7.2.4 Bubbles and rational terms

As discussed in section 6.4.1, for each helicity configuration we need only give results for a
single bubble coefficient. In this case it vanishes,

b12(1−, 2−, 3−) = 0 . (7.37)

The rational term is

R(1−, 2−, 3−) = s12 + s23 + s31
[1 2] [2 3] [3 1] . (7.38)

7.3 g−g−g+HH

7.3.1 Effective pentagons

Turning now to the 1−2−3+ helicity, the first effective pentagon coefficient is,

ê1×2×3×4(1−, 2−, 3+) = −m2

4 ⟨1 3⟩ ⟨2 3⟩ [1 2]
{
⟨1 2⟩ [2 3] [1|5|4|3]

tr5
(s45 − 2s12 − 2M2

H + 8m2)

+ [3|5|4|3]
}

. (7.39)

The second effective pentagon coefficient is,

ê1×2×4×3(1−, 2−, 3+) = − m2

4tr5
⟨1 3⟩ ⟨2 3⟩ [1 2]2 ⟨1|5|3] ⟨2|4|3] (s45−2s12−2M2

H+8m2) . (7.40)

The basis set specified in table 2 requires us to also define the effective pentagon
coefficients for the (1−, 2+, 3−) configuration. The first of these, ê1×2×3×4(1−, 2+, 3−), is
symmetric under (1 ↔ 3, 4 ↔ 5). This effective pentagon coefficient reads,

ê1×2×3×4(1−, 2+, 3−) =[
s212s23 ⟨1|5|4|3⟩ (⟨3|4|5|(1 + 2)|3] + 4m2 ⟨3|(1 + 2)|3])

4 ⟨1 3⟩ tr5

+ 1
4s12m

2(s23(s15 − s23)− ⟨1 2⟩ [23] ⟨3|5|1])
]
+
[ ]

1↔3, 4↔5

(7.41)

+ m2s12s23

(
[13] ⟨1|5|4|3⟩ 3s123 − 2s13 + 2M2

H − 4m2

4tr5
− m2 ⟨1 3⟩ [1|5|4|3]

tr5
− 3m2

)
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The last effective pentagon is ê1×2×4×3(1−, 2+, 3−),

ê1×2×4×3(1−, 2+, 3−) =

m2

4 ⟨1 2⟩
(

[23] ⟨3|5|1] (s12 − s24 − M2
H + 8m2)

−[12] ⟨3|5|3] (⟨2|(3 + 4)|2]− 8M2
H) + [13] ⟨3|4|2] ⟨2|5|2]

)

+ m2

4 s12 ⟨1|5|3]

(
⟨2 3⟩ [13] ⟨3|4|2] (s123 − 2s13 − 2M2

H + 8m2)
−8 ⟨3|5|3] ([12] ⟨2 3⟩M2

H + ⟨3|5|1] s12)

)
tr5

+ 1
4s12 ⟨1 2⟩ ⟨3|5|1] ⟨3|4|2] ⟨1|5|3]

[
1

⟨1 3⟩ +
[13](s24 + s35 − 8m2) + [12] ⟨2|5|3]

tr5

]

+ 1
4s12 ⟨1 2⟩ ⟨3|5|1] ⟨3|5|3]

⟨1|5|3] ⟨3|4|2] (s123 − 2M2
H)− 8m2 ⟨1|5|2] ⟨3|5|3]

⟨1 3⟩ tr5
. (7.42)

7.3.2 Boxes

The first box coefficient can be written in terms of effective pentagons as,

d1×2×3(1−, 2−, 3+) =
{

⟨1 2⟩
[1 2]2 ⟨2 3⟩ ⟨1 3⟩

C1×2×3×4
5 ê1×2×3×4(1−, 2−, 3+)

}
+
{
4 ↔ 5

}

+ d̂1×2×3(1−, 2−, 3+), (7.43)

d̂1×2×3(1−, 2−, 3+) = m2

2
⟨1 2⟩2 [2 3]
[1 2] ⟨1 3⟩ . (7.44)

The next box coefficient again has no remainder,

d1×2×4(1−, 2−, 3+) = ⟨1 2⟩
[1 2]2 ⟨2 3⟩ ⟨1 3⟩

×
[
C3×1×2×4
1 ê1×2×3×4(3+, 1−, 2−) + C̄1×2×4×3

5 ê1×2×4×3(1−, 2−, 3+)
]

.

(7.45)

The next box coefficient can be decomposed as,

d1×4×2(1−, 2−, 3+) = ⟨1 2⟩
[1 2]2 ⟨2 3⟩ ⟨1 3⟩

[
C̄3×2×4×1
1 ê1×2×4×3(3+, 2−, 1−)+

C̄3×1×4×2
1 ê1×2×4×3(3+, 1−, 2−)

]
+ d̂1×4×2(1−, 2−, 3+) . (7.46)

The remainder is anti-symmetric under the exchange 1 ↔ 2,

d̂1×4×2(1−,2−,3+)= ⟨12⟩⟨1|4|2]⟨2|4|1]
4[12]

×
{

s13+s23−2M2
H+8m2

⟨13⟩⟨23⟩

[
⟨1|5|3]⟨23⟩+⟨2|5|3]⟨13⟩

tr5
+ 1
2[12]

]
+ [3|4|5|3]

tr5

}
(7.47)
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The next box coefficient is,

d4×1×23(1−, 2−, 3+) = ⟨1 2⟩
[1 2]2 ⟨2 3⟩ ⟨1 3⟩
×
[
C3×2×1×4
2 ê1×2×3×4(3+, 2−, 1−) + C2×3×1×4

2 ê1×2×3×4(2−, 3+, 1−)
]

+ d̂4×1×23(1−, 2−, 3+) , (7.48)

d̂4×1×23(1−,2−,3+)=

− [13]⟨1|4|5|(2+3)|1]
4[12][1|4|5|1]

×
[
[3|5|4|3]
[23] +[13](s123−2M2

H+8m2)
(

1
2[12]−

[1|4|5|3]
[23][1|4|5|1]

)]

+ ⟨12⟩
4tr5

[
M2

H

(
⟨1|5|3]⟨2|4|3]+⟨1|4|3]⟨2|5|3]

)
−⟨1|4|3]⟨2|4|3]

(
s123−2M2

H

)]
+ s13
4[12]tr5

[
⟨12⟩ [13]⟨1|5|3](s123+M2

H)−⟨12⟩ [23]⟨2|5|3](M2
H−8m2)−2⟨2|5|3]⟨1|5|3]s123

]
+ ⟨12⟩ [13]

4[12]tr5

[
s123(⟨1|5|2]⟨2|5|3]+⟨1|4|(2−3)|4|3])+⟨12⟩ [23](s13s123−2⟨3|4|3]M2

H)
]

+[13][23]s123−2M2
H+8m2

4[12]2

[
s13

⟨1|4|5|2⟩+⟨12⟩s35
tr5

−⟨12⟩
]

−m2 ⟨2|3|4|5|3]−⟨2|5|4|2|3]
2[12]⟨23⟩

[
(s123−2M2

H+8m2)
(
⟨12⟩
tr5

+ [13]
[23][1|4|5|1]

)
− 2⟨12⟩s12

tr5

]

+ s123
8[12]2

[
[23]⟨2|4|3]+[13]⟨1|5|3]+ ⟨1|5|2]⟨2|5|3]−⟨1|4|2]⟨2|4|3]

⟨13⟩ − [13]⟨1|4|5|2⟩
⟨23⟩

]

+⟨12⟩ ⟨1|4|3](s123−M2
H)−M2

H ⟨1|5|3]
8[12]⟨13⟩ . (7.49)

The last box coefficient is the most complicated,

d1×4×23(1−, 2−, 3+) = ⟨1 2⟩
[1 2]2 ⟨2 3⟩ ⟨1 3⟩

[(
C̄3×2×4×1
2 ê1×2×4×3(3+, 2−, 1−)

)
+
(
4 ↔ 5

)]
+
(
d̂ unsym.
1×4×23(1−, 2−, 3+)

)
+
(
4 ↔ 5

)
(7.50)

d̂unsym.
1×4×23(1−,2−,3+)=

− [13]⟨1|5|(2+3)|4|1]
4[12]⟨23⟩ [1|4|5|1]

×
(
⟨2|4|1] ⟨2|4|1]M

2
H+4⟨2|5|1]m2

[1|4|5|1] +⟨2|5|1] s123−2M2
H+8m2

2[12]

)

+ [13]m2

2[12][1|4|5|1]

(
⟨12⟩⟨2|5|1] M2

H−4m2

⟨23⟩ −⟨1|5|3] [1|4|5|3]+4[13]m2

[23]

)
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− ⟨12⟩⟨1|4|1]
8[12]2 ⟨13⟩⟨23⟩(s123−s12−2M2

H)(s123−s23−2M2
H+8m2+⟨1|4|1])

+ ⟨12⟩m2

2[12]2 ⟨13⟩⟨23⟩
[
s12(2s35−3s25)+4[12]⟨13⟩⟨2|4|3]−2⟨1|4|1](s25+s35−2M2

H)
]

+ ⟨12⟩m2

2[12]tr5

[(
⟨2|(2+3)|4|5|3]−⟨2|5|4|(2+3)|3]

)s12−4m2

⟨23⟩ −⟨1|4|1]⟨1|5|3] s123−4s23−2M2
H

⟨13⟩

]

+ [23]⟨1|4|1]
4[12]tr5

{
⟨12⟩⟨2|5|3](s123−s12−2M2

H+s35+2s25)+⟨13⟩⟨2|5|3]2

+⟨12⟩⟨2|4|3]M2
H−⟨12⟩2 ⟨3|4|2]⟨2|5|3]+s123(s123−M2

H)+2⟨3|5|3]M2
H−⟨2|5|2]2

⟨13⟩

+⟨1|4|1]⟨1|5|4|2⟩ s123−2M2
H+8m2

[12]⟨13⟩

}
(7.51)

Since the above relationships involve permuting the arguments 1−, 2− and 3+ they
result in contributions from effective pentagon coefficients with other helicity orderings.
These can be simply related to our basis set by reading off the momenta in the opposite
direction around the loop:

ê1×2×3×4(3+, 1−, 2−) = ê1×2×3×4(2−, 1−, 3+)(4 ↔ 5)
ê1×2×4×3(3+, 2−, 1−) = ê1×2×4×3(2−, 3+, 1−)(4 ↔ 5)
ê1×2×4×3(3+, 1−, 2−) = ê1×2×4×3(1−, 3+, 2−)(4 ↔ 5)
ê1×2×3×4(3+, 2−, 1−) = ê1×2×3×4(1−, 2−, 3+)(4 ↔ 5) . (7.52)

This fully specifies the five integrals that enter the basis set indicated in table 2. The
remainder are related by,

d4×1×2(1−, 2−, 3+) = −d1×2×4(2−, 1−, 3+)
d34×1×2(1−, 2−, 3+) = d1×2×4(1−, 2−, 3+){4 ↔ 5}
d34×2×1(1−, 2−, 3+) = −d1×2×4(2−, 1−, 3+){4 ↔ 5}
d2×34×1(1−, 2−, 3+) = d1×4×2(1−, 2−, 3+){4 ↔ 5}
d1×23×4(1−, 2−, 3+) = d4×1×23(1−, 2−, 3+){4 ↔ 5} , (7.53)

with the full set obtained by performing cyclic permutations of (1, 2, 3).

7.3.3 Triangles

The following triangle coefficients are zero,

c4×12(1−, 2−, 3+) = 0 , c1×2(1−, 2−, 3+) = 0 , (7.54)

whereas the coefficients c3×12(1−, 2−, 3+) and c
(2)
1×4(1−, 2−, 3+) only have a contribution at

order m2

c
(0)
3×12(1−, 2−, 3+) = 0 , c

(2)
3×12(1−, 2−, 3+) = ⟨1 2⟩

[1 2]2
(s13 + s23)
⟨1 3⟩ ⟨2 3⟩ (7.55)
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In addition for c1×4(1−, 2−, 3+) we have,

c
(0)
1×4(1−, 2−, 3+) = 0 ,

c
(2)
1×4(1−, 2−, 3+) = −2 ⟨1|4|1]

[1 2] ⟨2 3⟩ [2 3]
[ [1 3]2 ⟨2|4|1]

(
⟨1|4|1]− ⟨2|3|2]

)
[1|4|5|1]2

−
(
⟨3|4|1] ⟨2|5|3] [1 3] + ⟨2|4|1] ⟨2|5|1] [2 3]

)
[1|4|5|1] ⟨3|4|1]

]
. (7.56)

c4×123(1−, 2−, 3+) has contributions at both order m0 and m2,

c
(0)
4×123(1−,2−,3+)= (s45−2M2

H)
8 c

(2)
4×123(1−,2−,3+) , (7.57)

c
(2)
4×123(1−,2−,3+)=

{
2[13]

3 s45(s45−4M2
H)

[12] [23] [1|4|5|1]2

−4[13](2 [23]⟨2|4|3]+⟨1|4|3] [13])
[12] [23] [1|4|5|1] −2(s34+M2

H−s14−s24) [13]2

[12]2 [1|4|5|1]

}

−
{
1↔ 2

}
. (7.58)

It is interesting to note that s45(s45 − 4M2
H) is the factorized form of the Källén function

∆123|4|5 under the constraint m4 = m5. Without the constraint it is unfactorizable. Further-
more, the second power of the pole [1 2] is spurious. In appendix C we show how to eliminate
it and the consequences this has on the other poles in light of primary decompositions in
the covariant spinor ring.

7.3.4 Bubbles and rational terms

All the bubble coefficients vanish,

b12(1−, 2−, 3+) = 0 . (7.59)

The rational term is

R(1−, 2−, 3+) = −⟨1 2⟩2

[1 2]
[ 1
⟨1 3⟩ ⟨2 3⟩ +

[2 3]
⟨1 3⟩ (s12 + s23)

+ [1 3]
⟨2 3⟩ (s12 + s13)

]
. (7.60)

7.4 g−g+g−HH

7.4.1 Effective pentagons

Turning now to the 1−2+3− helicity combination all the effective pentagon coefficients
necessary for this amplitude have already been introduced in section 7.3.1.
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7.4.2 Boxes

In terms of effective pentagons the first box is,

d1×2×3(1−,2+,3−)= ⟨13⟩
[13]2 ⟨23⟩⟨12⟩

[(
C1×2×3×4
5 ê1×2×3×4(1−,2+,3−)

)
+
(
4↔5

)]
+d̂1×2×3(1−,2+,3−) , (7.61)

d̂1×2×3(1−,2+,3−)=
[
⟨13⟩ [23]⟨3|5|2]s12s123

4[13]tr5

]
+
[
4↔5

]
−
[
1↔ 3

]
−
[
1↔ 3,4↔5

]

+ [12][23]s12s23
2[13]3 + [12]⟨13⟩ [23](s123−6m2)

4[13]2 − [12]⟨13⟩2 [23]
4[13] (7.62)

The second box is,

d1×2×4(1−,2+,3−)= ⟨13⟩
[13]2 ⟨23⟩⟨12⟩

[
C3×1×2×4

1 ê1×2×3×4(3−,1−,2+)+

C̄1×2×4×3
5 ê1×2×4×3(1−,2+,3−)

]
+d̂1×2×4(1−,2+,3−) , (7.63)

d̂1×2×4(1−,2+,3−)= s12

8⟨23⟩ [13]2

[
⟨3|4|2](M2

H−2s35)−⟨3|5|2]s24−⟨3|5|1] s24(s24−8m2)+M4
H

⟨2|4|1]

]

+
⟨3|5|1]⟨1|4|2]s12

[
⟨3|4|2]⟨2|5|3]+⟨3|4|3]M2

H−⟨3|(1+5)|3](s24−8m2)
]

4⟨23⟩ [13]2tr5
(7.64)

The last box we need to define is,

d1×4×2(1−, 2+, 3−) = ⟨1 3⟩
[1 3]2 ⟨2 3⟩ ⟨1 2⟩

[
C̄3×2×4×1
1 ê1×2×4×3(3−, 2+, 1−)+

C̄3×1×4×2
1 ê1×2×4×3(3−, 1−, 2+)

]
+ d̂1×4×2(1−, 2+, 3−) , (7.65)

d̂1×4×2(1−, 2+, 3−) = ⟨1|4|2]
8[13]2

(
1

⟨1 2⟩ − 2[23] ⟨3|5|1]tr5

)

×
[
⟨2|4|1] ⟨1|5|2] + ⟨1|4|1]M2

H −
(
⟨2|4|2]− ⟨3|5|3]

)(
s24 − 8m2)]

(7.66)

Again we can relate some of these pentagon coefficients to already-specified ones, after
permutation:

ê1×2×3×4(2+, 3−, 1−) = e1×2×3×4(1−, 3−, 2+)(4 ↔ 5) (7.67)
ê1×2×4×3(2+, 3−, 1−) = e1×2×4×3(3−, 2+, 1−)(4 ↔ 5) (7.68)
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This fully specifies the three integrals that enter the basis set indicated in table 2. The
remainder are related by,

d4×1×2(1−, 2+, 3−) = −d1×2×4(2+, 1−, 3−)
d34×1×2(1−, 2+, 3−) = d1×2×4(1−, 2+, 3−){4 ↔ 5}
d34×2×1(1−, 2+, 3−) = −d1×2×4(2+, 1−, 3−){4 ↔ 5}
d2×34×1(1−, 2+, 3−) = d1×4×2(1−, 2+, 3−){4 ↔ 5}
d1×23×4(1−, 2+, 3−) = −d4×1×23(1−, 3−, 2+){4 ↔ 5}
d4×1×23(1−, 2+, 3−) = −d4×1×23(1−, 3−, 2+)
d1×4×23(1−, 2+, 3−) = −d1×4×23(1−, 3−, 2+) , (7.69)

with the full set obtained by performing cyclic permutations of (1, 2, 3). Note that two
of these relations involve the box coefficients for the (+,−,−) configuration that will be
given in the following section.

7.4.3 Triangles

The coefficient c1×2(1−, 2+, 3−) is very simple,

c1×2(1−, 2+, 3−) = −s12 [1 2] [2 3]
2 [1 3]3

(7.70)

The following two triangle coefficients only have contributions at order m2,

c
(0)
3×12(1−, 2+, 3−) = 0 (7.71)

c
(2)
3×12(1−, 2+, 3−) =

[2 (s45 − 2M2
H) [2 3]3 (s13 + s23)

[1 2] [1 3] [3|4|5|3]2
− 2 [2 3] ⟨1 3⟩2

[1 3] ⟨1 2⟩ (s13 + s23)

+ [2 3] ⟨1 3⟩
[1 3]2 ⟨1 2⟩

− ⟨1 3⟩2

[1 3] ⟨1 2⟩ ⟨2 3⟩
]

(7.72)

and,

c
(0)
1×4(1−, 2+, 3−) = −c

(0)
1×4(1−, 3−, 2+) = 0 (7.73)

c
(2)
1×4(1−, 2+, 3−) = −c

(2)
1×4(1−, 3−, 2+) (7.74)

= 2 ⟨1|4|1]
[1 3] ⟨3 2⟩ [3 2]

[ [1 2]2 ⟨3|4|1]
(
⟨1|4|1]− ⟨3|2|3]

)
⟨1|5|4|1⟩2

+
(
⟨2|4|1] ⟨3|5|2] [1 2] + ⟨3|4|1] ⟨3|5|1] [3 2]

)
⟨1|5|4|1⟩ [1|4|2⟩

]
(7.75)

The last triangle coefficient is simply related to one previously defined,

c4×12(1−, 2+, 3−) = −c4×12(2+, 1−, 3−) , (7.76)
c4×123(1−, 2+, 3−) = c4×123(3−, 1−, 2+) . (7.77)
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7.4.4 Bubbles and rational terms

The bubble coefficient b12(1−, 2+, 3−) is given by,

b12(1−, 2+, 3−) = − ⟨1 3⟩ [1 2]
⟨2 3⟩ [1 3]2

− ⟨1 3⟩2 [1 2]
⟨2 3⟩ [1 3] (s13 + s23)

− ⟨1 3⟩2 [1 2] [2 3]
[1 3] (s13 + s23)2

(7.78)

The rational term is

R(1−, 2+, 3−) = − ⟨1 3⟩2

⟨1 2⟩ ⟨2 3⟩ [1 3]
[
1− s12

(s12 + s13)
− s23

(s13 + s23)
]

(7.79)

7.5 g+g−g−HH

7.5.1 Effective pentagons

Turning now to the 1+2−3− helicity combination, all the effective pentagon coefficients
necessary for this amplitude have already been introduced in section 7.3.1.

7.5.2 Boxes

There is one independent box with two lightlike external lines,

d1×2×4(1+, 2−, 3−) = ⟨2 3⟩
[2 3]2 ⟨1 3⟩ ⟨1 2⟩
×
[
C3×1×2×4
1 ê1×2×3×4(3−, 1+, 2−) + C̄1×2×4×3

5 ê1×2×4×3(1+, 2−, 3+)
]

+ d̂1×2×4(1+, 2−, 3−) , (7.80)

where the remainder d̂1×2×4(1+, 2−, 3−) reads,

d̂1×2×4(1+, 2−, 3−) =

− [12]s24
8 ⟨1 3⟩ [23]2

{
⟨1 3⟩

[
s12(s14 + M2

H) + 2M2
H(s24 − M2

H)
]
+ 8 ⟨1 2⟩ ⟨3|5|2]m2

⟨1|4|2]

+ ⟨2 3⟩ (s13 + 2s12 − 2M2
H)
}
+ [12] ⟨2|4|1]

4[23]2tr5

{
− ⟨1 2⟩ [13]

[
⟨3|4|2] (s15 − s35 + 2M2

H)

+ 8 ⟨3|5|2]m2
]
+
[(

s12(⟨3|5|3] (s123 − 2M2
H) + (s35 − s34)M2

H)
)
+
(
2 ↔ 3, 4 ↔ 5

)]
− ⟨1 2⟩ ⟨3|4|2] ⟨3|5|3] (s12 − s13 − 2M2

H + 8m2) + [12] ⟨1 3⟩ ⟨2|5|3]
⟨1 3⟩

}
(7.81)

The first box with only one lightlike external line is,

d4×1×23(1+, 2−, 3−) = ⟨2 3⟩
[2 3]2 ⟨1 3⟩ ⟨1 2⟩
×
[
C3×2×1×4
2 ê1×2×3×4(3−, 2−, 1+) + C2×3×1×4

2 ê1×2×3×4(2−, 3−, 1+)
]

+ d̂4×1×23(1+, 2−, 3−) , (7.82)
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where the effective box coefficient d̂4×1×23(1+, 2−, 3−) is given by

d̂4×1×23(1+, 2−, 3−) = 1
2m2(s123 − 2s23 − 2M2

H + 8m2)⟨2 3⟩[23]
[1|4|5|1]

tr5
. (7.83)

It is manifestly (4 ↔ 5) symmetric.
The other box with one lightlike external line has the same effective box contribution,

d1×4×23(1+, 2−, 3−) = ⟨2 3⟩
[2 3]2 ⟨1 3⟩ ⟨1 2⟩
×
[
C̄3×2×4×1
2 ê1×2×4×3(3−, 2−, 1+) + +C̄2×3×4×1

2 ê1×2×4×3(2−, 3−, 1+)
]

+ d̂1×4×23(1+, 2−, 3−) , (7.84)

with
d̂1×4×23(1+, 2−, 3−) = d̂4×1×23(1+, 2−, 3−) . (7.85)

This fully specifies the three integrals that enter the basis set indicated in table 2. The
remainder are related by,

d1×2×3(1+, 2−, 3−) = −d1×2×3(3−, 2−, 1+)
d4×1×2(1+, 2−, 3−) = −d1×2×4(2−, 1+, 3−)

d34×1×2(1+, 2−, 3−) = d1×2×4(1+, 2−, 3−){4 ↔ 5}
d34×2×1(1+, 2−, 3−) = −d1×2×4(2−, 1+, 3−){4 ↔ 5}
d1×4×2(1+, 2−, 3−) = −d1×4×2(2−, 1+, 3−)

d2×34×1(1+, 2−, 3−) = −d1×4×2(2−, 1+, 3−){4 ↔ 5}
d1×23×4(1+, 2−, 3−) = d4×1×23(1+, 2−, 3−){4 ↔ 5} , (7.86)

with the full set obtained by performing cyclic permutations of (1, 2, 3).

7.5.3 Triangles

The simplest triangle coefficient is,

c1×2(1+, 2−, 3−) = −s12 [1 2] [1 3]
2 [2 3]3

. (7.87)

The order m2 coefficients c
(2)
3×12(1+, 2−, 3−) and c

(2)
1×4(1+, 2−, 3−) are given by,

c
(2)
3×12(1+,2−,3−)=−c

(2)
3×12(2−,1+,3−) (7.88)

=−
[−2(s45−2M2

H) [13]3 (s13+s23)
[21] [23] [3|4|5|3]2

− 2 [13] ⟨23⟩2

[23] ⟨21⟩ (s13+s23)

+ [13] ⟨23⟩
[23]2 ⟨21⟩

− ⟨23⟩2

[23] ⟨21⟩ ⟨13⟩
]
, (7.89)

and,
c
(2)
1×4(1+, 2−, 3−) = 2⟨1|4|1]

[2 3]2
[ ⟨3|5|2]
⟨1 3⟩ ⟨1|4|2] −

⟨2|5|3]
⟨1 2⟩ ⟨1|4|3] +

⟨3 2⟩
⟨1 2⟩ ⟨1 3⟩

]
, (7.90)

with the order m0 pieces determined by the infrared relations given in eqs. (6.13) and (6.14).
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The remaining triangle is specified by,

c
(0)
4×12(1+,2−,3−)= ⟨2|4|1](s24−s14)

4s12 [3|4|5|3]

[
[13]⟨23⟩+⟨13⟩ [12]⟨2|5|3]+[13](s35−s24)

⟨1|4|2]

]

−
⟨23⟩∆12|4|35([12]⟨2|4|3]−[13](s14−M2

H))
4s12 ⟨1|4|2] [3|4|5|3]

+ ⟨2|4|1](s24−s14)(s35−s24)(s123−2M2
H)

4s12 ⟨1|4|2] [3|4|5|3]
−⟨2|4|1]2 (s12−2M2

H)
2s12 [3|4|5|3]

+
⟨2|5|3]∆12|4|35(s123−2M2

H)([12]⟨2|5|3]+[13](s35−s24))
4s12 ⟨1|4|2] [3|4|5|3]2

, (7.91)

c
(2)
4×12(1+,2−,3−)= 2⟨2|4|1] (s24−s14)(s35−s24)−2⟨1|4|2]⟨2|4|1]

⟨1|4|2] [3|4|5|3]s12

+2
⟨2|5|3]∆12|4|35([12]⟨2|5|3]+[13](s35−s24))

⟨1|4|2] [3|4|5|3]2 s12
, (7.92)

where the Källén function ∆12|4|35 was defined in eq. (4.30) and

c4×123(1+, 2−, 3−) = c4×123(2−, 3−, 1+) . (7.93)

It is evident that eq. (7.92) could be reabsorbed into eq. (7.91) by adding 8m2 to the
parentheses involving M2

H in the last three fractions.

7.5.4 Bubbles and rational terms

The bubble coefficient is given by,

b12(1+, 2−, 3−) = −⟨2 3⟩ [1 2] [1 3]
[2 3]

[ ⟨2 3⟩
(s13 + s23)2

− 1
[2 3] (s13 + s23)

]
(7.94)

The rational term is

R(1+, 2−, 3−) = −⟨2 3⟩2

[2 3]
[ 1
⟨1 2⟩ ⟨1 3⟩ +

[1 3]
⟨1 2⟩ (s13 + s23)

+ [1 2]
⟨1 3⟩ (s12 + s23)

]
(7.95)

8 Implementation of NLO pp → HH calculation

The one-loop matrix elements that we have computed here have been cross-checked against
OpenLoops [63], finding full agreement. Our analytic calculation of the 0 → gggHH

process is approximately 90 times faster to evaluate than OpenLoops, while the simpler
0 → q̄qgHH amplitude is only 35 times quicker. The implementation of the corresponding
dipole subtraction terms in MCFM [27–29], to complete the real radiation computation, is
straightforward.

The 2-loop virtual matrix element contribution is implemented using hhgrid [21], a
package that uses a grid to interpolate the two-loop result (available from https://gith
ub.com/mppmu/hhgrid). The package provides a Fortran interface to the interpolating
Python code, which we have linked to MCFM.2

2We thank Stephen Jones for help producing grid files that can be loaded efficiently, so that it is straight-
forward to run our calculations on multiple cores simultaneously.
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The hhgrid code provides the value of Vfin, which is defined in terms of the virtual
contribution Vb — the interference of the 2-loop and 1-loop amplitudes including all overall
coupling and averaging factors [21] — and takes the general form,

Vb = N αs

2π

 1
ϵ2

aB + 1
ϵ

∑
i ̸=j

cij Bij + Vfin

 , N = (4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

, (8.1)

where B is the Born contribution. From colour conservation, for this process we have
B12 = B21 = CAB. The coefficients of the pole terms are determined by a = −2CA and
c12 = c21 = −β0/CA − log(µ2/ŝ), where β0 = (11CA − 2nf )/6.3 Finally, the value of Vfin
is provided for the scale µ0 =

√
ŝ/2, from which the result at an arbitrary scale µ can

be found using,

Vfin(µ) = Vfin(µ0) ·
α2

s(µ)
α2

s(µ0)
+ CAB(µ)

[
log2

(
µ2
0

ŝ

)
− log2

(
µ2

ŝ

)]
(8.2)

The virtual contribution is implemented in MCFM by using eqs. (8.1) and (8.2), setting N = 1
since such an overall factor is implicit in the rest of the code.

8.1 Validation

We first compare with the 14 and 100 TeV total cross section results presented in ref. [14]. These
are obtained with m = 173GeV, MH = 125GeV and the PDF set PDF4LHC15_nlo_100_pdfas
(for both LO and NLO calculations). The top quark width is set to zero.

In order to address issues of numerical stability, we have implemented a rescue system
in the calculation of the real radiation corrections. This compares the calculation of the
matrix elements at two phase-space points related by a rotation in order to provide an
estimate of the numerical accuracy. If this suggests that the result is not accurate to at
least eight digits we switch on the fly from double to quadruple precision and repeat the
calculation of the real emission matrix elements. Although this rescue system clearly requires
two evaluations of the matrix elements, since they are already very fast to compute this is not
a great additional burden. With this in place we obtain the same integrated cross-sections
as when using OpenLoops, but in a factor 50 less time. To eliminate unnecessary further
numerical instability, we have also imposed a technical cut pT (HH)/

√
ŝ > 10−2. We have

checked that variation of this cut in the range 10−6 to 10−2 makes a difference of less than
one per mille in the total NLO result.

At the level of total cross sections, the perfect agreement between the NLO results from
the two codes is demonstrated in table 3. The hhgrid package also provides 14 TeV validation
data for the distributions of the Higgs boson pair invariant mass and rapidity, as well as the
transverse momentum of a random Higgs boson. We compare these with the MCFM results
in figures 1, 2 and 3, which again demonstrate excellent agreement.

3This corrects the definition of c12 and c21 found in the published version of ref. [21]; the arXiv version has
been updated.
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√
s[TeV ] Calculation LO [fb] NLO [fb]

14 MCFM 19.85+27.6%
−20.5% 32.91+13.6%

−12.6%
Ref. [14] 19.85+27.6%

−20.5% 32.91+13.6%
−12.6%

100 MCFM 730.9+20.9%
−15.9% 1149+10.8%

−10.0%
Ref. [14] 731.3+20.9%

−15.9% 1149+10.8%
−10.0%

Table 3. Validation of 14 and 100 TeV cross sections against the results of ref. [14]. The numerical
uncertainty in the MCFM results is beyond the last digit. The percentage deviations correspond to
estimates of uncertainty from 7-point variation of the scale according to the procedure described in
ref. [14].

Figure 1. Validation plot for the m(HH) distribution, comparing against the hhgrid result of
ref. [21].

Figure 2. Validation plot for the y(HH) distribution, comparing against the hhgrid result of ref. [21].

8.2 Phenomenology

With the fixed order Higgs pair production process implemented in MCFM it is straightforward to
extend the existing framework to provide a resummed prediction for the transverse momentum
of the Higgs boson pair. This is implemented using the CuTe-MCFM framework [64, 65]; we
refer the reader to the original papers for more details. For our purposes it is important
to note that for our matched resummed prediction, which combines the NNLL result at
small qT with the fixed order one at high qT , we use a transition function with parameter
x = q2T (HH)/m2

HH and xmax = 0.1.
As an example, in figure 4 we show the matched, resummed qT spectrum of the Higgs

boson pair at a 100TeV pp collider, together with the results obtained from pure fixed
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Figure 3. Validation plot for the pT (H) (random Higgs boson) distribution, comparing against the
hhgrid result of ref. [21].

Figure 4. The qT spectrum of the Higgs boson pair at a 100TeV pp collider. The plot shows the
matched resummed prediction (red), compared with the pure resummed result (blue) and the fixed
order calculation (magenta).

order and resummed calculations. The fixed order result clearly diverges at small qT while
the resummed result ameliorates this behavior. The matched resummed result smoothly
interpolates between the two calculations, transitioning to the fixed-order result for qT around
qmax

T = √
xmax mHH ∼ 130GeV (using the fact that the peak of the mHH distribution is

around 400GeV). The matched result begins to differ substantially from the resummed result
a little before that, around qT ∼ 90GeV.

9 Conclusions

This paper has addressed the calculation of the amplitude for a pair of Higgs bosons in
association with three partons at one-loop level. The calculation proceeded in two steps.
First the coefficients of the needed scalar integrals were calculated using both methods
based on the work of Passarino and Veltman, as well as more modern techniques based on
generalized unitarity. The initial results for the box coefficients obtained using unitarity
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were subsequently simplified using the technique of analytic reconstruction. Compared to
previous uses of this technique, new strategies were introduced in order to handle particular
features of this processes, in particular the presence of two massive external particles and a
massive particle circulating in the loop. This latter step, which yielded the simpler results for
the box coefficients and some of the triangle coefficients given in this paper, also improved
the speed of the numerical evaluation. The resulting code, in combination with previous
work [21] on the two loop corrections to the Higgs boson pair + 2 parton process, allows
the fast evaluation of the next-to-leading order corrections to pp → HH. This calculation
will be included in an upcoming release of the MCFM code, also providing machine-readable
versions of the analytic amplitude results presented in this paper.

Acknowledgments

We acknowledge useful discussions with Stephen Jones. RKE acknowledges receipt of a
Leverhulme Emeritus Fellowship from the Leverhulme Trust. GDL’s work is supported in
part by the U.K. Royal Society through Grant URF\R1\20109. The work of J.M.C. is
supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC-5)
program, grant “NeuCol”. This manuscript has been authored by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office
of Science, Office of High Energy Physics. This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office
of Science User Facility, under NERSC award HEP-ERCAP0023824.

A Spinor algebra

All results are presented using the standard notation for the kinematic invariants of the process,

sij = (pi + pj)2 , sijk = (pi + pj + pk)2 , sijkl = (pi + pj + pk + pl)2 , (A.1)

and the Gram determinant,

∆3(i, j, k, l) = (sijkl − sij − skl)2 − 4sijskl . (A.2)

In the case where momentum j is not lightlike, we put the corresponding subscript in boldface,
e.g. sij . We express the amplitudes in terms of spinor products defined as,

⟨i j⟩ = ū−(pi)u+(pj), [i j] = ū+(pi)u−(pj), ⟨i j⟩ [j i] = 2pi · pj , (A.3)

and we further define the spinor sandwiches for massless momenta j and k,

⟨i|(j + k)|l] = ⟨i j⟩ [j l] + ⟨i k⟩ [k l]
[i|(j + k)|l⟩ = [i j] ⟨j l⟩+ [i k] ⟨k l⟩ (A.4)

The spinor sandwich with momentum k not lightlike is distinguished by putting the momentum
k in boldface, e.g. ⟨i|k|l].
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In the Weyl representation for the Dirac gamma matrices, following the conventions
of ref. [66], we have

̸p = γ0p0 − γ1p1 − γ2p2 − γ3p3 =


0 0 p− −p1 + ip2

0 0 −p1 − ip2 p+

p+ p1 − ip2 0 0
p1 + ip2 p− 0 0

 . (A.5)

The massless spinors solutions of Dirac equation are

u−(p) =


(−p1 + ip2)/

√
p+√

p+

0
0

 =


−
√

p−e−iφp√
p+

0
0

 , (A.6)

and

u+(p) =


0
0√
p+

(p1 + ip2)/
√

p+

 =


0
0√
p+√

p−eiφp

 , (A.7)

where
e±iφp ≡ p1 ± ip2√

(p1)2 + (p2)2
= p1 ± ip2√

p+p−
, p± = p0 ± p3. (A.8)

In this representation the Dirac conjugate spinors are

u−(p) ≡ u†
−(p)γ0 =

[
0, 0,−

√
p−eiφp ,

√
p+
]

(A.9)

u+(p) ≡ u†
+(p)γ0 =

[√
p+,

√
p−e−iφp , 0, 0

]
(A.10)

More complicated spinor products, follow in an obvious way,

⟨i|k|j] = ū−(pi) ̸k u−(pj) , ⟨i|k|l|j⟩ = ū−(pi) ̸k ̸l u+(pj) , (A.11)

where k and l are the momenta of non lightlike particles.

B Loop integral definitions

We work in the Bjorken-Drell metric so that l2 = l20 − l21 − l22 − l23. The affine momenta
qi are given by sums of the external momenta, pi, where qn ≡

∑n
i=1 pi and q0 = 0. The

propagator denominators are defined as di = (l + qi)2 − m2 + iε. The definition of the
relevant scalar integrals is as follows,

B0(p1;m) = µ4−D

iπ
D
2 rΓ

∫
dDl

d0 d1
,

C0(p1, p2;m) = 1
iπ2

∫
d4l

d0 d1 d2
,

D0(p1, p2, p3;m) = 1
iπ2

∫
d4l

d0 d1 d2 d3
,

E0(p1, p2, p3, p4;m) = 1
iπ2

∫
d4l

d0 d1 d2 d3 d4
. (B.1)
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For the purposes of this paper we take the masses in the propagators to be real. Near four
dimensions we use D = 4− 2ϵ. (For clarity the small imaginary part which fixes the analytic
continuations is specified by +i ε). µ is a scale introduced so that the integrals preserve
their natural dimensions, despite excursions away from D = 4. We have removed the overall
constant which occurs in D-dimensional integrals,

rΓ ≡ Γ2(1− ϵ)Γ(1 + ϵ)
Γ(1− 2ϵ) = 1

Γ(1− ϵ) +O(ϵ3) = 1− ϵγ + ϵ2
[

γ2

2 − π2

12

]
+O(ϵ3) . (B.2)

C Spinor decompositions

We supplement the primary decompositions presented in ref. [34, section 3.3.1] with the
following new decomposition

〈
[1|(4 + 5)|(6 + 7)|1] , [2|(4 + 5)|(6 + 7)|2]

〉
=〈

[1 2] , [1 3] , [2 3]
〉

∩
〈
[1 2] , ⟨3|(4 + 5)|2] , ⟨3|(4 + 5)|1]

〉
∩ (C.1)〈

[1|(4 + 5)|(6 + 7)|1] , [2|(4 + 5)|(6 + 7)|2] ,

|(1 + 3)|(4 + 5)|2][1|+ |2][1|(4 + 5)|(2 + 3)| − |2] ⟨3|(4 + 5)|3] [1|
〉

,

where it appears that the last ideal on the right-hand side may require further decompositions,
even if this form suffices for the current discussion. The generator with two open indices was
obtained by fitting a covariant ansatz to numerical evaluations obtained from a component
expression obtained from Singular, after quotienting the left-hand side ideal by the first
two prime ideals on the right-hand side. The equality holds in R7 without imposing the
additional constraint s45 = s67. Changing the ring, e.g. to RR5, causes non-trivial modification
to the decomposition.

The decomposition of eq. (C.1) can be understood in light of the following identity

|1] [2|(4 + 5)|(6 + 7)|2] [1| − |2] [1|(4 + 5)|(6 + 7)|1] [2| =

− [1 2]
(
|(1 + 3)|(4 + 5)|2][1|+ |2][1|(4 + 5)|(2 + 3)| − |2][3|(4 + 5)|3][1|

) (C.2)

where on the left-hand side we clearly have a member of the maximal codimension ideal being
decomposed in eq. (C.1), while on the right-hand side we have a polynomial with two factors.
This manifestly shows that a non-trivial primary decomposition is needed, and identifies the
two factors as generators of ideals in the decomposition.

We can see this decomposition reflected in the structure of the coefficient c
(2)
4×123(1−, 2−, 3+)

from eq. (7.58). In order to fully separate the poles [1|4|5|1] and [2|4|5|2] into separate
fractions, it is necessary to introduce a spurious second power of the pole [1 2]. Without
it, the common numerator does not vanish on all branches of (C.1), thus preventing the
partial fraction decomposition by Hilbert’s Nullstellensatz.
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Alternatively, it is possible to avoid introducing the spurious double pole, if [1|4|5|1]
and [2|4|5|2] are kept in the same denominator

c
(2)
4×123(1−,2−,3+)=

{
2[13]

3
s45(s45−4M2

H)
[12] [23] [1|4|5|1]2

+4 [13] [3|4|5|3]
[12] [23] [1|4|5|1]−2[13]⟨2|4−5|3]

[12] [1|4|5|1]

}
−
{
1↔ 2

}
− 1
2
tr(3−1−2|4−5)([13] [23]tr(3−1−2|4−5)−[12] [3|(4−5)|(1−2)|3])

[12] [1|4|5|1] [2|4|5|2] .

(C.3)
This form also manifests the symmetry under 4 ↔ 5 term by term. The numerator of the
last fraction is now a contraction of the covariant generator in (C.1),
1
2 [1 2] ([1 3] [2 3] tr(3−1−2|4−5)−[1 2] [3|(4 − 5)|(1− 2)|3]) = [1 3]2 [2|4|5|2]−[2 3]2 [1|4|5|1] ,

(C.4)
where for convenience we have written this as [3|× (C.2) ×|3]. As before the trace is
understood as being of rank-two spinors: (3 − 1 − 2)αα̇(4 − 5)α̇α.

D Box manipulations and spurious singularities at infinity

In this appendix we analyse the singularity structure of one of the box coefficients,
d1×2×3(1−, 2−, 3+), which was presented eq. (7.43). That form with the effective pentagon
involves a spurious single pole in tr5, as well a degree two (instead of one) pole in [12], a
degree one (instead of two) zero in ⟨1 2⟩, etc. A form with more manifest analytic properties is,

d1×2×3(1−, 2−, 3+) =

⟨1 2⟩2 ⟨2 3⟩ [23]m2
(
[3|4|5|3](⟨1 3⟩ [3|4|5|1]− [13] ⟨1|5|4|3⟩)

+ ⟨1 2⟩ [23](s123 − 2s12 − 2M2
H + 8m2))[3|4|5|1]

)
8(−⟨1 2⟩ [12] ⟨2 3⟩ [23] ⟨1|5|4|3⟩ [3|4|5|1] + m2tr25)

+ (4 ↔ 5)

+ ⟨1 2⟩3 [13] ⟨2 3⟩ [23]2m4tr5(⟨1|4|5|3⟩ [3|5|4|1]− (4 ↔ 5))(s123 − 2s12 − 2M2
H + 8m2)

4(−⟨1 2⟩ [12] ⟨2 3⟩ [23] ⟨1|5|4|3⟩ [3|4|5|1] + m2tr25)× (4 ↔ 5)

+ m2 ⟨1 2⟩
2 [23]

2[12] ⟨1 3⟩ , (D.1)

where the first line is a doublet and the latter two lines are singlets under the exchange of
the Higgs bosons, 4 ↔ 5. In eq. (D.1) this is shown explicitly. Except for the contribution
in the last line of eq. (D.1), the only singularities are |S1×2×3×4| and |S1×2×3×4|(4 ↔ 5),
as introduced in eq. (7.11).

Let us now analyse the large m limit. As discussed in section 3.3, we consider a projective
space in m, rather than an affine space. This box coefficient diverges linearly in m2. In
the limit, it reads,

lim
m→∞

d1×2×3(1−,2−,3+)=+m2 ⟨12⟩
2 [23]

2[12]⟨13⟩−m2 ⟨12⟩
3 [13]⟨23⟩ [23]2(s123−2M2

H)
tr25

+2m2 ⟨12⟩
3 [13]⟨23⟩ [23]2(⟨1|4|5|3⟩ [3|5|4|1]−(4↔5))

tr35
. (D.2)
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This form can be read out from eq. (D.1), using the following identity,

[1|4|5|3] + [1|5|4|3] = [13](s123 − 2M2
H) . (D.3)

We can now understand why the two |S| denominators in the general m expression of
eq. (D.1) cannot be separated without introducing a spurious pole in tr5 → 0 or m → ∞. An
ansatz where the |S| denominators are separated would read, schematically,

d1×2×3 ∼
∑

terms

mαtrβ
5

|S|
(D.4)

On the irreducible codimension-two projective variety V
(〈
tr5, m−1〉) we must have a pole of

degree five, as manifest in the second line in eq. (D.2), thus we have the constraint,

α − β = 5 . (D.5)

We impose the equality because at least one of the terms must saturate the limit. On the
irreducible codimension-one projective variety V

(〈
m−1〉) we have a double pole, i.e.

α ≤ 4 , (D.6)

since |S| goes quadratically. We allow the inequality since not all terms need to saturate this
limit. On the irreducible codimension-one variety V

(〈
tr5
〉)

the coefficient is regular,

β ≥ 0 . (D.7)

In the α − β plane the line α − β = 5 does not intersect the semi-infinite region defined
by α ≤ 4 , β ≥ 0. Therefore, no simultaneous solution exists to these three constraints.

Consider one last form for this coefficient,

d1×2×3(1−, 2−, 3+) =
{

⟨1 2⟩2 [23]m2

8(−⟨1 2⟩ [12] ⟨2 3⟩ [23] ⟨1|5|4|3⟩ [3|4|5|1] + m2tr25)
×

[
(s123 − 2s12 − 2M2

H + 8m2)(−2m2tr5
[13]
[12] + ⟨1 2⟩ ⟨2 3⟩ [23][3|4|5|1])

+ ⟨2 3⟩ [3|4|5|3](⟨1 3⟩ [3|4|5|1]− [13] ⟨1|5|4|3⟩)
]}

+
{

4 ↔ 5
}

+ m2 ⟨1 2⟩
2 [23]

2[12] ⟨1 3⟩ (D.8)

The above curly bracket goes like m4 in the large m limit (the numerator goes like m6, the
denominator as m2), while we have already shown that this box coefficient only scales as m2.
In terms of α and β, we have α = 6 and β = 1. This form has a spurious pole at infinity,
meaning it appears in the numerator rather than the denominator.

Data Availability Statement. This article has no associated data or the data will not
be deposited.
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