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Abstract. We introduce neural-code PIFu, a novel implicit function for
3D human reconstruction, leveraging neural codebooks, our approach
learns recurrent patterns in the feature space and reuses them to improve
current features. Many existing methods predict normal maps from im-
age feature space which easily overlook non-trivial features. Moreover,
neglecting global geometric correlations restricted the use of repetitive
features to improve the expressive power of current features. In this work,
we propose neural-code PIFu, a novel framework that enhances initial
features by fusing them with neural codes that are learned from the in-
put features and geometric prior. It also models the global geometric
correlation to facilitate the use of neural codes. Extensive experiments
demonstrate that our method outperforms state-of-the-art (SoTA) PIFu-
based approaches by a large margin, and achieves comparable results to
parametric-models-based methods without the use of auxiliary data.

Keywords: 3D Human Reconstruction · Deep Learning · Neural Code
Integration.

1 Introduction

The growing demand for realistic 3D human reconstruction has driven the devel-
opment of diverse methodologies, serving as a crucial foundation for the meta-
verse, and AR/VR industries. The main objective of 3D human reconstruction is
to transform 2D features onto 3D surfaces that accurately represent the human
in the RGB images. Early techniques [1] relied on dense view reconstruction
to model intricate 3D human surfaces, but their reliance on sophisticated cam-
era arrays made large-scale applications impractical. Recently, deep learning
has revolutionized the field. Explicit representation is commonly used with deep
learning to model human surfaces, early methods [1,2] based on explicit surfaces
cannot generate details for human surfaces. To address the issue, [3,4] predicts
3D geometric offsets as clothing details. Despite promising results, explicit sur-
face representations suffer from the inflexibility of modeling shape and struggle
to replicate intricate garments such as dresses due to the significant divergence
in shape from the human body.
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Unlike explicit surfaces such as meshes, implicit surfaces can model arbitrary
shapes and are not limited by the resolution of input data. Pixel-aligned implicit
function first proposed in [5] has emerged as a promising approach in the field.
PIFu [5] and PIFuHD [6] represent pioneering methods that employ implicit
functions to reconstruct a human surface from a single RGB image directly. To
reconstruct more detailed human surfaces, some methods [6,8,9,10] attempt to
predict normal maps from the image feature and use them as additional inputs
to inform the models.

The main problems of many PIFu-based methods are twofold: (1) Predicting
normal maps from image feature space has limited improvements on non-trivial
details. Many current methods easily overlook subtle details in image features
which are also underrepresented in the predicted normal maps. This limits the
improvements provided by normal maps. (2) Neglecting global geometric correla-
tions among query points hinders the exploitation of repetitive patterns. In this
work, our proposed alternative method addresses these issues without relying on
complex architectures or additional data assistance.

To address these challenges, we propose Neural-Code PIFu, an end-to-end
trainable approach for 3D human reconstruction from a single image. Inspired
by [11] which learns quality-dependent features using vector quantization. Our
method effectively learns repetitive patterns via neural codebook learning mod-
ules and models the overall global geometric correlations via self-attention with
positional encoding to facilitate the use of neural codes. We improve pixel-aligned
features by fusing them with relevant neural codes locally and globally via
context-aware latent fusion. Finally, We fully integrate local and global features
by facilitating query points to sufficiently interact via neural code integration.

Our method outperforms SoTA quantitatively and qualitatively. We evaluate
neural-code PIFu on Thuman2.0 [12] and BUFF dataset [7] as well as out-of-
distribution images to show the generalization of the proposed method. Our
method demonstrates promising results, outperforming PIFu-based SoTA by a
noticeable margin, and achieving comparable results with parametric-model-
informed methods (i.e. ICON [13] and ECON [14]). The out-of-distribution
evaluation demonstrates that our method generalises well to unseen garments
and poses with minimum artifacts.

Our main contributions are summarised as follows:

– We propose an end-to-end trainable approach named Neural-Code PIFu
for 3D human reconstruction from a single image, which learns reoccurring
patterns and stores them as neural codes. It also models the global geometric
correlation among query points.

– We propose Context-Aware Latent Fusion to reuse learned neural codes
to improve the expressiveness of the feature. This allows more geometric
details even if they are blurry in the given latent space.

– We propose Neural Code Integration to facilitate the interaction between
query points,and also encourage local and global features to be adequately
integrated.
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2 Related Works

In this section, we briefly review the development and the relevant domains of
single-view 3D human reconstruction.

Explicit Reconstruction An explicit surface can be described as a prescrip-
tion of the precise location of the surface. The early methods represent a surface
via voxels which discrete a 3D surface into a grid. This allows the explicit sur-
face reconstruction to align with modern learning-based image processing meth-
ods [22,23,24], which can properly transfer 2D features to 3D surfaces without
sacrificing a massive amount of consistency between 2D and 3D feature space.
However, the aforementioned methods are highly sensitive to the resolution of
input data, the computational consumption non-linearly increases with resolu-
tions, which makes large-scale applications unfeasible. The point clouds, on the
other hand, are computationally friendly in comparison to voxel representations
[26,27,29]. Taking advantage of the properties of point clouds, recently proposed
learning-based methods [13,14,28,27] can encode a sophisticated surface into a
compact and sparse latent space with the cost of a small amount of compu-
tational resources, but loss of information is inevitable when mapping from a
dense to a sparse latent space, point clouds normally lack abundant geometric
information. This results in a loss of details and over-smoothed surfaces. Our
method proposes to reuse repetitive patterns in the learned image feature space
to enhance the surface details without additional inputs.

Implicit Human Surface Reconstruction Implicit representation could be
considered as a function of the level set of the function [5]. This representation
can be implemented as a multi-layer perceptron predicting occupancy field or
SDF values, which indicate the probability of whether query points lie within
the surface [5,6]. To convey more useful information from 2D input data to
3D surface, recent methods predict occupancy field conditioned on pixel-aligned
features [5,6,16]. These methods have achieved promising results. However, most
of the methods suffer from over-smoothed reconstructed surfaces.

To address this challenge, recent methods either introduce auxiliary data as
prior or strong constraints, such as normal maps and parametric models (e.g.
SMPL [2] and SMPL-X [25]) or add more 3D supervisions to the models. How-
ever, these methods fail to fully explore the valuable 2D space, and useful in-
formation such as detailed features lost during the transition from 2D feature
space to 3D space.

3 Methodology

Our objective is to extract a highly detailed 3D human surface from a single-view
image using a novel implicit function. This function employs neural codebooks to
capture repetitive patterns and preserve them as neural codes, leveraging them
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to enhance the expressiveness of features. We argue that when image features are
blurred or over- smoothed, normal maps struggle to capture details, consequently
restricting the improvement offered by normal maps. Additionally, these methods
fail to emphasize global geometric correlation. Some methods like [7] incorporate
a global feature map derived from image feature space. However, it has limited
improvement in global awareness of models, as features of each query point
are still isolated. To alleviate these challenges, we propose a novel framework
to improve initial features by fusing them with neural codes that are learned
from the input features and geometric prior. As shown in figure 1, we propose a
selective learning neural codebook that specifically preserves representative and
reoccurring features as neural codes. We purposefully utilize these neural codes
to enhance the expressiveness of the current features, achieving the addition of
human surface details without the need for additional data assistance. Moreover,
we introduce an extra branch for modeling global geometric correlations which
facilitates the use of neural codes.

Preliminary We start by detailing the background of the implicit function
representation. An implicit function parameterizes a 3D surface as a level set of
functions. Given a query point in the 3D space, an implicit function classifies
the point as either inside or outside the surface. This is denoted as:

f(X) =

{
1, if X is inside the surface,
0, otherwise.

(1)

Pixel-aligned implicit function captures detailed features from RGB images.
It predicts the occupancy field which represents the probability distribution of
whether a query point is inside or outside the surface. The pixel-aligned implicit
function is mathematically defined as:

f(Fc(x), ϕ(X)) = s : s ∈ R, (2)

where Fc(x) is 2D image feature at position x which is the 2D projection of
query point X, and ϕ(·) is the depth value of point X in the relative camera
coordinates. For more details, we refer readers to [5].

3.1 Neural-Code PIFu Representation.

The inferior performance of current methods [6,8,9,10] is attributed to the pre-
diction of normal maps from image features and the absence of global geometric
correlation. These methods reconstruct detailed human surfaces dependent on
normal maps derived from image features. Although introducing normal maps
has been proven useful in adding details, it does not address the core issues.
Firstly, the improvement provided by normal maps is limited if the initial features
are non-trivial in the image feature space. Secondly, the majority of PIFu-based
methods [5,6,8,9] fail to consider the global geometric correlation within query
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Fig. 1. The overview of our proposed method. The single view RGB image is fed
into the image encoder, and the query points are projected to the image plane in
order to obtain the pixel-aligned feature which is then used to obtain coarse-level local
features and global features. The fine-level features are produced via neural codebook
integration, which is used to predict the occupancy field for query points.

points. The global geometric correlation within the query points is essential for
artifact reduction and completed human mesh.

To address the aforementioned challenges, we propose Neural-Code PIFu
representation for human reconstruction, which possesses the ability to improve
details based on input features and model global geometric correlations between
query points. We adapt neural codebooks to learn representative and reoccurring
features within the given latent space, selectively preserving them as neural
codes. These neural codes are used as a complement for feature improvement,
which allows the model not only to rely on image feature space but also on neural
codebooks to acquire details. Moreover, modeling global geometric correlation
informs the model with a global context, this allows a noticeable reduction of
artifacts and efficient use of neural codes.

Our proposed model is mathematically represented as:

FQ(xc, Fg(fl, fg), ϕ(X)) = s : s ∈ R, (3)

where xc is the input feature, Fg is the neural code integration which takes
global and local features, denoted as fg and fl, as inputs. This module allows
local and global features to be fully combined. Additionally, coarse global feature
fg and coarse local feature fl are generated via the context-aware latent fusion
described in section 2.3. We apply self-attention with positional encoding to
model the overall global correlation within all query points. This is denoted as
follows:

SA(xc) = softmax(
Pos(Q)Pos(K)T√

dk
) · Pos(V ). (4)

Each query point not only contains its features but is also weighted based on all
the other query points after this operation.
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Neural Codebook Learning. We use neural codebooks to effectively capture
and reuse representative features for reconstructing detailed human surfaces. The
goal of the neural codebook learning module is to learn the latent distribution
representing a shared collection of appearance and geometry within the given
features. Given a pixel-aligned feature xc of query points, we first extract the n
most representative features in xc via a softmax relaxation of nearest-neighbor:

zi ←
e||zi−xc||2∑k

n=1 e
−||zn−xc||2

. (5)

We adapt a straight-through-estimator (STE) to enable backpropagation through
the neural codebook, which is vital for a learnable codebook. All neural codes
are initialized with a standard Gaussian distribution N ∼ (µ, σ).

Gated Function. This function selectively preserves the neural codes of inter-
est while discarding less relevant ones, ensuring the retention of the most distinct
features captured in the input latent space. This step is crucial for reconstruct-
ing intricate surface details without introducing artifacts. The gated function is
denoted as:

zi ← ω(φ(vs − i2/λ), T ) · zi. (6)

The gated function provides a hard decision boundary for neural code selection.
The ω is a binarization function. T is a manually defined threshold, vs is a scoring
function that weights the inputs, and λ is a scaling hyperparameter based on
the size of the neural codebook.

Discussions. Our method possesses better generalisation and flexibility in se-
lecting features in comparison to existing methods like SuRS [15]. SuRS learns
a prior difference between high- and low- resolution surfaces. This benefits re-
construction when the details in the image are non-trivial. Nevertheless, it is
significantly constrained by the limitations imposed by the training distribution,
demanding additional data and supervision. Additionally, it lacks the flexibility
of applying learned prior knowledge to inform the model, which introduces a
lot of artifacts. In contrast, our approach can selectively employ neural codes to
enhance those blurred features. This contributes to artifact reduction and better
generalisation.

3.2 Context-Aware Latent Fusion

Intuitively, details of the clothed human body, such as clothing wrinkles and
facial contours, exhibit significant similarities. Existing works [13,14,16,6,15] fail
to take advantage of these similarities and reuse them to enhance non-trivial
details.

Therefore, we propose context-aware latent fusion leveraging neural code-
book learning modules for improvements of both local and global features. This
module generates coarse-level local and global features by combining the input
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features with learned neural codes. This allows a better representative power to
improve the non-trivial details in the initial image space. This also enables the
model to process out-of-distribution images. The module has two primary steps,
variance modeling and latent fusion between neural codes and input features.

Variance Modelling . To ensure the neural codes are distinctive within the
codebook, we follow [17] to further maximize the distance between learned neu-
ral codes by modeling the intra-variance between each code. The intra-variance
is modeled using a convolutional neural network V which takes both neural code
zi and input feature xc and outputs the variance perturbation:

zi = zi + ϵ · V (zi, xc)

||V (zi, xc)||2
. (7)

It draws a clearer boundary within different neural codes and benefits the reduc-
tion of artifacts on the reconstructed surface, as ambiguity within the features
deteriorates the uncertainty of points near the surface [18]. Introducing variance
perturbation to neural codes eases the uncertainty.

Latent Fusion. It aims to generate local and global coarse-level features by
merging the input latent with its relevant neural codes. There are two branches
to separately process local and global features. We concatenate the input feature
and its neural code and feed it into the local fusion module which is modeled as
a residual MLP to obtain both coarse-level features.

3.3 Neural Code Integration

Deficiency in communication between query points is one of the weaknesses
of previous PIFu-based models. Existing approaches [5,6,8] fail to facilitate
sufficient interaction among the query points, and the local and global features
are not adequately integrated.

Hence, we propose neural code integration to integrate coarse-level local and
global features into fine-level features. The purpose of this module is to enable
spatial-wise and channel-wise communication between both features.

We adapt MLP-mixer architecture [19] over the commonly used vision trans-
former for not only its simplicity but also for its comparable performance with
a lighter computational burden. We modify the original architecture and di-
rectly apply it to the latent space. There are two steps within the neural code
integration module: channel-wise mixing and location-wise mixing. In our case,
the former enables communication within each feature of query points, the lat-
ter allows interaction within different query points. The neural code integration
module is defined as:

fchannel = xg,l +MLPchannel(xg,l), (8)

fspatial = fchannel +MLPspatial(fchannel), (9)
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where MLPchannel and MLPspatial are responsible for channel-wise mixing and
spatial mixing respectively, the xg, l is the concatenation of coarse-level local
feature and global feature.

We use fine-level features to predict the occupancy field with an MLP surface
classifier, and the reconstructed mesh is extracted following [20].

4 Experiments

To evaluate the performance of the proposed method, we conducted extensive
experiments on two publicly accessible datasets that are widely accepted by the
community, including Thuman2.0 [12], BUFF [7].

Datasets. Thuman2.0 [12] constitutes 524 high-resolution human meshes with
rich details on the surface. We follow the split ratio mentioned in [15] to split
the dataset into training and testing sets, which contain 402 and 122 meshes
respectively. To evaluate the generalization of our proposed model, we conduct
further experimentation on 143 human scans of both BUFF which no methods
use for training.

Evaluation Metric. In our experiments, we leverage Chamfer Distance (CF)
to measure the distance between the reconstructed surfaces and the ground truth
surfaces. Average point-to-surface Euclidean distance (P2S) is applied to measure
the distance from the vertices of the reconstructed surfaces to the ground truth
surfaces. Lastly, we harness normal reprojection error to evaluate the projection
consistency from input image. All metrics are measured in centimeters (cm).

Implementation Details . Our proposed model is trained with RGB image
with the size of (NI × NI , NI = 512). We follow the same rendering process
used in PIFU [5] to generate images at every degree along the yaw axis for
each human scan. The ground truth 3D points are sampled following the spatial
sampling procedure mentioned in PIFu [5] The input image is first encoded
via a 2D convolutional neural network containing a stacked hourglass network
which has been proven to possess better generalization for human-related esti-
mation. The encoded continuous image features, which have the shape of (W,
H, C, W= 128, H=128, C=321). Pixel-aligned features then are obtained by
projecting the query points to the image feature space. Pixel-aligned features
are then passed to the neural codebook learning module to be decomposed and
extract the most representative neural code. The coarse-level features are learnt
through context-aware latent fusion which are learned via a 4-layer Multi-Layer
Perceptron (MLP). A fine-level feature is produced via neural code integration
which takes both global and local coarse-level features as input. Regarding the
final occupancy prediction, we adapt a surface classifier formulated as a residual
MLP to classify the fine-level features. Once the occupancy values are obtained,
we visualize it using [20].
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Our model is trained on TITAN X GPU with 8 batches, and a learning rate
of 0.0001 with decay. The model is optimized via Adam.

Fig. 2. The comparisons between our method and SoTA. From left to right are the
results of the selected SoTA, the ground truth and our results.

4.1 Comparisons on SoTA.

We compare our methods with state-of-the-arts methods: PIFu [5], PIFuHD
[6], PaMIR [16], SuRS [15], ICON [13], ECON [14]. We follow the training
protocol of SuRS [15],and retrain all methods using their released source codes
for fair comparisons.

Table 1 shows quantitative results on Thuman2.0 [12], BUFF [7] dataset.
Our method outperforms all PIFu-based SoTA with noticeable margins on the
Thuman2.0 test dataset and BUFF dataset. As shown in figure 2, our proposed
method produces more plausible meshes with minimum artifacts.

Our method outperforms parametric model-based methods ICON [13] and
ECON [14] on Thuman2.0 dataset [12],and achieves comparable results on
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BUFF dataset [7]. This is largely attributed to the utilization of parametric
models in these methods for rendering human normal vector maps, which are
subsequently employed to predict normal vector maps with clothing. The nor-
mal vectors obtained through parametric model rendering demonstrate greater
stability and accuracy compared to those predicted directly from image features.
The discrepancy in performance is particularly noticeable on the BUFF dataset.

THuman 2.0 Dataset BUFF Dataset
Models Chamfer(↓) P2S(↓) Normal(↓) Chamfer(↓) P2S(↓) Normal(↓)
PIFu 1.501 (↓50%) 1.523 (↓51%) 0.122 (↓37%) 1.781 (↓57%) 1.754 (↓55%) 0.142 (↓39%)
PIFuHD 1.372 (↓46%) 1.432 (↓49%) 0.124 (↓38%) 1.634 (↓54%) 1.671 (↓53%) 0.133 (↓35%)
PaMIR 1.713 (↓56%) 1.818 (↓60%) 0.134 (↓43%) 1.752 (↓57%) 1.872 (↓58%) 0.148 (↓42%)
SuRS 0.931 (↓20%) 1.151 (↓36%) 0.107 (↓28%) 1.532 (↓50%) 1.622 (↓51%) 0.136 (↓37%)
ICON 0.747 (↓0.5%) 0.735 (↓0.5%) 0.086 (↓10%) 0.832 (↓9%) 0.854 (↓9%) 0.087 (-)
ECON 0.748 (↓0.5%) 0.737 (↓0.5%) 0.079 (↓3%) 0.762 (↓0.5 %) 0.732 (↑6%) 0.082 (↑5%)
Ours 0.745 0.733 0.077 0.759 0.781 0.086
Table 1. The Quantitative results on Thuman 2.0 and BUFF dataset. The percentage
shows the improvements of the proposed method in comparison to SoTA. Chamfer,
P2S and Normal consistency evaluation: the smaller the better.

Thuman 2.0 Dataset BUFF Dataset
Modules Chamfer P2S Normal Chamfer P2S Normal
w/ codebooks w/o fusion 0.774(↓4%) 0.764(↓4%) 0.082(↓6%) 0.787(↓4%) 0.791(↓1%) 0.090(↓4%)
w/o global codebook 0.762(↓2%) 0.754(↓3%) 0.081(↓5%) 0.797(↓5%) 0.798(↓2%) 0.089(↓3%)
w/o local codebook 0.780(↓5%) 0.773(↓5%) 0.084(↓8%) 0.815(↓7%) 0.824(↓5%) 0.092(↓7%)
w/o fusion 0.767(↓3%) 0.769(↓5%) 0.086(↓10%) 0.782(↓3%) 0.813(↓4%) 0.090(↓4%)
w/o Integration 0.782(↓5%) 0.791(↓7%) 0.088(↓13%) 0.812(↓7%) 0.833(↓6%) 0.092(↓7%)
w/ all modules 0.745 0.733 0.077 0.759 0.781 0.086
Table 2. The ablation results on Thuman 2.0 and BUFF dataset. The percentage
shows the performance improvement with or without key components. Chamfer, P2S,
and Normal consistency evaluation: the smaller the better.

4.2 Ablation Study.

We evaluate our methods with a series of ablation studies to assess the key
components contributing to the overall performance. Table 2 illustrates the per-
formance with and without some significant modules of the proposed method.
First, we evaluate the importance of two neural codebook learning modules. It
is obvious that the performance dramatically deteriorates without the two neu-
ral codebook learning modules. Moreover, deployment of either neural codebook
learning module boosts the performance, but the local codebook learning mod-
ule has a large impact on overall performance in comparison to its counterpart.
Lastly, it is noticeable that without neural code integration results in the worst
performance. Figure 3 shows the results of the qualitative ablation study. The
local neural codebook contributes to the diversity of surface details such as fin-
gers and facial details. It is noticeable that surfaces tend to suffer from local
surface detail insufficiency without the local neural codebook. Similarly, neural
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Fig. 3. Qualitative ablation study on Thuman 2.0 test dataset.

code integration encourages local and global neural codes to be fully integrated,
this is beneficial for surface details preservation.

4.3 Out-Of-Distribution Image Evaluation.

We involve out-of-distribution image evaluation to further demonstrate the gen-
erality of our proposed models. As shown in figure 4, our model generalizes well
on unseen images that are beyond the distribution of the training dataset. Our
learned neural code book can generalize well to various unseen garment details
and fashion poses without further training. Unlike SuRS [15] which are highly
constrained by the distribution of training data, our method captures the most
frequently appeared patterns in the training data, and utilizes them to improve
the expressiveness of input features beyond training distribution. We also capture
more details than ICON which also predicts normal maps from image feature
space.

5 Conclusion and Discussions

In conclusion, we propose a novel framework for 3D human reconstruction from
a single image named neural-code PIFu which bridges the pixel-aligned features
and its neural codes for better expressiveness. Our method predicts the coarse-
level feature for both local and global contexts and applies two neural code
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Fig. 4. Out-of-distribution evaluation of the proposed method.

books to learn the distinctive neural codes. The fine-level feature is produced
via a neural code integration which considers the global geometric correlation of
each feature, resulting in much detailed human surfaces.

Although our method surpasses SoTA in terms of generalisation, details cap-
turing, and preservation for unseen clothing, our method shows weaknesses in
reconstructing unseen poses which may result in broken meshes. Additionally,
our method tends to recognize hair as details of garments, this frequently occurs
when reconstructing females in fashion poses. In future research, we will inves-
tigate combining uncertainty modeling, domain adaption, and diffusion models
to alleviate the mentioned challenges.
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