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• The paper introduces a learning process to estimate the amount of
UFLS, focusing on conventional schemes due to their widespread use.

• Dataset generation, feature selection, and learning models are care-
fully analyzed, and a novel partitioning algorithm for regression trees
is proposed.

• The paper provides a careful analysis of UFLS estimation and presents
MILP representations of UFLS estimation, which is novel in the liter-
ature.
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Abstract

This paper presents a data-driven methodology for estimating under fre-
quency load shedding (UFLS) in small power systems. UFLS plays a vital
role in maintaining system stability by shedding load when the frequency
drops below a specified threshold following loss of generation. Using a dy-
namic system frequency response (SFR) model we generate different values
of UFLS (i.e., labels) predicated on a set of carefully selected operating con-
ditions (i.e., features). Machine learning (ML) algorithms are then applied to
learn the relationship between chosen features and the UFLS labels. A novel
regression tree and the Tobit model are suggested for this purpose and we
show how the resulting non-linear model can be directly incorporated into
a mixed integer linear programming (MILP) problem. The trained model
can be used to estimate UFLS in security-constrained operational planning
problems, improving frequency response, optimizing reserve allocation, and
reducing costs. The methodology is applied to the La Palma island power
system, demonstrating its accuracy and effectiveness. The results confirm
that the amount of UFLS can be estimated with the mean absolute error
(MAE) as small as 0.179 MW for the whole process, with a model that is
representable as a MILP for use in scheduling problems such as unit com-
mitment among others.
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Acronyms

ED economic dispatch

KDE kernel density estimate

MAE mean absolute error

MILP mixed integer linear programming

ML machine learning

RES renewable energy sources

RoCoF rate of change of frequency

SFR system frequency response

UC unit commitment

UFLS under frequency load shedding

1. Introduction

Synchronous generators are being displaced with cleaner, albeit non-
synchronously coupled alternatives (like wind and solar), which inadvertently
has led to a reduction of inertia, hence incorporating frequency dynamics into
the operational planning of power systems is more important than ever. Is-
land power systems are already suffering from a lack of inertia because of their
small size. There has been extensive research on how to include frequency
dynamics in scheduling optimization problems. Both analytical methods (di-
rectly from the swing equation) and data-driven methods (based on dynamic
simulations) have been proposed to obtain frequency constraints for inclusion
in the operational planning process. Typical frequency response metrics af-
ter outages are the rate of change of frequency (RoCoF), quasi-steady-state
frequency, and frequency nadir. However, calculating the frequency nadir
is much more complicated than the other metrics. To derive the frequency
nadir from the swing equation, some simplifying assumptions are needed,
and still, the obtained equation is non-linear and non-convex, which makes
it challenging to be used in MILP problem formulations. A common assump-
tion in analytical frequency-constrained methods like [1–5], and many other
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similar works, is that the provision of reserve increases linearly in time, and
all units will deliver their available reserve within a given fixed time. Con-
sequently, the ensuing complicated analytical methods are not necessarily
accurate. On the other hand, more recently, ML-based methods have been
proposed to incorporate frequency dynamics. For instance, optimal classifier
tree is used in [6], deep neural network is used in [7], and logistic regression
is used in [8], among other approaches. An analytical frequency constrained
unit commitment (UC) is compared with data-driven models with the help
of ML in [9] and their pros and cons are highlighted.

In smaller systems like islands the frequency can easily exceed the safe
threshold after any contingency because usually online units are providing
a considerable percentage of the whole demand. To maintain the frequency
stability of an electrical power system, UFLS schemes are implemented to
shed or disconnect a certain amount of load in predefined steps when the fre-
quency drops below a specified threshold following disturbance events. This
corrective protection measure helps to balance the power supply and demand
and prevents a complete system blackout. Different methods have been in-
troduced to tune and optimize the UFLS scheme for electrical power systems,
which can be categorized into conventional and adaptive methods. Conven-
tional UFLS schemes use fixed load shedding steps [10–13], while adaptive
UFLS schemes dynamically adjust the load shedding amount based on real-
time system conditions [14–17]. Although adaptive schemes provide a more
optimized and flexible response, as they require more advanced monitoring
systems and computational capabilities for real-time monitoring and opti-
mization, they are still not used widely in practice. The performance of
both conventional and adaptive methods can be improved by incorporating
ML [18,19].

Depending on the size of the system, it is possible to prevent UFLS acti-
vation. Many studies, like [7, 20–22], and others set the frequency dynamic
thresholds high enough, so no outage leads to UFLS. This is not possible in
a small system, where every online unit is providing a substantial percentage
of the demand and any outage can be big enough to trigger the UFLS acti-
vation [8]. In such systems, co-optimizing UFLS activation and scheduling
of the units can have some benefits like:

• Having an estimate of UFLS in the scheduling optimization problem
will prevent incidents with poor frequency responses.

• The estimated amount of UFLS can be deduced from the required
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reserve. There is no need to schedule reserve as much as the biggest
outage if eventually the UFLS will be activated after the outage.

• UFLS can be monetized easily and added directly to the objective
function of the optimization problem, to reduce the overall operation
costs.

This paper tries to estimate the amount of UFLS, regardless of the UFLS
scheme that is used for the system, through a learning process. The es-
timation of the amount of UFLS of conventional schemes is however very
complicated because of its discrete nature and disturbance-dependent be-
havior. Given the widespread use of conventional schemes in real systems,
it is the principal focus of this paper. The dataset used for the learning
process is labeled with the UFLS of every sample generation combination in
the dataset. The labels can be obtained by SFR models or any other power
system simulator. The purpose is to use the estimation of UFLS in the op-
erational planning of small power systems (such as generation UC, economic
dispatch (ED), reserve allocation, ancillary service scheduling, renewable en-
ergy sources (RES) integration, and so on). The operational planning process
is usually modeled and solved as an MILP problem. Therefore, it is conve-
nient to limit the hypothesis space of the UFLS estimation models to models
that are representable by MILP. Including UFLS estimation in the problem
is in a sense equivalent to including frequency dynamics in the operational
planning, because poor frequency response subsequently triggers the activa-
tion of UFLS.

To estimate the amount of UFLS, a dataset generation process is proposed
to acquire a set of operating points (potential hourly generation schedules)
that can properly describe the system under study. Every possible outage in
each set of generation schedules is labeled with its corresponding UFLS. The
obtained dataset is carefully analyzed to choose the representative features,
and then a learning process is proposed. A regression tree model with a novel
partitioning algorithm is suggested in this paper. As the UFLS is activated
in steps and discretely sheds load, a regression tree seems most suitable.
Our partitioning algorithm exploits the data structure to most effectively
represent the regression tree as a MILP [23]. Also, the use of the Tobit
model to estimate UFLS is proposed and studied. Although the Tobit model
is typically used to describe censored data [24], we found it to be effective to
also describe the UFLS, which has a cluster around zero followed by a linearly
increasing trend as a function of the features, very similar to zero censored
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datasets. Additionally, the Tobit model has a simple analytic structure that
makes it easy to incorporate into a MILP. Both the suggested regression tree
and the Tobit model, alongside their MILP representation, are demonstrated
in the following.

To the best of the author’s knowledge, there is little careful analysis on
UFLS estimation or an MILP representation of UFLS in the existing liter-
ature. [25] introduces a model for optimal stochastic scheduling, integrating
energy production with operating reserve, frequency response, and UFLS.
The optimal amount of UFLS is determined, based on the assumption of
a linear increase in generation over time and a specified outage size. The
authors in [26] introduce a novel constraint based on the swing equation to
manage frequency nadir in low-carbon power grids, incorporating fast fre-
quency response, dynamically reduced largest loss, and UFLS. The research
demonstrates that incorporating UFLS in frequency security planning can
significantly reduce operational costs. A corrective frequency-constrained
UC model for island power systems is introduced in [27] that incorporates
analytical constraints on UFLS, demonstrating its ability to lower generation
costs while minimizing the expected UFLS.

In contrast to the methods previously presented in the literature, this
paper proposes a model to estimate the real UFLS schemes used in most
island power systems, which are step-wise and contain time delays, through
data-driven methods. Table 1 gives a summary of the reviewed literature,
highlighting the main differences compared to this paper.

Table 1: Comparison of the reviewed literature

Paper
UFLS

modeled
MILP

representation
Real scheme

Adaptive
scheme

[1–9] ✗ ✗ ✗ ✗

[25] ✓ ✗ ✗ ✓
[26] ✓ ✗ ✗ ✓
[27] ✓ ✓ ✗ ✓
this
paper

✓ ✓ ✓ ✗

The rest of the paper is organized as follows; in section 2 the methodol-
ogy of the paper is introduced, including the data generation (in section 2.1),
labeling the data (in section 2.2), and the learning process (in section 2.3).
Then in section 3 the results for the island under study (La Palma) are pre-
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sented, including the data generation and analysis (in section 3.1), the applied
learning process, and its accuracy (in section 3.2). Finally, conclusions are
drawn in section 4.

2. Methodology

2.1. Data Generation

To estimate the UFLS, a proper set of data is necessary. The training
dataset comprises features x ∈ X and labels y ∈ Y . In the case of implement-
ing the estimation of UFLS in the scheduling problems (like UC), features
are any measurable quantities from the power system that might help pre-
dict the UFLS. These features are extracted from generation combinations,
while the labels are obtained from dynamic simulations of UFLS after out-
ages. These measurements can be obtained by solving high-order differential
swing equations, or by using SFR models. The features should be carefully
chosen to represent a reasonable amount of information about their labels.
Using an unnecessarily large number of features can be detrimental to both
computational and statistical aspects. Selecting a large feature vector in-
creases the dimensions of the problem, thereby requiring more resources for
calculations. In addition, using a higher number of features makes the model
more susceptible to overfitting. Therefore, it is beneficial to use only the fea-
tures with the most relevant information to predict the label y [28]. In this
paper, y is the amount of UFLS for each outage. Several methods have been
introduced in the literature to reduce the size of the feature vector. For this
paper, the features must be accessible throughout the scheduling process.
Therefore, variables that are most correlated with the label will be chosen
as features. As shown later in section 3, the selected features for predicting
UFLS are available inertia (Hg), weighted gain of turbine-governor model
(Kg), the amount of lost power (Pg), and the amount of available reserve
(Rg), after the outage of generator g.

To obtain a complete dataset, every combination of possible generation
outputs of the units can be considered. However, many of these combina-
tions are infeasible as they do not satisfy the constraints that are used in the
scheduling process (power balance, reserve constraint, or maximum RoCoF),
or are unappealing as the optimization problem will favor cheaper combi-
nations. In this paper, a data generation method is used to only generate
feasible control points that are cost-effective, and hence more likely to be
scheduled in the real operation. The process is outlined in algorithm 1.
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Algorithm 1 Synthetic Data Generation

Inputs: D, D, P i, ∆f , f0, Hi, Mi

Output: F : set of feasible power level vectors

1: F ← ∅
2: for p⃗ ∈×I

i=1
Pi do ▷ for all power level vectors

3: for i ∈ {1, . . . , I} do ▷ for every generator

4: ui := 0 if pi = 0 else 1 ▷ status of unit

5: end for
6: G :=

∑I
i=1 pi ▷ total generation

7: Rℓ :=
(∑I

i=1 ui(P i− pi)
)
−uℓ(P ℓ− pℓ) ▷ reserve after outage of ℓ

8: Hsys
ℓ := (

∑I
i=1HiMiui)−HℓMℓuℓ ▷ inertia after outage of ℓ

9: if D ≤ G ≤ D and Rℓ ≥ pℓ and Hsys
ℓ ≥

pℓf0
2∆f

then ▷ feasible?

10: F ← F ∪ {p⃗} ▷ add power level vector

11: end if
12: end for
13: Sort F ascending by the quadratic generation cost function
14: Keep a reasonable number of cheaper combinations and remove the rest

D and D are upper and lower bounds on yearly thermal generation (MW), i is the
index of unit ∈ {1, . . . , I}, P i is the capacity of unit i (MW), ∆f is critical RoCoF
(Hz/s), f0 is nominal frequency (Hz), Pi is the finite set of power levels of unit i
including level 0 for not committed (MW), ℓ is the index of the lost unit (can be
any i), Hi is the inertia of unit i, and Mi is the base power of unit i.
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2.2. Labeling the Data

In labeling the data, the SFR model is used to analyze the frequency sta-
bility of small isolated power systems, such as the La Palma Island system
being studied. The SFR model can reflect the short-term frequency response
of such systems, but other dynamic power system models could also be em-
ployed. The power-system model, which is typically used to design UFLS
schemes for an island power system consisting of I generating units, is de-
tailed in fig. 1. A second-order model approximation is used to represent the

Figure 1: SFR model.

turbine-governor system of each generating unit (i). The dynamic frequency
responses are mainly influenced by the rotor and turbine-governor system
dynamics, while excitation and generator transients are ignored due to their
faster dynamics. The load-damping factor (D) is used to consider the overall
response of the loads, provided that its value is known. The gain (ki), which
is the inverse of the droop, and the parameters (ai,1, ai,2, bi,1, and bi,2) of each
generating unit (i) can be determined from more precise models or field tests.
The gain (ki) is an essential parameter to indicate the frequency response of
unit i, and will influence the UFLS scheme activation. To have features that
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can reflect the amount of UFLS after the outage, a weighted gain is defined,
which will be used as a feature for the training dataset. The equation,

Kg =
∑

i∈I,i ̸=g

kiMiut,i (1)

represents the weighted gain after the outage of unit g. Due to the limited
primary spinning reserve, the units’ power output is restricted by the power
output limitations ∆pi,min and ∆pi,max, and the ramp-up speed of the units
should be constrained by the maximum ramping capacity of each respective
unit. The complete model is explained in [29].

2.3. Learning Process

2.3.1. Proposed Regression Tree

A regression tree is suggested in this paper to estimate the amount of
UFLS since conventional schemes shed load in a discrete manner. Typical
regression trees split the feature space into rectangular cells and use a con-
stant value within each cell for prediction. However, if we want to incorporate
the model into a MILP, we prefer to have as few cells as possible. Therefore,
a novel regression tree is proposed here, which is inspired by [30] but deviates
from it in several ways:

• The data shows that using convex regions leads to a far more efficient
representation. Therefore, we use linear functions to partition cells,
rather than single features.

• Within each cell, a linear model is used instead of a constant, as this
further reduces the number of cells.

• For prediction, it is important to estimate incidents with no UFLS as
exactly zero and not a small number. The suggested tree structure can
achieve that.

Representing such regression tree as MILP is presented later. MILP-representability
of many ML methods is exploited in [23].

The suggested regression tree is shown in fig. 2. In this figure, N0 is the
root node. N1 and N2 are the nodes of the first layer. A linear function of
the features (for example f0(x) for the root node) will split the nodes into
two to classify the incidents with a threshold on the labels. Then on the last
layer, there are the leaves L1 to LL. Linear regression is applied to the samples
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Figure 2: Proposed regression tree.

within each of these leaves. As the labels of the dataset are already accessible
after the labeling process (section 2.2) different methods can be applied to
split each node. Each splitting function is found by solving a univariate
optimization problem, as explained next. A grid search is performed to find
the optimal cut-point for each split (c in fig. 2). Splitting nodes is continued
until the MAE of the new structure is higher than before splitting. From the
results that are obtained from the grid search, the one with the best overall
MAE will be picked.

Finding the optimal linear function f(x) = β0 +
∑p

i=1 βixi, where p is
the number of features, to split each cell requires solving a p+1 dimensional
optimization problem, which finds the coefficients β that minimizes the error
of the local linear fits in each cell. This is a difficult optimization problem,
and also a reason why typical regression trees split only on single features,
i.e. only on functions of the form f(x) = xi − c for a single feature xi. To
reduce the problem of finding β to a univariate optimization problem, a model
inspired by [30] is proposed, but for splitting the nodes logistic regression is
used instead of assigning a threshold to a feature and instead of assigning a
constant at the leaf nodes a linear regression is applied. Considering that the
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UFLS from the SFR model is either zero or a positive number, it is important
to estimate the incident with no UFLS as zero and not a small number. This
also can be achieved with this tree structure.

First, a univariate threshold variable c (over which optimization will be
performed) is introduced, and a binary variable z, with z = 0 if y < c (here,
y is the amount of UFLS, i.e. the value being predicted) and z = 1 otherwise.
Define the logistic function as follows:

pβ(x) :=
1

1 + exp(−β0 −
∑p

i=1 βixi)
(2)

The key idea now is that a good split for predicting y should be able to predict
z from x. Therefore, β0, . . . , βp are found to maximize the log-likelihood,∑

j∈N

z(j) log pβ(x
(j)) + (1− z(j)) log(1− pβ(x

(j))) (3)

where N is the node (as a subset of sample indices) that is currently being
split. For any given threshold c, denote the maximum likelihood estimate of
β by β̂(c). Consequently, for each c, node N can be split into two sub-nodes
N ′(c) and N ′′(c). Now, by performing a one-dimensional grid search, c that
minimizes the overall error of the local linear models, will be chosen. The
splitting can be continued until the tree can predict the amount of UFLS with
an acceptable accuracy. Note that a simpler tree structure is preferred for two
reasons. Firstly, although the accuracy of the model for the dataset in hand
might improve by adding more layers, the model will be more susceptible
to over-fitting. Secondly, the MILP representation becomes computationally
burdensome for more complicated tree structures.

To predict values of the UFLS on each leaf, standard linear regression
is used. The maximum likelihood estimate of the parameters of the linear
model of leaf Lℓ can be calculated by finding α0, . . . , αp that minimize

∑
j∈Lℓ

(
α0 +

p∑
i=1

αix
(j)
i − y(j)

)2

(4)

Note that, for this fit, only the samples that are assigned to the leaf Lℓ of
the UFLS data are included, resulting in the summation over indices j ∈ Lℓ.
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Putting it all together, ŷ from will be predicted from x, using the following
piecewise linear function,

ŷ(x) =



α1
0 +

∑p
i=1 α

1
ixi if x ∈ L1

...

αℓ
0 +

∑p
i=1 α

ℓ
ixi if x ∈ Lℓ

...

αL
0 +

∑p
i=1 α

L
i xi if x ∈ LL

(5)

Encoding the proposed regression tree as MILP: To encode the
regression tree (i.e. eq. (5)) as an MILP model, first a binary variable uℓ for
each leaf Lℓ needs to be defined, which is equal to 1 if x belongs to leaf Lℓ.
Since x can only belong to one leaf (see (5)), the sum of the binary variables
u is equal to 1: ∑

ℓ∈L

uℓ = 1 (6)

Further, the binary variables u should be equal to 0 if any of the parent
nodes fails. Finally, the decisions at the non-leaf nodes (N0 to NN ) directly
influence the values of the binary variables of the downstream leaves [30]. For
instance, if the decision at N0 is f0(x) = β̂0

0 +
∑p

i=1 β̂
0
i xi < 0), then uℓ = 0

for leaves in the upper subtree, and uℓ = 1 for leaves in the lower subtree.
The following two constraints force uℓ to take these values as a function of
x:

β̂0
0 +

p∑
i=1

β̂0
i xi +M0

∑
ℓ∈L′

uℓ ≥M0 (7a)

β̂0
0 +

p∑
i=1

β̂0
i xi +M0

∑
ℓ∈L′′

uℓ <M0 (7b)

where β̂(0) are the obtained logistic regression coefficients for node N0. M0

andM0 are lower and upper bounds for the values that β̂0
0 +

∑p
i=1 β̂

0
i xi can

take for any x in N0. L′ and L′′ are the list of leaves in the upper and lower
subtrees of the node N0. A similar set of constraints must be defined for each
node. Now that a binary variable pointing to the correct leaf is accessible, ŷ
in eq. (5) can be calculated as:

ŷ =
∑
ℓ∈L

uℓ ×

(
αℓ
0 +

p∑
i=1

αℓ
ixi

)
(8)
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Equation (8) is non-linear due to the product of binary and continuous vari-
ables. To linearize (8), the following sets of constraints need to be defined
for each leaf ℓ,

αℓ
0 +

p∑
i=1

αℓ
ixi −Mℓ(1− uℓ) ≤ rℓ (9a)

αℓ
0 +

p∑
i=1

αℓ
ixi −Mℓ(1− uℓ) ≥ rℓ (9b)

Mℓuℓ ≥ rℓ (9c)

Mℓuℓ ≤ rℓ (9d)

whereMℓ andMℓ are upper and lower bounds of the term αℓ
0 +

∑p
i=1 α

ℓ
ixi

for all x ∈ Lℓ, and rℓ is an auxiliary variable. Now the linear equation for ŷ
can be simply written as,

ŷ =
∑
ℓ∈L

rℓ (10)

Considering the proposed MILP encoding method, after training the re-
gression tree with N nodes and L leaves with the proposed method, to es-
timate a new observation in a MILP model, 2 × N constraints are needed
to present the tree structure, one constraint to one-hot encode the binary
variables u, 4×L+ 1 constraints to calculate the linearized ŷ. Also for each
observation, L new continuous variables and L binary variables are defined.

2.3.2. Tobit Model

Instead of making use of a binary tree and linear regression, the stan-
dard Tobit model can be considered [24]. The model considers y∗ = α0 +∑p

i=1 αixi + ϵ, with ϵ ∼ N(0, σ2), but instead of y∗ the following is observed,

ŷ =

{
y∗ if y∗ > 0

0 otherwise
(11)
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The MILP representation is straightforward. Same as before, one binary
variable is defined for each side.

α0 +

p∑
i=1

αixi +MuR ≥M (12a)

α0 +

p∑
i=1

αixi +MuL <M (12b)

uR + uL = 1 (12c)

ŷ = (α0 +

p∑
i=1

αixi)× uR + 0× uL (12d)

As seen in eq. (12d) a variable in binary multiplication appears, which can
be linearized as stated before. After training the dataset with the Tobit
model, to calculate ŷ for each observation in the MILP model, 12 constraints
(eq. (12a), eq. (12b), eq. (12c), and 9 constraints to linearize eq. (12d) as
explained before), 2 binary variables (uR and uL), and 2 continuous variables
(auxiliary variables for right and left leaf) are added.

3. Results

The process of data generation, labeling, data analysis, learning model,
and the obtained accuracy for the process are presented in this section. The
case study is La Palma Island. The data regarding the island is presented
in [8].

3.1. Data Generation and Analysis

The algorithm presented in algorithm 1 is utilized to construct a training
dataset for La Palma Island. The power levels are defined using increments of
0.5 MW to form a vector, and all possible combinations of the generators are
listed. However, any combinations exceeding the annual thermal generation
peak or falling below the annual thermal generation minimum are excluded.
The historical thermal generation data for La Palma island indicates that the
thermal generation ranges between 36 MW and 16 MW throughout the year.
Therefore, the training dataset should only include generation combinations
between the maximum and minimum thermal generation limits. Generation
combinations that violate the technical requirements are not feasible and are
excluded.
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The remaining operation points are then sorted by the total value of their
quadratic generation cost functions, and the cheaper ones are retained for
every thermal generation level. The reason is that these operation points are
more likely to appear in the optimized solution. As previously explained, all
data points must be labeled with the SFR model. The SFR model is used to
calculate the amount of UFLS for each respective outage, with over 110,000
possible outages for the training dataset. The aim is to label all outages
with their expected amount of UFLS. Please note that the synthetic data
generation method introduced here utilizes exhaustive enumeration, which
can become computationally intensive if the number of generators is large.
However, it is important to emphasize that this method is specifically tailored
for small power systems with a limited number of units. In larger systems,
UFLS following single unit outages is generally not a significant issue and
can typically be avoided. In table 2 a summary of the generated dataset is
presented. The table includes the count of the samples, mean value, standard
deviation, min value, 25th percentile (the value below which 25% of the
data falls), 50th percentile (the value below which 50% of the data falls i.e.
median), 75th percentile (the value below which 75% of the data falls), and
the maximum value of each feature and label in the dataset. The interested
reader is referred to [31] to access the full dataset.

Table 2: The summary of the dataset

inertia
(MW.s)

weighted K
(MW)

lost power
(MW)

reserve
(MW)

UFLS
(MW)

count 133717 133717 133717 133717 133717
mean 93.02 936.68 4.76 10.02 1.98

Std Dev 17.16 158.53 1.97 2.89 2.35
min 39.26 450.00 2.50 0.50 0.00
25% 81.21 830.00 3.00 8.50 0.00
50% 97.13 960.00 4.00 10.50 1.26
75% 102.78 1031.00 7.00 12.00 4.67
max 133.18 1327.00 10.00 19.00 7.04

First, let’s look at the correlations between the features and the labels.
In fig. 3 the Pearson correlation between available inertia, weighted K, lost
power, power reserve, and the amount of UFLS is shown on a heatmap.

In fig. 4 the histogram plot of inertia, weighted K, lost power, power
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Figure 3: Pearson correlation between inertia, weighted K, lost power, power reserve, and
the amount of UFLS.

reserve, and the amount of UFLS is depicted in diagonally. The kernel density
estimate (KDE) for each two combinations is depicted in respective squares
in the bottom left (the carves). In the upper right part of the figure, the
scatter plot of the same quantities is depicted (the dots). The outages that
do not lead to any UFLS are shown in black, and outages with positive UFLS
are shown in red. Figure 4 gives a good insight into the distribution of the
data and how smooth the data is. This figure clearly shows the complexity
of the problem at hand. As the final purpose is to use the estimation of
UFLS in the operational planning process, it is important to estimate the
black incidents in fig. 4 as exactly zero, and not a small number. Although
the general relation between the features shown in fig. 4 and the amount of
UFLS is complex and non-linear, some trades can be spotted. It seems that
the incidents with no UFLS (in black), and the incidents with some UFLS (in
red) cannot be easily distinguished with only one feature. The combination of
all features will distinguish black and red dots with better accuracy. That is
another reason to use methods like logistic regression for splitting the nodes,
rather than decision trees that rely on one feature to apply the splits. In
fig. 5 a histogram of UFLS is presented. Both of the methods that were
introduced in the methodology (Tobit model and proposed regression tree)
are applied to the dataset in order to estimate UFLS.
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Figure 4: Histogram plot (diagonally), KDE (curves in the bottom left) and scatter plot
(dots in the top right) of the features and the labels.
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Figure 5: Histogram of UFLS amount.

3.2. Learning Process

To train and evaluate the models, the dataset from section 3.1 is divided
randomly into a training dataset (80% of the data) and a test dataset (20%
of the data). The learning process is done using the training dataset, and
the evaluation is done using the test dataset.

3.2.1. With Regression Tree

A grid search is performed to find the optimum tree structure. Different
UFLS thresholds for splitting are tried in a loop, starting from zero and with
0.1 MW steps, and the one that leads to the overall minimum MAE is chosen.
Looking at the distribution of the amount of UFLS in fig. 4 three groups of
data can be distinguished: incidents with zero UFLS, incidents with small
UFLS (between 0 to 4 MW), and incidents with big UFLS (between 4 to 8
MW). Considering this observation and after performing a grid search to find
c, the tree structure shown in fig. 6 achieves small MAE while being simple.
On the node N0 the data is classified into positive UFLS and zero UFLS. The
split containing zeros does not need any further classification, as all of them
are equal to zero. On the node N1 the remaining points are classified into
UFLS bigger than 3.1 MW and smaller than 3.1 MW. The estimated amount
of UFLS is presented by its corresponding linear regression on each leaf. The
obtained data of this tree structure is presented in table 3. The scores that
are shown in this table are the result of applying the model trained by the
training dataset, on the test dataset.

The final MAE of this process will be partly due to the classification
errors on the nodes and the regression error on the leaves. In fig. 7 the
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Figure 6: Proposed regression tree with minimum overall MAE.

Table 3: The data of the trained tree.
intercept ×Hg ×Kg ×Pg ×Rg score

N0 β0
0=1 β0

1=0.337 β0
2=-0.099 β0

3=18.669 β0
4=-0.889 acc=98.9%

N1 β1
0=1 β1

1=-0.029 β1
2=0.025 β1

3=-3.498 β1
4=0.324 acc=95.5%

L0 α0
0=0 α0

1=0 α0
2=0 α0

3=0 α0
4=0 MAE=0

L1 α1
0=0.269 α1

1=0.022 α1
2=-0.0007 α1

3=0.132 α1
4=-0.055 MAE=0.048 MW

L2 α2
0=0.194 α2

1=0.013 α2
2=-0.001 α2

3=0.878 α2
4=-0.168 MAE=0.256 MW
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classification error on different leaves is presented. The diagonal squares show

Figure 7: The classification confusion matrix for each class.

the percentage of true positive classifications for each class. For example,
96.43% of the whole data has been classified correctly (sum of the diagonal
squares). 0.54% of the samples on L1 are incorrectly classified as L0. 0.52%
of L0 samples are incorrectly classified as L1, and so on.

The UFLS for all the samples that are assigned to L0 is estimated as zero
and for L1 and L2 linear regression is applied. The residuals (predicted value
minus observed labels) of the estimation on the test dataset are shown in
fig. 8. Considering the complexity of the problem at hand, and being limited
to using linear models, the accuracy is acceptable. The prediction error for
the samples in L1 is rarely more than 0.2 MW, and for L2 is rarely more than
1 MW. Note that the samples on L2 are bigger than the samples on L1.

Now, considering all the classifications and regression applied in the sug-
gested tree structure, it is possible to look at the residuals for the whole
process, shown in fig. 9. Other than regression errors, errors due to misclassi-
fication are evident. The bigger residuals are because of the misclassification.
That is why more complicated tree structures would not improve the overall
accuracy in this case. Note that although the estimation error might be high
for some incidents, it does not endanger the stability of the system as the
UFLS scheme will ensure the stability of the system. It is expected that the
benefits from correct estimations will outweigh the downsides of errors. The
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Figure 8: The residual for the regression applied on L1 and L2.

Figure 9: The residual for the suggested regression tree.

21



MAE of the whole process on the test dataset is 0.179 MW. The trained
tree can be represented as MILP with the addition of 18 new constraints, 3
continuous variables, and 3 binary variables for every observation.

3.2.2. With Tobit Model

The training dataset is trained with the Tobit model (section 2.3.2). Then
it is applied to the test dataset. The residuals are shown in fig. 10. The model

Figure 10: Residuals of the test dataset. The training dataset is trained with Tobit model.

has successfully distinguished most of the zero UFLS incidents and pushed
them to the negative side so they will be equal to zero in the model. As the
model tries to fit all the positive UFLS incidents with one line, the error is
high for some incidents. The overall MAE of the model on the test dataset
is 0.405 MW. The advantage of this model is being easy to implement as
MILP. Here is the trained Tobit model,

ˆUFLS =


1.003− 0.077Hg − 0.011Kg

+1.164Pg − 0.172Rg if it’s > 0

0 otherwise

(13)

According to eq. (12) the term in eq. (13) can be represented as MILP with
the introduction of 2 new binaries, 2 new continuous variables, and 12 con-
straints for each observation.
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4. Conclusion

In this paper, a ML-based approach for estimating UFLS in power systems
is presented. By leveraging a carefully generated dataset and applying two
suggested ML algorithms, the proposed regression tree, and the Tobit model,
the relationship between relevant features and UFLS labels is learned. The
trained model demonstrated accurate and effective UFLS estimation, pro-
viding valuable insights for operational planning, that will lead to frequency
response improvement, reserve allocation optimization, and cost reduction.
Applying the methodology to the La Palma island power system showcased
its practicality and reliability, highlighting the potential for integrating UFLS
estimation into the scheduling optimization problem. While the MILP rep-
resentation of the Tobit model is computationally simpler, the accuracy of
the suggested binary tree structure is superior. Future research avenues may
focus on integrating this methodology into the actual operational planning
problems like UC and ED.

Exploring additional features, investigating alternative ML algorithms,
and considering the impact of varying system configurations can further en-
hance the accuracy and applicability of UFLS estimation. To follow up on
the findings of this paper, the proposed models should be implemented in
operational planning problems, like UC, to further prove its benefits. Also,
the proposed regression tree can be used for various applications, as an al-
ternative to regular regression trees.
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