
The Stata Journal (2024)
24, Number 3, pp. 546–550 DOI: 10.1177/1536867X241276116

Stata tip 157: Adding extra lines to graphs
Nicholas J. Cox
Department of Geography
Durham University
Durham, UK
n.j.cox@durham.ac.uk

1 The goal
This tip is a miniature review of how you can add extra lines to graphs in Stata.
Examples of why you might want to do so include showing or emphasizing key reference
levels, such as 0 for many variables or freezing point 32∘F for Fahrenheit temperatures;
showing means, medians, geometric means, or any other summary; or flagging key
dates such as 1812 or 1939. Those examples would all imply adding either vertical or
horizontal lines, depending on which variable is on which axis. Some of the techniques
to be discussed here allow addition of sloping or even curved lines.

If your interest is in adding shaded zones to plots, see Cox (2016) or Schenck (2020).
For more on grid lines, see Cox (2009).

2 Added line options
2.1 Options in twoway

Typing

. help added line options

tells you about the xline(), yline(), and tline() options for graph twoway and
suboptions controlling them. In particular, xline() will draw vertical lines for which
the 𝑥-axis variable plotted horizontally is constant, while yline() will draw horizontal
lines for which the 𝑦-axis variable plotted vertically is constant. tline() is essentially
a twist on xline() with some extra understanding of dates or date times. In each
case, you specify the constant or constants you want to be shown, as in yline(42) or
xline(1939 1945).

Such lines always extend over the entire vertical or horizontal range of the plot
region, with scope to control whether that does or does not include being shown in the
margin of the plot region.

Some further key points are not obvious until you experiment or look at other doc-
umentation.

Stata will always draw these lines before it lays down points, lines, or areas rep-
resenting variables that are your data. The motive here is that such added lines are

© 2024 StataCorp LLC gr0097

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X241276116&domain=pdf&date_stamp=2024-09-10

N. J. Cox 547

usually references or context showing interesting or informative detail. You can tweak
the appearance of such lines through suboptions, but that may not be enough to stop
such lines being occluded or obscured by overplotting of data elements. That is espe-
cially common if you are using bars or more generally areas to show data. Stata takes
showing your data directly to be more important than showing added lines. If you want
your added lines to be more prominent than these suboptions allow, you need to use a
command (not an option) to specify added lines, as discussed in section 3.

Often, indeed perhaps usually, you will want to add axis labels to any such line.
Typing

. help axis label options

tells you about the possibilities. Indeed, you could use such options to control added
lines directly. Even if a grid line does not appear by default with whatever graph scheme
is in effect, you can insist on having a grid line. Once a grid line exists, you can, as with
added line options, control its appearance.

The provision of minor label options implies, apart from the documented conse-
quence of a default smaller label size, scope for added lines with different colors, pat-
terns, and so forth.

See also Cox and Wiggins (2019): despite its overt focus on axis ticks, it touches on
various tricks for axis labels.

2.2 Options with graph bar, graph hbar, and graph dot

As documented under the commands concerned, you can also specify yline() with
graph bar, graph hbar, or graph dot but not xline() or tline().

Here is a twist that is well documented but often overlooked: The 𝑦 axis in this case
is always taken to be the axis showing the outcome or summary being plotted. That axis
is the vertical axis with graph bar or graph dot, vertical, and it is the horizontal
axis with graph hbar or graph dot. Note that the vertical option of graph dot is
undocumented. It is often helpful.

With the other commands just mentioned, the other axis is regarded as a categorical
axis, not an 𝑥 axis. Perhaps that is to be regarded as a Stata idiosyncrasy, but it
should help to explain why xline() and tline() are not allowed. Similarly, xlabel(),
xmlabel(), and their t cousins are not allowed with graph bar, graph hbar, or graph
dot.

This Stata convention flouts long-standing mathematical practices but was intro-
duced for your convenience. Suppose you try out graph bar and then realize that it
will not work well, usually because the text labels for categories are just mushed to-
gether and unreadable. There is not enough space available at the foot of each bar for
text you want to show to be shown well. You could try work-arounds, say, reducing
the text size or placing the text at an angle. Either or both might help, but often the

548 Stata tip 157: Adding extra lines to graphs

best solution is to try graph hbar instead. The point then is that all you need to do
to experiment is to change bar to hbar. Option calls such as ytitle(), ylabel(), or
ymlabel() will be applied to the new 𝑦 axis, which is now horizontal.

3 Commands for adding lines
help twoway documents all the subcommands of twoway.

If the straight (or other) line you want is a regression or smooth of some kind, go
straight to the subcommand concerned, whether the line is to be produced by (say)
plain regression fits, fractional polynomial fits, or lowess or local polynomial smoothing.

Many of the other commands can be used to add lines. Let us start with commands
for which you do not need extra variables.

3.1 twoway function and twoway scatteri

twoway function here has some small but commendable virtues and, in particular, can
plot both horizontal and sloping lines and naturally curves too, which, in a strong sense,
is its main role. Constants defining horizontal lines need not be values of some variable
in your dataset but can be specified directly. You can also control the horizontal extent
of any added line. That horizontal extent defaults to [0, 1]: watch out because that
interval may easily be a minute part of your data range or even outside it.

As a simple example, suppose first that we want to add a line showing the mean
of the 𝑦 variable to a scatterplot. summarize will show us the mean we want. twoway
function really does not care that this constant as a function is indeed a constant.

. sysuse auto
(1978 automobile data)
. summarize mpg

Variable Obs Mean Std. dev. Min Max

mpg 74 21.2973 5.785503 12 41
. scatter mpg weight || function 21.2973, ra(weight) ytitle(Miles per gallon)
> ytitle(Weight (pounds)) legend(off)
(output omitted)

In the stsj scheme used for the Stata Journal, the function is drawn as a dashed
line.

Now we have started, so let’s continue down the same road. You could try to get
vertical lines by trying to draw an absurdly steep line over a very narrow horizontal
range, but that is not recommended. The next trick is much more flexible. twoway
scatteri lets us plot specified (𝑥, 𝑦) coordinate pairs. From elementary geometry, two
distinct points define a line uniquely, so we can plot two points defining the ends of
our desired line. The invaluable recast(line) option converts our pair of points to a
straight line joining those points.

N. J. Cox 549

Let’s add a vertical line showing the mean of the predictor variable.

. summarize weight
Variable Obs Mean Std. dev. Min Max

weight 74 3019.459 777.1936 1760 4840
. scatter mpg weight || function 21.2973, ra(weight)
> ytitle(Miles per gallon) xtitle(Weight (pounds)) legend(off)
> || scatteri 12 3019 41 3019, recast(line) lp(dash)
> note(added lines show {it:y} and {it:x} means)

10

20

30

40

M
ile

s
pe

r g
al

lo
n

2,000 3,000 4,000 5,000
Weight (pounds)

added lines show y and x means

Figure 1. Scatterplot of miles per gallon versus weight for cars from the auto data.
Added lines show the means for each variable.

Figure 1 shows the result. Graphs like this are often used to explain Pearson cor-
relation or regression. Readers are invited to consider incidence of data points in each
of the quadrants defined: the top right quadrant shows data points greater than both
means and so on.

For this example, we could have done that just about as well with xline() and
yline(). But often, we do need this extra technique, particularly if there is much
shading of bars or other areas on our graphs. The simple rule is that whatever is
specified later in a twoway call is plotted on top of whatever was specified earlier.

You will now see that we could have used a call to scatteri to define the horizontal
line too. Naturally, you can tweak the appearance of each line in all sorts of ways.
Further, you could use both subcommands to define sloping lines.

The example was made entirely concrete. We used summarize to get the constants
we needed, not just the means but also the range on mpg. However, it is by no means
essential to type particular constants into commands interactively or even in do-files.
You could, and often should, use saved results to automate the process, particularly if

550 Stata tip 157: Adding extra lines to graphs

you wanted a long series of similar plots. So, immediately after summarize—or indeed
after summarize, meanonly (Cox 2007)—you can pick up results such as the mean,
the minimum, and the maximum from r(mean), r(min), and r(max). You may need
to copy those to scalars or local macros to stop them from being overwritten, but the
entire process is programmable.

3.2 Other twoway commands for adding lines

Some other twoway commands offer scope to specify specific data points that define
lines, including arrows. Note particularly pci and pcarrowi. For more details and
examples on arrows, see Cox (2005).

Alternatively, you could always create a variable holding a constant to be used to
add an extra line. Or you could create a variable such that distinct 𝑦 or 𝑥 values define
lines, whether horizontal, vertical, or sloping. That device may offend a programmer’s
sense of style or efficiency, which is largely why we started with other ways to do it.
However, such a device is easy to implement and to understand from reading code and
seeing its effects.

The existence of these commands, and the scope for repeating them in a twoway
call, makes it easy to add lines with differing colors, patterns, and so forth as taste and
circumstance suggest.

References
Cox, N. J. 2005. Stata tip 21: The arrows of outrageous fortune. Stata Journal 5:

282–284. https://doi.org/10.1177/1536867X0500500214.

. 2007. Stata tip 50: Efficient use of summarize. Stata Journal 7: 438–439.
https://doi.org/10.1177/1536867X0700700311.

. 2009. Stata tip 82: Grounds for grids on graphs. Stata Journal 9: 648–651.
https://doi.org/10.1177/1536867X0900900411.

. 2016. Speaking Stata: Shading zones on time series and other plots. Stata
Journal 16: 805–812. https://doi.org/10.1177/1536867X1601600315.

Cox, N. J., and V. Wiggins. 2019. Stata tip 132: Tiny tricks and tips on ticks. Stata
Journal 19: 741–747. https://doi.org/10.1177/1536867X19874264.

Schenck, D. 2020. Adding recession shading to time-series graphs. The Stata Blog: Not
Elsewhere Classified. https://blog.stata.com/2020/02/13/adding-recession-shading-
to-time-series-graphs/.

https://doi.org/10.1177/1536867X0500500214
https://doi.org/10.1177/1536867X0700700311
https://doi.org/10.1177/1536867X0900900411
https://doi.org/10.1177/1536867X1601600315
https://doi.org/10.1177/1536867X19874264
https://blog.stata.com/2020/02/13/adding-recession-shading-to-time-series-graphs/
https://blog.stata.com/2020/02/13/adding-recession-shading-to-time-series-graphs/

