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1 The problem
A common desire arising in many fields is to summarize the inequality or unevenness
of a set of observed proportions or fractions 𝑝1, . . . , 𝑝𝑆 that quantify the abundance of
𝑆 distinct categories. Each such proportion lies between 0 and 1 inclusive, and their
sum should be 1. Those proportions can be presented directly as data or arise from
summarizing counts or measurements presented as more detailed data. Consider two
toy examples and the jargon of two fields. Suppose 𝑆 is 5. A set of observed proportions
of 1, 0, 0, 0, and 0 shows maximum “concentration” (a term common in economics),
whereas one of 0.2, 0.2, 0.2, 0.2, and 0.2 shows maximum “diversity” (a term common
in ecology). Other jargon could be cited here and may be familiar to you.

The notation 𝑆 for the number of categories mirrors ecological convention whereby
𝑆 evokes the number of species. Naturally, nothing stops use of the same notation for
applications to different taxonomic levels (for example, genera or families) and indeed
to categorizations that have no relation to biological taxonomy.

Even this brief epitome raises a bundle of linked questions, including quite how
to summarize such a set, what important detail is lost by any such summary, and
what guiding theory is available upstream and what applications lie downstream of any
descriptive exercise. Various comments, and especially various references, in Cox (2005,
2022) apply here.

Community-contributed commands can easily be found to help, but the focus of
this tip is quite different: to underline how the egen command in particular can be an
invaluable workhorse for calculations.

It is important (or at least attractive) to many Stata users to be independent of
community-contributed commands. As we will see, the emphasis here is on producing
new variables, which themselves are often needed for further analyses. Concentration,
diversity, or whatever else you call it can variously be an outcome you are trying to
explain or a predictor you might include in some model. Any command that produces
only tabulations of results may be of little or no help in that regard. Being able to
produce results step by step may increase understanding of how measures are defined.
Seeing examples of how egen and other commands may be used should help you to
appreciate how to combine different Stata tools to reach some desired end. A simple
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rule of thumb is that whatever is defined in your literature by a few lines of algebra, or
even one line, should often be computable with a few lines of Stata.

2 Chosen measures: repeat rate and entropy
Two measures will be used as examples here, although some of their relatives will also
be mentioned. If you have come here because of the tip title, you are very likely to be
familiar with the main ideas, which may quite possibly be under different names. Some
small details in this section may nevertheless be novel to you.

The first is here called “repeat rate”, a term that seems to go back to A. M. Turing
and was often used by Good (for example, 1953, 1965). For 𝑝1, . . . , 𝑝𝑆, repeat rate is

𝑆
∑
𝑠=1

𝑝2
𝑠 =∶ 𝑅

One interpretation of repeat rate arises by imagining that we randomly sample pairs
of individuals. The repeat rate is the probability that each pair contains individuals
that belong to the same category. Here “individuals” could mean, say, individual people,
animals, or plants; or small parts of a continuum, say, atoms or quanta of income or
wealth or points within areas of land. This interpretation helps explain another excellent
name, “match probability” (MacKay 2003).

For observed proportions 1, 0, 0, 0, and 0, 𝑅 is 12 + 4 × 02 or 1, and for 0.2, 0.2,
0.2, 0.2, and 0.2, 𝑅 is 5 × 0.04 or 0.2. Thus, 𝑅 measures concentration, unevenness, or
inequality. Its complement 1 − 𝑅 and its reciprocal 1/𝑅 measure diversity, evenness, or
equality. Note that any proportions of 0 do not affect the value of 𝑅, which is determined
by positive proportions alone.

Repeat rate is often named for various people, with the intent of honoring predeces-
sors but also with varying historical accuracy. Additional names associated with 𝑅 or
its relatives include C. Gini, W. F. Friedman (the cryptographer, not the economist),
G. U. Yule, E. H. Simpson (for whom Simpson’s paradox is named), A. O. Hirschman,
O. C. Herfindahl, J. H. Greenberg, and P. M. Blau.

The second measure, “entropy”, has more clear-cut antecedents in the work of Shan-
non in information theory, which, in turn, owed much to precedents in physics and
engineering. For the original articles and much more, see Sloane and Wyner (1993).
For more on Shannon, his work, and its context, see Gleick (2011) and Soni and Good-
man (2017). MacKay (2003) is one excellent entry into the more technical literature.
The monographs of Theil (1967, 1972) are lucid and well illustrated. Leinster (2021)
embraces various mathematical perspectives while also being inspired by empirical ap-
plications. Here I introduce entropy by

𝑆
∑
𝑠=1

𝑝𝑠 ln(1/𝑝𝑠) =∶ 𝐻
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A more common version is the algebraically equivalent − ∑ 𝑝𝑠 ln 𝑝𝑠. I prefer the
first version, which makes it a little more obvious that 𝐻 is a weighted average over
ln(1/𝑝𝑠). Using a different base of logarithm, say, log2 or log10, may seem congenial,
conventional, or compelling, with no issue raised beyond the need to be explicit and
consistent. A deeper question is why ln(1/𝑝) is an appropriate scale in the first place,
which hinges on the pleasant and helpful consequences of that choice, such as entropy
being additive for independent variables.

What happens when any 𝑝𝑠 is 0? Any queasiness over working with 0 ln(1/0) fades
on plotting 𝑝 ln(1/𝑝) as a function of 𝑝, which indicates that 𝑝 ln(1/𝑝) tends to zero as 𝑝
does. The point can be established more rigorously, but it implies a practical rule that
0 ln(1/0) is always to be taken as 0. We may need to override Stata’s inclination to
return ln(1/0) as missing. The principle that zero proportions do not affect 𝐻 is thus
parallel to the same principle for 𝑅.

For observed proportions 1, 0, 0, 0, and 0, 𝐻 is 1 ln 1 + 4 × 0 ln(1/0) or 0, and for
0.2, 0.2, 0.2, 0.2, and 0.2, 𝐻 is 5 × 0.2 ln 5 or ln 5 ≈ 1.609. Thus, 𝐻 measures diversity,
evenness, or equality.

Further literature references could be multiplied indefinitely, but here is one personal
favorite. The text of Schmitt (1969) is unusual among introductory treatments in men-
tioning both repeat rate and entropy. That appears to have been the only publication
of Samuel Arthur Schmitt (1926–1978), as a delicate side effect of his working in the
intelligence community. Yet it still stands as an original and stimulating perspective on
statistics from a Bayesian point of view.
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3 An easy sandbox example
As a first sandbox, we use the data displayed in figure 1, which incidentally was produced
using the community-contributed tabplot command (Cox 2016).

46 9 26 6 13

96 2 2

65 17 2 5 10

54 9 24 9 4

10 17 54 12 7

1 22 60 15 2

34 8 33 23 2

30 23 36 5 6

1 12 63 10 14

59 14 27

4 17 6 73desert

semidesert
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tundra

cool-temp. forest

warm-temp. forest

subtropical forest

tropical rain forest

world

phanero- chamae- hemicrypto- geo- thero-

percent

Figure 1. Abundance of various plant life-forms in various ecological communities. Data
from Whittaker (1975, 63–64). All life-form names have suffix “phytes” (for example,
“geo-” indicates “geophytes”).

For various broadly defined communities, we see the percentages of plants that belong
to particular categories called life-forms. The dataset is available with the media for
this issue. Definitions of each category are given in the notes to the dataset and will
not all be repeated here. As one example, geophytes are perennial herbs with their
perennating tissues underground. Percentages are rounded to the nearest integer: a
trivial side effect is that the total for one category is 99%.

The data come from an outstanding and still valuable text (Whittaker 1975, 63–64).
For more on Robert H. Whittaker (1920–1980), see Westman and Peet (1982). Despite
its age, the article of Smith (1913) serves well as a concise example of early work in this
style, initiated by Christen C. Raunkiær (1860–1938), and of characterizing vegetation
composition quantitatively.

This is an easy example to start with because the data are presented in long layout,
with repeated observations for each life-form in each community. The data are presented
as percentages, which are almost what we need.

An extra reason for using this example is that some values of zero are explicit in
the data. Whatever code we write should be able to handle such a convention cleanly.
Conversely, the convention of tabplot used for figure 1 is that zero values are matched
by holes in the display. If you like, a bar could be drawn, but it would be of height zero
and so hard to see. tabplot will not show numeric text for zero values either.
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After reading in the data, the first use of egen is to calculate proportions directly.

. use lifeforms

. egen p = pc(percent), by(id1) prop

If we had not known about that egen function, pc(), we could have gotten proportions
by first using another, the total() function, and then dividing. The total() function
can now be used directly to get the measures we want. Three decimal places are more
than enough for most displays.

. egen R = total(p^2), by(id1)

. egen H = total(p * ln(1/p)), by(id1)

. format R H %4.3f

A careful check shows that although 0 * ln(1/0) will be returned as missing by Stata,
missing values are ignored by the total() function, producing the effect we need in
calculating entropy 𝐻.

Now each summary measure is repeated for each observation to which it refers. For
many purposes, you need only one observation to be used. This is the role in life of the
egen function tag():

. egen tag = tag(id1)

In general, any group might occur one or more times in a dataset, so there are only two
possible general rules: tagging the first or tagging the last, the last being the same as
the first for a group of one. tag() always tags the first observation in the current sort
order of the dataset, but that choice should not bite. The whole point is that tag()
should be used only if all values in a group are identical and you want to use only one.
if tag is idiomatic because the values produced are only ever 1 or 0, and never missing.
tabdisp is an often overlooked command with essentially the same result here.

. list id1 R H if tag, noobs sep(0)

id1 R H

world 0.308 1.358
tropical rain forest 0.922 0.196

subtropical forest 0.474 1.040
warm-temp. forest 0.367 1.237
cool-temp. forest 0.350 1.305

tundra 0.431 1.048
mid-temp. mesophytic forest 0.284 1.351

oak woodland 0.279 1.386
dry grassland 0.441 1.097

semidesert 0.441 0.940
desert 0.567 0.829

. tabdisp id1, cellvar(R H)
(output omitted )
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Note that we suppressed the display of the tabdisp output because it is similar to
the list output.

4 A more challenging example
nlswork.dta, downloadable with Stata, contains data from the US National Longitu-
dinal Survey of Young Women, 14–24 years old in 1968. Each observation is of an
individual woman, so we must first calculate proportions relevant to the problem of
concern, here taken to be racial diversity within each industrial code. The count()
function of egen can help here, especially in ignoring missing values as desired, but for
simplicity, we just segregate observations with missing values using an indicator variable.
After that, we use generate directly and count observations at different levels.

. webuse nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. generate good = !missing(ind_code, race)
. bysort good ind_code race: generate freq = _N
. bysort good ind_code: generate total = _N
. generate p = freq / total if good
(341 missing values generated)

Next it is essential that we use each proportion just once. The tagging technique
used in the previous section is one good way to do that. Notice that using the tag
variable as a multiplier selects values we want to use and ignores the others. Any term
multiplied by 1 enters a total as itself, while any term multiplied by 0 yields 0 and thus
does not affect a total.
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Then we can look at results as previously.

. egen tag = tag(ind_code race)

. egen R = total(p^2 * tag), by(ind_code)

. egen H = total(p * ln(1/p) * tag), by(ind_code)

. format R H %4.3f

. tabdisp ind_code if good, cellvar(R H)

Industry
of
employmen
t R H

1 0.568 0.678
2 0.714 0.461
3 0.683 0.587
4 0.529 0.692
5 0.606 0.627
6 0.646 0.569
7 0.685 0.530
8 0.588 0.666
9 0.500 0.718

10 0.669 0.589
11 0.587 0.648
12 0.558 0.676

There are naturally other ways to do that which may appeal, depending partly on
what else you want to do. You could first contract the dataset to one of the frequencies.
Or you could use frames.

5 Dealing with wide layout
Data may not arrive in an ideal long layout, or you may prefer a wide layout for some
reason. To use the technique of sections 3 and 4, you need a long layout, which is not
fatal to (moderately) easy calculation of these measures.

The term “layout” I owe to Clyde Schechter’s postings on Statalist. It has an advan-
tage of being less overloaded than more common terms such as “structure” or “format”.

Naturally, you could reshape long, which may be a good idea on several grounds.
Otherwise, this section first produces a wide version of the life-forms data and then
shows how you might proceed on wide data. For more on working rowwise, see Cox
(2009, 2020).
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. use lifeforms, clear

. reshape wide percent, i(id1) j(id2)
(j = 1 2 3 4 5)
Data Long -> Wide

Number of observations 55 -> 11
Number of variables 4 -> 7
j variable (5 values) id2 -> (dropped)
xij variables:

percent -> percent1 percent2 ... percent5

. describe
Contains data
Observations: 11

Variables: 7
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id1 byte %31.0g id1_short

percent1 float %9.0g 1 percent
percent2 float %9.0g 2 percent
percent3 float %9.0g 3 percent
percent4 float %9.0g 4 percent
percent5 float %9.0g 5 percent
community str31 %31s

Sorted by: id1
Note: Dataset has changed since last saved.

A different egen function, rowtotal(), does what you would guess from its name.

. egen total = rowtotal(percent*)

We are going to loop over the variables holding percentages for each category. It
is vital to ensure that any categories with zero entries are handled correctly in the
calculation of 𝐻. We can do that by just ignoring them.
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. generate R = 0

. generate H = 0

. quietly forvalues j = 1/5 {
2. replace R = R + (percent`j'/total)^2
3. replace H = H + (percent`j'/total) * ln(total/percent`j') if percent`j' > 0
4. }

. format R H %4.3f

. tabdisp id1, cellvar(R H)

id1 R H

world 0.308 1.358
tropical rain forest 0.922 0.196

subtropical forest 0.474 1.040
warm-temp. forest 0.367 1.237
cool-temp. forest 0.350 1.305

tundra 0.431 1.048
mid-temp. mesophytic forest 0.284 1.351

oak woodland 0.279 1.386
dry grassland 0.441 1.097

semidesert 0.441 0.940
desert 0.567 0.829

The results are naturally the same as before.

6 Variants as other variables
We can push beyond the details of section 2 to explore some variants of 𝑅 and 𝐻.
While interesting in their own right, they also serve to illustrate that generating results
as variables places us close to getting related results as other variables.

Note first what is always true with equal probabilities of 𝑆 categories:

𝑅 =
𝑆

∑
𝑠=1

𝑝2
𝑠 = 𝑆(1/𝑆2) = 1/𝑆

and

𝐻 =
𝑆

∑
𝑠=1

𝑝𝑠 ln(1/𝑝𝑠) = 𝑆(1/𝑆) ln 𝑆 = ln 𝑆

Hence, 1/𝑅 and exp(𝐻) have interpretations as “numbers equivalents”, measuring an
equivalent number of equally abundant categories, even though only exceptionally will
that number be an integer. It may also be helpful that 1/𝑅 and exp(𝐻) are now
measured on the same scale.

It follows immediately that you can generate such results directly as new variables.
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7 Conclusion
egen is your friend for concentration and diversity calculations. Basic egen functions
such as pc(), total(), rowtotal(), and tag() are invaluable in calculating group-
wise measures such as repeat rate and entropy. Getting such results as new variables
maximizes flexibility for later tabulation, graphics, and modeling work.

We have drawn short of showing how weights might appear in some datasets. In
essence, that complication can be surmounted by inserting weights in expressions for
the numerator and denominator of probability.

Furthermore, the virtue of egen in allowing concise code comes with a small price:
it can be a little slow. If you are doing this repeatedly for large datasets, you may need
more efficient code, but that is a different story.

References
Cox, N. J. 2005. Speaking Stata: The protean quantile plot. Stata Journal 5: 442–460.

https://doi.org/10.1177/1536867X0500500312.

. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137–157. https: //doi.org/
10.1177/1536867X0900900107.

. 2016. Speaking Stata: Multiple bar charts in table form. Stata Journal 16:
491–510. https://doi.org/10.1177/1536867X1601600214.

. 2020. Speaking Stata: More ways for rowwise. Stata Journal 20: 481–488.
https://doi.org/10.1177/1536867X20931007.

. 2022. Speaking Stata: The largest five—a tale of tail values. Stata Journal 22:
446–459. https://doi.org/10.1177/1536867X221106436.

Gleick, J. 2011. The Information: A History, A Theory, A Flood. New York: Pantheon.

Good, I. J. 1953. The population frequencies of species and the estimation of population
parameters. Biometrika 40: 237–264. https://doi.org/10.2307/2333344.

. 1965. The Estimation of Probabilities: An Essay on Modern Bayesian Methods.
Cambridge, MA: MIT Press.

Leinster, T. 2021. Entropy and Diversity: The Axiomatic Approach. Cambridge: Cam-
bridge University Press. https://doi.org/10.1017/9781108963558.

MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms. Cam-
bridge: Cambridge University Press.

Schmitt, S. A. 1969. Measuring Uncertainty: An Elementary Introduction to Bayesian
Statistics. Reading, MA: Addison-Wesley.

https://doi.org/10.1177/1536867X0500500312
https://doi.org/10.1177/1536867X0900900107
https://doi.org/10.1177/1536867X0900900107
https://doi.org/10.1177/1536867X1601600214
https://doi.org/10.1177/1536867X20931007
https://doi.org/10.1177/1536867X221106436
https://doi.org/10.2307/2333344
https://doi.org/10.1017/9781108963558


N. J. Cox 545

Sloane, N. J. A., and A. D. Wyner, eds. 1993. Claude Elwood Shannon: Collected
Papers. New York: Institute of Electrical and Electronics Engineers.

Smith, W. G. 1913. Raunkiaer’s “life-forms” and statistical methods. Journal of Ecology
1: 16–26. https://doi.org/10.2307/2255456.

Soni, J., and R. Goodman. 2017. A Mind at Play: How Claude Shannon Invented the
Information Age. New York: Simon and Schuster.

Theil, H. 1967. Economics and Information Theory. Amsterdam: North-Holland.

. 1972. Statistical Decomposition Analysis: With Applications in the Social and
Administrative Sciences. Amsterdam: North-Holland.

Westman, W. E., and R. K. Peet. 1982. Robert H. Whittaker (1920–1980): The man
and his work. Vegetatio 48: 97–122. https://doi.org/10.1007/BF00726879.

Whittaker, R. H. 1975. Communities and Ecosystems. New York: Macmillan.

https://doi.org/10.2307/2255456
https://doi.org/10.1007/BF00726879



