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Abstract

We propose a mass-conservative and monotonicity-preserving characteristic finite element method
for solving three-dimensional transport and incompressible Navier-Stokes equations on unstructured
grids. The main idea in the proposed algorithm consists of combining a mass-conservative and
monotonicity-preserving modified method of characteristics for the time integration with a mixed fi-
nite element method for the space discretization. This class of computational solvers benefits from the
geometrical flexibility of the finite elements and the strong stability of the modified method of char-
acteristics to accurately solve convection-dominated flows using time steps larger than its Eulerian
counterparts. In the current study, we implement three-dimensional limiters to convert the proposed
solver to a fully mass-conservative and essentially monotonicity-preserving method in addition of a low
computational cost. The key idea lies on using quadratic and linear basis functions of the mesh element
where the departure point is localized in the interpolation procedures. The proposed method is applied
to well-established problems for transport and incompressible Navier-Stokes equations in three space
dimensions. The numerical results illustrate the performance of the proposed solver and support its
ability to yield accurate and efficient numerical solutions for three-dimensional convection-dominated
flow problems on unstructured tetrahedral meshes.

Keywords. Mass-conservative; Monotonicity-preserving; Modified method of characteristics; Finite
element method; Convection-dominated problems; Incompressible Navier-Stokes equations

1 Introduction

Transport in incompressible flows takes place in many applications in science and engineering. This class
of problems occur in a many applications in nature and technology, for example in the simulation of a
heat transport in draining films [45], groundwater flows in soils [25], and the transport of ferro-fluids
under magnetic fields [4] among others. Developing robust numerical solvers for this set of problems is
still challenging in the situation of convection-dominated flows for which convection terms are manifestly
more important than the diffusion terms particularly if some nondimensional parameters attend high
values. As example of these parameters we mention the well-known Reynolds number for the incom-
pressible Navier-Stokes equations and the Peclet number for the convection-diffusion equations. There
exist many numerical techniques in the literature to solve the transport and incompressible Navier-Stokes
equation. In case of convection-dominated flows, the conventional Eulerian finite element methods use

∗khouya.bassou@um6p.ma
†mofdi.elamrani@urjc.es
‡m.seaid@durham.ac.uk

1



up-stream weighting in their implementations to stabilize the discretization. For example, the most
popular Eulerian finite element methods are the streamline upwind Petrov-Galerkin methods [5, 11, 3],
the Taylor-Galerkin methods [16, 8, 12] and the Galerkin/least-squares methods [26, 3, 9]. However,
truncation errors generated by the time integration in these conventional Eulerian methods are domi-
nant and require Courant-Friedrichs-Lewy (CFL) stability conditions which impose sever restrictions on
the time steps used in the numerical computations. Eulerian numerical methods for three-dimensional
advection-diffusion problems have also been investigated in [13, 27, 35, 48, 10] among others. In [13], a
simple comparison between implicit and explicit finite difference methods have been studied for a class
of linear three-dimensional advection-diffusion problems with constant coefficients. However, all results
presented were in Cartesian meshes which restrict their application to simple regular domains. High-
order compact finite difference methods have also been proposed in [48] for the stationary semi-linear
three-dimensional advection-diffusion equations. Eulerian-based methods for the three-dimensional in-
compressible Navier-Stokes equations have also been discussed in [44, 43, 32, 33, 15, 36, 10, 41, 14] among
others. A dimension split method has been studied in [10] and a multi-stage Rosenbrock scheme has been
applied to the three-dimensional incompressible Navier-Stokes equations in [14]. However, these methods
fail to resolve flow structures at high Reynolds numbers. In [44], a multigrid adaptive unstructured finite
element method has been proposed for the numerical solution of the three-dimensional incompressible
Navier-Stokes equations. However, the adaptation process in this scheme requires assembling matrices
at each time step which increases the computational cost. A compact mixed finite element method has
been proposed in [43] to reduce the computing time for solving linear algebraic equations resulted from
the discretization of three-dimensional incompressible Navier-Stokes equations but this study dealt with
steady problems only. In [32, 33], a class of finite difference schemes have been implemented for space
discretization of three-dimensional incompressible Navier-Stokes equations. However, the main drawback
of these methods is that they are not able to resolve complex flow problems in irregular geometries. Nu-
merical simulation of three-dimensional incompressible flows in parameterized pipes has been performed
in [15]. Spectral collocation methods have also been studied in [41] for three-dimensional incompressible
Navier-Stokes equations with variable density. To avoid the instability problems, authors in [36] proposed
a high-order implicit preconditioned finite difference method to solve the three-dimensional incompress-
ible flows using the pseudo-compressibility approach. However, restrictions related to the solution of
nonlinear systems and Cartesian geometry decrease the efficiency of this method.

Semi-Lagrangian methods employ the modified method of characteristics and have been widely used in
the literature to solve several problems in physical and engineering applications. Indeed, semi-Lagrangian
finite element methods have been used for example in [24] for two-dimensional convection-diffusion prob-
lems, in [22] for two-dimensional incompressible Navier-Stokes equations, in [21] for tidal flows, and in
[19] for two-dimensional natural and mixed convection flows. The central idea in these semi-Lagrangian
finite element methods lies in reformulating the governing equations using the Lagrangian coordinates
defined by the characteristic curves associated with the considered problem. The time derivative and the
advection term are combined in the total derivative as a directional derivative along the characteristics
which can be viewed as a characteristic time-stepping algorithm. Therefore, the Lagrangian treatment
in these methods greatly reduces the time truncation errors in the Eulerian methods, see for instance
[20, 18]. In addition, semi-Lagrangian methods allow for higher time steps exceeding those permitted by
the CFL stability condition in its Eulerian finite element counterpart for the convection-dominated flows.
A variety of semi-Lagrangian methods has also been recently studied for three-dimensional problems in
[29, 28] among others. Although these methods are unconditionally stable, they suffer from the lack of
preserving the maximum/minimum principles and failure to guarantee the conservation properties. Many
research studies have been carried out in the literature to reconstruct conservative semi-Lagrangian finite
element methods. For instance, remapping the Lagrangian volume procedure using the cubic-interpolated
propagation techniques has been proposed in [46]. However, the mass in this method is considered as an
additional variable and it is used in a correction step. For solving the Vlasov-Poison system in collision-
less plasma applications, a conservative semi-Lagrangian method has also been introduced in [6]. The
conservation in this method is guaranteed by a dimensional splitting using the fifth-order finite difference
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Hermite weighted interpolation accounting for the WENO limiters to control oscillations. However, this
approach may become computationally very demanding for realistic applications in convection-dominated
flows. Using the adjoint property to reconstruction fully conservative methods has been investigated in
[7] among others. This method uses the concept of support operators proposed in [49] for which the
adjoint property between the continuity and advection equations is used along with a column-balance
property to enforce the conservation property for an arbitrary advection method. However, for the case of
convection-dominated flow problems on unstructured grids, this method may become unstable. In [34] a
time-splitting Fourier spectral method has been proposed for solving the semi-classical Schrödinger equa-
tion in electromagnetic applications. The main focus in this method is on the non-uniform fast Fourier
transform algorithm to interpolate Fourier series in the convection step but the conservation property is
ensured using a high-order interpolation procedure but considering periodic boundary conditions only.

The aim of the present work is to develop a robust computational method to accurately approximate
numerical solutions of the three-dimensional transport and incompressible Navier-Stokes problems on
unstructured tetrahedral meshes. The main objective is to implement a fast and accurate characteristic
finite element method that satisfies both monotonicity and conservation properties at each time step
in the computational process. The proposed characteristic finite element method can be interpreted
as a fractional-step algorithm where the convection and the diffusion parts in the considered problems
are solved separately. To guarantee the monotonicity and conservation properties at each time step,
we consider limiters by combining the linear and quadratic finite element interpolations. It should be
mentioned that a similar monotone and conservative semi-Lagrangian finite element method has been
proposed in [2] for solving two-dimensional transport problems. It should be stressed that the main
features of the semi-Lagrangian finite element method proposed in the current work are on one hand, the
capability to satisfy the monotonicity and conservation properties allowing for numerical solutions free
from spurious oscillations, and on the other hand, the achievement of strong stability and high accuracy for
numerical solutions with steep gradients. The application of this method for solving three-dimensional
incompressible Navier-Stokes equations is also carried out in the current work. The performance of
the proposed characteristic finite element method is demonstrated for several test examples of three-
dimensional transport problems including the benchmark of flow past a circular cylinder. Numerical
results presented in this study show high resolution, full conservation and monotonicity properties of the
proposed characteristic finite element method, and support the straightforward extension of the method
to highly complex, physically based three-dimensional flow problems.

This is structured as follows. The characteristic finite element method for solving the three-dimensional
transport problems is formulated in section 2. This section includes the approximation of the character-
istic curves and the implementation for transport equations. Section 3 is devoted to the development of
a new mass-conservative and monotonicity-preserving characteristic finite element method. The imple-
mentation of the proposed method for solving the incompressible Navier-Stokes equations is presented in
section 4. In section 5, we demonstrate the numerical performance of the proposed method using different
examples of transport and incompressible Navier-Stokes equations. Our new approach is demonstrated
to enjoy the expected conservation and monotonicity properties. Conclusions are included in section 6.

2 Characteristic finite element method

For the formulation of the characteristic finite element method we consider the following pure transport
problem

Du

Dt
:=

∂u

∂t
+ v(x, t) · ∇u = 0, (x, t) ∈ Ω× (0, T ],

(1)
u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in R3 with Lipschitz boundary Γ, (0, T ] a time interval, x = (x, y, z)⊤ the po-

sition variable, and ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)⊤
the gradient vector. In (1), v(x, t) = (v1(x, t), v2(x, t), v3(x, t))

⊤
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is the velocity field and u0(x) is the initial condition. It should be noted that the total derivative Du
Dt in

(1) known also by the material derivative is used to measure change rate of the solution u following the
trajectories of the flow particles defined by the characteristic curves. The central idea of the characteristic
finite element method lies on imposing a regular grid at the new time step and to backtrack the flow
trajectories to the previous time step. At the old time step, the solutions are obtained using interpolation
procedures from their known values on the regular grid. Next, we discretize the three-dimensional domain
Ω into a finite set of conforming elements Tj (j = 1, 2, . . . Ne) with Ne is the total number of elements.
Here, the computational domain Ωh ⊆ Ω is the combination of all these finite elements. For the solution
of the problem (1), the conforming finite element space is defined as

Vh =
{
uh ∈ C0(Ω) : uh

∣∣
Tj
∈ P (Tj), ∀ Tj ∈ Ωh

}
, (2)

where
P (Tj) =

{
p(x) : p(x) = p̂ ◦ F−1

j (x), p̂ ∈ Pm(T̂ )
}
,

with Pm(T̂ ) is the set of polynomials of degree ≤ m defined on the reference element T̂ and p̂(x) is a
polynomial of degree ≤ m defined on the element T̂j . Here, Fj : T̂ −→ Tj is an invertible one-to-one
mapping from the physical to the reference elements in the computational domain. To discrete the time
domain, the time interval is divided into small subintervals [tn, tn+1] with stepsize ∆t = tn+1 − tn for
n = 0, 1, . . . . We use the notation un to denote the value of the solution u at time tn. Thus, the finite
element approximation of the solution un(x) is given by

unh(x) =

M∑
j=1

Un
j ϕj(x), (3)

where Un
j are the nodal values associated with unh(x) defined as Un

j = unh(xj) with {xj}Mj=1 is the set of
solutions at the grid points in Ωh and M is the number of solution mesh points in the computational
domain Ωh. In (3), {ϕj}Mj=1 are the global nodal basis functions in Vh characterized by the standard
property ϕi(xj) = δij with δij denotes the Kronecker symbol.

Using the notation introduced above, the characteristic curvesXn
hj = Xh(tn;xj , tn+1) associated with

the advection problem (1) are calculated for each mesh point xj , j = 1, . . . ,M by solving the following
initial-value problem

dXh (τ ;xj , tn+1)

dτ
= vh (Xh (τ ;xj , tn+1) , τ) , ∀ τ ∈ [tn, tn+1],

(4)
Xh (tn+1;xj , tn+1) = xj ,

where Xh (τ ;xj , tn+1) =
(
Xh (τ ;xj , tn+1) , Yh (τ ;xj , tn+1) , Zh (τ ;xj , tn+1)

)⊤
is the departure point de-

fined at time τ of a particle that will reach the mesh point xj = (xj , yj , zj)
⊤ at time tn+1. Note that an

accurate approximation of the departure points Xh (tn;xj , tn+1) is a key to the overall accuracy of the
characteristic finite element method. A second-order explicit Runge-Kutta scheme has been used in the
literature to approximate the solutions of (4) but this method has proven to be not accurate enough to
maintain a particle on its curved trajectory, see for example [19, 18]. In the present study, we consider a
second-order extrapolation based on the mid-point rule to approximate the solution of (4) along with an
iterative procedure, see [18, 29] for more details.

In general, the departure points Xn
hj do not surely coincide with a nodal point in the computational

domain Ωh and therefore, solutions at the departure points Xn
hj must be evaluated by interpolation using

known values at the mesh points of the host element where the points Xn
hj are localized. In the current

work, this interpolation step is achieved using the finite element basis functions in the host element
where the departure points Xn

hj are allocated. Thus, the finite element method allows for high-order
basis functions to be used for the interpolation step without need for explicit interpolation polynomials
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Figure 1: An illustration of the linear P1 with 4 nodes (left plot) and the quadratic P2 with 10 nodes
(right plot) finite elements used in the present study.

as in the case of finite difference methods, see for instance [38, 39]. Hence, the finite element solution
ũnh = u

(
Xn

hj , tn
)
is defined by

ũnh =

M∑
j=1

Ũn
j ϕj , (5)

where Ũn
j are nodal solutions evaluated at the departure points Xn

hj using the finite element interpolation
of unh(x). Notice that this procedure requires less computational effort than the projection method from
the background Eulerian grid onto the Lagrangian grid as discussed in [17, 24, 22] among others.

3 Mass-conservative and monotonicity-preserving procedures

It is well known that most of high-order interpolation procedures do not satisfy desired numerical prop-
erties such as conservation, monotonicity and positivity of the computed solutions. In this study, a
limiting procedure is used for the characteristic finite element method to overcome these drawbacks and
to ensure that the interpolated solution in a tetrahedral element remains bounded between the maxi-
mum and minimum values in the vertices of this element. Therefore, the original method is converted
to a non-oscillatory characteristic finite element method at minor additional computational effort. In
addition, the reconstructed method highly preserves the shape of the transported fields in the vicinity
of steep gradients and it maintains the order of convergence in regions where the solution is sufficiently
smooth. Similar techniques have been investigated in [2, 21, 20] for two-dimensional transport problems.
The procedure proposed in the current work uses a limiter between a low-order and a high-order finite
element approximations within the host element where the departure points reside. Thus, the linear P1

elements and the quadratic P2 elements depicted in Figure 1 are used for the low-order and high-order
interpolations, respectively.

Hence, the procedure to evaluate the numerical solution ũn of the transport problem (1) is obtained
using the following steps:

1. Compute the departure points Xn
hj by solving the backward differential equations (4).

2. Locate using a search-locate algorithm the element T̃j where the departure point Xn
hj belongs.

3. Calculate the quadratic P2 finite element approximation
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ũnHj =

NH∑
k=1

Ũn
k φk

(
Xn

hj

)
, (6)

where {φ1, . . . , φNH
} are the quadratic P2 local basis functions in the host element T̃j . As stated

above, high-order Lagrange interpolations yield numerical solutions polluted with non-physical
oscillations and do not satisfy the discrete maximum principle.

4. Calculate the linear P1 finite element approximation

ũnLj =

NL∑
k=1

Ũn
k ψk

(
Xn

hj

)
, (7)

where {ψ1, . . . , ψNL
} are the linear P1 local basis functions on the element T̃j . Recall that the

linear Lagrange interpolation is monotone and the numerical solutions obtained using the linear P1

interpolation are free of non-physical oscillations and artificial extrema.

5. Calculate the limited solution ũnj using a convex combination of the quadratic P2 solution (6) and
the linear P1 solution (7) as

ũnj = ũnLj + αn
j

(
ũnHj − ũnLj

)
, (8)

where αn
j ∈ [0, 1] is a limiting function used to adjust the amount of correction in the linear P1

approximation in order to obtain a non-oscillatory solution. It is evident that for αn
j = 0, the ob-

tained solution in (8) reduces to the linear approximation, whereas the quadratic P2 approximation
is recovered for αn

j = 1. In the present work, the limiting function αn
j is locally chosen such that the

approximate finite element solution (8) is monotone i.e. the solution ũnj in (8) remains bounded in

[u−j , u
+
j ] at each time step, where u+j and u−j are respectively, the maximum and minimum of the

nodal solutions in the host element T̃j defined as

u−j = min
(
Ũn
1 , . . . , Ũ

n
NH

)
, u+j = max

(
Ũn
1 , . . . , Ũ

n
NH

)
.

To improve the accuracy and to minimize the numerical dissipation in the linear P1 finite element
approximation, we propose a local limiting function αn

j defined using the slope of the solution as

αn
j =



min

(
1,
u+j − ũnLj
ũnLj − ũnHj

)
, if ũnLj − ũnHj > 0,

min

(
1,
u−j − ũnLj
ũnLj − ũnHj

)
, if ũnLj − ũnHj < 0,

1, if ũnLj − ũnHj = 0.

(9)

6. In general the above limiting procedure does not conserve the mass i.e.∫
Ω
ũn(x)d x ̸=

∫
Ω
u0(x) dx,

and therefore, the solution ũnj in (8) should be corrected to be fully conservative. To achieve
this property in our characteristic finite element method we correct the computed solution by the
difference between the linear P1 and quadratic P2 solutions multiplied by a suitable coefficient as
follows

un+1
j = ũnj + θmax

(
0, sign(∆M)

(
ũnHj − ũnLj

)3)
, (10)

where θ and ∆M are computed at each time step tn as
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• Calculate the mass difference between the initial solution and the limited solution as

∆M =

∫
Ω
ũn(x)d x−

∫
Ω
u0(x) dx.

• Check if ∆M = 0 then the computed solution satisfies the mass conservation propriety. If not
we compute the correction coefficient ωj as

ωj = max
(
0, sign(∆M)

(
ũnHj − ũnLj

)3)
.

• Compute the correction θ as

θ =
∆M∫

Ω
ωh(x)dx

where ωh(x) =

M∑
j=1

ωjϕHj(x)

It is worth remarking that this procedure evaluate the nodal values of the numerical solution by adding to
the monotone linear P1 solution a correction accounting for the quadratic P2 solution without violating
the monotonicity of the linear P1 solution. In fact, using the limiting approach (8)-(10), the obtained finite
element solution is conservative and it remains within the largest and the smallest values of the solution
in a set of nodal points surrounding the departure point Xn

hj . As a consequence, the reconstructed nodal
solution (8) does not generate any extrema which does not exists in the solutions at the neighborhood of
the departure points. Note that for the mesh elements illustrated in Figure 1, the numbers of linear P1

and quadratic P2 local basis functions are NL = 4 and NH = 10, respectively.

4 Application to incompressible Navier-Stokes equations

In this section, we extend the characteristic finite element method for the incompressible Navier-Stokes
equations reformulated in dimensionless primitive variables as

∇ · u = 0,
(11)

∂u

∂t
+ u · ∇u+∇p− 1

Re
∆u = f ,

where p is the pressure, u = (u, v, w)⊤ the velocity field, with u the velocity in x-direction, v the velocity
in y-direction, w the velocity in z-direction, f the external force, and Re the Reynolds number. Recall
that this non-dimensional number is usually used to control the relative dominance of the convection
compared to the diffusion in (11). For a well-posed mathematical problem, the equations (11) are solved
in a three-dimensional bounded domain Ω ⊂ R3 with Lipschitz boundary Γ subject to well-defined
boundary and initial conditions.

In general, the characteristic finite element method belongs to fractional step techniques where the
transport part in (11) is decoupled from the Stokes part in the time integration. Thus, at each time step
the velocity and pressure are updated by solving first the transport equation

Du

Dt
:=

∂u

∂t
+ u · ∇u = 0, (12)

followed by the Stokes equations

∇ · u = 0,
(13)

Du

Dt
+∇p− 1

Re
∆u = f .

7



In this study, the conforming finite element spaces for the pressure and velocity solutions are the mixed
Taylor-Hood finite elements P1-P2 illustrated in Figure 1. Here, the linear P1 finite elements are used for
the pressure and the quadratic P2 finite elements are used for the velocity. Notice that for these mixed
finite elements, the discrete velocity and pressure solutions satisfy the well-established inf-sup condition,
see for instance [18]. The associated finite element spaces are defined as

Vh =
{
uh ∈ C0(Ω)× C0(Ω)× C0(Ω) : uh

∣∣
Tk
∈ P2(Tk), ∀ Tk ∈ Ωh

}
,

Qh =
{
ph ∈ C0(Ω) : ph

∣∣
Tk
∈ P1(Tk), ∀ Tk ∈ Ωh

}
,

where P1(Tj) and P2(Tj) are polynomial spaces defined in the finite element Tk. Hence, we approximate
the finite element solutions to un(x) and pn(x) as

pnh(x) =

Mp∑
l=1

Pn
l ψl(x), un

h(x) =
M∑
j=1

Un
j ϕj(x), (14)

whereMp andM are respectively, the number of pressure and velocity nodal points in Ωh. The functions

Pn
l and Un

j =
(
Un
j , V

n
j ,W

n
j

)⊤
are the corresponding nodal values of pnh(x) and un

h(x), respectively.

These functions satisfy Pn
l = pnh(yl) and Un

j = un
h(xj), with {yl}

Mp

l=1 and {xj}Mj=1 are the set of pressure
and velocity mesh points in Ωh, respectively, so that Mp < M and {y1, . . . ,yMp

} ⊂ {x1, . . . ,xM}. Here,
{ψl}

Mp

l=1 and {ϕj}Mj=1 are respectively, the set of global nodal basis functions of the pressure and the
velocity characterized by the property ϕi(xj) = δij and ψi(yl) = δil with δ denoting the Kronecker
symbol.

To solve the Stokes problem (13) in the current work, we implement an efficient direct-type algorithm,
see [18, 23] for similar solvers. The main advantage of this algorithm is the fact that neither projection
techniques nor special corrections for the pressure are required for the solution of the Stokes problem.
Unlike the first-order implicit Euler scheme used for the time integration in [18, 23], we consider the
second-order implicit BDF2 scheme in the present study. Thus, given a tolerance ε and using superscripts
in parenthesis to denote the iteration numbers, the procedure to advance the solution of (13) from the
current time tn to the next time tn+1 is carried out using the following steps:

1. Given p
(0)
h = pnh, solve for u

(0)
h ∈ Vh such that for all vh ∈ Vh

3

2∆t

∫
Ω
u
(0)
h vh dx+

1

Re

∫
Ω
∇u(0)

h · ∇vh dx =

∫
Ω
p
(0)
h ∇ · vh dx+

∫
Ω
fn+1
h vh dx+

1

2∆t

∫
Ω

(
4ũn

h − ũn−1
h

)
vh dx. (15)

Then, compute

q
(0)
h = ∇ · u(0)

h .

2. Solve for ψ
(0)
h ∈ Qh such that for all ϕh ∈ Qh∫

Ω
∇ψ(0)

h · ∇ϕh dx =

∫
Ω
q
(0)
h ϕh dx, (16)

and set

ζ
(0)
h =

3

2∆t
ψ
(0)
h +

1

Re
q
(0)
h , ξ

(0)
h = ζ

(0)
h .

3. For m = 1, 2, . . . , assume that p
(m)
h , u

(m)
h , q

(m)
h , ζ

(m)
h , ξ

(m)
h are known, we compute p

(m+1)
h , u

(m+1)
h ,

q
(m+1)
h , ζ

(m+1)
h , ξ

(m+1)
h as follows:
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(a) Solve for uh ∈ Vh such that for all vh ∈ Vh

3

2∆t

∫
u
(m)
h vh dx+

1

Re

∫
∇u(m)

h · ∇vh dx =

∫
ξ
(m)
h ∇ · vh dx, (17)

and set

q
(m)
h = ∇ · u(m)

h .

(b) Compute

ηm =

∫
q
(m)
h ζ

(m)
h dx∫

q
(m)
h ξ

(m)
h dx

.

(c) Set

p
(m+1)
h = p

(m)
h − ηmξ(m)

h , u
(m+1)
h = u

(m)
h − ηmu

(m)
h , q

(m+1)
h = q

(m)
h − ηmq(m)

h .

(d) Solve for ψ
(m)
h ∈ Qh such that for all ϕh ∈ Qh∫

∇ψ(m)
h · ∇ϕh dx =

∫
q
(m)
h ϕh dx, (18)

and set

ζ
(m+1)
h = ζ

(m)
h − ηm

(
3

2∆t
ψ
(m)
h +

1

Re
q
(m)
h

)
.

i. If

∫
q
(m+1)
h ζ

(m+1)
h dx∫

q
(0)
h ζ

(0)
h dx

≤ ε, then

pn+1
h = p

(m+1)
h , un+1

h = u
(m+1)
h ,

stop.

ii. Else, compute

χm =

∫
q
(m+1)
h ζ

(m+1)
h dx∫

q
(m)
h ζ

(m)
h dx

, ξ
(m+1)
h = ζ

(m+1)
h + χmξ

(m)
h ,

change m←− m+ 1, return to step (a) and repeat.

iii. End if

It is evident that the iterative procedure in the above direct-type algorithm involves solutions of uncoupled
elliptic problems such that their finite element discretization yields well-conditioned linear systems of
algebraic equations for which very efficient iterative solvers can be implemented. In our computations,
taking advantage of these properties we solve these linear systems in the characteristic finite element
method using the conjugate gradient solver using an incomplete Cholesky factorization. Note that the
finite element discretization of the equations (15)-(18) is trivial and for brevity in the presentation it is
omitted here.
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Figure 2: Uniform finite element meshes with spatial steps h = 1
32 (left), h = 1

64 (middle) and h = 1
128

(right) used for transport problems in rotating a slotted sphere in circular flow fields.

5 Numerical results

We examine the accuracy of the new conservative and monotone characteristic finite element method
introduced in the above sections using several numerical examples for convection-dominated problems.
For the example with known analytical solution we compute the total error as

ETot =

∫
Ω
(u− uexact)2 dx,

where u and uexact are the numerical solution and the exact solution, respectively. We also evaluate the
dissipation error EDiss and the dispersion error EDisp as

EDiss = (σ (u)− σ (uexact))2 + (u− uexact)2 , EDisp = 2 (1− ρ)σ (u)σ (uexact) , (19)

where u and σ (u) are respectively, the mean and standard deviation of the solution u, and ρ is the
correlation coefficient between u and uexact. Note that as shown in [42]

ETot = EDiss + EDisp.

We also define the CFL number as

CFL = max
x,y,z

(√
v21 + v22 + v23

)
∆t

h
. (20)

In our simulations presented in this section, the CFL number is set to a fixed value and the time stepsize
∆t is adjusted at each time step according to the condition (20). To solve the resulting linear systems of
algebraic equations, we use the preconditioned conjugate gradient algorithm equipped with a tolerance of
10−7 to stop the iterations. Note that to minimize the computational effort in the proposed characteristic
finite element method, values of the CFL number are selected as large as possible for which the explicit
Eulerian-based finite element methods are noncompetitive for three-dimensional problems. In this study,
we also compare numerical results obtained using the linear P1 elements, the quadratic P2 elements and
the proposed mass-conservative and monotonicity-preserving procedure. All the simulations reported in
this section were performed on a Pentium PC with Intel Core i7-7700HQ of 8 GB of RAM and 8 GHz
using serial Fortran compiler.

5.1 Rotating a slotted sphere in circular flow fields

We consider the problem of a slotted sphere in circular flow fields widely used in the literature to assess
the numerical performance of transport methods for problems with sharp discontinuities. Note that this

10



P1 elements P2 elements Proposed method Analytical

Figure 3: Iso-surfaces for rotating a slotted sphere in circular flow fields using CFL=10 and h = 1
128 .

problem is an extension to three space dimensions of the well known two-dimensional Zalezak’s slotted
disk proposed in [47]. The problem statement consists on solving the equations (1) in the spatial domain
Ω = [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5] equipped with the flow field v = (−ωy, ωx, 0)⊤, where ω = 4 is
the angular velocity. The solution is a sphere centered at (−0.25, 0, 0) of radius 0.15 and height of 1 along
with a slot in the xy-plane of width 0.06 and a length of 0.22. In absence of diffusion in the problem, the
slotted sphere is expected to preserve its shape and mass during the time integration and the total time
required for one complete rotation is π

2 . In our simulations for this example, we consider three uniform
meshes with h = 1

32 , h = 1
64 and h = 1

128 as shown in Figure 2, and three different values for CFL namely
CFL = 2.5, 5 and 10.

In Figure 3 we present the plots for iso-surfaces of the computed solutions after one rotation using the
mesh with h = 1

128 and CFL = 10. We include the analytical solution and the numerical solutions obtained
using the linear P1 elements, the quadratic P2 elements and the proposed conservative and monotonicity-
preserving method. As can be seen from these results, the proposed method preserves the shape of
the numerical solution with very little numerical diffusion compared to the solutions computed using
the P2 elements and the P1 elements. Compared to the exact solution, the numerical solution obtained
using the linear P1 elements exhibits large numerical diffusion whereas, the non-physical solutions are very
remarkable in the numerical solution obtained using the quadratic P2 elements. For a better visualization,
Figure 4 illustrates contourlines in the xy-plane at z = 0 of the exact solution and the numerical solutions
obtained using the linear P1 elements, the quadratic P2 elements and the proposed conservative and
monotonicity-preserving method after one and two revolutions on the mesh with h = 1

64 and different CFL
numbers. Note that only part of the computational domain is shown in these plots for a better insight. To
further compare these results, we show in Figure 5 and Figure 6 the one-dimensional cross-sections along
the horizontal line at y = z = 0 for the obtained solutions using three different values of CFL = 2.5, 5 and
10 after one and two rotations. A visual comparison of the obtained results demonstrates large numerical
dissipation, severe overshoots, deformation and phase errors in the numerical solutions computed using
the linear P1 and quadratic P2 elements. After one rotation, the results obtained using the quadratic
P2 elements exhibit non-physical oscillations and greater distortions localized mainly at the feet and the
upper face of the slotted sphere where discontinuities are more sharper than elsewhere in the computed
solutions. After two rotations, the magnitude and frequency of these non-physical oscillations increase in
the computed solutions using the quadratic P2 elements. Contrarily, numerical dissipation in the results
obtained using the linear P1 elements is clearly noticeable and it becomes more pronounced for small
values of CFL. As expected, refining the finite element mesh results in an increase in the accuracy of the
computed solutions. For instance, in a mesh with h = 1

64 and after two rotations, the solutions obtained
using the linear P1 elements demonstrate substantially large numerical diffusion at the feet of the slotted
sphere where gradients are sharp, compare the results shown in Figure 4 and Figure 6. However, from the
same figures we observe a full absence of these numerical dissipation and non-physical oscillations in the

11
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CFL = 2.5 CFL = 5 CFL = 10

Figure 4: Contourlines of the solutions at z = 0 for rotating a slotted sphere in circular flow fields after
one revolution (first row) and after two revolutions (second row) using h = 1

64 and different CFL numbers.

results obtained using our conservative and monotonicity-preserving method. It should also be stressed
that the numerical accuracy in the proposed characteristic finite element method increases for large value
of CFL numbers, compare the results obtained using the low CFL = 2.5 and the high CFL = 10 in Figure
4 and Figure 5. It is also evident that the proposed conservative and monotonicity-preserving procedure
eliminates the non-physical oscillations in the vicinity of feet of the sphere where discontinuities are sharp
and the transport is well resolved without requiring fine meshes or small time steps.

Next we perform quantitative comparisons of the results obtained using the linear P1 elements, the
quadratic P2 elements and the proposed conservative and monotonicity-preserving method. In Table 1
we summarize the obtained results after one and two rotations using different values of CFL and mesh
densities. We report the minimum (Min) and the maximum (Max) values of the computed solutions, rela-
tive mass (Mass), the errors EDiss, EDisp and ETot and the computational times (CPU) given in seconds.
For the meshes and numbers of revolutions considered, the proposed conservative and monotonicity-
preserving procedure conserves the mass at a minor additional effort referring to the CPU time. For the
considered transport conditions, failure of mass conservation is clear in the results obtained using the
linear P1 and quadratic P2 elements whereas, the relative mass remains fixed to unity in the proposed
conservative characteristic finite element method. In terms of the considered errors EDiss, EDisp and
ETot, the results obtained using the quadratic P2 elements are more accurate than those obtained using
the linear P1 elements for all the considered meshes and CFL numbers. It is also evident that the pro-
posed conservative and monotonicity-preserving procedure does not deteriorate the overall accuracy of
the characteristic finite element method. In addition, increasing the CFL number results in a decrease
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CFL = 2.5 CFL = 5 CFL = 10

Figure 5: Cross-sections of the solution at y = z = 0 for rotating a slotted sphere in circular flow fields
after 1 revolution using different CFL and meshes with h = 1

64 (first row) and h = 1
128 (second row).

of the total error in all computed solutions. However, only results obtained using the proposed method
yield a reduction of the dispersion error EDisp as CFL increases. Furthermore, results obtained in Ta-
ble 1 for the errors EDiss, EDisp and ETot using the proposed conservative and monotonicity-preserving
method confirm that these results are monotone and free from non-physical oscillations during the time
integration process. Indeed, the conservative and monotonicity-preserving method captures the physics
well in this three-dimensional transport problem. From the values of Max and Min listed in Table 1,
we observe very low values of Max for the results obtained using the linear P1 elements and high and
negative values for the results obtained using the quadratic P2 elements which are removed in the results
obtained using the conservative and monotonicity-preserving procedure. It is also clear that the CPU
times in the characteristic finite element method using the quadratic P2 elements are higher than the
CPU times using the linear P1 elements. For the considered transport conditions, the CPU time of the
quadratic P2 elements is about 9 times larger than the CPU time of the linear P1 elements. However,
the difference between the CPU times for the quadratic P2 elements and conservative and monotonicity-
preserving method it minimal and it is about 15% for all the simulations. It should also be noted that
the characteristic finite element method is commonly designed to solve this class of transport problems
using CFL numbers four to five times larger than its Eulerian counterparts.

5.2 A deformational flow problem

In this example we solve a deformational flow problem widely used in [30, 40] to examine the perfor-
mance of high-resolution conservative algorithms for advection problems using structured meshes. In the
present study we solve this problem in a sphere using unstructured tetrahedral meshes. The flow field is
reconstructed in this example by superimposing both deformation in the xy-plane with deformation in
the xz-plane. Thus, we solve the transport equation (1) in a sphere centered at (0, 0, 0)⊤, with radius
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CFL = 2.5 CFL = 5 CFL = 10

Figure 6: Same as Figure 5 but after two rotations.

Table 2: Numbers of elements and nodes in the meshes used for the deformational flow problem.

Mesh # of elements # of P2 nodes # of P1 nodes

Mesh A 36844 64003 9977
Mesh B 52943 84934 12388
Mesh C 119604 183495 25563

0.6 subject to a velocity field defined by

v1(x, y, z, t) = 2 sin2 (πx) sin (πy) sin (πz) cos

(
πt

T

)
,

v2(x, y, z, t) = − sin (πx) sin2 (πy) sin (πz) cos

(
πt

T

)
,

v3(x, y, z, t) = − sin (πx) sin (πy) sin2 (πz) cos

(
πt

T

)
,

where T is the final time period. As stated in [30, 40], the flow becomes slow and it changes the direction
in such a way that the initial condition is recovered at time T , i.e. u(x, y, z, 0) = u(x, y, z, T ). Therefore,
this flow problem is very interesting since the analytical solution at the final time T is known even though
the flow structure becomes complicated at this time. In our simulations, the time period T = 1.5 and
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Mesh A Mesh B Mesh C

Figure 7: Unstructured finite element meshes with 36844 elements (left), 52943 elements (middle) and
119604 elements (right) used for the deformational flow problem.

initially

u(x, y, z, 0) =


1, if x ≤ 1

2
,

0, if x >
1

2
.

Note that for this initial condition, the interface at x = 1
2 deforms in a fully three-dimensional manner

and returns to its initial location at the final time t = T . For the results presented for this example,
we use CFL = 10 and three unstructured meshes as shown in Figure 7. The corresponding statistics of
elements and nodal points for these meshes are summarized in Table 2.

In Figure 8 we display the results obtained using the quadratic P2 elements and the proposed conser-
vative and monotone method on the three considered meshes at time t = T

2 . Those results obtained at
time t = T are presented in Figure 9. For better insight, only half of the sphere is illustrated for the com-
puted solutions in these figures. At time t = T

2 , the interface at the sphere center appears disconnected
whereas at the final time t = T the initial interface is recovered subject to a non-preventable smearing
generated by the full three-dimensional deformational flow field. It is also clear from the results in Figure
8 and Figure 9 that the results obtained using the quadratic P2 elements exhibit oscillatory behavior at
both times especially at the vicinity of sharp gradients in the computational domain on coarse meshes
Mesh A and Mesh B. Furthermore, non-physical negative values are clearly detected in results obtained
using the quadratic P2 elements. Refining the mesh results in an improvement in the accuracy for all
results. From the same figures, the results obtained using the proposed conservative method are free
from non-physical negative values and capture the correct interface on the three considered meshes and
at both times t = T

2 and t = T . Note that the results shown here agree well with those presented in
[30, 40] for the cuboid domain. It should be pointed out that the numerical methods in [30, 40] used
a high resolution scheme based on upwind techniques for which direct or approximate Riemann solvers
are needed. In contrast, our characteristic finite element method does not require any Riemann solver
and it produces stable results which are conservative, monotone and comparable to those obtained by
upwinding in [30, 40]. For comparison reasons, Figure 10 illustrates the solution cross-sections along the
radial line at y = 0.25 and z = 0.5 of the computed results using Mesh B and Mesh C at times t = T

2
and t = T . In this figure wee also include results obtained using the linear P1 elements. Obviously, the
resolution and location of the interface are deteriorated with the large numerical diffusion generated by
the linear P1 elements. As expected, the method using the quadratic P2 elements has managed to elimi-
nate the numerical diffusion, but it yields non-physical oscillations near regions of large gradients in the
computational domain. On the other hand, comparing the performance of proposed method in Figure
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Mesh A Mesh B Mesh C

Figure 8: Numerical results obtained for the deformational flow problem on Mesh A (first column),
Mesh B (second column) and Mesh C (third column) using the P2 elements (first row) and the proposed
conservative and monotonicity-preserving method (second row) at time t = T

2 .

Mesh A Mesh B Mesh C

Figure 9: Same as Figure 8 but at time t = T .
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Mesh B Mesh C

Figure 10: Cross-sections of the solutions at y = 0.25 and z = 0.5 for the deformational flow problem on
Mesh B (first column) and Mesh C (second column) at time t = T

2 (first row) and t = T (second row).

10, nearly identical results to those obtained using the quadratic P2 elements in regions with smooth
gradients are achieved and a negligible numerical diffusion is introduced compared to the one generated
by the linear P1 elements. It is also clear that solutions obtained using the proposed method eliminate
the non-physical oscillations near the interface where discontinuities are steep. Thus, for the considered
transport conditions, the deformational flow is accurately resolved without requiring fine meshes or small
time steps in the simulations.

We now turn our attention to a quantitative comparison of the results using the linear P1 elements,
quadratic P2 elements and proposed conservative method for the three considered meshes at times t = T

2
and t = T . In Table 3 we present the minimum (Min) and the maximum (Max) values of the computed
solutions, the relative mass (Mass) and the CPU times for each simulation. From the values of Min
and Max, we observe large and negative values for the quadratic P2 elements which are completely
avoided in our conservative and monotone method. Regarding the mass conservation, Table 3 reveals
that on Mesh B, the quadratic P2 elements lost more than 3% of the initial mass at time t = T , whereas
the proposed characteristic finite element method is conservative at the machine precision. This clearly
demonstrates that the proposed limiting procedure does not deteriorate the accuracy of the characteristic
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Table 3: Results for the deformational flow at t = T and t = T
2 . The exact maximum and minimum are

respectively Max = 1 and Min = 0.
P1 Elements

t = T
2 t = T

Mesh Min Max Mass CPU Min Max Mass CPU

Mesh A 0.000 1.000 0.973 0.063 0.000 1.000 0.949 0.117
Mesh B 0.000 1.000 0.989 0.393 0.000 1.000 0.979 0.745
Mesh C 0.000 1.000 0.996 2.794 0.000 1.000 0.992 5.246

P2 Elements

t = T
2 t = T

Mesh Min Max Mass CPU Min Max Mass CPU

Mesh A -0.153 1.663 0.965 0.399 -0.112 1.423 0.942 0.730
Mesh B -0.208 1.664 0.982 2.693 -0.186 1.512 0.965 5.047
Mesh C -0.184 1.664 0.998 20.812 -0.178 1.499 0.994 38.813

Proposed method

t = T
2 t = T

Mesh Min Max Mass CPU Min Max Mass CPU

Mesh A 0.000 1.000 1.000 0.414 0.000 1.000 1.000 0.772
Mesh B 0.000 1.000 1.000 2.865 0.000 1.000 1.000 5.374
Mesh C 0.000 1.000 1.000 22.397 0.000 1.000 1.000 43.693

finite element method. Furthermore, a simple examination of the CPU time in Table 3 confirms that, on
coarse meshes, there is no huge difference between the computational cost required for the quadratic P2

elements and the proposed method. Again, in all results summarized in Table 3, the CPU time needed
for the proposed conservative characteristic finite element method is about 17% more than the CPU time
needed for the quadratic P2 elements. It is worth remarking that the extra computational cost used in the
proposed conservative and monotone procedures has been kept to the minimum that the characteristic
finite element method is still effective for this class of convection-dominated flow problems. Taking all
these factors into account, we conclude that, for the considered examples, the proposed characteristic
finite element method exhibits higher monotone and non-oscillatory properties than the standard linear
P1 and quadratic P2 elements. More importantly, a balance between efficiency and accuracy in these
methods benefits the conservative and monotone method, since the additional cost required for the
limiting procedure in characteristic finite element method is minimal while the results obtained by the
method are fully conservative and more accurate than those obtained by the quadratic P2 elements.
Therefore, hereafter we shall focus our attention on numerical simulations carried out using only the
proposed conservative and monotone method.

5.3 Flow past a circular cylinder

To assess the numerical performance of the proposed characteristic finite element method for solving
three-dimensional incompressible Navier-Stokes equations we consider the benchmark problem of the
flow past a circular cylinder. This flow problem has been widely used in the literature to examine the
accuracy of numerical methods for incompressible Navier-Stokes equations, see for example [37, 14, 31, 1].
In our simulations presented in this section, we use the same flow configuration and the same boundary
conditions as those reported in these references. Here, circular cylinder with diameterD = 0.1 is immersed
in a channel with height H = 0.41 subject to a viscous incompressible flow entering the channel with a
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Figure 11: Configuration of the computational domain used for the flow past a circular cylinder.

Mesh A Mesh B

Figure 12: Computational meshes used in simulations for the flow past a circular cylinder.

parabolic velocity defined as

u(t, y, z) = u∞y (H − y) z (H − z)H4 sin

(
πt

8

)
,

where u∞ = 7.2. The Reynolds number for this flow problem is defined as Re = Du∞/ν, with ν is the
kinematic viscosity. At the downstream boundary we impose the pseudo-stress condition

−pn+ ν
∂u

∂n
= 0, (21)

where n = (nx, ny, nz)
⊤ is the outward unit normal on the exit boundary. On the remaining boundaries

of the computational domain we set no-slip conditions u = 0. All the computations for this flow problem
are carried out using the mixed tetrahedral finite elements P1-P2 using two unstructured meshes depicted
in Figure 12 and numerical results are presented at time t = 8 for two different Reynolds numbers Re = 20
and Re = 100 using a fixed time step ∆t = 0.1. At these two values of Reynolds number, the flow is
expected to illustrate different flow features and the problem becomes challenging for high values of Re.
Note that most of results reported in the literature considered only the case with Re = 20.

First a mesh convergence study for the proposed characteristic finite element method is performed for
this example. To this end, we consider four unstructured meshes Mesh A, Mesh B, Mesh C and Mesh D
with different node and element densities as summarized in Table 4. Note that Mesh C and Mesh D are
not included in Figure 12 because of their densities which result in heavily black plots. In Table 4 we also
summarize the maximum and minimum values of the velocity u along with the CPU times obtained using
both the conventional and the proposed methods on the considered meshes for Re = 20 and Re = 100.
As can be seen for the last two mesh levels Mesh C and Mesh D, the differences in the values obtained
for maxu and minu are very small. It has also been observed that the additional computational effort
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Table 4: Mesh statistics and results for maximum and minimum of the velocity u and CPU times (in
minutes) for the flow past a circular cylinder at Re = 20 and Re = 100.

Re = 20

Conventional method Proposed method
Mesh # elements maxu minu CPU maxu minu CPU

Mesh A 114446 0.21420 -3.6639E-02 38.9 0.20456 -3.3191E-04 39.4
Mesh B 195930 0.20840 -3.5239E-03 118.4 0.20466 -3.3163E-04 118.9
Mesh C 301436 0.20701 -1.9251E-03 158.8 0.20468 -3.2151E-04 162.7
Mesh D 436327 0.20531 -8.9154E-04 243.3 0.20468 -3.2150E-04 243.5

Re = 100

Conventional method Proposed method
Mesh # elements maxu minu CPU maxu minu CPU

Mesh A 114446 0.22327 -4.4228E-02 31.8 0.20523 -2.5217E-03 32.9
Mesh B 195930 0.21299 -1.8903E-03 91.3 0.20625 -1.6123E-04 91.6
Mesh C 301436 0.21012 -5.1163E-04 135.0 0.20635 -1.6113E-04 135.7
Mesh D 436327 0.20497 -2.8145E-04 241.9 0.20635 -1.6113E-04 243.1

Re = 20 Re = 100

Figure 13: Cross-sections of the velocity u at (x = 0.56, z = 0.25) obtained on different meshes for the
flow past a circular cylinder at Re = 20 (left) and Re = 100 (right).

used by the proposed limiting procedure has been kept to the minimum that our characteristic finite
element method is still competitive for three-dimensional incompressible Navier-Stokes equations. It
should be stressed that the vast amount of the computational work is mainly used for solving the linear
systems in the Stokes stage of the conjugate gradient algorithm. Hence, a substantial reduction in the
CPU time can be achieved in the proposed method by developing more efficient preconditioned iterative
solvers for these linear systems. For instance, multigrid techniques are well known to be the most efficient
methods for solving linear systems and can therefore be the suitable tools to increase the efficiency of
the proposed characteristic finite element method. To further qualify the computational results for these
meshes, Figure 13 illustrates the cross-sections of the velocity u at the line (x = 0.56, z = 0.25) obtained
using the considered meshes. It is clear that increasing the density of meshes, the results for the Mesh
C and Mesh D are relatively similar. Results obtained for the velocities v and w, not reported here
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Mesh A Mesh B

Figure 14: Snapshots of the velocity magnitude for the flow past a circular cylinder at Re = 100 obtained
on Mesh A (left) and Mesh B (right).

Table 5: Comparison results for mesh statistics, lift and drag coefficients, average iterations of the
conjugate gradient algorithm and CPU times (in minutes) for the flow past a circular cylinder at Re = 20.

Mesh # elements maxCD maxCL minCL AvCG CPU

Mesh A 114446 3.235 0.0271 -1.0131E-02 3.45 39.4
Mesh B 195930 3.301 0.0274 -1.0981E-02 3.21 118.9
Mesh C 301436 3.301 0.0279 -1.0991E-02 3.14 162.7
Mesh D 436327 3.301 0.0280 -1.0992E-02 3.11 243.5
Results from [1] 393216 3.296 0.0280 -1.0992E-02 — —

for brevity, exhibit the same convergence features. Therefore, Mesh A and Mesh B are used in all our
next computations for this flow problem. Note that the reasons for choosing these mesh structures lie
essentially on the computational cost required for each mesh configuration and also on the numerical
resolution achieved.

In Figure 14 we display the obtained results for the magnitude of the velocity field using Re = 100
on Mesh A and Mesh B. For a better insight, only a part of the computational domain is shown in this
figure. These plots give a clear view of the overall flow patterns and the effect of the mesh on the velocity
field. The recirculating regions behind the cylinder are generated and well captured using the proposed
method. It is also clear that the performance of the proposed characteristic finite element method is
very attractive since the obtained numerical solutions are stable and monotone even when coarse meshes
are used with no need to nonlinear solvers or complicated techniques to stabilize the finite element
discretization as those used in the projection methods or pressure correction procedures. Comparisons
between results obtained using the proposed method and the conventional characteristic finite element
method have also been carried out in this problem. Figure 15 depicts cross-sections of the velocity u at the
line (x = 0.56, z = 0.25) obtained using the proposed and conventional methods on three different meshes
at Re = 20 and Re = 100. It is clear that, on Mesh A and Mesh B, the conventional method exhibits
substantially greater oscillations, specially for y ∈ [0.25, 0.35] in the spatial domain where the velocity u
is large. From the same figure we observe a complete absence of this oscillatory behavior in the results
obtained using the proposed method. Note that the relevance of the monotonicity and non-oscillatory
properties for this problem is crucial since these oscillations are physically unacceptable and having non-
monotone solutions may cause a breakdown in the iterations of the conjugate gradient solver used to solve
the linear systems for the Stokes stage in the conventional algorithm. On the fine mesh Mesh C, results
obtained using both method coincide for Re = 20 but for Re = 100 the numerical diffusion in the results
obtained the conventional method is clearly visible. On the contrary, computational results obtained
using the proposed method are free from any non-physical oscillations, and the solutions preserve the
monotonicity during the time integration process.

To quantify our results for this flow problem, we compute the well-established lift and drag coefficients
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Mesh A Mesh B Mesh C

Figure 15: Cross-sections of the velocity u at (x = 0.56, z = 0.25) obtained on three different meshes for
the flow past a circular cylinder at Re = 20 (first row) and Re = 100 (second row).

at each time step as [1]

CL = − 2

u2∞DH

∮
S

(
−pnx + ν

∂ (u · t)
∂n

ny

)
dx,

CD =
2

u2∞DH

∮
S

(
−pny + ν

∂ (u · t)
∂n

nx

)
dx,

where S is the surface of the cylinder, n = (nx, ny, 0)
⊤ and t = (ny,−nx, 0)⊤ are respectively the normal

and tangent unit vectors with respect to the surface of the cylinder. Results obtained for maxCD,
maxCL, minCL, the number of averaged iterations in the conjugate gradient algorithm (AvCG) and
the computational cost (CPU) are summarized in Table 5. We present numerical results obtained for
Re = 20 using the four considered meshes and for comparison purpose, we also include those numerical
results reported in [1]. The numerical results obtained using the proposed method mostly agree with all
the model results reported in [1]. As it is obvious from Table 5, the minor differences to other numerical
results can be attributed to the mesh size used in the present study. The efficiency of the proposed
characteristic finite element method is also examined for this problem. Note that the computational time
listed in Table 5 includes all aspects of computational work including, mesh generation, calculation of
characteristics, search-locate of departure points, limiting process, assembling of finite element matrices,
and solution of linear systems. In our implementation, most of the computational effort was contributed
to the conjugate gradient algorithm used for solving the associated linear systems. For this flow problem,
we have observed that the mean number of iterations in the conjugate gradient algorithm to converge to a
tolerance of 10−7 increases with the values of the Reynolds number Re. Nevertheless, it should be noted
that the proposed characteristic finite element method can use time steps up to hundred times larger
than those required for the explicit time integration schemes. This would allow for fewer time steps to
be taken for the same length of simulation, thereby reducing the overall computational cost excessively.
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Table 6: Percentage of the computational cost used by each stage of the conventional and the proposed
characteristic finite element solvers for the flow past a circular cylinder at Re = 20 and Re = 100 using
Mesh A. The CPU times are given in minutes.

Re = 20

Conventional method Proposed method

Problem Algorithm CPU Percentage CPU Percentage

Departure points 2.83 7.22% 2.86 7.26%

Convection part Search-locate 2.70 6.89% 2.98 7.57%

Interpolation 2.12 5.41% 3.31 8.41%

Total 7.65 19.52% 9.15 23.24%

Stokes part CG solver 31.55 80.48% 30.23 76.76%

Total 38.80 100% 39.38 100%

Re = 100

Conventional method Proposed method

Problem Algorithm CPU Percentage CPU Percentage

Departure points 2.17 6.82% 2.02 6.14%

Convection part Search-locate 2.31 7.27% 2.61 7.95%

Interpolation 2.27 7.14% 3.56 10.83%

Total 6.75 21.23% 8.19 24.92%

Stokes part CG solver 25.05 78.77% 24.70 75.08%

Total 31.80 100% 32.89 100%

Analysis of computational cost has been carried out in this example. Table 6 summarizes the compu-
tational cost of the the conventional and the proposed characteristic finite element methods at Re = 20
and Re = 100 using Mesh A. The computational cost is distributed in four stages constituting the pro-
posed method: Departure points represents the percent of CPU time involved in the approximation of
departure points. Search-locate denotes the percent of CPU allocated for the search-locate procedure.
Interpolation refers the percent of CPU time required for the interpolation procedure used in the method.
CG refers to the percent of CPU time employed in the conjugate gradient algorithm for solving the Stokes
problem. The main features reported in this table are on one hand, the departure points approximations,
interpolation stage, and the search-locate procedure require very little computational cost compared to
the CPU time needed for the Stokes part where the linear solver is repeatedly required. On the other
hand, the difference between the CPU times spent in the convection part for the conventional and the
proposed monotone and conservative methods is minimal and does not exceed 18% in all considered cases.
As can be seen from Table 6, most of the computational effort goes into the CG algorithm solving the
associated Stokes problems. Therefore, reducing the CPU time in the proposed characteristic finite ele-
ment method can be achieved by constructing more efficient preconditioned iterative solvers for the linear
systems. Multigrid techniques are known to be the most efficient methods for solving linear systems and
can therefore be the suitable tools to increase the efficiency of the proposed characteristic finite element
method. Needless to say that the CPU time in Table 6 can drastically be reduced if parallel computers
are used. A parallel characteristic finite element method can be implemented using the message passing
interface (MPI). The parallel efficiency using the MPI becomes very high when the departure points lie

24



within the local memory of the same processor and the operation per processor is kept constant.

6 Concluding remarks

A conservative and monotone characteristic finite element method has been developed for solving the
three-dimensional transport and incompressible Navier-Stokes equations on unstructured tetrahedral
meshes. The proposed method integrates transport part of the equations using the modified method
of characteristics in the framework of a finite element discretization. To preserve the conservation and
monotonicity in the proposed method a local limiting procedure is implemented using the linear and
quadratic finite elements. The additional computational cost in the proposed characteristic finite ele-
ment method is kept minimal compared to its conventional counterparts. Using a mixed finite element
formulation the method is applied for the three-dimensional incompressible Navier-Stokes equations in
primitive variables. We also implemented a direct conjugate-gradient algorithm for the solution of the
three-dimensional Stokes problem. This algorithm avoids projection techniques and special corrections
for the pressure widely used in the literature for Eulerian-based finite element methods. Numerical results
were presented for the problem of rotating a slotted sphere in circular flow fields and the example of a
deformational flow problem. The proposed method has also been verified for the numerical simulation of
the benchmark problem of flow past a circular cylinder. For all of these examples, the obtained results
have demonstrated the ability of the proposed characteristic finite element method to perform very well
in the presence of strong gradients and discontinuities without non-physical oscillations and numerical
dissipation even when coarse meshes and large time steps are used in the simulations. Results obtained
for the problem of flow past a circular cylinder have also shown the capabilities of the proposed method
in simulations of complex incompressible flow problems in three space dimensions using unstructured
tetrahedral meshes. Future work will concentrate on the extension of the conservative and monotone
characteristic finite element method to coupled problems of turbulent flow and heat transfer in three
space dimensions.
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