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Abstract

A fast and accurate finite volume method for multi-layered shallow water flows with mass
exchange over erodible beds is developed. The governing equations consist of the multi-layered
shallow water equations for the hydraulic variables, a set of transport equations for the suspended
sediments in each layer, and a class of empirical equations for erosion and deposition effects. Mass
exchange terms between layers are accounted for in both water flow and suspended sediments along
with terms for sedimentary diffusion. The coupled models for each layer have been reformulated
as a coupled system of conservation laws with source terms, and a two-step finite volume method
is presented for its numerical solution. The method is simple, fast and second-order accurate. In
the first step, the governing equations are rewritten in a non-conservative form and the numeri-
cal fluxes are calculated using the method of characteristics. In the second stage, the numerical
solutions are updated in a conservative form using the finite volume discretization. Entrainment,
deposition and diffusion rates are evaluated in the first stage of a splitting operator. Numerical
results are presented for a multi-layered dam-break problem over an erodible bed and also for a
wind-driven recirculation problem over an erodible non-flat bed. The obtained results for these
examples demonstrate the capabilities of the combined multi-layered model and the finite volume
method to accurately simulate shallow water flows with suspended sediments over erodible beds.

Keywords. Multi-layered shallow water flows; Finite volume method; Method of characteristics;
Sediment transport; Erosion and deposition; Erodible beds

1 Introduction

The well-established Navier-Stokes equations have been widely used in the literature to model and to
provide correct solutions for fluid dynamics. However, using this full three-dimensional approach is
computationally demanding, thus all savings in complexity are to be welcomed in this field of research,
see [20] and further references are therein. This has given rise to an extensive range of more efficient
models including multi-layered shallow water models. Two classes of multi-layered models have been
developed over the last decades: one in which the layers of separate fluids are immiscible, see for
example [14], while the other class is based on a single fluid and allows for exchange between the layers,
see for instance [2, 1, 12]. The advantage of both models is that they avoid the massive computations
associated with solving the Navier-Stokes equations and at the same time, obtain stratified horizontal
velocities. The shallow water equations can be derived from the non-stationary three-dimensional
Navier-Stokes equations as the ratio between the vertical and horizontal scales is appropriate, correct
boundary conditions are applied, and the hydrostatic pressure assumption is valid, see for example
[2, 12].
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In the above references, the multi-layered models have been used for shallow water flows over fixed
beds only. However, the morphological and sediment transport problems are crucial to the under-
standing of shallow water flows in many applications. Examples of these applications include, among
others, beach profile changes due to severe wave climates, seabed response to dredging procedures or
imposed structures and harbor siltation. A large amount of work has been done on the effects of water
flows on sediment beds, see for example [23, 30, 27, 3]. Almost all models rely on the experimental data
sets for sediments that form the basis of a set of empirical formulae to be used for modeling sediment
transport, see [24] among others. Many methods for modeling sediment transport exist ranging from
particle tracking [9] to sediment balance software such as ESTMORPH [31]. It should be stressed
that the ESTMORPH and other equilibrium-based models are computationally limited as they do not
have any direct representation of the dynamics involved, while more accurate relation-driven models
as those investigated in [23, 30, 27, 3] are computationally demanding. Therefore, to enable the uptake
of more accurate models, highly efficient models are needed when modelling complex sediment-flow
interactions. In the current study, we develop a novel multi-layered model to incorporate both movable
beds and transport of sediments in shallow water flows. The governing equations consist of the multi-
layered shallow water equations coupled to a set of transport equations for the suspended sediments
in each layer, and a series of empirical equations for erosion and deposition terms. The interaction
between the layers is accounted for through mass exchange terms in both the water flow and the
sediment concentrations. In the proposed model, the presence of multiple layers in the flow systems
allows for the sediment concentration to vary vertically within the water depth. In comparison to
the models investigated in [16, 26] for the vertical concentration, the proposed multi-layered model
can handle multiple concentrations in the system without relying on the computationally demanding
vertical discretization. Recently, this has been extended to account for turbulent kinetic energy in [33].
The focus in the present work is on developing a framework within which empirical or semi-empirical
relations as those reported in [33] can be easily incorporated into the numerical model as required. For
bed-load and suspended sediments, we use the equations proposed in [5] but other equations as those
published in [10, 17, 13, 21] can also be included in our model without major conceptual modifications.

Developing numerical solvers for the multi-layered shallow water equations often presents difficul-
ties due to a combination of their nonlinear form, the presence of source terms, the coupling between
the free-surface equation and the equations governing the water flow, compare [2, 1] among others.
Including equations for bed-load and suspended sediments in the multi-layered model will add more
challenges for the design of robust methods for the numerical solution of the fully coupled system.
Here, the difficulty in these models comes from the coupling terms, involving some derivatives of the
unknown physical variables that make the system non-conservative and possibly non-hyperbolic. Due
to these terms, a numerical method originally designed for the multi-layered shallow water equations
over fixed beds will lead to instabilities when it is applied to each layer separately. In the present
work, we consider the Finite Volume Characteristics (FVC) method introduced in [4] for solving single-
layered shallow water equations. The FVC method is second-order accurate and it avoids the solution
of Riemann problems and it belongs to the predictor-corrector type methods. The predictor stage
uses the method of characteristics to reconstruct the numerical fluxes, whereas the corrector stage
recovers the conservation equations using the finite volume discretization. The FVC method has also
been used in [1, 22] to solve a class of multi-layered shallow water equations. Based on the results
reported in these references, the FVC method is simple, conservative, non-oscillatory and suitable
for multi-layered shallow water flows over erodible beds for which Riemann problems are difficult or
impossible to solve. In this study, improvements to the FVC method have also been made including
(i) a second-order splitting operators is used for the treatment of the source terms, (ii) a third-order
Runge-Kutta scheme is implemented for the time integration, and (iii) a cubic Spline interpolation is
used in the predictor stage. Numerical examples are presented to verify the considered multi-layered
shallow water flows over erodible beds. We demonstrate the capability of the proposed model for
calculating lateral and vertical distributions of velocities for multi-layered shallow water flows over
erodible flat and non-flat beds.

2



This paper is structured as follows. In Section 2, we introduce the models for multi-layered shallow
water flows over erodible beds. The finite volume characteristics method for solving the governing
equations is presented in Section 3. This section includes the reconstruction of the numerical fluxes
using the modified method of characteristics and the discretization of the source terms in the model.
In Section 4, we examine the numerical performance of the proposed models using two test examples.
We present numerical results for both a dam-break flow and for a wind-driven flow over erodible beds.
Concluding remarks and recommendations for future work are given in Section 5.

2 Equations for multi-layered shallow water flows over erodible beds

Multi-layered flow systems are mainly obtained using a vertical discretization of the three-dimensional
Navier-Stokes equations accounting for the shallow water assumptions, compare [1, 2] and further
references are therein. In the present study, we consider the one-dimensional version of the model for
each of the layers of fluid and it includes equations for sediment transport, terms for mass exchange
between the layers and terms for the forces between the erodible bed and the water flow. Thus, in
a multi-layered system of a total number of M layers, the shallow water equations for each layer
k = 1, 2, . . . ,M read as

∂hk
∂t

+
∂ (hkuk)

∂x
= Gk−1/2 −Gk+1/2,

(1)
∂ (hkuk)

∂t
+

∂

∂x

(
hku

2
k +

1

2lk
gh2

k

)
= −ghk

∂B

∂x
+ Fk,

where uk(t, x) is the depth-averaged water velocity of the kth layer, B(t, x) the bottom topography, g
the gravitational acceleration, and hk(t, x) the water height of the kth layer defined as

hk = lkH, k = 1, . . . ,M, (2)

where H(t, x) is the total water depth and lk is the proportional height of the kth layer in the flow
system, see Figure 1 for an illustration. In (1), Fk includes the inter-layer forces and it is defined
below, and Gk±1/2 are mass exchange terms between the layers including erosion and deposition in
the lower layer as

Gk−1/2 =


k∑
i=1

(
∂ (hiui)

∂x
− li

M∑
j=1

∂ (hjuj)

∂x

)
+
Ek −Dk

1− p
, if k = 2, 3, . . . ,M,

E1 −D1

1− p
, if k = 1,

(3)

with Ek and Dk represent the entrainment and deposition terms in the upward and downward direc-
tions, respectively. Following the same procedure as in [2], we sum over all layers in the first equation
in (1) to obtain a single equation to the total water height H as

∂H

∂t
+

M∑
j=1

∂ (hjuj)

∂x
=
E1 −D1

1− p
.

In the current study, we also consider bed-load and suspended sediments within the multi-layered
shallow water system (1). To this end, we define the depth-averaged concentration ck for the kth layer
as

ck =
ρk − ρw
ρs − ρw

, (4)
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Figure 1: A simple illustration of multi-layered shallow water flows over erodible beds. Each layer
k (k = 1, 2, . . . ,M) is characterized with a water height hk, a water velocity uk, and a sediment
concentration ck. The initial bed is denoted by B.

where p is the porosity, ρw the water density, ρs the sediment density and ρk is the density of the
water-sediment mixture in the kth layer. Here, the density of the saturated bed ρ0 is related to the
porosity as

ρ0 = ρwp+ ρs(1− p).

Hence, the governing equations we consider for modeling multi-layered shallow water flows over erodi-
ble beds are

∂H

∂t
+

M∑
k=1

∂(hkuk)

∂x
=

E1 −D1

1− p
,

∂ (hkuk)

∂t
+

∂

∂x

(
hku

2
k +

1

2
ghkH

)
= −ghk

∂B

∂x
− (ρs − ρw)

2ρk
gh2

k

∂ck
∂x

+ Fk,

∂(hkck)

∂t
+

∂

∂x

(
hkukck

)
= Ek −Dk + ck+1/2Gk+1/2 − ck−1/2Gk−1/2 + (5)

εc

(
∂2c∆,k−1/2

∂z2
−
∂2c∆,k+1/2

∂z2

)
,

∂B

∂t
= −E1 −D1

1− p
,

where E1 and D1 are the erosion and deposition rates on the bottom fluid layer, respectively. In this
study, the inter-layer diffusion in the concentration is handled by considering the diffusion potential
between two layers c∆,k−1/2 and c∆,k+1/2 and a diffusion coefficient εc. Note that these terms are
included in the model to handle the sediment diffusion. In (5), the external force Fk acting on the kth
layer accounting for friction and momentum exchange effects is given by

Fk = F
(u)
k + F

(b)
k + F

(w)
k + F

(µ)
k , (6)
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with F
(u)
k is related to the momentum exchanges between the layers and defined as

F
(u)
k = uk+1/2Gk+1/2 − uk−1/2Gk−1/2 −

1

lk

(ρ0 − ρk)(Ek −Dk)uk
ρk(1− p)

−

(ρs − ρw)

2ρk
gh2

k

(
εc
∂2c∆,k−1/2

∂z2
− εc

∂2c∆,k+1/2

∂z2
+ ck+1/2Gk+1/2 − ck−1/2Gk−1/2

)
,

where c∆,k−1/2 is the concentration of diffusible material at each layer interface defined below. Here,
the intermediate velocity uk+1/2 and concentration ck+1/2 are reconstructed using an upwind method
based on the sign of the mass exchange term as

uk+1/2 =


uk, if Gk+1/2 ≥ 0,

uk+1, otherwise,

ck+1/2 =


ck, if Gk+1/2 ≥ 0,

ck+1, otherwise.

The vertical kinematic eddy viscosity term F
(µ)
k in (6) takes into account the friction between neigh-

boring layers as

F
(µ)
k =



−2ν
uk−1 − uk

(lk−1 + lk)H
, if k = M,

2ν
uk+1 − uk

(lk+1 + lk)H
− 2ν

ul−1 − uk
(lk−1 + lk)H

, if k = 2, . . . ,M − 1,

2ν
ul+1 − uk

(lk+1 + lk)H
, if k = 1,

where ν is the eddy viscosity. The external bed friction term F
(b)
k in (6) is given as

F
(b)
k =

−
gn2

b

H1/3
u1|u1|, if k = 1,

0, otherwise,

where nb is the Manning roughness coefficient. The surface wind force F
(w)
k in (6) is defined as

F
(w)
k =

−
σ2ρa
H

(w − uk)
∣∣w − uk∣∣, if k = M,

0, otherwise,

where w is the wind velocity at 10 m above the water surface, ρa the air density and σ is the wind
stress coefficient. Note that for the bottom layer, an equation that relates the effects of an erodible bed
is included in the model (5). These equations are presented in a general form such that appropriate
erosion and deposition equations can be substituted with ease. Thus, to determine the entrainment
and deposition terms in (5), the empirical relations reported in [5] are used as

Dk =

ws (1− cB)m cB, if k = 1,

0, otherwise,
(7)

where ws is the deposition coefficient experimentally measured in [28, 32, 24], d the averaged diameter
of the sediment particles, m an exponent indicating the effects of hindered settling due to high sediment
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Figure 2: Typical sediment distribution in a flow system adapted from [19]. Here, we illustrate the
velocity distribution u and the concentration distribution C0 as functions of the water depth h with
a maximum concentration c0.05 at z0.05.

concentrations and set to m = 2. In the current study, we use empirical values for the settling velocity
ws calculated based on the following equation

ws =

√
(36ν/d)2 + 7.5ρsgd− 36ν/d

2.8
,

where ν is the kinematic viscosity of water. Note that more developed empirical equations for the
settling velocity as those studied in [28] can also be used in the proposed model.

In (7), cB = βcck is the near-bed volumetric sediment concentration, and c∆ = βc(ck− ck−1) is the
concentration for inter-layer settling. Here, βck is a coefficient larger than unity used to ensure that
the near-bed concentration does not exceed (1− p) and it is defined in [6] by

βck = min

(
2,

1− p
ck

)
.

For the entrainment of the material the following relation is used [6]

Ek =


ϕ
θ − θcr
h1

u1d
−0.2, if θ ≥ θcr and k = 1,

0, otherwise,

(8)

where ϕ is a coefficient to control the erosion forces, that is empirical, θcr is a critical value of Shields
parameter for the initialization of sediment motion and θ is the Shields coefficient defined by

θ =
u2
∗

sgd
,

with s = ρs
ρw
− 1 is the submerged specific gravity of sediment and u∗ is the friction velocity defined as

u2
∗ =

√
g n2

b

h1/3
|u1| .

Note that the equations used for the entrainment and deposition have been widely used in the
literature for the conventional single-layered shallow water flows over erodible beds, see for example
[28, 32, 24, 3]. It should also be pointed out that no vertical velocities are calculated in the proposed
model, but the vertical sediment diffusion is a major problem for a formulation of this type. In this
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study, a sediment diffusion coefficient εc is introduced in the multi-layered model (5). Research has
also been undertaken in experimental [29] and in computational [15, 16] studies to model the vertical
diffusion of sediment in water flows and Figure 2 shows a typical sediment distribution in a flow
system. As the shape, size, and precise distribution for various sediment types have been categorized,
a simplistic method for the vertical distribution is proposed here and it is shown in Figure 2. This
model is based on the study reported in [19] and it is used in the present study as it is interchangeable
for a variety of sediment models and it also helps to describe slower bed flow as well as faster suspended
flows. Calculating the diffusion for each cell boundary is computationally demanding, consequently a
distribution curve for the quantity of diffusion is implemented. The curve is calculated by comparing

the sediment to be diffused to the portion that should be diffused, for example C0 =
1

h
. Then, by

applying limits for each layer, the curve yields

C0,k =

(
ln(zk+ 1

2
)− ln(zk− 1

2
)

ln(h+ λc)− ln(h0.05 + λc)

)
M∑
k=1

(ckhk) ,

where zk is the depth of the kth layer, h0.05 the effective bottom (i.e. where the bed-load takes
over) and λc an empirically measured coefficient used to describe the concentration curve. Hence, the
concentration of diffusible material at each layer interface is defined as

∂2c∆,k+ 1
2

∂z2
=
C0,k+1 − ck+1hk+1 − C0,k + ckhk

hk
, for k = 1, 2, . . . ,M − 1.

Note that this method can easily be adapted to any sediment distribution curve and, as the distribution
curve can be calculated in advance of any time-stepping procedure, it is highly efficient. For instance,
the curves discussed in [33] can also be used in our model without major modifications.

For ease of presentation, we re-arrange the governing equations (5) into a compact vector form as

∂W

∂t
+
∂F(W)

∂x
= Q(W) + R(W), (9)

where W is the vector of conserved variables, F(W) is the vector of flux functions, Q(W) and R(W)
are the vectors of source terms defined by

W =



H

Hu1

Hc1

Hu2

Hc2

...

Huk

Hck

B



, F(W) =



k∑
α=1

lαHuα

Hu2
1 +

1

2
gH2

Hu1c1

Hu2
2 +

1

2
gH2

Hu2c2

...

Hu2
k +

1

2
gH2

Hukck

0



, Q(W) =



0

−gH ∂B

∂x
− (ρs − ρw)

2ρ1
gl1H

2∂c1
∂x

0

−gH ∂B

∂x
− (ρs − ρw)

2ρ2
gl2H

2∂c2
∂x

0

...

−gH ∂B

∂x
− (ρs − ρw)

2ρk
glMH

2∂ck
∂x

0

0



,
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R(W) =



E1 −D1

1− p
− 1

l1

(
F

(u)
1 + F

(b)
1 + F

(µ)
1

)
E1 −D1 −G3/2c3/2 − εc

∂2c∆,3/2

∂z2

− 1

l2

(
F

(u)
2 + F

(µ)
2

)
+G5/2c5/2 −G3/2c3/2 + εc

∂2c∆,3/2

∂z2
− εc

∂2c∆,5/2

∂z2

...

− 1

lk

(
F

(u)
k + F

(w)
k + F

(µ)
k

)
−GM−1/2cM−1/2 + εc

∂2c∆,M−1/2

∂z2

−E1 −D1

1− p



. (10)

It should be stressed that the source term Q contains the first-order differential terms with respect
to the coordinate x, while the remaining forces are included in the source term R. This structure is
advantageous as it allows for a time splitting operator in (9), for which the source terms Q and R are
treated separately in different stages of the splitting.

3 A Fast finite Volume Method of Characteristics

To integrate the system (9) in time, we divide the time interval into subintervals [tn, tn+1] with length
∆t = tn+1 − tn and we use the notation Wn to denote the value of a generic function W at time tn.
Here, we use the second-order order splitting procedure [34] carried out in three stages as:

Stage 1: Solve for W∗

∂W∗

∂t
= R(W∗), t ∈ (tn, tn+1/2],

(11)
W∗(tn) = W(tn).

Stage 2: Solve for W∗∗

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
= Q(W∗∗), t ∈ (tn, tn+1],

(12)
W∗∗(tn) = W∗(tn+1/2).

Stage 3: Solve for W∗∗∗

∂W∗∗∗

∂t
= R(W∗∗∗), t ∈ (tn+1/2, tn+1],

(13)
W∗∗∗(tn+1/2) = W∗∗(tn+1).

To complete the time integration, the explicit third-order Runge-Kutta method [25] is used for each
stage in (11)-(13). For instance, to advance the solution of (11) from time tn to the next time tn+1

we use

W(1) = Wn + ∆tR(Wn),

W(2) =
3

4
Wn +

1

4
W(1) +

1

4
∆tR(W(1)), (14)

Wn+1 =
1

3
Wn +

2

3
W(2) +

2

3
∆tR(W(2)),
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where we have dropped the asterisk of the variables for ease in the notation. Note that the Runge-Kutta
method (14) is TVD, third-order accurate in time, and stable under the usual Courant-Friedrichs-Lewy
(CFL) condition involving eigenvalues of the system under study. Note that explicit expressions of the
eigenvalues for the system (9) are not trivial to find and as for multi-layered shallow water equation
over fixed beds there may exist situations for which eigenvalues become complex. In these cases, the
multi-layered system (9) is not hyperbolic and yields to the so-called Miles-Howard instability at the
water interfaces [8]. As a consequence, most finite volume methods which are based on Riemann
solvers would fail to resolve the system (9) for the multi-layered shallow water equations over erodible
beds. In the present study, we consider the Finite Volume Method of Characteristics (FVC) method
introduced in [4] and used in [1] for the numerical solution of multi-layered shallow water flows over
fixed beds. In this section, we briefly describe the FVC formulation for the system (9) and further
details can be found in [4, 1]. Note that the FVC method does not require the calculation of the
eigenvalues for the multi-layered system (5). However, the selection of time steps is carried out using
the eigenvalues associated with the single-layered counterpart of the system (5) which are defined in
[3] as

λ1 = 0, λ2,k = uk, λ3,k = uk −
√
ghk, λ4,k = uk +

√
ghk, k = 1, 2 . . . ,M. (15)

Note that the eigenvalues (15) are for the single-layered sediment transport system associated with (5)
using the water heights hk and not the total height H. This results in a system of (3M + 1) equations
for which each uncoupled layer, its associated four eigenvalues are given by (15). It should also be
stressed that similar approach has been considered in [1] for multi-layered shallow water flows over
fixed beds for which eigenvalues of it single-layered counterpart have been used in the simulations.

3.1 Discretization of the flux gradients and source terms

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] centered at xi with a step
size ∆x. For the space discretization of the equations (9), we use the notations

Wi± 1
2
(t) = W(t, xi± 1

2
) and Wi(t) =

1

∆x

∫ x
i+1

2

x
i− 1

2

W(t, x)dx,

to denote the point-values and the approximate cell-average of the variable W at the gridpoint (t, xi± 1
2
)

and (t, xi), respectively. Integrating the equation (12) with respect to space over the control volume,
we obtain the following semi-discrete equation

dWi

dt
+

Fi+1/2 − Fi−1/2

∆x
= Qi, (16)

where Fi±1/2 = F(Wi±1/2) are the numerical fluxes at the cell interfaces x = xi±1/2. In (16), Qi is a
consistent discretization of the source term Q in (9). To reconstruct the numerical fluxes Fi∓1/2 we
consider the method of characteristics applied to the advective version of the system (12). Without
accounting for the source term R(W) we reformulate the equations in (5) into the advective form

∂H

∂t
+

( M∑
j=1

ljuj

)
∂H

∂x
= −

M∑
j=1

ljH
∂uj
∂x

,

∂Qk
∂t

+ uk
∂Qk
∂x

= −Qk
∂uk
∂x
− gH ∂(H +B)

∂x
− (ρs − ρw)

2ρk
glkH

2∂ck
∂x

, (17)

∂Pk
∂t

+ uk
∂Pk
∂x

= −Pk
∂uk
∂x

,
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where the discharge Qk = Huk and the sediment remittance Pk = Hck. The system (17) can also be
rearranged in a compact form as

DkUk
Dt

= Sk (U) , k = 0, 1, 2, . . . , 2M, (18)

with Dk
Dt is the total derivative defined by

Dk

Dt
=

∂

∂t
+ Uk

∂

∂x
, k = 0, 1, 2, . . . , 2M, (19)

where U = (U0, U1, . . . , U2M )T , S (U) = (S0, S1, . . . , S2M )T with

U =



H

Q1

P1

...

QM

PM



, S(U) =



−
M∑
j=1

ljH
∂uj
∂x

−Q1
∂u1

∂x
− gH ∂ (H +B)

∂x
− (ρs − ρw)

2ρ1
gl1H

2∂c1
∂x

−P1
∂u1

∂x
...

−HuM
∂uM
∂x
− gH ∂ (H +B)

∂x
− (ρs − ρw)

2ρM
glMH

2∂cM
∂x

−PM
∂uM
∂x



,

and the advection velocity Uk is defined as

Uk =



M∑
j=1

ljuj , if k = 0,

u k+1
2
, if k = 1, 3, 5, . . . ,

u k
2
, if k = 2, 4, 6, . . . .

(20)

Note that we used k = 0 in the above equations to only formulate the compact advective form (18)
for all the equations and it does not refer to any layer in the system. The principal idea of the FVC
method is to use the method of characteristics to approximate the numerical fluxes in (16). Hence,
the characteristic curves associated with the system (18) are solutions of the initial-value problems

dXk,i+1/2(τ)

dτ
= Uk,i+1/2

(
τ,Xk,i+1/2(τ)

)
, τ ∈ [tn, tn+1] ,

(21)
Xk,i+1/2(tn+1) = xi+1/2, k = 0, 1, . . . , 2M.

Here, Xk,i+1/2(τ) are the departure points at time τ of a particle that will arrive at the interface
gridpoint xi+1/2 in time tn+1. Notice that unlike the Lagrangian methods, the method of characteristics
does not follow the flow particles forward in time, but it traces backward the position at time tn of flow
particles that will reach the fixed gridpoints at time tn+1. To solve the system of ordinary differential
equations (21) we employ the third-order Runge-Kutta scheme (14). It should be noted that only
second-order approximations for (21) has been used in [4, 1].
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Once the characteristics curves Xk,i+1/2(tn) in (21) are calculated, a solution at the cell interface
xi+1/2 is approximated as

Un+1
k,i+1/2 := Uk

(
tn+1, xi+1/2

)
= Ũk

(
tn, Xk,i+1/2(tn)

)
, (22)

where Ũk
(
tn, Xk,i+1/2(tn)

)
is the solution at the departure point Xk,i+1/2(tn) approximated by inter-

polation either globally or locally using the gridpoints of the control volume where it belongs i.e.

Ũk
(
tn, Xk,i+1/2(tn)

)
= P

(
Uk
(
tn, Xk,i+1/2(tn)

))
, (23)

where P represents an interpolating operator. Authors in [4, 1] used the Lagrange interpolation
polynomials in (23). In the current work, we use the cubic Spline interpolation to approximate the
solutions at the characteristics points. Other high-order interpolation procedures can also be applied.

In what follows we use the first-order Euler scheme to illustrate the formulation of the FVC
method but in all our simulations the third-order Runge-Kutta scheme (14) is used. Thus, applied
to the equations (18), the characteristic solutions are computed in the predictor stage of the FVC
method as

Hn+1
i+1/2 = H̃n

i+1/2 −
∆t

∆x
H̃n
i+1/2

M∑
k=1

lk
(
unk,i+1 − unk,i

)
,

Qn+1
k,i+1/2 = Q̃nk,i+1/2 −

∆t

∆x

(
Q̃nk,i+1/2

(
unk,i+1 − unk,i

)
+ gH̃n

i+1/2

((
Hn
i+1 +Bn

i+1)− (Hn
i +Bn

i

))
+

(24)
(ρs − ρw)

2ρ̃nk,i+1/2

glk

(
H̃n
i+1/2

)2 (
c
n+1/2
i+1 − cn+1/2

i

))
,

Pn+1
k,i+1/2 = P̃nk,i+1/2 −

∆t

∆x
P̃nk,i+1/2

(
unk,i+1 − unk,i

)
,

where H̃n
i+1/2 = H

(
tn, X0,i+1/2(tn)

)
, Q̃nk,i+1/2 = Qk

(
tn, Xk,i+1/2(tn)

)
and P̃nk,i+1/2 = Pk

(
tn, Xk,i+1/2(tn)

)
are the solutions at the departure points Xk,i+1/2(tn) computed using the cubic Spline interpolation.
To calculate the numerical fluxes Fi±1/2 = F

(
Wi±1/2

)
, the intermediate states Wi±1/2 are updated

using the characteristic solutions Ui±1/2 in the predictor stage (24). Thus, using the first-order Euler
scheme for illustration only, the solution in the FVC method (16) is obtained using the following
corrector stage

Hn+1 = Hn − ∆t

∆x

M∑
k=1

(
(lkHuk)

n
i+1/2 − (lkHuk)

n
i−1/2

)
,

Qn+1
k,i = Qnk,i −

∆t

∆x

((
Hu2

k +
1

2
gH2

)n
i+1/2

−
(
Hu2

k +
1

2
gH2

)n
i−1/2

)
−

(25)

∆t

∆x
g

(
Ĥn
i

(
Bn
i+1 −Bn

i−1

)
− (ρs − ρw)

2ρ̂nk,i
lk

(
Ĥn
i

)2 (
cnk,i+1 − cnk,i−1

))
,

Pn+1
k,i = Pnk,i −

∆t

∆x

(
(Hukck)

n
i+1/2 − (Hukck)

n
i−1/2

)
.

For the reconstruction of the terms Ĥn
i and ρ̂nk,i, we use the same concept as in [4, 1] to guarantee

that the discretization of the flux gradients and source terms in (16) are well balanced. Hence,

Ĥn
i =

1

4

(
Hn
i+1 + 2Hn

i +Hn
i−1

)
, ρ̂nk,i =

1

4

(
ρnk,i+1 + 2ρnk,i + ρnk,i−1

)
. (26)
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Note that the discretization of equations (11) and (13) is straightforward and it is omitted here. It
should also be mentioned that the considered FVC method is fully conservative by construction and
the non-conservative system (17) is used only to compute the intermediate states for the numerical
fluxes in (16).

4 Numerical results

In this section, we present the numerical results for a validation case and then for two test examples of
a multi-layered dam-break problem over an erodible bed and a multi-layered wind-driven recirculation
problem over a movable bed. The former is used to demonstrate the effects of the features added in this
novel formulation, and the latter to demonstrate the recirculation and two-dimensional capabilities of
the proposed model. We present results obtained using different numbers of layers in the flow domain,
and we also investigate their impact on the erosion and deposition at the bed. It is expected that
more layers used in the flow problem yield a smaller bottom velocity and consequently less erosion.
In all our computations, the total water height H and total concentration C are given, and the water
height hk and concentration ck at the kth layer are calculated using equal fractions as

hk = lkH, ck = lkC, with lk =
1

M
, k = 1, . . . ,M.

For the results presented in this section, the water density ρw = 1000 kg/m3 and the air density
ρa = 1.2 kg/m3. Furthermore, a Courant number of Cr = 0.85 is used in our simulations and ∆t is
adjusted at each time step according to the stability condition

∆t = Cr
∆x

max
k=1,...,M

(∣∣λn2,k∣∣ , ∣∣λn3,k∣∣ , ∣∣λn4,k∣∣) ,
where λ2,k, λ3,k and λ4,k are the eigenvalues of the single-layered sediment transport system given in
(15). For a better presentation of the results we also generate two-dimensional velocity fields from
our one-dimensional results using the post-processing procedure described in [1]. Thus, the vertical
velocity w is computed from the divergence-free equation

∂u

∂x
+
∂w

∂z
= 0. (27)

Here, the vertical velocity w is recovered by integrating the equation (27) for each layer using non-
penetration boundary conditions at the erodible bottom. The streamlines are also reconstructed from
the two-dimensional velocity fields.

Figure 3: Comparison between experimental measurements and computational results obtained for
the dam-break problem over a fixed bed at time t = 3.5 using different numbers of layers.
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4.1 Dam-break problem over a fixed bed

In order to understand the effect of the multi-layer formulation on the erosion, we first consider the
effect of the formulation on the evolution of the dam-break wave only. To this end, the experimental
results presented in [18] are used as a benchmark problem for validation purposes. Here, a dam breaks
over a flat fixed bed flume 19 m long. The initial conditions are given by

H(0, x) =


0.6 m, if x ≤ 0,

0.24 m, if x > 0,

uk(0, x) = 0 m/s.

The dam-break is allowed to evolve up to a time t = 3.5 s after the dam breaks. The obtained results
for the water elevation are shown in Figure 3 using different numbers of layers in the model a mesh with
100 gridpoints. As in [18], a reference solution obtained using the conventional single-layer shallow
water equations is also included in this figure. It is clear from the computed solutions that the results
obtained using the multi-layered model are in good agreement with the experimental measurements
for this benchmark problem. Figure 3 also demonstrates the advantage of the multi-layer formulation
and the effect of numbers of layers in the obtained results.

It is clear from the results presented in Figure 3 that the more accurate results are achieved by
increasing the number of layers in the multi-layered model for this problem. For instance, using the
5-layer model in the simulations, the L1 and L2 errors are respectively 1.1126 and 0.1933 whereas
using the 20-layer model these errors become 1.0669 and 0.1732, respectively. It also be noted that
this increase in the accuracy is small, but it will become critical when evaluating a dam-break problem
over movable bed as the water depth and velocity would be sensible to the erosion and deposition
processes present in the model.

4.2 Dam-break problems over erodible beds

We consider a dam-break flow problem in a domain 50 m long and over flat erodible bed (B(0, x) = 0)
and subject to the following initial conditions

H(0, x) =


2 m, if x ≤ 0,

1 m, if x > 0,

C(0, x) =


0.01, if x ≤ 0,

0.001, if x > 0,

uk(0, x) = 0 m/s.

The bed material is assumed to be a non-cohesive sand with density ρs = 2650 kg/m3, an average
particle size of d = 0.25 mm, an erosion coefficient of ϕ = 0.015, a critical shear stress of 0.0145 Pa,
a porosity of p = 0.4, and a deposition coefficient of ws = 0.001. The gravitational acceleration is set
to g = 9.81 m/s2 and results are presented for different numbers of layers.

We first examine the performance of the proposed FVC method with respect to mesh and layer
refinements. In Table 1 we summarize the obtained results using different numbers of layers M and
different numbers of gridpoints N at time t = 4 s. We present the minimum value of the bed profile
Bmin, the horizontal location xB for the minimum bed profile Bmin, the maximum bottom velocity
max |u1|, the total sediment concentration, and the CPU times. It is clear that increasing the number
of layers and/or the number of gridpoints results in an increase of the CPU time. However, the
increase in the CPU times related to the increase of numbers of layers is minimal compared to the
increase of numbers of gridpoints. Keeping the number of layers M fixed, the results obtained for the
minimum value of the bed profile Bmin and the maximum bottom velocity max |u1| demonstrated a
good convergence as the number of gridpoints N increases. The results obtained for the minimum
bed profile Bmin and for the total sediment concentration confirm that the number of layers has a
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Table 1: Convergence results for the dam-break flow problem using different numbers of layers M
and different numbers of gridpoints N at time t = 4 s. Here, we list the minimum value of the bed
profile Bmin, the horizontal location xB of Bmin, the maximum bottom velocity max |u1|, the total
concentration, and the CPU times given in seconds.

M N Bmin xB max |u1| total c CPU

5

50 -0.2402 0.4902 1.020 2.744 1.094

100 -0.2433 0.2475 1.034 2.797 1.903

200 -0.2439 0.1244 1.046 2.827 4.921

400 -0.2435 0.0623 1.071 2.849 11.94

10

50 -0.2009 0.4902 0.9510 2.271 0.873

100 -0.2033 0.2475 0.9714 2.290 1.894

200 -0.2038 0.1244 0.9861 2.302 6.546

400 -0.2036 0.0623 1.036 2.310 14.95

20

50 -0.1900 0.4902 0.9007 1.964 1.037

100 -0.1892 0.2475 0.9180 1.902 2.579

200 -0.1877 0.1244 0.9353 1.899 7.231

400 -0.1881 0.0623 0.9864 1.900 17.15

Figure 4: Velocity fields for the dam-break flow problem using 20 layers at four different instants. The
colorbar refers to the intensity of the velocity fields.

profound impact on the sediment transport. Under the considered flow conditions, more layers in the
system yield to lower bottom velocities and smaller total sediment concentrations.
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In Figure 4 we present the water velocity and sediment concentration using 20 layers and 100
gridpoints at four different instants namely, t = 1 s, 2 s, 3 s and 4 s. In this figure the velocities are
shown in two dimensions and it is clear to see the velocity gradient present in the lower layers which is
the effect we set out to capture in this example. As in all dam-break flow problems, at t = 0 the dam
collapses and the flow system consists of a shock wave traveling downstream and a rarefaction wave
traveling upstream. As it can be seen from the results in Figure 4, no local undershoots or overshoots
have been detected in the water velocity and the sediment concentration in the presence of steep
gradients during the simulation process. The evolution of sediment concentrations shown in Figure
5 illustrates the sedimentary diffusion and profiles of the sediment concentration can clearly be seen
diffusing up through the layers. Our FVC method accurately approximates the solution to this dam-
break problem over the erodible bed. For instance, the qualitative comparison with similar numerical
results reported in [3] for the single-layered counterpart of this test example is also satisfactory. The
flow and sediment features are similar in both models but with differences in the magnitude of water
velocity and the amount of erodible sediments in each model.

Figure 4 exhibits the velocity fields obtained using 20 layers and 100 gridpoints at times t = 1 s, 2 s,
3 s and 4 s. We also include in these figures the water free-surface and the profile of the erodible bed.
The colorbars in these plots refer to the magnitude of the water velocities in the flow domain. As can be
observed from these results, large horizontal velocities are generated in the area where the dam breaks
and they propagate within the waterfronts. However, the vertical velocities within this area are weaker
at the bottom layer compared to those obtained at the top layer. For the considered flow problem
with 20 layers, the variation in the flow velocity creates a very active sediment exchange between the
water flow and the bed load and also produces sharp spatial gradients in the sediment concentration.
Overall the flow and the sediment features for this problem are recovered with no spurious oscillations
appearing in the results obtained using the FVC method. Apparently, the computed results verify the
stability and the shock capturing properties of the proposed FVC method. Here, Figure 5 also depicts
the evolution of the concentrations across the layers and it demonstrates the bed material as passed
up through the layers. It further demonstrates how the sedimentary distribution is heavily weighted
towards the lower layers as discussed in [19] among others. As the flow ability to pick, deposit or retain
sediment is mainly determined by its velocity, Figure 5 in conjunction with Figure 4 show the benefits
of a multi-layered shallow water system when used for modelling sediment transport problems.

To check the effects of the number of layers on the bed-load and the sediment transport we display
in Figure 6 the bed and velocity profiles obtained using the single-layered model and the multi-layered
model with 2, 5, 10 and 20 layers. The results are presented at time t = 4 s using 100 gridpoints.
Note that only the bottom velocity u1 is used in the considered erosion formula (8) for the multi-
layered simulations included in Figure 6. As expected, the single-layered model overestimates the bed
velocity and more layers included in the multi-layered model yield smaller velocities near the bed. The
results presented in Figure 6 for the velocity profiles also confirm the convergence in the considered
multi-layered model such that, as the number of layers in the model increases the obtained velocity
profiles are similar. Furthermore, as can be seen from the results in Figure 6, increasing the number of
layers in the model results in a shallower erosion than the single-layered model which it is postulated
overestimates the erosion. This effect is mainly due to the fact that larger number of layers in the
multi-layered model yields to a small bottom velocity which in return is used for evaluating the erosion
using the equation (8). It should also be stressed that we have observed no further improvements in
results, not reported here, using a number of layers higher than 20. It is evident from the presented
results that the dam-break flows over erodible sedimentary beds are highly affected by the number of
layers in the model, such that the lower the number of layers the more significant bed erosion will be.

In Figure 7, we further examine the response of the sediment-load for the approximation of velocity
in the erosion terms. Here, we plot the profiles of the bed using in the equation (8) the velocity obtained
using the single-layered model, the multi-layered model with 20 layers, and the averaged velocity of
the 20 layers. Again, using the water velocity obtained from the single-layered model or the averaged

15



Figure 5: Sediment concentration (left column) and concentration profiles (right column) for the dam-
break flow problem using 20 layers at four different instants. Only few selected layers are displayed.
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Figure 6: Bed profiles (left column) velocity profiles (right column) for the dam-break flow problem
using different numbers of layers.

Figure 7: A comparison of bed profiles for the dam-break flow problem using different approximations
of the velocity in the erosion term.

Figure 8: Bed profiles demonstrating the effect of the interlayer friction terms (left column) and the
effect of the momentum exchange terms (right column) on the dam-break flow problem.

velocity from the multi-layered model in the erosion equations overestimates the real amount of the
erosion in the sediment transport system. The results obtained using the bottom velocity from the
multi-layered model with 20 layers seem to capture the correct sediment transport patterns. Note
that, according to the erosion equation (8), an increase of the water velocity leads to an increase in
the erosion effects. Thus, a weak erosion is expected for small near-bed velocity which is achieved
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Figure 9: Illustration of the flow domain for the wind-driven recirculation problem over erodible beds.

very well using the multi-layered models.

Our final concern with this test example is to check the influence of the exchange terms in the
multi-layered model (5) on the sediment transport results. To this end, we first solve the equations
(5) without the mass exchange terms (i.e. F (µ) = 0) and with the mass exchange terms (i.e. F (u)

defined in (10)). The obtained results for the water free-surface and the bed profile at time t = 4 s are
illustrated in Figure 8. For the considered flow and sediment conditions, the effects of mass exchange
terms on the morphological processes can be clearly seen on the bed profile. Observe the lack of
erosion in the results without mass exchange terms compared to those obtained with mass exchange
terms in Figure 8. The interlayer friction also has a smaller but noticeable effect on the bed-profile
created. It is evident that accounting for mass exchange terms and interlayer friction in the multi-
layered model modifies the near-bed velocity and it reproduces a well-developed sediment transport
in the flow domain.

4.3 Wind-driven recirculation problems over erodible beds

In this example we consider a recirculation flow problem over a trench generated from a blowing wind
on the surface. Here, the experiment is carried out in a rectangular channel containing a trench with
1:50 slopes as sketched in Figure 9. A similar domain has been studied in [11] for multi-layered shallow
water equations in polydisperse sedimentation. The domain is 1 km long with a trench 2 m deep and
200 m long centered in the domain and subject to wind blowing from the left with a speed of 10 m/s
and wind stress coefficient σ2 = 0.0015. For the bed-load and suspended sediments we use the same
sediment properties as in the previous test example for dam-break flows over erodible beds. Initially
the flow is at rest and suspended sediments are injected in the trench at a depth below 3.5 m as

H(0, x) = 7 m−B(0, x), C(0, x) =


0.4, if 400 m < x ≤ 600 m and − 2 m < z ≤ 1.5 m,

0, elsewhere.

It is worth remarking that in this example, the sediments are located only in a part of the computational
domain [400, 600] and only at a fixed water depth between −2 m and 1.5 m. This can not be
implemented using a single concentration in the model and therefore, it justifies the inclusion of
multiple concentrations ck in our multi-layered system (5). Here, the concentration ck(0, x) = 0.4 for
x ∈ [400, 600] and for each layer k located at a depth between z = −2 m and z = 1.5 m. Note that,
unlike the previous flow problem over erodible beds, the water flow in the considered problem is very
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Figure 10: Velocity field (left column) and sediment concentration (right column) for the wind-driven
recirculation problem using 20 layers at four different instants. The dashed line indicates the initial
bed profile. Colorbars indicate the velocity intensity (left) and sediment concentration (right), and
streamlines are shown on the velocity plot (left).

Figure 11: Bed profiles (left column) velocity profiles (right column) for the wind-driven recirculation
problem using 10 and 20 layers.
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Figure 12: Sediment concentration for the wind-driven recirculation problem using 10 layers (left
column) and 20 layers (right column) at four different instants. Only few selected layers are displayed.

slow and the morphodynamical problem with movable bed resulting in the formation of deposition
and weak shocks. Therefore, a good numerical accuracy is required in order to capture the different
phenomena present in its evolving solution. As a consequence, the later flow problem over erodible
beds is more difficult to handle but the results shown here illustrate the robustness of the proposed
FVC method. For all results presented in this section, the computational domain is discretized in
100 gridpoints and flow velocities, bed profiles and sediment concentrations are shown for 10-layered
and 20-layered models at four different times t = 7500 s, 15000 s, 22500 s and 30000 s. Notice that
these large times are required in the simulation for the water flow to build up speeds and generate
recirculations in the domain as well as some dynamics at the bed.

The results obtained using 20 layers are presented in Figure 10. For this test example, the water
free-surface remains relatively flat during the simulation times however, the velocity fields and sediment
concentrations exhibit different flow and sediment features. Observe the recirculation zones appeared
in the velocity fields obtained using the 20-layered models. Due to the structure of the channel
topography, a strong inner recirculation is generated at the center of the domain with a weaker outer
recirculation near the domain walls. Obviously, large values of the water velocity are located on the
top layer as it can be seen in the snapshots of the velocity intensities in Figure Figure 10. It is also
observed that due to the inner recirculation slightly high velocities are created in the flow domain.
The proposed FVC method performs well for this unsteady multi-layered flow problem and it produces
accurate numerical solutions without requiring special treatment of the source terms or complicated
upwind discretizations of the gradient fluxes in the multi-layered equations.

Now, we turn our attention to the sediment transport associated with this problem. Note that in
this problem we use a non-natural concentration distribution as set out in the initial conditions. As
can be seen from the results for the sediment concentrations in Figure 10 for the 20-layered models,
the suspended sediments form a plume which is advected by the water flow in the opposite direction
to the wind force. As demonstrated in the results, the inter-layer diffusion terms (10) are crucial to
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this model as sediments are able to transit between layers and retain normality. Note that these flow
and sediment features are impossible to recover using the conventional single-layered model studied
for example in [5, 7, 3].

Under the actual flow conditions, the erosion is negligible and the deposition is the dominant factor
in this test example. This is essentially attributed to the water velocity created at the bottom layer
near the bed. To emphasis this features we illustrate in Figure 11 the bed and the vertical velocity
profiles obtained using the 10-layered and 20-layered models. The vertical velocity profiles in the model
exhibit a decrease in the velocity from the top layer at the free-surface to the bottom layer near the
bed. There are very little differences between the bed profiles in the 10-layered and 20-layered models.
For visualizing the comparisons, we display in Figure 12 the sediment concentrations obtained using
the 10-layered model and the 20-layered model at the four selected simulation times. Comparing the
mean concentrations in these results, we can see a difference in the amplitudes between the 10-layered
and 20-layered results. For the considered flow and sediment conditions, a convergence in terms of
number of layers in the model is achieved using 20 layers. Again, the FVC method performs well
for this wind-driven recirculation problem over erodible beds since it does not dissipate the moving
fronts and no nonphysical oscillations have been observed when the water flows over the trench. It
should also pointed out that the performance of our FVC method is very attractive since the computed
solutions remain stable and oscillation-free even for coarse grids without solving nonlinear systems or
Riemann problems.

5 Conclusions

In this study we have presented a new model that combines the multi-layered shallow water equa-
tions with the sediment transport including erosion and deposition effects. Mass exchange terms are
accounted for in the inter-layered coupling for both water flow and sediment transport as well as
including vertical sediment diffusion. To solve the coupled system, we have implemented the finite
volume characteristics method along with a second-order splitting to deal with the source terms. The
finite volume characteristics method is second-order accurate and it consists of two stages which can
be viewed as a predictor-corrector procedure. In the first stage, the method reconstructs the numer-
ical fluxes using the method of characteristics. This stage results in an upwind discretization of the
characteristic variables and avoids the Riemann problem solvers. In the second stage, the solution is
updated using the finite volume discretization of the conservation system. The method combines the
attractive attributes of the finite volume discretization and the method of characteristics to yield a
simple solver for multi-layered shallow water flows over erodible beds. The proposed method exhibited
good shape, high accuracy and stability behavior for all sediment transport regimes considered. Veri-
fication of the proposed method has been carried out by first using a benchmark problem to compare
the obtained results to experimental data and demonstrate the effect of number of multi-layers on the
computed results, and next by using a test example of dam-break flows over erodible beds and a test
example of wind-driven recirculation flows over movable beds. The presented results demonstrate the
capability of the multi-layered models that can provide insight to complex suspended sediment and
bed-load transport in free-surface flows. The extension of the proposed multi-layered models to the
two-dimensional sediment transport problems will be the topic of future research.

Data Availability Statement

The data underlying the results can be obtained from the corresponding author on reasonable request.
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