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ABSTRACT
Annual energy production (AEP) is commonly used in objective functions for wind farm layout optimization. AEP is pro-
portional to wind farm power production integrated over an annual distribution of free-stream wind conditions. Physics-
based estimates of wind farm power production typically rely on low-fidelity engineering wake models that approximate the 
steady-state wind farm flow field. AEP estimates are then obtained by performing independent simulations for discrete wind 
conditions and using rectangular quadrature to account for each condition's expected frequency of occurrence. Depending 
on the number of simulated discrete wind conditions, this numerical integral could be hampered by poor accuracy or high 
computational costs. The FLOWERS AEP model instead poses an analytical integral of the engineering wake model over 
the variable wind conditions, yielding a closed-form, analytical function for wind farm AEP. This paper derives the analyt-
ical functions for FLOWERS AEP and its derivatives with respect to turbine position, which are useful for gradient-based 
wind farm layout optimization, in nondimensional form. We then analyze the benefits of the FLOWERS AEP model over 
conventional reference models, focusing on its low cost, adequate wake loss predictions, and smooth design space. Although 
the FLOWERS approach is found to predict the exact value of AEP with some error relative to the reference model (within 
14% on average), it dramatically reduces computation time by an order of magnitude, produces a qualitatively similar design 
space at relatively low resolution, and yields comparable optimal layouts. This significant speed improvement is critical in 
layout optimization applications, where determining an optimal layout in an efficient manner is more important than precise 
AEP prediction.

1   |   Introduction

An important application of annual energy production (AEP) 
models is in wind farm layout optimization (WFLO) problems. 
In these studies, AEP can be an objective function to be maxi-
mized by optimizing over the placement of each turbine in the 
farm within a given boundary [1–3]. The energy production of a 
wind farm over a given period is a function of the ambient wind 

conditions such as mean wind direction, mean wind speed, tur-
bulence intensity, and atmospheric stability [4, 5]. These prop-
erties are highly variable and nonstationary over time scales of 
an hour or longer [6]. Therefore, a key challenge in estimating 
the expected energy production of a wind farm over longer time 
horizons (e.g., an operational lifetime of years) is in the account-
ing of these variable atmospheric conditions. In this framing, 
AEP—which refers to the energy content of the expected power 
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production over the course of 1 year—is an uncertainty quantifi-
cation problem for wind plant performance.

The power production of a wind plant is diminished by wake 
interactions between turbines. Wind turbines produce a tur-
bulent wake, which imparts a deficit in the mean wind speed 
caused by the thrust of the rotor [7]. This wake velocity defi-
cit—which dissipates with downstream distance as the wake 
mixes with the free-stream flow—characterizes a region of 
reduced kinetic energy density [5]. For a second turbine op-
erating within this wake, the potential power production is 
reduced compared to operating in the free-stream flow. Power 
losses of 10%–20% [8] and up to 40% in the worst-case (i.e., 
aligned) wind directions [9, 10] have been documented in 
utility-scale wind farms.

Physics-based predictions of wind farm power production there-
fore require the modeling of the ambient wind conditions and 
the modeling of intrafarm wake interactions under these con-
ditions. Low-fidelity engineering wake models are analytical 
functions derived from basic governing flow equations (such as 
conservation of mass and momentum) whose output is often de-
pendent on parameterized wind turbine forcings and ambient 
turbulence [11–13] (see the review by Porté-Agel et al. [4] for de-
tailed discussion on this topic). Because engineering wake mod-
els approximate the infinite time-averaged wind farm flow, the 
flow scenarios are limited to statistically stationary atmospheric 
conditions. To extend these modeling tools to an AEP estimate, 
the variability of these wind conditions must be accounted for. 
If the atmospheric conditions are defined by a set of uncertain 
variables �∞, and assuming the probability density function of 
the atmospheric conditions, f (�∞), is known, then AEP is pro-
portional to the expectation (denoted by �) of power production 
of the wind farm P under the uncertainty of the steady-state 
conditions: 

The standard approach to evaluate the expectation of wind 
farm power production for AEP predictions relies on numer-
ical integration. First, the probability density function of the 
wind conditions (viz., free-stream wind direction and wind 
speed) is estimated by discretizing historical data at the site of 
interest into a tabulated wind rose. Second, independent sim-
ulations are performed for each unique discrete atmospheric 
state. Finally, a weighted average of turbine power production 
is taken across all simulations according to the expected fre-
quency of occurrence of each state, which is analogous to a 
midpoint rule numerical integration (i.e., rectangular quadra-
ture) [14]. We refer to these AEP predictions based on the 
numerical integration of an underlying wind farm model as 
“Conventional” AEP models. This implementation is widely 
used for estimating AEP with high-fidelity simulations [15] 
or low-fidelity wake models [14, 16, 17] and is the internal 
method in state-of-the-art wake modeling libraries such as 
FLORIS [18] or PyWake [19].

An alternative approach first proposed in LoCascio et  al. [20] 
introduced the FLOWERS model for annually averaged wind 
speed. The FLOWERS approach evaluates expected power pro-
duction (Equation  1) with an analytical integral across wind 

conditions instead of a numerical integral. The resulting ana-
lytical, closed-form expression for AEP reduces computational 
cost compared to the Conventional AEP modeling approach, 
and FLOWERS was found to predict AEP about an order of 
magnitude faster. One compelling application of the FLOWERS 
model is in the WFLO problem, where FLOWERS was found to 
reduce the computational costs of WFLO studies by an order of 
magnitude.

Our objective in this paper is to further advance and demon-
strate the advantages of the reduced-order, design-oriented 
FLOWERS AEP model over Conventional AEP models for lay-
out optimization. To achieve this objective, we first derive an-
alytic functions for the gradient of the FLOWERS AEP model 
with respect to turbine position, which are ideal for gradient-
based WFLO problems where the design variables are the posi-
tion coordinates of individual turbines. In the process, we also 
update the derivation of FLOWERS AEP from the previous 
work [20] and express it in a nondimensional form. Next, we 
analyze how FLOWERS achieves three desirable characteristics 
of an AEP model in WFLO studies: (1) low cost, (2) adequate 
wake loss predictions, and (3) smooth design space. Lastly, we 
compare the performance of FLOWERS to Conventional AEP 
models in a simple layout optimization problem to demonstrate 
the potential advantage of the combination of cost savings, ad-
equate accuracy, and smoothness. We expand on each of these 
characteristics in the remainder of this section.

First, the computational cost of a layout optimization study is 
nontrivial: The overall time required for these studies can eas-
ily exceed 24 h [21] and necessitate the use of high-performance 
computing. A straightforward way to reduce the cost of these 
studies is to reduce the cost of the objective function evaluation. 
This cost is determined by two factors: the cost of the model 
used to estimate power predictions under quasi-stationary 
conditions and the cost of the integration over the expected 
wind conditions. Considering the cost of the power prediction 
model, high-fidelity computational fluid dynamics simulations 
are prohibitively expensive for WFLO applications [22, 23]. 
Consequently, low-fidelity engineering wake models are the 
standard tool for these studies [15, 24–32], with evaluation times 
on the order of 1 second or less.

As for the integration, one limitation of the numerical integra-
tion approach of Conventional AEP models is that cost scales 
with the number of simulated discrete wind conditions. Some 
recent studies have focused on statistical methods to better sam-
ple discrete wind conditions for the numerical integral. Murcia 
et al. [14] and Padrón et al. [28] used polynomial chaos expan-
sion to estimate AEP with significantly fewer simulations, while 
King et al. [33] used Bayesian quadrature for a similar purpose; 
these techniques were able to reduce the cost of the AEP estimate 
by 80%–95%. Another method by Quick et al. [29] used Monte 
Carlo integration in place of the basic rectangular quadrature to 
avoid the cost issues associated with the discretization of wind 
conditions. These methods are promising but are still limited 
to the fundamental numerical integral approach. We will use 
evaluations of random wind farm layout configurations across 
a variety of wind roses to quantify the cost savings that can be 
obtained through analytical evaluation of the integral enabled 
by FLOWERS.

(1)AEP ∝ �f (�∞)

[
P(�∞)

]
.
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Second, an AEP model must adequately capture the “wake 
avoidance” of a wind farm layout. As discussed in LoCascio 
et al. [20], the layout optimization problem can be conceptual-
ized as a wake avoidance problem: The goal of the optimization 
study is to place turbines where they avoid the wakes of other 
turbines as much as possible. In this definition, the objective 
function is a reduced-order quantitative metric of wake avoid-
ance that must be able to consistently map marginal changes in 
turbine position to marginal changes in wake losses. Therefore, 
the absolute accuracy of the AEP estimate is not essential, espe-
cially if the objective function is normalized by its initial value. 
We will use the analysis of the AEP predictions for the random-
ized wind farm layouts across the range of wind roses to deter-
mine FLOWERS' capability to consistently identify the layouts 
that maximize AEP.

Third, an AEP model should be smooth with respect to turbine 
position. The WFLO problem is nonlinear, which produces a 
highly multimodal design space with numerous local solutions 
[31, 34]. Many WFLO studies leverage gradient-based algo-
rithms that use gradients of the objective function to locate local 
optima [15, 21, 25–27, 31, 34, 35]. Numerical error in the integral 
within the objective function (Equation 1) or errors in gradient 
estimates can contribute spurious local optima or other unde-
sirable features to the design space that make it more difficult 
for the optimizer to effectively locate local optima and satisfy 
optimality conditions.

Ideally, analytical functions of the gradients are available for 
gradient-based optimization. Guirguis et al. [36] derived the an-
alytic gradients of a simplified Conventional AEP model for use 
in a WFLO study. If analytical functions are not available, gradi-
ents can be computed through automatic differentiation or com-
plex step methods [37]; these gradient calculations are highly 
accurate but require the wake modeling code to be constructed 
in a way that is complementary to specialized automatic differ-
entiation packages. Thomas et al. [38] addressed this point by 
modifying the wake model underlying their objective function 
to make it more suitable for automatic differentiation. The most 
straightforward option for gradient information is to estimate 
them with first- or second-order finite differences [37]. However, 
finite-difference gradients require one or two evaluations of the 
underlying function per dimension and possess nontrivial nu-
merical error. We will compare the behavior of FLOWERS and 
Conventional AEP models across the design space for WFLO 
problems to determine their suitability as objective functions in 
WFLO problems.

The paper is organized as follows. Section 2 describes the der-
ivation of the FLOWERS AEP model and its gradient with re-
spect to turbine positions and the Conventional AEP models 
and differences in their modeling assumptions. Section 3 com-
pares the FLOWERS and Conventional AEP models across the 
randomly generated cases with a focus on two quantities of in-
terest: the AEP predictions themselves and the time required 
to evaluate the models. Section  4 demonstrates the behavior 
of these models as layout optimization objective functions 
and analyzes the design spaces they produce. Section  5 illus-
trates the performance of these models in a layout optimization 
case study. Finally, Section  6 outlines the key takeaways and 
conclusions.

2   |   AEP Models

2.1   |   FLOWERS AEP

2.1.1   |   AEP Function Derivation

We wish to generalize the definition of AEP in dimensionless 
form, which requires the identification of key scaling parame-
ters. The relevant length scale is the rotor diameter of the tur-
bines, D, because wake structures and their evolution with 
downstream distance are proportional to the rotor size. Our 
choice of velocity scale is the cut-out wind speed of the turbine, 
uc, because the turbine control system sets an upper bound on 
the incident wind speed that yields nonzero power production. 
The air density, �, is assumed to be constant. Lastly, a unit con-
version, Q, is necessary to relate expected power production to 
the proportional AEP (Q = 8760 h per year to convert from W 
to Wh).

Based on these relevant scales, we identify key dimensionless 
parameters that fall into three categories: flow parameters, 
turbine parameters, and plant parameters. Regarding the flow, 
for a dimensional wind speed u and wind direction � (assum-
ing units of radians), we obtain normalized wind speed ũ and 
direction �̃ as follows: ũ = u∕uc, �̃ = �∕2�. The effects of atmo-
spheric boundary layer and wake-added turbulence on the wake 
behavior are parameterized with a tunable wake expansion rate, 
k. Also, we consider the joint probability density function of the 
uncertain free-stream wind direction and speed, f (ũ∞, 𝜙̃∞), as 
previously defined. The turbine is modeled as an actuator disk 
and parameterized with thrust and power coefficients, CT (ũ) 
and CP(ũ), respectively, which are functions of the incident nor-
malized wind speed. Lastly, at the plant level, the positions of all 
turbines are defined by (x, y), where x and y are the easting and 
northing coordinates, respectively, and (xi, yi) ∀ i ∈ {1, … ,N} 
for N turbines in the plant. The coordinates are normalized by 
the rotor diameter as follows: x̃ = x∕D, ỹ = y∕D.

We posit that the AEP of a wind farm can be expressed as a di-
mensionless function F of these dimensionless quantities: 

We make some initial assumptions to guide the derivation. First, 
the free-stream wind conditions, u∞ and �∞, and the probabil-
ity distribution, f (ũ∞, 𝜙̃∞), are uniform across the wind plant. 
Second, the wake expansion parameter, k, is also uniform 
throughout the wind farm and does not depend on local turbu-
lence intensity. Third, all turbines are assumed to be identical, 
with the same thrust and power curves, rotor diameter, and hub 
height. Lastly, we treat the rotor as a single point and conse-
quently neglect the effects of wind shear, wind veer, and partial 
wake overlap.

A simple definition for the time-averaged power production of a 
wind turbine is a function of the incident wind speed (averaged 
across the rotor-swept area) cubed: 

(2)
AEP

�

8
Q�D2u3c

= F(x̃, ỹ,CP ,CT , k, f ).

(3)Pi =
1

2
CP(ui)�Au

3
i ,
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where Pi is the power production of turbine i, ui is the incident 
wind speed, and A is the rotor-swept area, A = �D2∕4. The 
local wind speed for a given turbine is the difference between 
the free-stream wind speed u∞ and the total wake velocity defi-
cit Δui caused by other turbines: ui = u∞ − Δui. In wind plants 
with many turbines interacting with each other, this total wake 
velocity deficit is the combined effect of several individual wake 
velocity deficits Δuij produced by turbines j in the neighbor set of 
i, j ∈i. A wake velocity deficit only exists downwind of turbine 
j, so in general, the neighbor set i contains all turbines upwind 
of turbine i: j ∈i if xi − xj > 0. Here, for simplicity and without 
the loss of generality, we assume that the wind is westerly, so the 
position coordinate x is aligned with the streamwise direction.

The relative orientation of turbines, which is determined by the 
free-stream wind direction �∞, defines the neighbor set under-
lying these wake interactions. Also, turbine power production 
and the magnitude of the wake deficits are a function of the free-
stream wind speed u∞. Thus, Δui = Δui(u∞,�∞), and the total 
power production of the wind farm is a function of these two 
atmospheric state variables: 

Expected power production P is the expected value of Equation (4) 
with respect to the probability density function f (u∞,�∞). AEP 
is the total energy production over the course of 1 year at a rate P, 
with the unit conversion Q to relate these two quantities: 

The FLOWERS AEP model is based on the Jensen wake model 
[12], which defines the wake velocity deficit with a top-hat pro-
file as follows: 

The wind direction in this case is aligned with the positive x 
direction, so x and y are the streamwise and spanwise Cartesian 
coordinates, respectively. xij and yij are the relative position be-
tween turbines i and j: xij = xi − xj, yij = yi − yj. The thrust co-
efficient CT is a function of the wind speed incident on turbine 
j that produces the wake. W (xij, yij) is a step function that rep-
resents the discrete wake region: 

We convert Equation (6) into polar coordinates, rij =
√
x2
ij
+ y2

ij
 

and �ij = arctan
(
yij

xij

)
. We also relax the wake geometry defini-

tion to permit a variable wind direction �∞: 

We normalize the polar coordinates with the relevant scales, 
r̃ ij = rij∕D and �̃ij = �ij∕2�, to express Equation (8) in our dimen-
sionless groups: 

The wake boundary in Equation (7) can be expressed in terms of 
a critical angle �̃(c)ij  (which we define to be positive): 

Solving for �̃(c)ij , 

we recognize that W (r̃ ij, �̃ij, �̃∞) = 1 if |�̃ij − �̃∞| ≤ �̃
(c)

ij  and is zero 
otherwise.

We use a linear combination of wake velocity deficits [39], 

Substituting Equations (9) and (12) into Equation (5), 

Note that the wake region W  now handles the definition of the 
neighbor set i and so the summation over j has been relaxed to 
include all indices j ∈ {1,2, … ,N} (except i, because a turbine's 
wake cannot interact with itself).

Here, treating the thrust and power coefficients as a function of 
local wind speed, ũi, creates a coupled system of wake interactions; 
the incident wind speeds would need to be solved in a serial fash-
ion before power is computed because the wake deficits are not 
independent of one another. To make these deficits independent, 
we approximate CP(ũi) ≈ CP(ũ∞) and CT (ũi) ≈ CT (ũ∞). We note 
that this approximation is consistent with operation near Region 
II of the power curve, where aerodynamic efficiency is optimal.

To evaluate the expectation in Equation (13), we integrate over 
the probability distribution f (ũ∞, 𝜙̃∞): 

(4)

P(u∞,�∞) =

N∑
i=1

Pi(u∞,�∞) =
�

8
�D2

N∑
i=1

CP(ui)[u∞−Δui(u∞,�∞)]
3.

(5)AEP =
�

8
Q�D2

�f (u∞ ,�∞)

[
N∑
i=1

CP(ui)[u∞−Δui(u∞,�∞)]
3

]
.

(6)Δuij

u∞
(xij, yij) =

1 −
√
1 − CT (uj)

(2kxij∕D+1)2
W (xij, yij).

(7)W =

{
1, xij≥0 and |yij|≤kxij+D∕2,
0, else.

(8)
Δuij

u∞
(rij, �ij,�∞) =

1 −
√
1 − CT (uj)

(2krijcos(�ij−�∞)∕D+1)2
W (rij, �ij,�∞).

(9)

Δuij

u∞
(r̃ ij, 𝜃̃ij, 𝜙̃∞) =

1 −
√
1 − CT (ũj)

(2kr̃ijcos[2𝜋(𝜃̃ij− 𝜙̃∞)]+1)
2
W (r̃ ij, 𝜃̃ij, 𝜙̃∞).

(10)r̃ ijsin
(
2��̃

(c)

ij

)
= kr̃ijcos

(
2��̃

(c)

ij

)
+
1

2
.

(11)�̃
(c)

ij (r̃ ij, k) =
1

2�
arctan

⎛
⎜⎜⎜⎜⎝

1

2r̃ ij
+ k

�
1 + k2 −

�
1

2r̃ ij

�2

−
k

2r̃ ij
+

�
1 + k2 −

�
1

2r̃ ij

�2

⎞
⎟⎟⎟⎟⎠
,

(12)Δui =
∑
j∈i

Δuij.

(13)

AEP=
𝜋

8
Q𝜌D2 34�f (ũ∞ ,𝜙̃∞)

⎡⎢⎢⎢⎣

N�
i=1

CP(ũi)ũ
3
∞
u3c

⎡⎢⎢⎢⎣
1−

N�
j=1,j≠i

1−
�
1−CT (ũj)

(2kr̃ijcos[2𝜋(𝜃̃ij− 𝜙̃∞)]+1)
2
W (r̃ ij, 𝜃̃ij, 𝜙̃∞)

⎤⎥⎥⎥⎦

3⎤⎥⎥⎥⎦
.

(14)

AEP=
𝜋

8
Q𝜌D2u3c

N�
i=1

�
ũ∞

�

𝜙̃∞

CP(ũ∞)ũ
3
∞

�
1−

N�
j=1,j≠i

1−
√
1−CT (ũ∞)

(2kr̃ijcos[2𝜋(𝜃̃ij− 𝜙̃∞)]+1)
2
W (r̃ ij, 𝜃̃ij, 𝜙̃∞)

�3

f (ũ∞, 𝜙̃∞) dũ∞ d𝜙̃∞.
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The integral over this cubic expansion is intractable because the 
elements of the summation over j in the integrand are not inde-
pendent. We simplify by switching the order of the integration 
and the cubic expansion, resulting in the following expression: 

After rearranging and defining two main terms, we arrive at the 
following expression that conforms to the functional form posed 
in Equation (2): 

The first term p∞ represents the maximum possible AEP assum-
ing zero wake losses. The second term Δpij is the expected con-
tribution of wake losses. The overbar ∗ indicates an expected 
quantity (i.e., mean) as a result of an integral over the domain of 
wind conditions.

The definition of p∞, 

represents the expected power production of a freestanding tur-
bine and is primarily a function of the wind rose. The probability 
distribution is typically approximated by historical data at the 
site of interest (i.e., a wind rose). The free-stream wind speed 
and wind direction are discretized into uniformly spaced bins: 
u(s)∞ ∀ s ∈ {1, … ,}, �(d)

∞
∀ d ∈ {1, … ,}. The frequency of 

occurrence of each discrete atmospheric state (u(s)∞ ,�(d)∞
) is tab-

ulated over a sufficiently long measurement period to approxi-
mate the true probability distribution, f (u∞,�∞) ≈ f (u(s)∞ ,�

(d)
∞
) . 

With this discretized probability density function, this double 
integral simply becomes a weighted sum across each discrete 
wind condition: 

For the wake deficit term, 

we make the simplification to use the average free-
stream wind speed per wind direction, û∞, to reduce the 

integration to a single variable. The probability density 
function f (u∞,�∞) then becomes solely a function of wind di-
rection, f (�∞): 

This average free-stream wind speed is substituted into 
Equation (19): 

A portion of this term is solely a function of the discrete wind 
direction �̃(d)

∞
. We introduce a discrete Fourier transform to ex-

press these discrete inputs in a continuous and analytical form: 

where a0, am, and bm are the Fourier coefficients and M is the 
number of Fourier modes. Note that c(�̃∞) is a continuous func-
tion of the wind direction while the wind rose is restricted to a 
discrete space. Substituting into Equation (22), 

We introduce a change of the integration variable � ≡ �̃ij − �̃∞, 
which represents the normalized polar angle relative to the wind 
direction. Recall that the wake velocity deficit is zero for 
|𝛼| > 𝜃̃

(c)

ij , so we can replace the integration bounds with ± �̃
(c)

ij  
and remove the step function W : 

(15)
AEP =

𝜋

8
Q𝜌D2u3c

N�
i=1

⎡
⎢⎢⎢⎣
�
ũ∞

�

𝜙̃∞

C
1∕3

P
(ũ∞)ũ∞ f (ũ∞, 𝜙̃∞) dũ∞ d𝜙̃∞

−

N�
j=1,j≠i

�
ũ∞

�

𝜙̃∞

C
1∕3

P
(ũ∞)ũ∞

�
1−

√
1−CT (ũ∞)

(2kr̃ijcos[2𝜋(𝜃̃ij− 𝜙̃∞)]+1)
2
W (r̃ ij, 𝜃̃ij, 𝜙̃∞)

�
f (ũ∞, 𝜙̃∞) dũ∞ d𝜙̃∞

⎤⎥⎥⎥⎦

3

.

(16)F =
AEP

�

8
Q�D2u3c

=

N∑
i=1

[
p∞−

N∑
j=1,j≠i

Δpij(r̃ ij, �̃ij)

]3

.

(17)p∞=
∫
ũ∞

∫

𝜙̃∞

C
1∕3

P
(ũ∞)ũ∞ f (ũ∞, 𝜙̃∞) dũ∞ d𝜙̃∞,

(18)p∞ =

∑
s=1

∑
d=1

f (ũ(s)
∞
, 𝜙̃

(d)

∞
)C

1∕3
P

(
ũ(s)
∞

)
ũ(s)
∞
.

(19)

Δpij(r̃ ij, 𝜃̃ij)=
∫
ũ∞

∫

𝜙̃∞

C
1∕3

P
(ũ∞)ũ∞

�
1−

√
1−CT (ũ∞)

(2kr̃ijcos[2𝜋(𝜃̃ij− 𝜙̃∞)]+1)
2
W (r̃ ij, 𝜃̃ij, 𝜙̃∞)

�

f (ũ∞, 𝜙̃∞) dũ∞ d𝜙̃∞,

(20)f (�(d)
∞
) =

∑
s=1

f (u(s)
∞
,�(d)

∞
),

(21)�u∞(𝜙
(d)
∞
) =

1

f (𝜙(d)
∞
)

∑
s=1

ũ(s)
∞
f (u(s)

∞
,𝜙(d)

∞
).

(22)

Δpij(r̃ ij, �̃ij)=
∫

�̃∞

C
1∕3

P
(û∞(�̃

(d)

∞
))û∞(�̃

(d)

∞
)

⎡⎢⎢⎢⎣

1−

�
1−CT (û∞(�̃

(d)

∞
))

(2kr̃ijcos[2�(�̃ij− �̃∞)]+1)
2
W (r̃ ij, �̃ij, �̃∞)

⎤⎥⎥⎥⎦
f (�̃

(d)

∞
) d�̃∞.

(23)
c(�̃∞)≡C

1∕3

P
(û∞(�̃

(d)

∞
))û∞(�̃

(d)

∞
)

[
1−

√
1−CT (û∞(�̃

(d)

∞
))

]

f (�̃
(d)

∞
)=

a0
2
+

M−1∑
m=1

amcos(2�m�̃∞)+bmsin(2�m�̃∞),

(24)

Δpij(r̃ ij, �̃ij)

=
∫

1

0

c(�̃∞)

[
1

(2kr̃ijcos[2�(�̃ij− �̃∞)]+1)
2
W (r̃ ij, �̃ij, �̃∞)

]
d�̃∞.

(25)Δpij(r̃ ij, 𝜃̃ij)=

𝜃
(c)
ij

∫

−𝜃
(c)
ij

c(𝜃̃ij−𝛼)

[
1

(2kr̃ijcos(2𝜋𝛼)+1)
2

]
d𝛼.
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We approximate the fraction with a fourth-order Taylor series 
expansion to simplify the integration: 

Because the magnitude of � is already limited by the bounds of 
± �̃

(c)

ij  and is defined to be less than one, the error of this approx-
imation is small.

At this point, the analytical integral looks as follows: 

We omit the details of the integration for brevity, yielding the 
following solution: 

Together, Equations (16), (18), and (28) compose the closed-form 
analytical function for AEP.

2.1.2   |   AEP Gradient Derivation

We are interested in the partial derivatives of AEP with respect 
to the two independent coordinates of each turbine: �AEP∕�x 
and �AEP∕�y. In terms of our dimensionless quantities, 

Considering an individual turbine g ∈ {1,2, … ,N}, we use the 
chain rule to expand these partial derivatives in terms of r̃ ij and �̃ij, 
the position coordinates with which we define F in Equation (16): 

The last partial derivative in these expressions accounts for the 
movement of the individual turbine g: 

From the previous definitions of r̃ ij and �̃ij, we obtain the follow-
ing partial derivatives: 

Substituting these equations into Equations (31) and (32), we can 
write the derivatives as follows: 

(26)1

(2kr̃ijcos(2��)+1)
2
=

1

(2kr̃ij+1)
2
+ 8�2

kr̃ij�
2

(2kr̃ij+1)
3
+ (�4).

(27)

Δpij(r̃ ij, 𝜃̃ij)

=

𝜃
(c)
ij

∫

−𝜃
(c)
ij

[
a0
2
+

M−1∑
m=1

amcos
[
2𝜋m(𝜃̃ij−𝛼)

]
+bmsin

[
2𝜋m(𝜃̃ij−𝛼)

]]

[
1

(2kr̃ij+1)
2
+8𝜋2

kr̃ij𝛼
2

(2kr̃ij+1)
3

]
d𝛼.

(28)

Δpij(r̃ ij, �̃ij) =
a0�̃

(c)

ij

(2kr̃ij+1)
2

⎡
⎢⎢⎣
1+

8�2kr̃ij�̃
(c) 2

ij

3(2kr̃ij+1)

⎤
⎥⎥⎦

+

M−1�
m=1

�
1

�m(2kr̃ij+1)
2

�
amcos(2�m�̃ij)+bmsin(2�m�̃ij)

��
sin(2�m�̃

(c)

ij )

+
2kr̃ij

m2(2kr̃ij+1)

�
[(2�m�̃

(c)

ij )
2−2]sin(2�m�̃

(c)

ij )+4�m�̃
(c)

ij cos(2�m�̃
(c)

ij )
���

.

(29)�AEP

�x
=

�F

�x̃

�AEP

�F

�x̃

�x
=

�

8
Q�Du3c

�F

�x̃
,

(30)
�AEP

�y
=

�F

�ỹ

�AEP

�F

�ỹ

�y
=

�

8
Q�Du3c

�F

�ỹ
.

(31)

�F

�x̃g
= −3

N�
i=1

⎡⎢⎢⎣

�
p∞−

N�
j=1,j≠i

Δpij(r̃ ij, �̃ij)

�2 N�
j=1,j≠i

�
�Δpij

�r̃ ij

�r̃ ij

�x̃ij
+
�Δpij

��̃ij

��̃ij

�x̃ij

�
�x̃ij

�x̃g

⎤⎥⎥⎦
,

(32)

�F

�ỹg
= −3

N�
i=1

⎡⎢⎢⎣

�
p∞−

N�
j=1,j≠i

Δpij(r̃ ij, �̃ij)

�2 N�
j=1,j≠i

�
�Δpij

�r̃ ij

�r̃ ij

�ỹij
+
�Δpij

��̃ij

��̃ij

�ỹij

�
�ỹij

�ỹg

⎤⎥⎥⎦
.

(33)
�x̃ij

�x̃g
=

�ỹij

�ỹg
=

⎧⎪⎨⎪⎩

1, g= i,

−1, g= j,

0, else.

(34)
�r̃ ij

�x̃ij
=
x̃ij

r̃ ij
,

(35)
�r̃ ij

�ỹij
=
ỹij

r̃ ij
,

(36)
��̃ij

�x̃ij
= −

ỹij

2�r̃2
ij

,

(37)
��̃ij

�ỹij
=

x̃ij

2�r̃2
ij

.

(38)

�F

�x̃g
= −3

N�
i=1

⎡⎢⎢⎣

�
p∞−

N�
j=1,j≠i

Δpij(r̃ ij, �̃ij)

�2 N�
j=1,j≠i

�
�Δpij

�r̃ ij

x̃ij

r̃ ij
−
�Δpij

��̃ij

ỹij

2�r̃2
ij

�
�x̃ij

�x̃g

⎤⎥⎥⎦
,

(39)

�F

�ỹg
= −3

N�
i=1

⎡⎢⎢⎣

�
p∞−

N�
j=1,j≠i

Δpij(r̃ ij, �̃ij)

�2 N�
j=1,j≠i

�
�Δpij

�r̃ ij

ỹij

r̃ ij
+
�Δpij

��̃ij

x̃ij

2�r̃2
ij

�
�ỹij

�ỹg

⎤⎥⎥⎦
.
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We see from Equations  (38) and  (39) that the derivatives of F 
with respect to either coordinate are both in terms of partial de-
rivatives of Δpij with respect to the relative polar coordinates r̃ ij 
and �̃ij. For the partial derivative with respect to �̃ij, 

For the partial derivative with respect to r̃ ij, recall from 
Equation (11) that �̃(c)ij = �̃

(c)

ij (r̃ ij, k). So we also require the partial 
derivative of �̃(c)ij  with respect to r̃ ij: 

This expression allows us to derive the partial derivative of Δpij: 

All together, Equations (33) and (38)–(42) represent the gradient 
elements �F∕�x̃g and �F∕�ỹg ∀ g = {1,2, … ,N}.

2.2   |   Conventional AEP

The Conventional AEP models evaluate expected power pro-
duction (Equation  5) with a numerical integral over discrete 

wind conditions. In this paper, we assume that our Conventional 
models also use the linear combination of wake velocity deficits 
(Equation  12) to maintain some consistency across the models. 

Mathematically, the Conventional AEP models are defined as 
follows: 

We make similar simplifications to the Conventional AEP model 
for use in WFLO, namely, the average free-stream wind speed 
per wind direction, single rotor point, and horizontally homoge-
neous wind conditions.

To support our objectives, we consider two choices for the underly-
ing model of the wake velocity deficit, as seen in Figure 1. The first 

(40)

�Δpij

��̃ij
=

M−1∑
m=1

[
2

(2kr̃ij+1)
2

{
bmcos(2�m�̃ij)−amsin(2�m�̃ij)

}{
sin(2�m�̃

(c)

ij )

+
2kr̃ij

m2(2kr̃ij+1)

[[(
2�m�̃

(c)

ij

)2
−2

]
sin(2�m�̃

(c)

ij )+4�m�̃
(c)

ij cos
(
2�m�̃

(c)

ij

)]}]
.

(41)

��̃
(c)

ij

�r̃ ij
= −

1

4�r̃2
ij

√
k2 −

(
1

2r̃ ij

)2
+ 1

.

(42)

�Δpij

�r̃ ij
=

a0
3(2kr̃ij+1)

4

⎧
⎪⎨⎪⎩
−4k�̃

(c)

ij

�
3+6kr̃ij+2�

2�̃
(c) 2

ij (4kr̃ij−1)
�
+3(2kr̃ij+1)

�
1+2kr̃ij+8�

2kr̃ij�̃
(c) 2

ij

���̃(c)ij
�r̃ ij

⎫⎪⎬⎪⎭

+

M−1�
m=1

�
1

�m3(2kr̃ij+1)
4

��
amcos(2�m�̃ij)+bmsin(2�m�̃ij)

�

⎧⎪⎨⎪⎩
−4ksin

�
2�m�̃

(c)

ij

��
1+m2+2kr̃ij(m

2−2)+2�2m2�̃
(c) 2

ij (4kr̃ij−1)
�

+ 2�mcos
�
2�m�̃

(c)

ij

�⎡⎢⎢⎣
4k�̃

(c)

ij (1−4kr̃ij)+m
2(2kr̃ij+1)

�
1+2kr̃ij+8�

2kr̃ij�̃
(c) 2

ij

���̃(c)ij
�r̃ ij

⎤
⎥⎥⎦

⎫⎪⎬⎪⎭
.

(43)

AEP=
�

8
Q�D2

�
d=1

�
s=1

N�
i=1

⎡⎢⎢⎣
CP

�
ui(u

(s)
∞
,�(d)

∞
)
�
u(s) 3
∞

⎡⎢⎢⎣
1−

�
j∈i(�

(d)
∞
)

Δuij

u∞
(u(s)

∞
,�(d)

∞
)
⎤⎥⎥⎦

3⎤⎥⎥⎦
f (u(s)

∞
,�(d)

∞
).

FIGURE 1    |    Two methods for a wake velocity deficit model to predict wind farm power production: the discrete, top-hat Jensen model (left) and 
the continuous Gauss model (right).
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is the Jensen model (Equation 6), which is the same underlying 
wake model used by FLOWERS; the combination of Equations (6) 
and (43) will be referred to as the “Conventional-Jensen” model. 
The second is a Gaussian wake model [11], which has been found 
to better predict the flow distribution of the wake compared to the 
Jensen model. The Gaussian model defines the wake velocity defi-
cit with a continuous, axisymmetric Gaussian profile:

where �(xij) = k∗(xij -x0) + D∕
√
8 is the spanwise wake width 

and x0 = x0(CT (uj)) is the potential core length. The wake expan-
sion parameter k∗ is empirically modeled as a function of local 
incoming turbulence intensity I [40]: k∗ = 0.38I + 0.004. Local 
turbulence intensity I is a combination of ambient turbulence 
intensity and wake-added turbulence intensity by upwind tur-
bines, which is also modeled empirically [41]. Therefore, unlike 
the Jensen model, this form of the Gaussian model accounts for 
the development of wakes within the wind farm. We refer to the 
combination of Equations  (43) and  (44) as the “Conventional-
Gauss” model.

2.3   |   Modeling Discussion

As discussed previously, low-fidelity wake models are derived 
from a series of assumptions on the governing flow equations 
and turbine properties. In this section, we first outline the as-
sumptions specific to the FLOWERS model to support the subse-
quent comparison with the Conventional AEP models. Second, 
we discuss some shared assumptions concerning the inputs to 
both of these AEP models.

2.3.1   |   FLOWERS Assumptions

There are a few key assumptions in the derivation of the 
FLOWERS AEP model that contribute modeling error com-
pared to the Conventional AEP models. The most significant 
approximation comes between Equations  (14) and  (15), when 
the order of the integration over wind directions and the nonlin-
ear relationship with wind speed are swapped. In simplified 
terms, FLOWERS makes the approximation to substitute [
û∞(1−Δui∕û∞)

]3
 for 

[
û∞(1−Δui∕û∞)

]3. When f (�∞) and 
û∞(�∞) vary across wind directions (which is the dimension 
over which we average), the Conventional approach is in fact the 
mathematical upper bound on the FLOWERS approach: [
û∞(1−Δui∕û∞)

]3
≤
[
û∞(1−Δui∕û∞)

]3; less uniform distribu-
tions of f (�∞) (i.e., wind roses with dominant wind directions) 
exacerbate this discrepancy. This approximation affects the 
handling of the free-stream wind conditions regardless of the 
wake interactions present. Therefore, we expect a consistent 
bias in the FLOWERS model to underpredict turbine power rel-
ative to the Conventional models. The underprediction of power 
for each turbine in the farm results in a percentage discrepancy 
in the AEP predictions between the two models that primarily 
depends on the wind rose and is mostly insensitive to the num-
ber of turbines and their layout.

Another significant assumption is that an average wind speed 
per wind direction is necessary in the FLOWERS model. The 
Conventional AEP models in this paper also use this assump-
tion, but they have the flexibility to consider a full sweep of 
wind speeds per wind direction when more accuracy is de-
sired. Higher wind speeds should have a higher weight to their 
AEP contribution than lower wind speeds because of the non-
linear relationship between wind speed and power. The aver-
age wind speed û∞ linearizes the contribution of power from 
the range of wind speeds, artificially increasing the share of 
power production from lower-than-average wind speeds and 
diminishing the share from higher-than-average wind speeds. 
The overall magnitude and direction of this effect on turbine 
power prediction depends on the distribution of f (u∞,�∞) and 
is difficult to predict a priori. Our analysis of this effect with 
a Conventional AEP model shows this underprediction to be 
5%–10% depending on the wind rose and is independent of the 
farm layout.

A third assumption is that the power and thrust coefficients are 
specified as if all turbines are experiencing free-stream veloc-
ity (CT (u∞) and CP(u∞)) rather than accounting for local flow 
conditions. We know that in the absence of blockage or terrain 
effects, u∞ ≥ ui always. CT (u) is a monotonically decreasing 
function, so CT (u∞) ≤ CT (ui). As a result, the wake velocity defi-
cits predicted by FLOWERS are lower in magnitude and the 
power of downwind turbines would be overpredicted. As for CP, 
in Regions I and II of the power curve, the curve is monotonic 
nondecreasing, and CP(u∞) ≥ CP(ui). FLOWERS would tend to 
overpredict power in this regime. In Region III, CP decreases 
with wind speed, so CP(u∞) < CP(ui), and FLOWERS would un-
derpredict power. This latter effect would be noticeable when 
the free-stream wind speed is high (u∞∕uc > 0.5). In practice, 
we expect these effects to reduce the underprediction of AEP 
discussed above for wind roses with low to moderate wind 
speeds.

Lastly, the Fourier representation of the wind rose is approx-
imate with a finite number of Fourier modes. The error of 
the discrete Fourier transform increases as the number of 
Fourier modes decreases. Also, it is important to note that 
the resolution of the wind rose that is input to the Fourier 
transform determines the maximum number of modes that 
can be computed (M = floor(∕2) + 1). So FLOWERS is ex-
pected to match the Conventional AEP models better when 
the input wind rose possesses a higher resolution of the wind 
direction.

2.3.2   |   AEP Model Inputs

For both the FLOWERS and Conventional models, we assume 
that the turbine and plant inputs to the AEP models (i.e., tur-
bine positions and power and thrust curves) are known with 
zero uncertainty. The uncertain model inputs are therefore 
the wake expansion rate, k, and the discretized wind condition 
probability function, f (u(s)∞ ,�(d)∞

). The calibration of wake model 
parameters is notoriously difficult and susceptible to error 
[42, 43]. We use a standard choice of k for the Park model of 
0.05 for offshore conditions and 0.075 for onshore conditions 
[44]. However, analysis of wind farm boundary layers suggests 

(44)
Δuij

u∞
(xij, yij)=

⎛⎜⎜⎝
1−

�
1−

CT (uj)

8(�(xij)∕D)
2

⎞⎟⎟⎠
exp

�
−

yij
2

2�(xij)
2

�
,
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that streamwise turbulence intensity asymptotically increases 
with downstream rows [45], meaning that a uniform k neglects 
the notion of increased turbulence intensity in the downwind 
regions of wind plants that would encourage the partial re-
covery of wake losses. Therefore, across the range of expected 
wind conditions, we might expect FLOWERS to underpredict 
wind farm power production for larger wind farms compared 
with smaller wind farms. As for the wind condition variabil-
ity, assuming sufficiently many samples of the (statistically sta-
tionary) atmospheric conditions are available to construct the 
wind rose, we would expect little uncertainty in the probability 
estimates of the wind conditions at the site of interest. Lastly, 
all of these AEP models assume horizontally homogeneous 
free-stream wind speed, direction, and turbulence intensity 
in each flow scenario, which are only valid for offshore wind 
farm flows.

3   |   Comparative Analysis of AEP Estimates and 
Cost

3.1   |   Randomized Case Study Design

We consider various wind farm cases with randomized model in-
puts to compare the AEP predictions and cost of AEP evaluations 
between different models. In this section, we focus on compar-
isons between FLOWERS and Conventional-Jensen to analyze 
the modeling differences specific to the FLOWERS derivation 
(instead of differences between underlying wake models). The 
Conventional AEP models are implemented in FLORIS [18], an 
open-source controls-oriented wake modeling software library, 
and an implementation of the FLOWERS code is available on an 
open-source repository [46]. The turbines are modeled as NREL 
5-MW reference turbines [47], with rotor diameter D = 126 m.

FIGURE 2    |    Nine wind roses sampled from the WIND Toolkit [48].
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Wind conditions are sampled from the WIND Toolkit [48]. A set 
of nine roses, as seen in Figure 2, was selected as a sample of di-
rectional and speed distributions. These wind roses (referenced 
as WR i, where i is the index in Figure  2) are provided in 1° 
increments in wind direction. For the Fourier series represen-
tation used by FLOWERS, this resolution produces a maximum 
number of 181 Fourier modes. The wind speed is provided in 1--
m/s increments from 1 to 25 m/s, but in our analysis, we use the 
average wind speed per wind direction for all cases.

To support analysis across a range of wind farm sizes and lay-
outs, we randomly generate cases with different wind farm con-
figurations. First, we randomly select the number of turbines 
N ∈ [2,500]. Then, a random layout is generated by placing the 
turbines randomly on the nodes of a rectangular array with 
N + 1 nodes per edge in the x direction and six nodes per edge in 
the y direction, with 3D separation between adjacent nodes. This 
method of generating wind farm layouts results in a satisfactory 
range of wind turbine spacing and a constant wind farm power 
density with respect to the number of turbines without the need-
less complexity of considering continuous turbine positions.

3.2   |   Randomized Case Study Results

We first consider 200 randomized cases, with  = 72 wind di-
rection bins for the Conventional model and M = 10 Fourier 
modes for the FLOWERS model. These choices in resolution 

will be addressed throughout Sections  3 and 4. The AEP pre-
dictions of the FLOWERS and Conventional-Jensen models are 
plotted in Figure  3, and the times of the AEP predictions are 
plotted in Figure 4.

The results in Figure 3 reflect the trends discussed in Section 2.3. 
First, we observe that FLOWERS underpredicts AEP relative 
to the Conventional-Jensen model in all cases. The mean, me-
dian, and maximum discrepancies are −14%, −11%, and −33%, 
respectively. Second, we observe that the magnitude of the 
AEP discrepancy is strongly correlated with the wind rose and 
is most pronounced for Wind Roses 2 and 8, which are those 
with the highest wind speeds (e.g., above 20 m/s). Overall, the 
FLOWERS method is expected to predict AEP within about 15% 
of the Conventional-Jensen model, with worse predictive error 
for strongly directional wind roses or those with high expected 
wind speeds.

The sensitivity of the FLOWERS AEP predictive error to the 
wind conditions—rather than particular layouts—does not im-
pact its use for WFLO. Over the course of a WFLO study, the 
layouts evolve but the wind rose is fixed. The goal of the study 
is to find a layout that results in the greatest gain in AEP rela-
tive to the initial layout; in terms of the abstract “wake avoid-
ance” problem, a layout that produces a relative increase in 
AEP compared to another layout more successfully avoids wake 
interactions. The linear correlation of the AEP discrepancies 
between the models in Figure 3 suggests that the ratio of AEP 

FIGURE 3    |    FLOWERS and Conventional-Jensen AEP predictions for 200 cases with a randomized number of turbines, wind farm layout, and 
wind rose.
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between two different layouts should be roughly equivalent be-
tween the models. Therefore, we expect that FLOWERS is able 
to quantify the avoidance of wakes in an equivalent way to the 
Conventional-Jensen model.

Meanwhile, Figure  4 presents a comparison of the cost of the 
AEP evaluation for each of the 200 layouts with the FLOWERS 
and Conventional-Jensen approaches. The plot indicates that 
both models can evaluate AEP for a wind farm with up to 500 tur-
bines in about a second or less, which satisfies the requirement 

of a low-cost AEP prediction for WFLO. However, FLOWERS is 
10–40 times faster than the Conventional-Jensen model at the 
specified resolutions, making it a more attractive option.

Figure 4 shows that the cost of the AEP evaluation scales with 
the number of turbines, N. Figure 5 plots the evaluation time 
as a function of the number of turbines for both models to more 
clearly visualize this trend. As expected from Equation (16), cost 
scales with N2 for FLOWERS. Meanwhile, the Conventional 
model cost scales roughly with N1.5; the FLORIS code is 

FIGURE 4    |    The cost of FLOWERS and Conventional-Jensen AEP predictions for 200 randomized cases. Computations are performed with a 
3.2-GHz Apple M1 CPU.

FIGURE 5    |    Cost scaling with wind farm size for the FLOWERS and Conventional-Jensen models across 200 cases. The approximate scaling 
relationships (dashed lines) were fit to the data (markers).
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constructed to compute wake interactions in serial order from 
upstream to downstream turbine, which avoids the quadratic 
scaling of the FLOWERS model. Even for large wind farms of 
500 turbines, FLOWERS is still significantly faster than the 
Conventional AEP model.

We also expect the cost to scale with the resolution of the mod-
els, that is, the number of Fourier terms, M, for FLOWERS and 
the number of wind direction bins, , for the Conventional AEP 
model. To analyze this effect, we consider a new set of 200 ran-
domized cases with a fixed number of N = 100 turbines, and we 
vary M and  when performing the AEP evaluations. Figure 6 
illustrates the observed trend for AEP evaluation time as a func-
tion of M in the FLOWERS model and  in the Conventional 
model. As expected from Equations (28) and (43), cost scales lin-
early with each of these parameters. As a result, one might sug-
gest reducing the resolution of the models in order to reduce the 
cost of the AEP prediction and, by extension, the WFLO study. 
The effect of resolution on the AEP predictions and WFLO de-
sign space is explored in the next section.

4   |   Objective Function Design Space Analysis

We perform two different analyses aimed at investigating how 
the choice of the AEP model and its resolution affects the objec-
tive function behavior in WFLO problems. First, we consider a 
wind farm of nine turbines arranged in a three-by-three array 
with 7D spacing. The wind conditions are defined by WR 7 from 
Figure  2. We use the three models introduced in Section  2 to 
estimate the AEP of this wind farm: FLOWERS, Conventional-
Jensen, and Conventional-Gauss. We also consider these 
three models at three different resolutions: M = [10,20, 100] 
for FLOWERS and  = [36,72, 360], corresponding to wind 

direction bin widths of 10°, 5°, and 1°, respectively, for the 
Conventional models. We randomly perturb the position of each 
turbine with normally distributed random noise  [0, (D∕5)2] 
for 25 iterations and compute AEP at each iteration. Figure  7 
presents the turbine positions at the different iterations and the 
corresponding AEP predictions normalized by the initial AEP 
for each model.

Regardless of the number of Fourier modes, the FLOWERS 
model predicts the same trajectory in AEP across these layouts. 
This insensitivity to resolution confirms previous findings [20] 
and permits massive improvements in computational speed 
with little cost to accuracy. At M = 10, the FLOWERS model 
estimates AEP about 20 times faster than the maximum reso-
lution M = 181.

On the other hand, the Conventional-Jensen and Conventional-
Gauss models do show sensitivity to the resolution of the 
wind direction bins. Between the three resolutions, there is 
no agreement of the Jensen predictions for the trajectory of 
AEP across these layouts. In fact, at certain iterations, some 
resolutions predict an increase in AEP where others predict 
a decrease. The Jensen model struggles at lower resolutions 
because the discrete wake model produces a highly discon-
tinuous design space where turbines are frequently jumping 
between binary states inside or outside of a turbine wake. The 
Gauss model, which has a continuous wake deficit profile, 
agrees well between the 1° and 5° resolutions, but at 10°, there 
is some overestimation of the wake losses, and the trend in 
AEP change between different configurations is inconsistent 
with the results for the higher resolutions. This result indi-
cates that the coarser numerical integral introduces disconti-
nuities in the AEP predictions. The disagreements observed 
across the different resolutions used for the Conventional 

FIGURE 6    |    Cost scaling with model resolution for the FLOWERS and Conventional-Jensen models across 200 cases. The approximate scaling 
relationships (dashed lines) were fit to the data (markers).
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models reveal fundamental differences in their wake avoid-
ance predictions and limit the potential for reducing WFLO 
cost via reducing the wind direction bin resolution.

Comparison across the models shows that the FLOWERS 
predictions at all three resolutions, the Conventional-Jensen 
predictions at 1°, and the Conventional-Gauss predictions at 
1° and 5° mostly agree on the trajectory of AEP across the lay-
out iterations. This agreement provides some confidence that 
the models are predicting the same wake avoidance trends 
and would perform similarly as the objective function for a 
WFLO study.

The second analysis aims to further clarify the behavior of 
the objective function, as provided by the different models 
at different resolutions, across the design space for a WFLO 
study. We consider the same wind farm in Figure 7, except we 
introduce a square boundary for the wind farm and vary the 
position of the interior turbine in steps of 0.1D while keeping 
the turbines on the boundaries fixed. We calculate wind farm 
AEP for all feasible locations for the interior turbine, that is, 
where the turbine is inside the boundary and separated from 
all other turbines by at least 1D. This two-dimensional design 

space, considering the position of a single turbine, supports 
conceptualizing and visualizing the behavior of the objective 
function, and the findings can be expected to extrapolate to 
the 2N  design space of a typical WFLO study. Figure 8 displays 
contour plots of AEP across the design space of possible inte-
rior turbine positions for each AEP model at different choices 
of resolution. The values are normalized by the maximum AEP 
across the design space.

The FLOWERS design space is the smoothest in the sense 
that small changes in turbine position result in similarly small 
changes in the direction of the AEP gradient. It is visually clear 
that there are local AEP maxima at the center of the design 
space and along the top and bottom boundaries; we can postu-
late that a gradient-based optimization algorithm could traverse 
this design space easily. We also observe little difference in the 
design space across different numbers of Fourier modes, which 
reinforces the trend in Figure 7.

On the other hand, the Conventional-Jensen design space is rife 
with local optima. It is extremely difficult to visually discern 
the location of local maxima in AEP, and we could infer that 
it would be difficult for a gradient-based optimizer to locate 

FIGURE 7    |    AEP predictions for a nine-turbine wind farm and WR 7 using the FLOWERS, Conventional-Jensen, and Conventional-Gauss models 
with random perturbations across 25 iterations. The number of Fourier modes (M) for FLOWERS or the number of wind direction bins () for the 
Conventional models are varied, with  = [360,72, 36] corresponding to wind direction resolutions of [1°, 5°, 10°], respectively.
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optimal solutions. Small changes in turbine position yield 
potentially sharp changes in AEP because of the numerical 
error of the AEP integral and because of the discrete bound-
ary of the wake. At the highest resolution, the design space is 
noticeably smoother and begins to resemble the FLOWERS de-
sign space.

The Conventional-Gauss design space resides between the 
FLOWERS and Conventional-Jensen results in terms of qual-
itative features. At its lowest resolution (10°), the design 
space suffers from the same issues with local optima as the 

Conventional-Jensen model; at higher resolutions, the local 
solutions in the interior of the wind farm are more clear. The 
smoothness of the continuous Gaussian wake model recovers 
some of the smoothness in the overall AEP design space, but 
there is still some coarseness present due to the finite resolution 
of the numerical integral.

Similar to the discussion around Figure  7, the results in 
Figure 8 demonstrate that the design spaces for FLOWERS at 
M = 10, Conventional-Jensen at  = 360, and Conventional-
Gauss at  = 72 are roughly equivalent. In theory, a 

FIGURE 8    |    AEP design space for a single turbine in a wind farm of nine turbines with WR 7 using the FLOWERS (left), Conventional-Jensen 
(center), and Conventional-Gauss (right). The black circles represent the locations of the eight fixed turbines, and the black lines are the boundary of 
the wind farm. The number of Fourier modes (M) for FLOWERS or the number of wind direction bins () for the Conventional models decrease from 
top to bottom. Wind direction bins  = [360,72, 36] correspond to wind direction resolutions of [1°, 5°, 10°], respectively. Contour lines of normalized 
AEP are in increments of 0.1%; local gradients are normal to contour lines and local optima are indicated by closed contours.
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gradient-based algorithm could realistically follow the gradi-
ents of these smoother design spaces to arrive at the best local 
solutions in the center or along the boundaries of the wind 
farm. Below a certain threshold in the resolution, however, the 
Conventional AEP models struggle to produce a well-behaved 
design space for turbine position.

If finite-difference estimates of the AEP gradient are required, 
it is essential that the objective function is smooth and continu-
ous across the design space. For example, for the Conventional-
Jensen model at 5°, finite-difference estimates would likely have 
significant numerical error that could misinform the optimizer. 
The analytical functions for the FLOWERS AEP gradient pre-
sented in this paper avoid the need for finite-difference esti-
mates, but the smooth behavior of the FLOWERS model across 
the design space indicates that it should perform better than the 
Conventional AEP models if finite-difference gradient estimates 
are required.

5   |   Layout Optimization Demonstration

We now illustrate the performance of these AEP models in a de-
monstrative WFLO problem. Consider the following definition: 

We solve a maximization problem for AEP (expressed as a 
minimization problem by convention), optimizing over the 
two independent position coordinates of each turbine. The 
boundary constraint function for each turbine, bi, is defined as 
the minimum signed distance from the turbine to the bound-
ary polygon defined by the set of points  (where a negative 
distance corresponds to a position within the boundary). A 
derivation for this boundary function (including analytic 
derivatives with respect to turbine position) is provided by 
Criado Risco et al. [25].

We solve this optimization problem with a gradient-based algo-
rithm, specifically the Sparse Nonlinear OPTimizer (SNOPT) 
[49] implemented with the pyOptSparse wrapper [50]. The opti-
mality and feasibility tolerances are set at �o = 10−3 and �f = 10−4, 
respectively, and the problem functions are scaled such that all 
of the gradient elements are on the order of 1 or less based on 
convergence studies. For the FLOWERS objective function, 
analytical gradients of the objective and constraint functions 
are provided; for the Conventional objective functions, finite-
difference estimates are computed by SNOPT instead.

We compare these three optimizers for the same wind farm 
discussed in Section 4: a nine-turbine wind farm with a square 
boundary and expected wind conditions defined by WR 7 (from 
Figure 2). The initial layout of the wind farm is a three-by-three 
array with tight 4D spacing. We use the wind condition resolu-
tions discussed in the previous section: M = 10 Fourier modes 
for FLOWERS,  = 72 wind direction bins for Conventional-
Gauss, and  = 360 bins for Conventional-Jensen.

The optimal layouts from each optimizer are seen in Figure 9. 
The FLOWERS and Conventional-Gauss optimal layouts are 
almost identical to one another, with slight quantitative differ-
ences in turbine positions. This result is consistent with our 
findings in Section  4 that indicate a similarity between the 
FLOWERS and Conventional-Gauss design spaces.

We compare the estimated AEP of these different layouts for 
a more quantitative comparison. We distinguish between the 
change in the objective function over the course of the op-
timization study, which we call the objective gain, and the 
change in the estimated AEP of the initial and optimal lay-
outs in the optimization study, which we call AEP gain. The 
objective gains in these three studies are as follows: 13.8% 
for FLOWERS, 10.6% for Conventional-Jensen, and 12.1% for 
Conventional-Gauss. Due to the modeling differences dis-
cussed throughout Sections  2–4, the objective gains can be 
different even with the same initial and final layouts. So a 
more fair comparison of the performance of the actual layouts 

(45)minimize
x,y

−AEP(x, y, f ),

subject to bi(xi, yi,)≤0 ∀ i={1,2, … ,N}.

FIGURE 9    |    Initial and optimal layouts from optimization studies using the three different AEP models as an objective function. Solver time in 
each case is as follows: FLOWERS (1.8 s), Conventional-Jensen (58.7 s), and Conventional-Gauss (21.5 s).
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calculates AEP gain with the same AEP model for all three 
optimal layouts. Using the Conventional-Gauss model, these 
AEP gains are as follows: 12.1% for FLOWERS, 11.1% for 
Conventional-Jensen, and 12.1% for Conventional-Gauss. The 
performance of the FLOWERS and Conventional-Gauss solu-
tions is equal, and both improve over the Conventional-Jensen 
solution. The FLOWERS and Conventional-Gauss models are 
better able to navigate toward more optimal solutions com-
pared with the Conventional-Jensen model, which struggles 
to handle the presumably large number of local optima in the 
design space. This deficiency with the Conventional-Jensen 
optimizer was noticeable in previous results [20] and likely 
worsens as the size of the problem grows.

The major advantage of the FLOWERS model in this exam-
ple is in computational cost. The wall time required for these 
studies to converge is as follows: 1.8 s for FLOWERS, 58.7 s for 
Conventional-Jensen, and 21.5 s for Conventional-Gauss. In 
other words, the FLOWERS optimizer is able to find roughly 
the same solution as the Conventional-Gauss optimizer in less 
than 10% of the time. The additional time for the Conventional-
Jensen optimizer is due to the increased wind direction reso-
lution relative to the Conventional-Gauss model. Considering 
the number of iterations required by the solver, we find that 
FLOWERS converges after 52 steps, Conventional-Jensen exits 
after 36 iterations, and Conventional-Gauss exits after 35 iter-
ations. The Conventional-Jensen and Conventional-Gauss op-
timizers did not converge according to the specified tolerances 
in SNOPT due to the limited precision of the finite-difference 
gradient estimates. On the other hand, the FLOWERS optimizer 
can search for local optima more precisely with its analytical 
gradient information. Thus, the FLOWERS optimizer is able to 
pursue the requested convergence accuracy, which explains the 
higher iteration count in this case. Despite this more exhaustive 
convergence, the less expensive FLOWERS AEP model and its 
analytical derivatives composing the AEP gradient are responsi-
ble for the overall cost reduction to the WFLO study.

6   |   Conclusions and Future Work

Our objective in this work was to demonstrate the advantages of 
using the FLOWERS AEP model over conventional approaches 
for solving WFLO problems. To the authors' knowledge, 
FLOWERS is the first analytical, physics-based wake model 
specifically derived to predict AEP. In this paper, we modified 
the derivation of the FLOWERS AEP model and expressed it in 
dimensionless form. We also derived analytical functions for the 
derivatives of AEP with respect to the position of individual tur-
bines, which are useful alongside a gradient-based optimization 
algorithm to accelerate the performance of a layout optimization 
solver.

We then compared the performance of the FLOWERS AEP 
model with Conventional AEP models (i.e., based on numerical 
integration across wind conditions) across three metrics. First, 
we require a low-cost AEP model for WFLO; our results found 
that FLOWERS is at least an order of magnitude faster than the 
Conventional alternatives. The FLOWERS AEP predictions were 
found to be insensitive to the resolution of the model, which en-
ables this significant improvement in cost. Second, we need the 

AEP model to reliably quantify the relative difference in wake 
losses between two layouts. Across a set of randomized layouts, 
we found agreement in the relative AEP predictions between 
the FLOWERS model with 10 Fourier modes, the Conventional-
Gauss model with 5° wind direction bins, and the Conventional-
Jensen model with 1° wind direction bins. Third, we desire 
the design space of AEP with respect to turbine position to be 
smooth. We found that the FLOWERS design space was the 
smoothest between the three models, while the Conventional 
AEP models required a sufficiently high resolution of the wind 
direction bins to yield a smooth design space. As a demonstra-
tion, we compared the AEP models' performance in a small test 
layout optimization problem and found that FLOWERS yields a 
similar optimal layout to the Conventional models in an order of 
magnitude less time. We acknowledge that these optimization 
results are limited in their scope and ability to draw general con-
clusions; in future work, we plan on comparing the performance 
of FLOWERS and Conventional optimizers more extensively.

Overall, the results presented in this paper demonstrate that 
the FLOWERS model is well-suited for AEP predictions and 
layout optimization in homogeneous inflow conditions. The 
consideration of complex terrain or other effects that produce 
a heterogeneous flow through the wind farm requires higher-
fidelity simulation tools. We also recognize that our study was 
restricted to the comparison of AEP predictions between vari-
ous low-fidelity models and we call for further study into cost-
effective high-fidelity validation tools for AEP models.
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