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Abstract

An adaptive enriched semi-Lagrangian finite element method is proposed for the numerical solution of coupled flow-

transport problems on unstructured triangular meshes. The new method combines the semi-Lagrangian scheme to deal

with the convection terms, the finite element discretization to manage irregular geometries, a direct conjugate-gradient

algorithm to solve the generalized Stokes problem, and an adaptive L2-projection using quadrature rules to improve

the efficiency and accuracy of the proposed method. In this study, the gradient of the temperature is used as an error

indicator for the adaptation of enrichments by increasing the number of quadrature points where it is needed without

refining the computational mesh. Unlike other adaptive finite element methods for coupled flow-transport problems,

linear systems in the proposed enriched semi-Lagrangian finite element method preserve the same structure and size at

each refinement in the adaptation procedure. In addition, due to the Lagrangian treatment of convection terms in this

approach, the standard Courant-Friedrichs-Lewy condition is relaxed and the time truncation errors are reduced in the

diffusion-reaction part. We assess the performance of the proposed method for a convection-diffusion problem with

a known analytical solution and for the benchmark problem of thermal flow past a circular cylinder. We also solve a

heat transport problem in the Mediterranean Sea to illustrate the ability of the method to resolve complex flow features

in irregular geometries. Comparisons to the conventional semi-Lagrangian finite element method are also carried out

in the current work. The obtained numerical results demonstrate the potential of the proposed method to capture the

main flow features and support our expectations for an accurate and highly efficient enriched semi-Lagrangian finite

element method for coupled flow-transport problems.
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1. Introduction

Coupled flow-transport problems take place in many applications in science and engineering. This class of prob-

lems occur in various problems in nature and technology, for example in the simulation of heat exchangers [1], cooling

of electronic equipments [2], fume cupboard ventilation [3, 4], geophysics such as climate predictions and oceanic

flows [5]. The governing equations in these problems consist of coupling the incompressible Navier-Stokes equations

with a convection-diffusion equation for the transport of temperature using the Boussinesq approximation, see for

example [6, 7, 8, 9, 10, 11]. Developing robust numerical solvers for this set of problems is still challenging in the

situation of convection-dominated flows for which convection terms are manifestly more important than the diffusion

terms particularly if some nondimensional parameters such as the Reynolds number attend high values. There exist

many numerical techniques in the literature to solve the coupled flow-transport equations. In case of convection-

dominated flows, the conventional Eulerian finite element methods use up-stream weighting in their implementations

to stabilize the discretization. For example, the most popular Eulerian finite element methods are the streamline up-

wind Petrov-Galerkin methods [12, 13, 14], the Taylor-Galerkin methods [15, 16, 17] and the Galerkin/least-squares

methods [18, 14, 19]. However, truncation errors generated by the time integration in these conventional Eulerian

methods are dominant and require Courant-Friedrichs-Lewy (CFL) stability conditions which impose sever restric-

tions on the time steps used in the numerical computations. Eulerian-based methods for the incompressible Navier-

Stokes equations have also been discussed in [20, 21, 22, 23, 24, 25, 26, 27, 28] among others. A dimension split

method has been studied in [26] and a multi-stage Rosenbrock scheme has been applied to the incompressible Navier-

Stokes equations in [28]. However, these methods fail to resolve flow structures at high Reynolds numbers. In [20], a

multigrid adaptive unstructured finite element method has been proposed for the numerical solution of the incompress-

ible Navier-Stokes equations. However, the adaptation process in this scheme requires assembling matrices at each

time step which increases the computational cost. A compact mixed finite element method has been proposed in [21]

to reduce the computing time for solving linear algebraic equations resulted from the discretization of incompress-

ible Navier-Stokes equations but this study dealt with steady problems only. In [22, 23], a class of finite difference

schemes have been implemented for space discretization of incompressible Navier-Stokes equations. However, the

main drawback of these methods is that they are not able to resolve complex flow problems in irregular geometries.

Numerical simulation of incompressible flows in parameterized pipes has been performed in [24]. Spectral collocation

methods have also been studied in [27] for incompressible Navier-Stokes equations with variable density. To avoid the

instability problems, authors in [25] proposed a high-order implicit preconditioned finite difference method to solve

the incompressible flows using the pseudo-compressibility approach. However, restrictions related to the solution of

nonlinear systems and Cartesian geometry decrease the efficiency of this method.

Semi-Lagrangian methods employ the modified method of characteristics and have been widely used in the litera-

ture to solve several problems in physical and engineering applications. Indeed, semi-Lagrangian finite element meth-

ods have been used for example in [29] for convection-diffusion problems, in [30] for incompressible Navier-Stokes
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equations, in [31] for tidal flows, and in [10] for natural and mixed convection flows. The central idea in these semi-

Lagrangian finite element methods lies in reformulating the governing equations using the Lagrangian coordinates

defined by the characteristic curves associated with the considered problem. The time derivative and the advection

term are combined in the total derivative as a directional derivative along the characteristics which can be viewed as a

characteristic time-stepping algorithm. Therefore, the Lagrangian treatment in these methods greatly reduces the time

truncation errors in the Eulerian methods, see for instance [11, 32]. In addition, semi-Lagrangian methods allow for

higher time steps exceeding those permitted by the CFL stability condition in its Eulerian finite element counterpart

for the convection-dominated flows. In [29, 30] a class of L2-projection semi-Lagrangian finite element methods has

been proposed for convection-dominated problems and incompressible Navier-Stokes equations. Numerical compar-

isons between the conventional and L2-projection semi-Lagrangian finite element methods have also been reported

in these references, and the L2-projection has been demonstrated higher accuracy and stronger stability than the con-

ventional method. However, for practical applications in the convection-dominated coupled flow-transport problems,

these methods may become computationally demanding due to the dense quadratures required for the L2-projection

used for the evaluation of solutions at the departure points.

Reducing the computational cost in finite element methods has attracted many researchers in recent years. In this

context, enriched finite element methods have emerged in the literature by incorporating enrichment functions into the

approximation space. These methods, also known by partition of unity methods, were proposed in [33], who showed

that the use of interpolation functions with the classical partition of unity property allows the approximation space

in a numerical approximation to be enriched by the inclusion of other functions suitable for the problem at hand.

Enriched finite element methods have been widely used to solve elastic waves and diffusion problems, see [34, 35]

and further references are therein. Results presented in [34, 35] also demonstrate that enriched finite element methods

offer a very large reduction in the number of degrees of freedom required to achieve a prescribed accuracy. However,

the main drawback of these methods lies on the dense and ill conditioned systems to be solved at each time step

in the simulations. To construct a locally conservative finite element method for solving the coupled flow-transport

problems in porous media, authors in [36] enriched the approximation space of the continuous Galerkin method with

element-wise constant functions. Local enrichments using piecewise constant functions have also been proposed

in [37] for Galerkin finite element methods solving a problem in poromechanics. However, enrichment techniques

presented in these references injected additional degrees of freedom to those already assembled in the Galerkin finite

element discretization and therefore the resulting linear systems change the sizes at each enrichment step. Adaptive

enriched Galerkin finite element methods have also been studied in [38] for miscible displacement problems for which

piecewise constant functions have been used for both global and local enrichments. As a criterion for adaptation,

authors employed the entropy residual as a posteriori error indicator but this procedure required primary solutions

to evaluate the error indicator which may limit the computational performance of the method. Needless to mention

that the extension of these enrichment procedures reported in [36, 37, 38] to the numerical solution of incompressible

Navier-Stokes equations is not trivial.
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The objective of the present work is to develop enriched semi-Lagrangian finite element methods for the numerical

solution of incompressible Navier-Stokes/Boussinesq equations. A key advance over the partition of unity approaches

is the use of multiple quadratures in the L2-projection, and this enables considerable efficiency gains to be made since

the matrix in the linear system is fixed and reused throughout the time stepping procedure. One other objective is also

to implement a multilevel adaptive algorithm for enrichments using the gradient of the temperature field as an error

indicator. In contrast to the gradient-based h-adaptive finite element methods as those investigated in [39, 40, 41, 42,

43, 44, 45, 46, 38], linear systems in the proposed enriched semi-Lagrangian finite element method keep the same

structure and size at each adaptation step. Indeed, an initial coarse mesh is needed for the gradient-based h-adaptive

methods to compute a primary solution for estimation of the gradient. This yields error accumulations due to the

coarse mesh used in the approximation and the computational cost becomes prohibitive due to multiple interpolations

between adaptive meshes. The performance of the proposed method is assessed using several examples for coupled

flow-transport problems including a heat transport problem in the Mediterranean Sea. For various parameters like

the Reynolds numbers, multilevel enrichments and mesh refinements, results of the enriched semi-Lagrangian finite

element method are compared with those computed using the conventional semi-Lagrangian finite element method

and compared against each other. To the best of our knowledge, there are no such research studies on the numerical

simulation of coupled flow-transport equations using enriched semi-Lagrangian finite element methods.

The present paper is organized as follows. The description of the model employed and the finite element dis-

cretization are presented in section 2. In section 3 we present the formulation of the enriched semi-Lagrangian finite

element method. This section includes the implementation of the L2-projection procedure for the convection stage and

the direct conjugate gradient algorithm to solve the generalized Stokes stage. Section 4 is devoted to the development

of a new adaptive enriched semi-Lagrangian finite element method. In this section we also discuss the criteria used

for adaptation of enrichments. In section 5, we examine the numerical performance of the proposed method using

several examples of coupled flow-transport problems including a heat transport in the Mediterranean Sea. Our new

approach is demonstrated to enjoy the expected efficiency as well as accuracy and stability. Concluding remarks are

summarized in section 6.

2. Governing equations and finite element discretization

Let us consider a two-dimensional bounded domain Ω with a boundary Γ subjected to a thermal variation (Θ′H −

Θ′C), whereΘ′H andΘ′C are respectively temperatures of the hot and cold boundary regions on Γ. The flow consists of a

viscous Newtonian fluid under the Boussinesq assumption and convection-dominated. Hence, the Newtonian property

of the fluid ensures a linear dependence between the shear stresses and the velocity gradients whereas the Boussinesq

assumption guarantees the density differences are confined to the buoyancy forces without violating the incompress-

ibility condition, see for instance [47, 48]. Thus, the governing equations are the unsteady Navier-Stokes/Boussinesq
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equations given in a dimensional form as

∇ · u′ = 0,

ρ∞

(
∂u′

∂t′
+ u′ · ∇u′

)
+ ∇p′ − µ∇2u′ = ρ∞

(
1 − β′(Θ′ − Θ′∞)

)
g′, (1)

ρ∞cp

(
∂Θ′

∂t′
+ u′ · ∇Θ′

)
− α∇2Θ′ = 0,

where u′ is the velocity, p′ the pressure, Θ′ the temperature, ρ∞ the reference density, µ the dynamic viscosity, cp

the specific heat at constant pressure, g′ the gravity force, β′ the coefficient of thermal expansion, and α the thermal

diffusivity coefficient. To rewrite the equations (1) in a dimensionless form we introduce the following variables

t =
αt′

x2
∞

, x =
x′

x∞
, u =

x∞u′

α
, p =

x2
∞p′

ρ∞α2 , Θ =
Θ′ − Θ∞

ΘH − ΘC
,

where the primed variables refer to dimensional quantities and the subscript ’∞’ indicates the reference quantities.

We also define the kinematic viscosity ν, the Prandtl number Pr, the Reynolds number Re, the Grashof number Gr

and Richardson number Ri as

ν =
µ

ρ∞
, Pr =

ν

α
, Re =

u∞x∞
ν

, Gr =
gβ′ (ΘH − ΘC) x3

∞

ν2 , Ri =
Gr
Re2 . (2)

Hence, the dimensionless formulation of equations (1) is

∇ · u = 0,
∂u
∂t
+ u · ∇u + ∇p −

1
Re
∇2u = RiΘe, (3)

∂Θ

∂t
+ u · ∇Θ −

1
PrRe

∇2Θ = 0,

where e = (0, 1)⊤ is the unit vector in the direction of gravity. Note that the equations (3) have to be solved in the spatial

domain Ω for a time interval ]0,T ] equipped with given boundary and initial conditions. In practice, these conditions

dependent on the problem under study and their discussion is postponed for section 4 where numerical examples are

discussed in details. Here, the parameters of interest, the Reynolds number Re is usually used to measure the relative

importance of convection compared to diffusion in (3) whereas, the Richardson number Ri is used to quantify the

effects of heat in the flow.

In the present study, the semi-Lagrangian finite element method can be interpreted as a fractional step technique for

which the convective part in (3) is decoupled from the generalized Stokes/Boussinesq part during the time integration.

Thus, at each time step, the temperature, velocity and pressure are updated by solving the convection equations

∂u
∂t
+ u · ∇u = 0,

(4)
∂Θ

∂t
+ u · ∇Θ = 0,
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then the Stokes/Boussinesq equations (3)

∇ · u = 0,
Du
Dt
+ ∇p −

1
Re
∇2u = RiΘe, (5)

DΘ
Dt
−

1
PrRe

∇2Θ = 0,

where Dw
Dt is the material derivative of the generic physical variable w defined by

Dw
Dt
=
∂w
∂t
+ u · ∇w. (6)

To discretize the spatial domain Ω = Ω ∪ Γ, we generate a quasi-uniform partition Ωh ⊂ Ω of triangular elements

Kl such that Ω = ∪Ne
l=1Kl, with Ne is the number of elements of Ωh and h is a spatial discretization parameter. In

this study, we consider the mixed Taylor-Hood finite elements P2/P1 for the conforming finite element spaces for the

temperature, velocity and pressure i.e., polynomials of second degree for the temperature and velocity solutions, and

polynomials of first degree for the pressure solution. The associated finite element spaces are defined as

Vh =

{
Θh ∈ C0(Ω) : Θh

∣∣∣
K j
∈ P2(K j), ∀ K j ∈ Ωh

}
,

Ph =

{
ph ∈ C0(Ω) : ph

∣∣∣
K j
∈ P1(K j), ∀ K j ∈ Ωh

}
,

where P1(Kl) and P2(Kl) are respectively, the first-order and second-order polynomial spaces defined in the element

Kl. For the velocity field, the corresponding finite element space Vh is defined by Vh = Vh × Vh. Note that for

these finite elements, the discrete solutions of the temperature, velocity, and pressure satisfy the well-known inf-sup

condition, see for instance [32]. For the time discretization, we divide [0,T ] into sub-intervals [tn, tn+1] with uniform

length ∆t = tn+1 − tn for n = 0, 1, . . . . We also introduce the notation wn
h = w(xh, tn) to denote the value of a generic

solution w at the mesh point xh and time tn. Thus, we formulate the finite element solutions Θn
h(x), un

h(x) and pn
h(x) as

Θn
h(x) =

Mv∑
j=1

T n
j ϕ j(x), un

h(x) =
Mv∑
j=1

U
n
jϕ j(x), pn

h(x) =
Mp∑
j=1

Pn
jψ j(x), (7)

where Mv and Mp are respectively, the number of temperature/velocity and pressure mesh points in Ωh. Here, the

functions T n
j ,Un

j =
(
Un

j ,V
n
j

)⊤
and Pn

j are respectively, the corresponding nodal values of Θn
h(x), un

h(x) and pn
h(x) de-

fined as T n
j = Θ

n
h(x j),Un

j = un
h(x j) and Pn

j = pn
h(y j) where {x j}

Mv
j=1 and {y j}

Mp

j=1 are respectively, the set of temperature,

velocity and pressure mesh points in Ωh so that Mp < Mv and {y1, . . . , yMp
} ⊂ {x1, . . . , xMv }. In (7), {ϕ j}

Mv
j=1 and {ψ j}

Mp

j=1

are respectively, the set of global nodal basis functions of the temperature/velocity and the pressure characterized by

the standard property ϕi(x j) = δi j and ψi(y j) = δi j with δ denotes the Kronecker symbol.

3. Enriched semi-Lagrangian finite element method

In the conventional semi-Lagrangian finite element method, the characteristic curves Xn
h j = Xh(tn; x j, tn+1) asso-

ciated with the convection problem (4) are calculated at any time tn for each mesh point x j, j = 1, . . . ,Mv by solving
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Figure 1: Illustration of departure points in the conventional method (points in black) and in the L2-projection method (points in blue). Here,

departure points are computed for nodal points in the conventional method and for each Gauss point in the L2-projection method.

the initial-value problem

dXh

(
t; x j, tn+1

)
dt

= uh

(
t,Xh

(
t; x j, tn+1

))
, ∀ t ∈ [tn, tn+1],

(8)
Xh

(
tn+1; x j, tn+1

)
= x j, j = 1, . . . ,Mv.

Notice that Xh

(
t; x j, tn+1

)
:=

(
Xh

(
t; x j, tn+1

)
,Yh

(
t; x j, tn+1

))⊤
is the departure point defined at time t of a fluid particle

that will arrive in the mesh point x j =
(
x j, y j

)⊤
at time tn+1 as illustrated in Figure 1. To solve the backward differential

equations (8), we use the second-order extrapolation method based on the mid-point rule studied in [49, 29, 31] among

others. In general, the calculated departure points Xn
h j do not coincide with a mesh point in Ωh and therefore a search-

locate algorithm is required to identify the host element K̂ j where these points belong. In the current work, we use

the search-locate algorithm proposed in [50] for triangular elements in unstructured grids.

Let us assume that the pairs (Xn
h j, K̂ j) are known for all j = 1, . . . ,Mv, we then compute the nodal solutions T̂ n

j

and Û
n
j =

(
Ûn

j , V̂
n
j

)⊤
as

T̂ n
j := Θn

h

(
X

n
h j

)
=

N∑
i=1

Θn
h (̂xi)φi

(
X

n
h j

)
, Û

n
j := un

h

(
X

n
h j

)
=

N∑
i=1

un
h (̂xi)φi

(
X

n
h j

)
, (9)

where {φi}
N
i=1 are the local basis functions associated with the element K̂ j, with N is the number of nodes which define

the temperature/velocity mesh grid, and {̂xi}
N
i=1 are the vertices of the host element K̂ j. Recall that in the conventional

semi-Lagrangian finite element method, the global solutions Θn+1
h (x) and un+1

h (x) of the convection equations (4) are

computed by

Θn+1
h (x) = Θn

h
(
X

n
h
)
= Θ̂n

h(x), un+1
h (x) = un

h
(
X

n
h
)
= ûn

h(x), (10)
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where

Θ̂n
h(x) =

Mv∑
j=1

T̂ n
j ϕ j(x), ûn

h(x) =
Mv∑
j=1

Û
n
jϕ j(x). (11)

It is well established that the accuracy of the conventional semi-Lagrangian finite element approximations (10)-(11)

highly depend on the density of meshes used in the simulation. Furthermore, it has been shown in [29, 30] that

the conventional semi-Lagrangian finite element method fails to resolve steep gradients for convection-dominated

problems unless very fine meshes are employed in the simulations. In the current study, to overcome this drawback

and to improve the accuracy of the semi-Lagrangian finite element method, we propose a class of local enrichments

using the L2-projection.

3.1. L2-projection for local enrichments

A family of L2-projection methods has been investigated in [30, 29] for the semi-Lagrangian finite element approx-

imation of convection-dominated flow problems. In this section we formulate the L2-projection as a local enrichment

technique for the semi-Lagrangian finite element solutions (10)-(11). Thus, multiplying both sides of equation (10)

by the finite element basis functions ϕi and integrating over Ω yields∫
Ω

Θn+1
h (x)ϕi(x)dx =

∫
Ω

Θn
h
(
X

n
h
)
ϕi(x) dx,

∫
Ω

un+1
h (x)ϕi(x)dx =

∫
Ω

un
h
(
X

n
h
)
ϕi(x) dx, i = 1, . . . ,Mv. (12)

Thus, the finite element solutions Θn+1
h (x) and un+1

h (x) can be formulated as

Θn+1
h (x) =

Mv∑
j=1

T n+1
j ϕ j(x), un+1

h (x) =
Mv∑
j=1

U
n+1
j ϕ j(x), (13)

where T n+1
j and Un+1

j are the nodal coefficients of the solutions to be evaluated. Replacing the solution (13) in the

left-hand side of equation (12) we obtain∫
Ω

Θn+1
h (x)ϕi(x) dx =

Mv∑
j=1

T n+1
j

∫
Ω

ϕ j(x)ϕi(x) dx :=
Mv∑
j=1

mi jT
n+1
j , i = 1, . . . ,Mv, (14)

and ∫
Ω

un+1
h (x)ϕi(x) dx =

Mv∑
j=1

U
n+1
j

∫
Ω

ϕ j(x)ϕi(x) dx :=
M∑
j=1

mi jU
n+1
j , i = 1, . . . ,Mv, (15)

with mi j =
∫
Ω
ϕ j(x)ϕi(x)dx are entries of the elemental mass matrix. To calculate the integrals in the right-hand side

of equation (12) we use a quadrature rule as∫
Ω

Θn
h
(
X

n
h
)
ϕi(x) dx =

Ne∑
l=1

∫
Kl

Θn
h
(
X

n
h
)
ϕi(x) dx,

≈

Ne∑
l=1

Nl,Q∑
q=1

ωq,lΘ
n
h(Xn

q,l)ϕi(xq,l),

≈

Ne∑
l=1

Nl,Q∑
q=1

ωq,lT̂
n
q,lϕi(xq,l) := rn

i , i = 1, . . . ,Mv, (16)
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Figure 2: Distributions of quadrature points in a finite element used in the L2-projection method for global and local enrichments.

where xq,l =
(
xq,l, yq,l

)⊤
are the quadrature points associated with the finite element Kl with weights ωq,l and Nl,Q is

the total number of quadrature points in Kl. Here, Xn
q,l is the departure point that will reach the quadrature point xq,l

at time tn+1 and T̂ n
q,l = Θ

n
h(Xn

q,l) is the solution evaluated at the departure point Xn
q,l. Similarly,

∫
Ω

un
h
(
X

n
h
)
ϕi(x) dx =

Ne∑
l=1

∫
Kl

un
h
(
X

n
h
)
ϕi(x) dx,

≈

Ne∑
l=1

Nl,Q∑
q=1

ωq,lun
h(Xn

q,l)ϕi(xq,l),

≈

Ne∑
l=1

Nl,Q∑
q=1

ωq,lÛ
n
q,lϕi(xq,l) := zn

i , i = 1, . . . ,Mv, (17)

where Û
n
q,l = un

h(Xn
q,l) is the velocity solution evaluated at the departure point Xn

q,l. Using the approximations (14)-

(17), the equation (12) can be formulated as

Mv∑
j=1

mi jT
n+1
j = rn

i ,

Mv∑
j=1

mi jU
n+1
j = zn

i , i = 1, . . . ,Mv. (18)

Using the quadrature rule to approximate the integral, we obtain

mi j =

∫
Ω

ϕ j(x)ϕi(x) dx ≈
Ne∑
l=1

Nl,Q∑
q=1

ωq,lϕ j(xq,l)ϕi(xq,l). (19)

To compute the solutions T̂ n
q,l and Û

n
q,l in (16) and (17) respectively, we assume that for each quadrature point xq,l

(q = 1, . . . ,Nl,Q), the pair (Xn
q,l, K̂q,l) is known, with K̂q,l is the host element where the departure point Xn

q,l is located.

Hence, as in the approximation (9), we compute the solutions T̂ n
q,l and Û

n
q,l as

T̂ n
q,l =

N∑
i=1

Θn
h (̂xi)φi(Xn

q,l), Û
n
q,l =

N∑
i=1

un
h (̂xi)φi(Xn

q,l), (20)

with {̂xi}
N
i=1 are the nodes of the host element K̂q,l and {φi}

N
i=1 are their associated local basis functions. The equations

(18) can also be assembled in a global matrix-vector form as

[M]
{
T n+1

}
= {rn} , [M]

{
U

n+1
}
= {zn} , (21)
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Algorithm 1 Enriched semi-Lagrangian finite element algorithm.
1: Assemble the finite element mass matrix [M] using (19).

Assuming that the nodal solutions T n andUn at the current time tn is known.

2: for each element Kl in the computational mesh do

3: Generate the quadrature
(
xq,l, ωq,l

)
, q = 1, . . . ,Nl,Q using the Dunavant rule.

4: For each quadrature point xq,l in the element Kl, compute the departure point Xn
q,l by solving the initial-value

problem (8).

5: Search-locate the mesh element K̂q,l where the departure point Xn
q,l resides.

6: Evaluate the solution values T̂ n
q,l and Û

n
q,k using the approximations

T̂ n
q,l =

N∑
i=1

Θn
h (̂xi)φi(Xn

q,l), Û
n
q,l =

N∑
i=1

un
h (̂xi)φi(Xn

q,l).

7: Compute the right-hand side elements rn
i and zn

i using (16) and (??), then assemble the right hand sides in the

vectors {rn} and {zn}.

8: end for

9: Solve the linear systems

[M]
{
T n+1

}
= {rn} , [M]

{
U

n+1
}
= {zn} ,

to obtain the solutions T n+1 andUn+1.

10: Calculate the solutions Θn+1
h and un+1

h at time tn+1 according to the equation (13).

where [M] is the Mv × Mv-valued mass matrix with entries mi j, T n+1 and Un+1 are the Mv-valued vectors of the

unknown nodal solutions with entries T n+1
j andUn+1

j , respectively. In (21), rn and zn are the Mv-valued of the known

right-hand sides with entries rn
i and zn

i , respectively. It is worth mentioning that equation (18) can be viewed as an

enrichment technique with the quadrature rules are used for enrichment functions. In (19), the number of quadrature

points Nl,Q, their abscissa xq,l and weights ωq,l can be adjusted either globally in all elements of the mesh or locally

at each element in the computational domain. In the present work, we considered the well-established Dunavant

quadrature rules [51] for which the associated abscissa xq,l and weights ωq,k can be found therein. For an illustration,

Figure 2 depicts the distribution of these quadrature points with Nl,Q = 6, 12, 25 and 52. It should be noted that other

quadrature rules can also be easily implemented in our method without major conceptual modifications.

In summary, Algorithm 1 describes the steps required in the enriched semi-Lagrangian finite element method for

solving the convection problem (3). It should be stressed that no linear systems of algebraic equations need to be

solved for the conventional semi-Lagrangian finite element method and the numerical solution is directly obtained

by interpolation using the basis functions of the host element K̂i where the departure points Xn
i , i = 1, . . . ,Mv are

localized. Unlike this conventional method, the proposed enriched semi-Lagrangian finite element method computes

the departure points Xn
q,l for all quadrature points belonging to each element Kl in the computational mesh and it also

10



requires solution of a linear system in order to update the numerical solution at each time step.

3.2. Solution of the generalized Stokes problem

In the current work, we implement a direct-type algorithm to solve the generalized Stokes problem (3), see for

instance [52, 32, 53] for similar techniques. The main advantage of this algorithm lies on the fact that neither projec-

tion techniques nor special corrections for the pressure are needed in its implementation. To complete the formulation

of the enriched semi-Lagrangian finite element method for the coupled flow-transport problem (1), we use a conju-

gate gradient method to directly solve the equations (3) for the temperature, velocity and pressure at each time step.

The time integration is achieved using the second-order implicit scheme of Gear type also known in the literature by

backward differentiation formula (BDF2). Hence, given a tolerance ε and using superscripts in parenthesis to refer to

iteration numbers, the procedure to advance the solution of (3) from a time tn to the next time tn+1 can be carried out

in the following steps:

1. Solve for Θn+1
h ∈ Vh such that for all vh ∈ Vh

3
2∆t

∫
Ω

Θn+1
h vh dx +

1
PrRe

∫
Ω

∇Θn+1
h · ∇vh dx =

1
2∆t

∫
Ω

(
4Θ̂n

h − Θ̂
n−1
h

)
vh dx (22)

2. Given p(0)
h = pn

h, solve for u(0)
h ∈ Vh such that for all vh ∈ Vh

3
2∆t

∫
Ω

u(0)
h vh dx +

1
Re

∫
Ω

∇u(0)
h · ∇vh dx =

∫
Ω

p(0)
h ∇ · vh dx + Ri

∫
Ω

Θn+1
h vh · e dx +

1
2∆t

∫
Ω

(
4ũn

h − ũn−1
h

)
vh dx. (23)

Then, compute

q(0)
h = ∇ · u

(0)
h .

3. Solve for ψ(0)
h ∈ Ph such that for all ψh ∈ Ph∫

Ω

∇ψ(0)
h · ∇ψh dx =

∫
Ω

q(0)
h ψh dx, (24)

and set

ζ(0)
h =

3
2∆t

ψ(0)
h +

1
Re

q(0)
h , ξ(0)

h = ζ
(0)
h .

4. For k = 1, 2, . . . , assume that p(k)
h , u(k)

h , q(k)
h , ζ(k)

h , ξ(k)
h are known, we compute p(k+1)

h , u(k+1)
h , q(k+1)

h , ζ(k+1)
h , ξ(k+1)

h as

follows:

(a) Solve for uh ∈ Vh such that for all vh ∈ Vh

3
2∆t

∫
u(k)

h vh dx +
1

Re

∫
∇u(k)

h · ∇vh dx =
∫

ξ(k)
h ∇ · vh dx, (25)

and set

q(k)
h = ∇ · u

(k)
h .

11



(b) Compute

ηk =

∫
q(k)

h ζ(k)
h dx∫

q(k)
h ξ(k)

h dx
.

(c) Set

p(k+1)
h = p(k)

h − ηkξ
(k)
h , u(k+1)

h = u(k)
h − ηku(k)

h , q(k+1)
h = q(k)

h − ηkq(k)
h .

(d) Solve for ψ
(k)
h ∈ Ph such that for all ψh ∈ Ph∫

∇ψ
(k)
h · ∇ψh dx =

∫
q(k)

h ψh dx, (26)

and set

ζ(k+1)
h = ζ(k)

h − ηk

(
3

2∆t
ψ

(k)
h +

1
Re

q(k)
h

)
.

i. If

∫
q(k+1)

h ζ(k+1)
h dx∫

q(0)
h ζ(0)

h dx
≤ ε, then

pn+1
h = p(k+1)

h , un+1
h = u(k+1)

h ,

stop.

ii. Else, compute

χk =

∫
q(k+1)

h ζ(k+1)
h dx∫

q(k)
h ζ(k)

h dx
, ξ(k+1)

h = ζ(k+1)
h + χkξ

(k)
h ,

change k ←− k + 1, return to step (a) and repeat.

iii. End if

It should be stressed that in (22)-(23), the solutions Θ̂n−1, Θ̂n, ũn
h and ũn−1

h are required to advance the solutions

Θn+1 and u(k)
h in time. Here, at time t = 0 only one initial condition is provided and to obtain the second condition

we use the implicit Euler scheme. Notice that the iterative process in the direct-type algorithm involves solutions

of uncoupled elliptic problems such that their finite element discretization yields well-conditioned linear systems

of algebraic equations for which very efficient solvers can be used. Taking advantage of these properties the linear

systems in our enriched semi-Lagrangian algorithm can be solved by the conjugate gradient solver using an incomplete

Cholesky factorization. It is also worth remarking that the finite element discretization of the equations (22)-(26) is

straightforward and is omitted here.

4. Multilevel adaptive enrichments

In many applications in coupled flow-transport problems, the Reynolds number reaches high values for which

steep gradients, localized eddies and boundary shear layers occur in their numerical solutions. In regions where the

12



Algorithm 2 Algorithm for the adaptive enriched semi-Lagrangian finite element method.
Require: εm, m = 0, 1, 2, 3.

1: while tn+1 ⩽ T do

2: for each mesh triangle Kl do

3: Evaluate the error indicator ηn+1
Kl

using the equation (27).

4: for m = 0, 1, 2, 3 do

5: if εm ⩽ ηn+1
Kl

⩽ εm+1 then

6: Nl,Q = NQm

7: end if

8: end for

9: end for

10: Generate the quadrature rule
(
xq,l, ωq,l

)
, q = 1, . . . ,Nl,Q.

11: Compute the L2-projection mass matrix [M] using the equation (19).

12: for each element Kl do

13: for each quadrature point xq,l, q = 1, . . . ,Nl,Q do

14: Compute the departure point Xn
q,l.

15: Identify the element K̂q,l where Xn
q,l belongs.

16: Evaluate the solution value T̂ n
q,l using the equation (20).

17: end for

18: end for

19: Compute the element right-hand side rn
i using the equation (16).

20: Assemble the right hand-side vector rn.

21: Solve the linear system in the equation (21).

22: Calculate the solution Θn+1
h at time tn+1 according to the equation (7).

23: end while

solution gradients are very high, the enriched semi-Lagrangian finite element method introduced in section 2 may

require very fine meshes and high numbers of quadrature points to accurately capture these features. In the present

study, to avoid uniform enrichments in the entire computational domain, we propose an multilevel adaptive algorithm

for local enrichments to increase the efficiency of the proposed method. The key idea in this multilevel adaptive

technique lies on refining the number of quadrature points Nl,Q in mesh elements where the solution gradient generates

high values and unrefine otherwise according to a given adaptation criterion. In practice, an error indicator along with a

given tolerance are required to adapt the quadrature accordingly at each time step. For example, gradient-based error

estimators have been widely used in the literature in h-adaptive finite element methods for solving incompressible

Navier-Stokes equations, see [39, 40, 41, 42, 43, 44, 45, 46] among others. However, an initial coarse mesh to
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compute a primary solution is needed in most of these gradient-based h-adaptive techniques for estimating the gradient

errors. Therefore, error accumulations are expected in time because of the coarse mesh used in the approximation and

also because of multiple interpolations between adaptive meshes, the computational cost becomes prohibitive. In the

current work, we consider the normalized gradient of the temperature as an adaptive criterion for the local enrichments

of each element in the computational domain defined by

ηn+1
Kl
=

∥∥∥∥∇Θn+1
Kl

∥∥∥∥
Nemax
j=1

∥∥∥∥∇Θn+1
K j

∥∥∥∥ , (27)

where Θn+1
Kl

is the solution on the triangle Kl at time tn+1 and
∥∥∥∥∇Θn+1

Kl

∥∥∥∥ is the L2-norm of the gradient of the solution

on the element Kl defined as ∥∥∥∇Θn+1
Kl

∥∥∥ = (∫
Kl

∇Θn+1 · ∇Θn+1dx
) 1

2

. (28)

Note that the error indicator (27) employs the gradient at the next time level tn+1 instead of the current time tn. This

implicit form is possible due to the semi-Lagrangian use method which approximates the solutions Θn+1
Kl

backwards

in time as shown in (10). Hence, applying the gradient to the solution (11) we obtain

∇Θn+1
Kl
=

N∑
i=1

T n+1
i ∇φi(x),

Thus, ∥∥∥∇Θn+1
Kl

∥∥∥2
=

∫
Kl

∇Θn+1 · ∇Θn+1 dx =

∫
Kl

 N∑
i=1

T n+1
i ∇φi

 ·
 N∑

j=1

T n+1
j ∇φ j

 dx,

=

N∑
i=1

T n+1
i

 N∑
j=1

T n+1
j

∫
Kl

∇φi · ∇φ j dx

 ,
=

(
Θn+1
Kl

)⊤
SKlΘ

n+1
Kl
,

whereΘn+1
Kl
=

(
T n+1

1 , . . . ,T n+1
N

)⊤
are the values of Θn+1

h at the vertices ofKl and SKl is the elementary stiffness matrix

evaluated at the element Kl. Therefore, the temperature gradient at the element Kl in (28) is calculated by∥∥∥∇Θn+1
Kl

∥∥∥ = ((
Θn+1
Kl

)⊤
SKlΘ

n+1
Kl

) 1
2
. (29)

Notice that the normalization in the criterion (27) is used to keep its values in the interval [0, 1]. Hence, the multilevel

adaptive algorithm we propose in this study is carried out as follows.

Given a set of three real numbers {εm} such that 0 = ε0 < ε1 < ε2 < ε3 < ε4 = 1. If an element Kl in the

computational mesh satisfies the condition

εm ⩽ ηn+1
Kl

⩽ εm+1, m = 0, 1, 2, 3,

then the element Kl is enriched using the quadrature
(
xq,l, ωq,l

)
, with q = 1, 2 . . . ,NQm . Note that the values of

{ε1, ε2, ε3} are tolerances to be given by the user resulting into a three-level refining procedure. Algorithm 2 summa-

rizes the steps used in the proposed multilevel adaptive enriched semi-Lagrangian finite element method for solving
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the convection problem (4). Here, the number of levels m and the values of tolerances {εm} in the above multilevel

adaptive enriched semi-Lagrangian finite element method are problem dependent and their discussion is postponed

for next section where numerical examples are discussed.

5. Numerical results

In this section several numerical examples are considered to examine the performance of the new enriched semi-

Lagrangian finite element method proposed in this study. For the first example the exact solution is available, so that

we can compute the relative L1-error and L2-error at time tn as

L1-error =

∫
Ω

∣∣∣Θn
h − Θ

n
exact

∣∣∣ dx∫
Ω

∣∣∣Θn
exact

∣∣∣ dx
, L2-error =

(∫
Ω

∣∣∣Θn
h − Θ

n
exact

∣∣∣2 dx
)1/2

(∫
Ω

∣∣∣Θn
exact

∣∣∣2 dx
)1/2 , (30)

where Θn
exact is the exact solution and Θn

h the numerical solution evaluated at the nodal point xh and time tn. Here,

the CFL number is fixed and the time stepsize ∆t is adjusted at each time step according to the stability condition as

follows

CFL = max
x,y
∥u∥
∆t
h
. (31)

In our computations, all resulting linear systems of algebraic equations are solved using the conjugate gradient solver

with incomplete Cholesky decomposition and stopping criteria set to 10−6h, which is small enough to guarantee that

the algorithm truncation errors dominate the total numerical errors. All the computations were performed on an Intel®

Core(TM) i7-7500U @ 2.70GHz with 16 GB of RAM. The CPU times presented in this section include all aspects

of computational work including, mesh generation, calculation of characteristic curves, search-locate of departure

points, assembling of finite element matrices, enrichment adaptation, and solution of linear systems.

5.1. Moving fronts problem

In this example we consider the problem of moving fronts in a squared domain in Ω = [0, 1] × [0, 1] modeled by

the transport-diffusion equation
∂Θ

∂t
+ u · ∇Θ − ν∇2Θ = 0, (32)

with a velocity field u = (u, v)⊤ varying in time as

u(t, x, y) =
−0.1e−A(t,x) + 0.5e−B(t,x) + e−C(t,x)

e−A(t,x) + e−B(t,x) + e−C(t,x) , v(t, x, y) =
−0.1e−A(t,y) + 0.5e−B(t,y) + e−C(t,y)

e−A(t,y) + e−B(t,y) + e−C(t,y) ,

where

A(t, z) =
0.05
ν

(z − 0.5 + 4.95t), B(t, z) =
0.25
ν

(z − 0.5 + 0.75t), C(t, z) =
0.50
ν

(z − 0.375),

with z = x or y. It is also easy to verify that the analytical solution of the problem (32) is given by

Θ(t, x, y) = u(t, x, y)v(t, x, y).
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Table 1: Results for the moving fronts problem obtained by the fixed and adaptive enriched semi-Lagrangian finite element methods using different

structured meshes and different quadratures at time t = 0.8 using CFL = 3.5. Here, the CPU times are given in seconds.

Fixed enrichment Adaptive enrichment

h NQ L1-error L2-error CPU L1-error L2-error CPU

1
32

12 0.06141 0.06851 0.34 0.06132 0.06878 0.29

25 0.04521 0.05192 0.53 0.04636 0.05221 0.36

52 0.03524 0.04471 0.79 0.03548 0.04501 0.38

70 0.02873 0.04183 1.05 0.02904 0.04238 0.42

1
64

12 0.01589 0.01736 2.85 0.01596 0.01745 1.67

25 0.01170 0.01307 3.85 0.01274 0.01314 1.77

52 0.00887 0.01141 4.97 0.00898 0.01150 1.96

70 0.00713 0.01010 6.75 0.00738 0.01061 2.11

1
128

12 0.00426 0.00431 28.12 0.00447 0.00441 14.20

25 0.00297 0.00327 45.15 0.00299 0.00329 18.13

52 0.00214 0.00287 78.97 0.00219 0.00290 26.67

70 0.00181 0.00236 97.35 0.00183 0.00239 27.04

Table 2: Results for the moving fronts problem obtained by the conventional semi-Lagrangian finite element methods using different structured

meshes at time t = 0.8 using CFL = 3.5. Here, the CPU times are given in seconds.

h # elements # nodes L1-error L2-error CPU
1

32 512 1089 0.08952 0.09726 0.17
1

64 2048 4225 0.02953 0.04263 1.1
1

128 8192 166641 0.00859 0.00991 9.8

This problem has been previously solved in [54] using a moving finite element method and in [55] using a family

of finite element alternating-direction methods combined with a modified method of characteristics. Initially, two

separate fronts travel along the main diagonal of the computational domain at different speeds and eventually coalesce

into one front for longer time. In our simulations, the initial and boundary conditions are defined by the exact solution,

the diffusion coefficient ν = 5 × 104 and CFL = 3.5.

To examine the performance of the proposed approach we summarize in Table 1 the L1-error, L2-error and CPU

times given in seconds. We present results obtained by the fixed and adaptive enriched semi-Lagrangian finite element

methods using different structured meshes and different quadratures at time t = 0.8 using CFL = 3.5. For comparison,

those results obtained using the conventional semi-Lagrangian finite element method are summarized in Table 2 for the

same meshes. It is clear from the values of L1-error and L2-error that both the fixed and adaptive enrichments produce
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Figure 3: Adaptive quadrature points (first row) and solution contours (second row) for the moving fronts problem at time t = 0.015 (first column),

t = 0.345 (second column), t = 0.51 (third column) and t = 0.8 (fourth column) on a structured mesh with h = 1
64 .

similar results with negligible differences for all considered meshes and numbers of quadrature points. However,

compared to the conventional semi-Lagrangian finite element method, the enriched methods are far more accurate.

Considering the q-refinement for this example, it is evident that by increasing the number of quadrature points in

the simulations results in an improvement in the accuracy of the approximated solution for both fixed and adaptive

enrichments. As expected, the adaptive enrichment approach is more efficient than the its fixed counterpart, compare

the computational costs in Table 1. Therefore, it is clear that the CPU times required for the fixed enrichment method

are larger than the CPU times needed in the adaptive enrichment method. For instance, the adaptive enrichment

method requires a CPU time about 60% less than the one required by the fixed enrichment method due to high

demand of the global enrichments. This reduction in the computational cost becomes large when fine meshes are

used in the simulations. As shown in the Table 1, using the fine mesh with h = 1
128 the adaptive enrichment approach

uses 72% of the computing time less than the fixed enrichment approach. However, the computational cost for the

conventional approach in Table 2 is remarkably low compared to the enriched methods on the same configuration but

the global accuracy of the conventional method is inferior to those achieved using the enriched methods.

In order to show the capability of the proposed adaptive enriched method to capture the moving sharp gradients

in the approximated solution we display in Figure 3 the distribution of quadrature points and the corresponding 10

equi-distributed contourlines of the solution at four different times on a structured mesh with h = 1
64 . To highlight the

element with and without enrichments, the elements of the computational mesh are colored to identify the number of

quadrature points for each element. Therefore, in Figure 3 the enriched elements are colored in blue color and the
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Figure 4: Cross-sections at the main diagonal x = y obtained for the moving fronts problem at time t = 0.8 on a mesh with h = 1
64 (first row) and

h = 1
128 (second row) using Nk,Q = 12 (first column), Nk,Q = 25 (second column) and Nk,Q = 52 (third column).

elements without enrichments are colored in gray color. In this test example a single-level adaptive enrichments is

used according to a tolerance ε1 = 0.15. In this simulation the elements subject to a sharp gradient are enriched with

a number of quadrature points Nl,Q = 52 while the number of quadrature points is set to Nl,Q = 6 elsewhere. It is clear

from the results in Figure 3 that the proposed enriched semi-Lagrangian finite element algorithm captures the steep

gradients over time and the location of the enrichments follows the moving fronts with no distortion detected in the

distribution of these enriched elements.

For comparison purpose, we present in Figure 4 cross-sections at the main diagonal x = y of the results obtained

using the fixed and adaptive enrichment methods on two meshes with h = 1
64 and h = 1

128 . The results obtained using

the conventional method and the analytical solutions are also included in this figure. It is clear that both the fixed

and adaptive enrichment methods produce similar results which are close to the analytical solutions on both meshes.

From the same results, it can be shown that the conventional semi-Lagrangian finite element method fails to accurately

resolve this moving fronts problem, see the non-physical oscillations in the results obtained using the conventional

method in Figure 4. Furthermore, the conventional method exhibits an excessive numerical diffusion compared to its

enriched counterpart. The proposed enriched semi-Lagrangian finite element method resolves well this problem as

it allows for a local refinement of quadrature points in mesh elements with sharp gradients in the computed solution

while the computational mesh is kept fixed during the time integration process.
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5.2. Transient buoyancy flow problem

This test example is used to assess the numerical performance of the proposed error indicator used for adaptive

enrichments to resolve high gradients at scales of the mesh which occur in the buoyancy flows. Here, we solve the

coupled flow-transport problem proposed in [56] as a benchmark for numerical methods of incompressible buoyancy

flows. The flow problem consists of the transport of a hot plume in a cold fluid placed in a squared cavity. Here, we

solve the coupled equations (3) in the unit squared domainΩ = [0, 1]×[0, 1] with a light plume placed in the lower half

of the studied cavity [0.375, 0.625]×[0.25, 0.5]. The plume has a void temperatureΘ = 1 and the surrounding medium

has a temperature Θ = 0. At initial time t = 0, the fluid is at rest and no-slip boundary conditions for the velocity and

adiabatic boundary conditions for the temperature are imposed. In our simulation, Pr = 5, Re = 103 and Ri = 1, and

a fixed unstructured mesh is intentionally selected to be sufficiently coarse, being composed of 3100 elements only

with 6343 nodes for velocity/temperature and 1622 for pressure. Initially, the number of quadrature points is set to

Nl,Q = 6 in all elements in the computational mesh and tolerances of ε1 = 0.07, ε2 = 0.15 and ε3 = 0.3 are used

for the three-level adaptive enrichments. In general, any number of enrichment levels can be used in the proposed

algorithm and it is up to the user to decide on how many levels should be used. For the considered flow problems,

we have found that increasing the number of enrichment levels beyond four results in no further improvements in the

obtained results.

In Figure 5 we present results for the distribution of quadrature points, velocity fields and isotherms at four

different times t = 1, 2.43, 3.6 and 4.89 using a CFL number fixed to 2.5. For the considered values of Re and

Ri, the buoyancy force increases the shear stresses on the cavity walls which yields an increase in the velocity field.

These wall effects slow the transport of the plume towards the upper cavity wall allowing the plume to preserve its

compact shape during the whole simulation period. These results are in good agreement with those results reported

in the literature, see for example [56]. It is also clear from the results in Figure 5 that the high solution gradients

are perfectly captured at the considered times despite that from a certain time the filaments become closer to each

other. The interface has been accurately captured in our computations using the adaptive enrichments. Furthermore,

this test example demonstrates the high resolution of the adaptive enriched semi-Lagrangian finite element method,

which can refine the quadrature points in the vicinity of the interface and it reduces the computational effort without

sacrificing the accuracy. For comparison reasons, we also display in Figure 6 the isotherms obtained at time t = 4.3

using fixed, adaptive enriched methods, the conventional method and a reference solution obtained on a fine mesh

with 32768 elements and 66049 nodes. The time evolution of the kinetic energy for this problem is also compared in

Figure 6 to the results reported in [56]. The performance of our adaptive enrichment procedure is very attractive since

the computed solutions remain stable without nonphysical oscillations appearing in the vicinity of sharp gradients in

the interface. These features are resolved in our adaptive enriched semi-Lagrangian finite element method without

requiring small time steps or very fine meshes. It should also be noted that, we use a single fixed mesh in our adaptive

enriched method and the gradient is evaluated from the known solution at next time level obtained by backtracking

along the characteristic curves. Therefore, a considerable reduction in the computational cost was ensured compared
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Figure 5: Adaptive quadrature points (first column), velocity fields (second column) and isotherms (third column) for the transient buoyancy flow

at time t = 1 (first row), t = 2.43 (second row), t = 3.6 (third row) and t = 4.89 (fourth row) on an unstructured mesh with 3100 elements.

20



Figure 6: Comparison of isotherms at time t = 4.3 (left) and time evolution of the kinetic energy (right) obtained for the transient buoyancy flow

using different methods.

to the calculation of gradient in h-adaptive methods. In such methods, two meshes are needed for each time step

for which a coarse mesh is used to calculate the gradient whereas the refined mesh is used to compute the solution.

Thus, an additional cost is added which is not the case in our adaptive enrichment algorithm. Note that the reference

solutions have been obtained using highly refined meshes for which the number of degrees of freedom are far larger

than those used in the enriched solutions. Therefore, the discrepancies between the enriched and reference solutions

are expected but refining the mesh in the enriched method would converge to the reference solutions. Here, even the

used mesh is coarse, the obtained results show a significant improvement in accuracy and efficiency compared to the

conventional finite element method but by refining the mesh, the obtained results converge to the reference solutions.

5.3. Thermal flow past a cylinder

To illustrate the capability of the proposed multilevel adaptive enriched semi-Lagrangian finite element method for

complex problems, we consider the coupled transport-flow problem of a viscous thermal flow past a circular cooled

cylinder subject to a vertically upward laminar flow. The characteristics of vortex shedding behind circular cylinders

or similar two-dimensional bluff bodies have been widely used in the literature to test the accuracy of numerical

methods for the incompressible Navier-Stokes equations, see for example [57, 58, 59, 10]. The geometry and the

mesh used in our simulations for this example are shown in Figure 7. Here, a fixed circular cylinder with diameter

D = 1 is placed in a vertical flow with velocity u∞ = 1 and temperature Θ∞ = 1. The Reynolds number is defined as

Re = Du∞/ν, where ν is the kinematic viscosity. In our simulations, the Prandtl number Pr = 0.71, the Richardson

number Ri = 1 and two values of Reynolds numbers Re = 100 and Re = 200 are considered. The CFL number is

fixed to 3.5 and we use the unstructured triangular finite element P2/P1 mesh sown in Figure 7 in the simulations.

This mesh is composed of 3149 elements with 6802 velocity/temperature nodes and 1804 pressure nodes. The major

objective of this test case is to demonstrate that proposed multilevel adaptive enrichments are capable to accurately
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Figure 7: Configuration of the computational domain (left) and computational mesh (right) used for the problem of thermal flow past a cylinder.

capture sharp gradients and vortex shedding in the approximated solutions with inexpensive computational costs.

Here, we investigate a three-level adaptive enrichments with tolerances ε1 = 0.04, ε2 = 0.15 and ε3 = 0.25. Initially,

the number of quadrature points is Nl,Q = 6 in each element in the mesh, then this number is modified according to

Algorithm 2 using (Nl,Q = 12, Nl,Q = 52, Nl,Q = 70).

Figure 8 depicts the velocity fields, the distribution of quadrature points using three-level adaptive enrichments and

the temperature snapshots obtained at five different instants t = 3.9, 7.3, 10, 14.9, and 156.1. For a better illustration,

different colors are used to identify the mesh element with quadrature points for each level of enrichments in the

computational mesh. It should also be noted that the results obtained using the single-level and two-level enrichments

are not included for this example because these results overlap those obtained using the three-level enrichments. For

the considered conditions, the flow past the cylinder exhibits eddies with different magnitudes and the recirculating

zones behind the cylinder increases within the simulation time. Therefore, large vortices and thermal fronts appeared

in the domain yield elements with steep gradients in the computational mesh to be enriched. The proposed multilevel

adaptive enrichment method accurately captures these sharp gradients in the numerical solution and correctly enriches

their associated elements. Note that this class of flows past solid bodies is unsteady in time and adaptation techniques

are highly recommended to reduce the computational costs. From the results shown in Figure 8, it is apparent that

the proposed multilevel adaptive enriched semi-Lagrangian finite element method resolves this coupled flow-transport
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Figure 8: Temperature snapshots (First row ), adaptive quadrature points (second row) and velocity field (third row) for flow past cylinder with

Re = 100 at time t = 3.9 (first column), t = 7.3 (second column), t = 10 (third column), t = 14.9 (forth column) and t = 156.1 (fifth column).
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Figure 9: Lift and drag coefficients for the flow past a circular cylinder at Reynolds number Re = 100 obtained using fixed and adaptive enrichments.

problem accurately by adapting the quadrature points where it is needed with different densities and different structures

according to the sharpness of solution gradients. Moreover, the proposed multilevel adaptive method capture the heat

transport and the flow eddies around the cylinder very well. These results demonstrate the efficiency of our adaptation

criterion which is approximated backward thanks to the modified method of characteristics.

For comparison purposes, we quantify the results of this coupled flow-transport past a cylinder by evaluating the

force coefficients at each time step as

Lift =
∮ 2π

0

(
−pnx + ν

∂u
∂x

)
dx, Drag =

∮ 2π

0

(
−pny + ν

∂v
∂y

)
dx,

where (nx, ny)⊤ is the outward unit normal vector on the cylinder surface. In Figure 9 we display the time evolution

of the lift and drag coefficients obtained using the fixed and three-level enrichments. Initially, the lift coefficient starts

from zero and rapidly oscillates later with increasing amplitudes. Similarly, after an initial stabilization phase, the

oscillatory behavior in the drag coefficient exhibits a steady feature in the considered time period. As expected for

this type of flow problems, the vortex shedding from the circular cylinder generate fluctuations in the lift and drag

forces. As can be seen in Figure 9, there is no noticeable differences between the results obtained for these forces

using the fixed and adaptive enrichments. For the considered flow parameters, fluctuations with higher frequencies

are detected in the drag coefficient compared to the lift coefficient. The periodic behavior of the lift coefficient should

also be noted in the results displayed in Figure 9. The results obtained using our multilevel adaptive enriched semi-

Lagrangian finite element method show good agreement with all flow variables reported in the literature, see for

instance [30, 10, 60, 61].

To further quantify the periodic behavior of the lift coefficient, we calculate the dimensionless Strouhal number

as S t = DT/u∞, with T is the time period. The Strouhal number has been widely used in experimental works for

this class of flows around rigid bodies, see [30, 60] among others. In Table 3 we summarize the Strouhal numbers,

averaged iterations in the conjugate gradient algorithm and CPU times at for two Reynolds numbers Re = 100 and

Re = 200 using fixed and adaptive enrichments on Mesh I and Mesh II at time t = 200. Here, Mesh I contains 3149

elements with 6802 nodes for the velocity/temperature solutions and 1804 nodes for the pressure solution whereas,
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Table 3: Strouhal numbers, averaged iterations and CPU times (in minutes) for the flow past cylinder at Reynolds numbers Re = 100 and 200

obtained using adaptive enrichments.

Re = 100 Re = 200

Fixed enrichment Adaptive enrichment Fixed enrichment Adaptive enrichment

Mesh # elements St Iter CPU St Iter CPU St Iter CPU St Iter CPU

Mesh I 3149 0.13780 2.095 779 0.13798 2.100 265 0.14606 2.579 844 0.14537 2.581 281

Mesh II 4955 0.14042 1.782 882 0.14012 1.782 341 0.15363 2.021 946 0.15346 2.021 356

Figure 10: Schematic map of the Mediterranean Sea along with relevant locations.

Mesh II contains 4955 elements with 10359 nodes for the velocity/temperature solutions and 7657 nodes for the

pressure solution. As expected, the results obtained for the Strouhal number S t using the adaptive enrichments are

similar to those given by the fixed enrichments for both considered Reynolds numbed and meshes. Moreover, the

adaptive procedure reduces the number of quadrature points about 4.5 times. It can be shown from the table 3 that the

adaptive enrichments can achieve the same accuracy of the fixed enrichments using a CPU about 60% than the one

needed in the fixed enrichments for all meshes and Reynold numbers.

5.4. Heat transport in the Mediterranean Sea

Our final test example consists of a problem of heat transport in the Mediterranean Sea using the coupled flow-

transport equations (3). The Mediterranean Sea of 4000 km west-east length and 1500 m of averaged depth is a semi-

enclosed basin, naturally connected to the large Atlantic ocean basin by the Strait of Gibraltar which enables and at

the same time limits this dynamic communication between the basins, see the map in Figure 10. The budgets of heat

and freshwater surface in the Mediterranean basin are negative. However, about 90% of these deficits of freshwater
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Table 4: Mesh statistics, values of the kinetic energy and the total averaged temperature and at time t = 10.5 days, and computational times for the

considered meshes in the problem of heat transport in the Mediterranean Sea using Ri = 0 and Ri = 1. The CPU times are given in seconds.

Ri = 0 Ri = 1

# elements # P2 nodes # P1 nodes Energy Averg Θ CPU Energy Averg Θ CPU

Mesh A 14217 33759 9757 4.665E+06 5.411E+07 558 4.233E+06 3.188E+07 632

Mesh B 18827 42979 12062 3.484E+06 5.164E+07 1020 3.551E+06 2.939E+07 1119

Mesh C 27376 60078 16337 2.828E+06 4.887E+07 1668 3.705E+06 2.598E+07 1754

Mesh D 47325 100015 26330 2.559E+06 4.718E+07 2646 3.168E+06 2.649E+07 2801

and heat are balanced by the Atlantic waters that enter through the strait of Gibraltar, see for instance [62]. This inflow

is warmer and fresher (15.4 ◦C, 36.2 psu) while the outflow to the Atlantic basin is cooler and saltier 13 ◦C, 38.4 psu),

see [63] among others. In practice, the heat transport is affected by the circulation of the Sea which is forced by the

water flow exchange through various straits (Gibraltar, Otrano sicily), by wind stress, and by buoyancy forces at the

surface, see for example [64]. Note that the validity of using the two-dimensional Navier-Stokes/Bousinesq equations

is supported by the geometry of the Mediterranean Sea and the temperature differences between the Mediterranean

and the Atlantic waters. Hence, we solve the equations (3) in the computational domain illustrated in Figure 10 using

four different meshes shown in Figure 11. The system is assumed initially at warm rest and at the left and right

boundary regions we use cold temperature Θ = 17 ◦C and hot temperature Θ = 23 ◦C, respectively. All coastlines of

the Mediterranean Sea are considered as adiabatic boundaries. For the water flow, a well developed velocity profile

with a maximum velocity u∞ = 0.54 m/s is imposed at the western entrance of the Sea. This profile corresponds to

the annual mean of the Atlantic input flux and it is also comparable to the main semidiurnal component M2, see for

instance [65, 64, 63]. In our simulations, we consider a three-level adaptive enrichment with tolerances ε1 = 0.07,

ε2 = 0.13 and ε3 = 0.3 for which the initial number of quadrature points is set to Nl,Q = 6 in each element and this

number is refined according to Algorithm 2 using (Nl,Q = 12, Nl,Q = 25, Nl,Q = 52). Both uncoupled (Ri = 0) and

coupled (Ri = 1) flow-transport cases are considered for this problem using Pr = 7.15, Re = 104 and a fixed CFL =

5.5 The obtained results are also compared to those computed using the conventional semi-Lagrangian finite element

method. Our objective for this example is twofold, on one hand to assess the capability of our multilevel adaptive

enriched semi-Lagrangian finite element method to accurately handle complex geometries and on the other hand to

develop robust numerical tools to efficiently study heat transport the Mediterranean Sea.

In our simulations for this problem, we consider a series of unstructured meshes with triangular finite elements as

depicted in Figure 11 with the corresponding number of elements listed in Table 4. In Figure 12 we illustrate the cross-

sections of the temperature at the line connecting the two points A and B shown in Figure 10 for Ri = 0 and Ri = 1

using the considered meshes at time t = 10.5 days. The selected points A and B are located in the Mediterranean
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Figure 11: Finite element meshes used for the problem of heat transport in the Mediterranean Sea.

Sea at (1517 km, 788 km) and (1643 km, 868 km), respectively. It is easy to verify that solutions obtained for both

values of Ri using the coarse Mesh A are less accurate than those obtained using the fine Mesh D. Refining the

density of elements in the computational domain, the results for the Mesh C and Mesh D are roughly similar. This

confirm the mesh convergence in the proposed multilevel adaptive enriched semi-Lagrangian finite element method

for this test example. To further quantify the results for this mesh convergence study we summarize in Table 4 the

computational times, the averaged temperature volume and the total kinetic energy obtained at time t = 10.5 days

using the considered meshes and values of Ri. Here, the total kinetic energy and the averaged temperature volume are

defined as
1
2

∫
Ω

(
u2(t, x) + v2(t, x)

)
dx and

1
|Ω|

∫
Ω

Θ(t, x) dx,

respectively. As can be observed, there is little differences between the results obtained for the total kinetic energy

and the averaged temperature volume on the last two meshes Mesh C and Mesh D. For example, the discrepancies

in values of the total kinetic energy and the averaged temperature volume on Mesh B and Mesh C are less than 19%

and 5%, respectively. These differences become less than 10% and 3% on meshes Mesh C and Mesh D. Therefore,

bearing in mind the slight change in the results from Mesh C and Mesh D at the expanse of rather significant increase

in CPU times, the Mesh C is believed to be adequate to obtain the results free of grid effects. Hence, the results

presented herein are based on the Mesh C.

Figure 13 displays the velocity fields, streamlines, temperature snapshots and distribution of quadrature points
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Figure 12: Cross-sections of the temperature for the problem of heat transport in the Mediterranean Sea at time t = 10.5 days using four different

meshes with Ri = 1 (left) and Ri = 0 (right).

using three-level adaptive enrichments with Ri = 0 at five different times t = 1 day , 2.5 days, 5 days, 8 Days and 10.5

days. Those results obtained for the coupled situation with Ri = 1 are displayed in Figure 14. At earlier simulation

times and for both values of Ri, the cold Atlantic front entering the Mediterranean Sea through the Gibraltar strait

starts to develop and it is transported later on by the flow at far exit of the Sea. A stronger interaction between the

heat transfer and the water flow is detected across the Mediterranean Sea for the case with Ri = 1 than for Ri = 0. It

can be clearly seen that the complicated temperature and flow structures being captured by the proposed multilevel

adaptive enriched semi-Lagrangian finite element method. For example, decrease and increase of the strengths of

flow vortices with time can be seen in Figure 13 and Figure 14. Inside these vortices, there is a more complex

vortex pattern. From this figures it can also be seen that these vortices and the high gradients in the moving thermal

plume are successfully captured by our adaptive approach and the quadrature points are distributed in areas with

the prescribed tolerances according to the desired three-level enrichments in the computational domain. Here, three

different colors are used illustrate the distributions of quadrature points such that green color is used for the first

level, blue color for the second level and red color for the third level, whereas gray color is used for elements with

smooth solutions and low thermal gradients. As expected, denser quadrature points are detected for the three-level

adaptive enrichments. From the computed results for this example under the considered flow conditions, the thermal

front is mainly transported towards the African coast. The cold Atlantic front follows the stream induced by the

mean flow entering the Mediterranean Sea through the Gibraltar strait. During its convection, the heat transport

alerts the flow structure developing recirculation zones with different frequencies and magnitudes in several regions

in the Mediterranean Sea. The large downstream recirculation zone in the eastern Mediterranean is mainly due to the

temperature differences at this region. In summary, the heat transport is captured accurately, the flow field is resolved

reasonably well, and the temperature front is shape preserving. All these features have been achieved using time steps

larger than those required for Eulerian-based finite element methods in convection-dominated flows.
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Figure 15: Time evolution of the temperature at the gauge G1 (left) and gauge G2 (right) for the problem of heat transport in the Mediterranean

Sea with Ri = 0.

Figure 16: Same as Figure 15 but using Ri = 1.

Comparisons between results obtained using the conventional method, the fixed and adaptive enrichments have

also carried out for this test example. To this end, the temperature is monitored at the two gauges G1 and G2 located

respectively at (1936.7 km, 545.2 km) and (2886 km, 400 km) in the Mediterranean Sea as shown in Figure 10. Figure

15 depicts the time evolution of the temperature at the gauges G1 and G2 obtained using the fixed with Nl,Q = 52

and the three-level adaptive enrichments for the uncoupled case with Ri = 0. Those results obtained for the coupled

case with Ri = 1 are presented in Figure 16. Reference solutions obtained using fixed enrichments with Nl,Q = 52

on a fine mesh with 47327 elements are also included in these figures. For both cases with Ri = 0 and Ri = 1, the
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temperature exhibits fluctuations in its time evolution at the selected gauges G1 and G2 but bounded between the

cold water of the Atlantic ocean Θ = 17 ◦C and the warm water of the Mediterranean Sea. The numerical diffusion

is also very pronounced in the results obtained using the conventional semi-Lagrangian finite element method. On

the other hand, the differences between the results obtained using the fixed and enriched methods in Figure 15 and

Figure 16 are very small. For the considered flow and heat conditions, it can be clearly seen that the complicated

temperature and flow structures in the Mediterranean Sea being well captured by the proposed multilevel adaptive

enriched semi-Lagrangian finite element method. In fact, the computed solutions reveal the physics well in this test

example for coupled flow-transport problems. Note that computational results obtained using the proposed method

should be compared to observational data of real sea-surface heat transport in the Mediterranean Sea. However, there

is no data available until now to carry out this comparison. Thus, at the moment we can only perform simulations and

verify that results are plausible and consistent.

6. Conclusions

A multilevel adaptive enriched semi-Lagrangian finite element method has been developed for solving coupled

flow-transport problems on unstructured triangular meshes. The proposed method integrates transport part of the

equations using the semi-Lagrangian method in the framework of a mixed finite element discretization for the thermal

incompressible Navier-Stokes equations in primitive variables. An adaptive L2-projection has also been implemented

using quadrature rules and to solve the generalized Stokes problem we have used a direct conjugate-gradient solver.

This algorithm avoids projection techniques and special corrections for the pressure widely used in the literature for

Eulerian-based finite element methods. The main advantage of the new enriched semi-Lagrangian finite element

method is that, the convective term that has to be treated carefully in most of Eulerian-based finite element methods

has been accurately resolved using the semi-Lagrangian method to interpret the transport nature of the governing equa-

tions. Other advantages of the proposed method include (i) the flexibility offered by the finite element discretization

to easily handle complex irregular geometries, (ii) the high accuracy inherited from the L2-projection in the approx-

imation of solutions at the departure points, (iii) the elimination of projection techniques and special corrections for

the pressure in the generalized Stokes problem achieved by using a direct conjugate-gradient solver, and (iv) the im-

provement in the accuracy and efficiency guaranteed by the multilevel adaptive enrichments increasing the number

of quadrature points where it is needed without refining the mesh. As criteria for adaptation of enrichments we have

proposed the gradient of the temperature calculated backward at next time level using the semi-Lagrangian approach.

Unlike standard h-adaptive finite element methods, the corresponding linear systems in our adaptive enriched semi-

Lagrangian finite element method preserve the same structure and size at each refinement in the adaptation procedure.

Numerical results were presented for a series of numerical examples including the benchmark problem of flow past

a circular cylinder and a heat transport problem in the Mediterranean Sea. For all of these examples, the obtained

results have demonstrated the ability of the proposed multilevel adaptive enriched semi-Lagrangian finite element
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method to perform very well in the presence of strong gradients and discontinuities without non-physical oscillations

and numerical dissipation even when coarse meshes and large time steps are used in the simulations. Results obtained

for the problem of heat transport in the Mediterranean Sea have also shown the capabilities of the proposed method

to accurately resolve the flow and transport features on coarse meshes and with much fewer degrees of freedom com-

pared to the conventional semi-Lagrangian finite element method. Future work will concentrate on the development

of highly accurate error estimates such as a posteriori error estimates to be used as criteria for the multilevel adaptive

enrichments.
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