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Abstract 

To date, research on the welfare impacts of wildlife contraceptives has mostly been focused on the potential harms of contraceptives. 
However, there are compelling theoretical reasons to expect direct and indirect welfare benefits of wildlife contraceptives. These positive 
welfare effects would be experienced by more than just the treated individuals, because per capita resource availability will increase 
with decreasing numbers of individuals sharing a resource. In the present article, we discuss the potential for wildlife contraceptives to 
alleviate resource competition and their associated negative welfare effects at different scales. These effects are expected to vary across 
contexts and would presumably be stronger when wildlife contraceptives are used with the explicit purpose of improving wild animal 
welfare. The potential for considerable welfare gains for wildlife through the targeted use of contraceptives highlights the importance 
of both species-specific studies on the welfare benefits of wildlife contraceptives and further research on the links between population 
dynamics and wild animal welfare. 
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history trade-offs, density dependence, and wild animal welfare 
and make the case for more theoretical and applied research on 
the welfare effects of wildlife contraception. By exploring how 

decreasing population densities through wildlife contraceptives 
could increase per capita resource availability, we also aim to con- 
tribute to the understanding of complex wildlife dynamics. 

Density-dependent welfare 

Because vital resources such as food, water, and shelter are lim- 
ited in any natural system, a population of animals cannot grow 

indefinitely and will eventually be limited by resource availability 
(Sibly and Hone 2002 ) if it is not first arrested by top-down effects, 
such as predation. The collective effect of these limits to popu- 
lation growth is usually described as density dependence (box 1). 
Evidence for density-dependent limits to population growth come 
from both theory (Murray 1994 , Sibly and Hone 2002 , Lebreton 
and Gimenez 2013 , see Tanner 1966 for a review of earlier studies) 
and empirical studies (red squirrels, Wauters and Lens 1995 ; elk, 
Sauer and Boyce 1983 ; wildebeests, Owen-Smith 2006 ; ungulates, 
Gaillard et al. 2000 ; voles, Turchin and Ostfeld 1997 , Hentto- 
nen and Hanski 2000 ; grasshoppers, Belovsky and Joern 1995 ; 
see Sinclair 1996 for a summary). In particular, high popula- 
tion densities have been shown to correlate with lower body 
condition (Mugabo et al. 2013 ) and lower survival (Sibly and 
Hone 2002 , Cowan and Massei 2008 ), which, in turn, are likely 
to affect welfare negatively. High densities have also been ob- 
served to lead to high physiological stress in voles (Shang et 
al. 2022 ), which can result in poor welfare. In some contexts, 
welfare-associated impacts have been reported in relation to 
density-dependent effects of disease. For example, chronic wast- 
ing disease in deer (Habib et al. 2011 ), white-nose syndrome in 
bats (Langwig et al. 2012 ), and tuberculosis in wild boars (Tanner 
et al. 2019 ) have been shown to exhibit density-dependent 
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ildlife contraception is an accepted method for controlling pop-
lations of many wild animal species (Kirkpatrick et al. 2011 ). Al-
hough the use of wildlife contraceptives may improve wild ani-
al welfare (see box 1 for our definition of welfare ), research re-

ated to the welfare impacts of wildlife contraceptives has to date
argely been focused on understanding and mitigating harmful
ide effects (Gray and Cameron 2010 ), as opposed to identifying
nd harnessing possible welfare benefits. Although these stud-
es are laudable and indispensable, they have not been specifi-
ally targeted at understanding the potential welfare benefits of
ildlife contraceptives. Crucially, however, there are compelling
heoretical arguments that suggest that there could be welfare
enefits of administering wildlife contraception in certain con-
exts because of ecological feedback effects (Ransom et al. 2014 ).
hese effects are anticipated to be both direct, by reducing the en-
rgetic investment into reproduction (Stearns 1989 ), and indirect,
y generally reducing population densities and by reducing sib-
ing competition through reductions in the number of offspring,
herefore lowering resource competition (Andersen et al. 2011 ,
revedello et al. 2013 , Ruffino et al. 2014 ). Therefore, welfare bene-
ts could be experienced beyond the treated individuals, because
ontraception might increase the per capita resource availability
y decreasing the number of individuals sharing a resource (Sin-
lair and Krebs 2002 , Prevedello et al. 2013 ). Although this sug-
ests that wild animal welfare benefits could occur in many con-
exts, few studies have looked for direct evidence of positive wel-
are effects on wild animals (Soryl et al. 2021 ). This problem is
xacerbated by the fact that assessing to what extent different
roxies of welfare (e.g., body condition or disease symptoms) ulti-
ately reflect the actual valence of affective states (see box 1) can
e hard and labor intensive (Browning 2022 ). In the present arti-
le, we describe the theoretical principles behind when and how
e might expect wildlife contraception to positively affect wild
nimal welfare. We explore relationships among demography, life
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Box 1. Glossary.

Welfare. We define welfare as the valence of the affective 
state (Posner et al. 2005) of a sentient animal (i.e., experi- 
ences as perceived by the individual; Duncan 2004 ). In other 
words, our definition of welfare is essentially equivalent to the 
fifth domain of the five domains model, the mental domain 
(Mellor et al. 2009 ). It should be noted that the health, nutri- 
tional state, abiotic and biotic environmental conditions, and 
behavior combine to determine an animal’s welfare. In other 
words, they are all important predictors and contributors to 
the valenced affective states (i.e., welfare) of an animal. 
Carrying capacity. We define carrying capacity as the 
population size that is reached when all negative density- 
dependent effects are accounted for, where such density- 
dependent effects would cause the population to exhibit 
net-zero growth (Sibly and Hone 2002 ), assuming no mi- 
gration. Because of fluctuations, the population size may 
overshoot or undershoot the carrying capacity, such that the 
population size does not exactly equal the carrying capacity 
for an extended period of time (i.e., the carrying capacity 
acts as an attractor state). 
Population density. Population density refers to the ratio 
between the observed size of a population and its carrying 
capacity—that is, the maximum number of individuals that 
can be sustained. 
Density-dependent welfare. If welfare is density dependent, 
then the average welfare in a population is expected to 
change as population density changes. It is important to 
note that density-dependent welfare effects can occur sim- 
ply through a change in resource levels, for instance, despite 
the number of animals in the population staying the same. 

ffects. Many populations of wild animals appear to exist close
o their carrying capacity (Sibly et al. 2005 ) and are frequently
ffected by resource scarcity (Prevedello et al. 2013 , Ruffino et al.
014 ). Resource scarcity likely affects the average welfare of wild
nimals directly—for example, through effects on body condition
Meagher 2009 , Grandin 2021 ) from starvation and dehydration
uring droughts (Gregory 2004 ). It likely also has indirect effects
n welfare as a result of ensuing physical weakness (Gordon et al.
988 ), which can make it harder to find appropriate shelter, po-
entially increasing the risk of exposure (Sibly and Hone 2002 , Hill
t al. 2019 ). Although the prevalence of starvation may seem low
olely on the basis of reports of direct causes of death (Hill et al.
019 ), starvation also increases the risk of other causes of death
Bartmann et al. 1992 ), so it is reasonable to predict that starva-
ion as a source or contributor to mortality is fairly widespread.
urthermore, starvation is associated with a negatively valenced
ffective state (i.e., experiencing hunger and thirst is unpleasant;
regory 2004 ). By this rationale, alleviating resource scarcity could
herefore directly (e.g., through reduced starvation risk) and in-
irectly (e.g., through reduced disease susceptibility) improve the
elfare of wild animals. Resource scarcity could also be temporarily
lleviated by artificially increasing the total amount of resources;
owever, this would lead to higher survival and birth rates, which,
n turn, would lead to compensatory population growth, leaving
ompetition for resources and welfare effects largely unchanged
Prevedello et al. 2013 , Ruffino et al. 2014 ). Targeting the repro-
uctive rate instead of or in addition to food supplementation
onstitutes a more sustainable way to alleviate resource scarcity.
Artificially reducing the birth rate has been shown to increase
urvival (Kirkpatrick and Turner 2007 , Williams et al. 2007 ),
uggesting that welfare might be positively affected as well (Ellis
t al. 2012 ). Juveniles seem to particularly benefit from reduced
ompetition for resources (Davis and Pech 2002 ), so welfare
mprovements from wildlife contraception are especially likely in
pecies where early life stages are characterized by low survival
Sol et al. 1998 , Halley et al. 2018 , Healy et al. 2019 , Hecht 2021 )
nd where juvenile survival is density dependent (Arcese et al.
992 , Gaillard et al. 1998 , Armstrong et al. 2005 , Bailey et al. 2010 ,
ayo-Payo et al. 2016 ). There is also some evidence of wildlife
ontraceptives improving body condition—for example, in horses
Turner and Kirkpatrick 2002 , Kirkpatrick and Turner 2007 ), Soay
heep (Tavecchia et al. 2005 ), rabbits (Williams et al. 2007 ), and
hite-tailed deer (McShea et al. 1997 , Gionfriddo et al. 2011 ), as
ell as increased survival (see e.g., Ramsey 2005 ). If a reduction

n the per capita reproductive rate leads to a decrease in resource
ompetition and an increase in adult and juvenile survival, the
verage welfare of a population will likely increase (figure 1 ). 
Culling, hunting, poisoning, and trapping (i.e., methods that

ncrease the mortality rate instead) have also been used to arti-
cially reduce population densities. It is therefore likely that the
forementioned welfare benefits of reduced densities associated
ith wildlife contraceptives, will apply to these methods as well.
owever, methods that increase the mortality rate specifically
f adults can be associated with a downward shift from adult to
uvenile life stages, which might have negative effects on overall
elfare (Hecht 2021 ). The immediacy of death and the degree
f potential welfare impacts of such methods differ depending
n the methods used and the species targeted (Littin et al. 2014 ,
ampton et al. 2015 , Allen et al. 2019 ), as well as what the counter-
actual fate of the individual would have been. It should be noted
hat even if they may provide welfare benefits for the remaining
ndividuals, culling and related methods are increasingly seen as
nethical when alternatives exist to achieve the same outcomes
Barfield et al. 2006 , Degeling et al. 2016 , Feber et al. 2017 ). 

ontext-dependent effects 

here may be circumstances that are worse or better suited to
chieving welfare benefits of artificially reducing population den-
ities through wildlife contraction (table 1 ). 

opulation dynamics and life history 

opulations that exist near their carrying capacity and are reg-
lated by resource availability are likely to benefit more from
ildlife contraception than are populations regulated in other
ays, such as by nest-site availability (Pöysä and Pöysä 2002 ),
biotic factors (e.g., recurring severe weather; Hamel et al. 2010 ),
r predation (Tanner 1966 ), particularly when these factors are
nrelated to population density. Welfare benefits are also less
ikely where individuals naturally reduce reproduction at high
ensities (Barlow et al. 1997 ) through, for example, skipping re-
roduction (Hamel et al. 2010 , Rideout and Tomkiewicz 2011 ), or
hen the environmental conditions are generally unsuitable for
nsuring parental or offspring survival. Finally, welfare benefits
re potentially less likely to materialize when energy freed up
rom reproduction by contraception, instead of being invested
n welfare-enhancing traits such as somatic maintenance, is
nvested in other traits that may decrease welfare or that oth-
rwise have unclear effects on welfare, such as mating displays
nd competition for mates (Ji et al. 2000 ), or secondary sex
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Figure 1. Potential benefits to wild animal welfare from a reduction in population density through the use of wildlife contraceptives. 

Table 1. Examples of circumstances in which contraception is likely beneficial versus neutral or detrimental to welfare. 

Attribute 
Contraception possibly beneficial to 
welfare Contraception possibly not beneficial to welfare 

Sociality Solitary Cooperative group living 
Population density determinants Bottom up (e.g., food) Top down (e.g., predation) 
Reproductive constraints Weak Strong (e.g., stronger density dependence in reproduction 

than survival) 
Counterfactual energy investment Somatic maintenance or survival Extended mating behavior 
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haracteristics (McShea et al. 1997 , Ji et al. 2000 , Fraker et al.
002 ). Such traits are generally energetically costly and conse-
uently reduce the resources available for somatic maintenance
hat is commensurate with increased welfare. 
The average welfare benefits may also depend on changes

n the demography of the population—if the average welfare
iffers between juveniles and adults, for instance (Hecht 2021 ).
ould-be parents with the largest contrafactual reduction in
ffspring numbers are likely to experience the greatest relaxation
f resource constraints and, therefore, a possible increase in
elfare from contraception. Artificially limiting the number of
ffspring produced leads to an overall reduction in parental
nergetic investment and preserves more resources for their own
omatic maintenance (Kirkwood 1977 , Stearns 1989 , Kirkwood
nd Rose 1991 , Lemaître et al. 2015 ). Therefore, the sex with
he largest parental investment is also likely to experience the
argest welfare benefit from contraceptives (cf. Robbins 1993 ).
imilarly, because of reduced sibling competition, there will be
ore resources available per individual as long as some offspring
re born (Mendl 1988 , Andersen et al. 2011 , Hudson et al. 2011 ). In
eneral, many life-history traits are likely to differentially affect
he potential welfare benefits of wildlife contraception, such
s the degree of parental care, maturation age, fecundity, and
ispersal patterns; future studies should explore the conditions
under which these welfare effects are modulated by life-history
traits. 

Social systems 
Some social species living in groups could be negatively affected
by artificial population reductions, if smaller groups perform
worse (Angulo et al. 2017 , Lerch et al. 2018 )—for example, where
tasks such as guarding and hunting require a minimum group
size to be effective because of the need for the division of labor or
to share social information (Angulo et al. 2017 ). For instance, an
average pack of African wild dogs ( Lycaon pictus ) or meerkats ( Suri-
cata suricatta ) would potentially be worse off if the group size was
reduced (Clutton-Brock et al. 1999 , Courchamp and MacDonald
2001 ). It might be expected, therefore, that the welfare benefits
of artificially reducing fertility could be large when fierce compe-
tition among individuals for resources is prevalent but small or
even negative when cooperative behavior is beneficial for resource
exploitation and individual survival. In some group-living species,
particularly highly social apex predators, dominant individuals
often control the reproduction of conspecifics, such that popula-
tion densities stay well below the point where resources become
limiting (Wallach et al. 2015 ). Contraception in these cases might
therefore be less likely to be beneficial to their welfare. 
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uture directions 

efore making management recommendations, it is essential to
etter understand the potential differences in welfare effects of
ildlife contraceptives for individuals of different species and
opulations, whether and how life-history strategies modulate
uch effects, the relationship between welfare and resource
vailability, and the potential for negative or positive indirect
ffects on the welfare of nontarget species. Future research aimed
t identifying where wildlife contraception can be most beneficial
ill therefore need to consider all of these factors but especially
ow wild animal welfare is related to density-dependent effects,
s well as how to avoid harmful side effects of wildlife contracep-
ives (Nettles 1997 , Gray and Cameron 2010 ). Finally, researchers
ould also explore these questions in species not yet treated with
ildlife contraceptives, if benefits to wild animal welfare seem
lausible and additional economic costs are small relative to
usiness as usual. 

onclusions 

educing population densities through the use of wildlife contra-
eptives can trigger changes in traits such as survival and body
ondition, potentially leading to welfare benefits for animals
n the treated population. Such benefits can be accumulated
oth at the within-family level by reducing sibling competition
nd decreasing the cost of reproduction for parents and at the
opulation level by reducing intraspecific competition among
nrelated individuals. In the present article, we have provided
n overview of key traits and contexts under which wildlife
ontraception is most likely to provide welfare benefits, as well as
hose likely to be associated with neutral or negative effects on
elfare. Future studies that consider potential positive effects of
ildlife contraception for the welfare of wild animals will likely
lso contribute to our understanding of how resource scarcity
nd density dependence interacts with life history, demographic
atterns, and other population dynamic processes. In so doing,
hese studies will help build valuable new connections between
opulation ecology on one hand and animal welfare science and
opulation management on the other. We encourage both applied
nd theoretical researchers to test these hypotheses and further
larify under what circumstances wildlife contraception might
rovide welfare benefits to wild animals. Greater knowledge of the
ndividual and population-level effects of wildlife contraceptives
ill eventually present us with the opportunity to meaningfully

mprove wild animal welfare. 
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