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Towards Data-Conditional Simulation for ABC
Inference in Stochastic Differential Equations

Petar Jovanovski∗, Andrew Golightly†, and Umberto Picchini‡

Abstract. We develop a Bayesian inference method for the parameters of dis-
cretely-observed stochastic differential equations (SDEs). Inference is challenging
for most SDEs, due to the analytical intractability of the likelihood function.
Nevertheless, forward simulation via numerical methods is straightforward, moti-
vating the use of approximate Bayesian computation (ABC). We propose a com-
putationally efficient “data-conditional” simulation scheme for SDEs that is based
on lookahead strategies for sequential Monte Carlo (SMC) and particle smoothing
using backward simulation. This leads to the simulation of trajectories that are
consistent with the observed trajectory, thereby considerably increasing the accep-
tance rate in an ABC-SMC sampler. As a result, our procedure rapidly guides the
parameters towards regions of high posterior density, especially in the first ABC-
SMC round. We additionally construct a sequential scheme to learn the ABC
summary statistics, by employing an invariant neural network, previously devel-
oped for Markov processes, that is incrementally retrained during the run of the
ABC-SMC sampler. Our approach achieves accurate inference and is about three
times faster (and in some cases even 10 times faster) than standard (forward-only)
ABC-SMC. We illustrate our method in five simulation studies, including three
examples from the Chan–Karaolyi–Longstaff–Sanders SDE family, a stochastic
bi-stable model (Schlögl) that is notoriously challenging for ABC methods, and a
two dimensional biochemical reaction network.
Keywords: approximate Bayesian computation, biochemical reaction networks,
invariant neural networks, sequential Monte Carlo, simulation-based inference,
smoothing.

1 Introduction
Stochastic modelling is an important area of applied mathematics for the study of the
evolution of systems driven by random dynamics. In this work we focus on Bayesian
inference for stochastic differential equations (SDEs) observed at discrete time instants.
SDEs (Oksendal, 2013; Särkkä and Solin, 2019) are fundamental tools for the modelling
of continuous-time experiments that are subject to random dynamics. Application of
SDEs are found in many areas including finance (Steele, 2001), population dynamics
(Panik, 2017), systems biology (Wilkinson, 2018) and the wider applied sciences (Fuchs,
2013). However, with the exception of very few tractable cases, or the use of exact meth-
ods for a relatively small class of intractable diffusions (e.g. Beskos et al., 2006; Casella
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and Roberts, 2011), SDEs require simulation-based approaches to conduct inference,
since transition densities are unavailable in closed-form and hence the likelihood function
cannot be obtained analytically. This prevents straightforward frequentist and Bayesian
inference, and as a consequence, has generated much research on approximate methods
for parameter inference; see Craigmile et al. (2022) for a recent review. However, in-
tractable likelihoods are a common problem, far and beyond SDEs. For this reason, in
the past twenty years, there has been increasing interest in simulation-based inference
(SBI) methods (often named “likelihood-free” methods). The appeal of SBI methods is
that they only require forward-simulation of the model, rather than the evaluation of a
potentially complicated expression for the likelihood function, assuming it is available.
SBI methods, whose most studied member is arguably approximate Bayesian computa-
tion (ABC, Sisson et al., 2018), are in principle agnostic to the complexity of the model,
as long as enough time and computational resources necessary to forward simulate the
model are available. Other SBI methods that follow this logic are, for example, synthetic
likelihoods (Wood, 2010, Price et al., 2018), methods based on deep neural networks
providing surrogates of the likelihood function and the posterior distribution (see the
review in Cranmer et al., 2020), and the bootstrap particle filter when incorporated
into pseudo-marginal methods, such as particle Markov chain Monte Carlo (pMCMC,
Andrieu and Roberts, 2009; Andrieu et al., 2010). With reference to the latter, it can be
difficult to initialize pMCMC algorithms at suitable parameter values, and this search
may require a large number of model simulations (“particles”) to obtain a reasonably
mixing chain, when the tested model parameter is outside the bulk of the posterior.
The latter issue is less problematic for ABC algorithms such as those based on sequen-
tial Monte Carlo samplers (SMC), which is the class of ABC algorithms we examine
in this work (hence the acronym ABC-SMC). Inference returned by ABC methods can
be used to initialize pMCMC algorithms, as well as select a covariance matrix for a
random walk sampler, as done in Owen et al. (2015). While SBI methods are a rapidly
expanding class of algorithms that, in many cases, can provide the only viable route
to inference for stochastic modelling, they come at a cost. They are computationally
demanding, where the bottleneck is the forward simulation of a model (SDEs in our
case) conditionally on parameter values θ. Here, a “trajectory” x is a solution to the
SDE (typically obtained via some numerical approximation), simulated conditionally
on a given value of the model parameters, and in ABC x is compared to observed data
xo via an appropriate distance metric ‖x−xo‖. The procedure is iterated for many pro-
posed values of θ and the parameters generating a small distance ‖x−xo‖ are retained
as draws from a posterior distribution approximating the true posterior π(θ |xo). How-
ever, the “forward simulation” of x, which we denote as x ∼ p(x |θ) where p(x |θ) is the
(unknown) likelihood function of θ, is usually “myopic” of data xo. This implies that
simulated trajectories can be very distant from data, even when simulated conditionally
on plausible parameter values. This behaviour can persist even when observed and sim-
ulated data are compared via corresponding summary statistics as ‖s− so‖. Moreover,
summary statistics s = S(x), for some function S(·), are often chosen in an ad-hoc man-
ner, e.g. from domain knowledge or previous literature, though recent semi-automatic
approaches have shown their effectiveness (Fearnhead and Prangle, 2012; Chen et al.,
2020; Jiang et al., 2017; Forbes et al., 2021; Wiqvist et al., 2019).
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Figure 1: Diagram of dynamic ABC-SMC with data-conditional simulation. Note the
dependence of the simulator on the observed trajectory xo.

In this work we propose, firstly, (i) a data-conditional scheme for SDE models that
efficiently utilizes the information provided by the observed data xo, via the forward-
backward simulation of multiple trajectories. Unlike the usual (“forward only”) simu-
lation scheme, our approach leads to simulated trajectories that are “adapted” to the
observations, and thereby a considerable increase in the acceptance rate for ABC-SMC
algorithms is obtained (and thus a more rapid convergence to an approximate poste-
rior for θ). Secondly, (ii) we construct a sequential scheme to learn the ABC summary
statistics of univariate SDE models via partially exchangeable networks (PENs, Wiqvist
et al., 2019), a deep neural network that learns the posterior mean of a Markov pro-
cess, and as such is particularly suitable for SDEs inference. Notably, and unlike most
inference algorithms for SDEs where the simplest numerical scheme is employed (that
is, the Euler-Maruyama discretization), our methodology allows the use of higher-order
schemes for the time-forward pass, such as the Milstein scheme. In Figure 1 we present
a diagram outlining the structure and flow of our proposed inference pipeline (note
the dependence of the simulator on the observed trajectory xo). The data-conditional
simulator, together with PEN, is embedded within an ABC-SMC algorithm. In each
step, PEN is retrained on newly accepted trajectories, thus sequentially improving the
summary statistics. Our approach dramatically speeds up the convergence to the true
posterior, which requires much fewer inference rounds (as we illustrate using Wasser-
stein distances) and its running time is overall about 3 times faster (but for the marginal
posteriors of some parameters it can be even 10 times faster, as in the Lotka-Volterra
experiment) than the “standard” ABC-SMC approach where only the forward model
p(x|θ) is used to simulate trajectories. We find that three rounds of our proposed ABC-
SMC scheme typically produces satisfactory results, and note that it could also be used
in a “hybrid” algorithm, where the output of a few (2–3) rounds of our rapidly converg-
ing algorithm could be used to initialize the “standard” ABC-SMC approach for the
final inference.

The paper is structured as follows. In Sections 1.1–1.2 we give some necessary back-
ground details of ABC methodology and in particular ABC-SMC. Section 2 introduces
stochastic differential equations and data-augmentation considerations. Section 3 in-
troduces our backward-smoothing methodology. Section 4 constructs the importance
sampling weights for ABC-SMC. Section 5 gives the neural network methodology used
to learn summary statistics for ABC that are suitable for SDEs. Finally all the previous
concepts are combined in Section 6 to give the algorithm for ABC-SMC with data-
conditional simulation. Section 7 contains simulation studies. A Supplementary Mate-
rial section includes further simulation studies and methodological details (Jovanovski
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et al., 2024). Accompanying code is available on GitHub.1

1.1 Approximate Bayesian computation

Let p(x |θ) be the likelihood function of θ corresponding to a given probabilistic model,
and let π(θ) be the prior density ascribed to θ. The posterior density of θ given the
observed data xo is

π(θ | xo) ∝ p(xo | θ)π(θ). (1)

With the exception of a small subset of SDE models, the likelihood function p(xo |θ) can-
not be obtained in closed form, and this hinders the direct application of commonly used
sampling algorithms for (1), such as Markov chain Monte Carlo (MCMC). Approximate
Bayesian computation (ABC) bypasses the inability to evaluate the likelihood function
analytically, by the ability to forward-simulate from it using a model simulator. Here,
the model simulator is the SDE solver (up to a discretization error associated with the
solver used) which produces a solution x ∼ p(x|θ) conditional on some value of θ. Using
multiple calls from the model simulator at different parameter configurations (which can
be accepted or, most often, rejected), ABC returns parameters from an approximate
posterior πε(θ | xo), rather than the exact posterior in (1). Typically, as motivated in
detail in Section 5, it is necessary to first summarize the data with low-dimensional
summary statistics S(·), and sample from πε(θ | S(xo)). In this case the ABC posterior
becomes

πε(θ | S(xo)) ∝ π(θ)
∫
1(‖S(x) − S(xo)‖ ≤ ε)p(S(x) | θ) dx, (2)

where ‖ · ‖ is an appropriate distance metric, 1(‖S(x) − S(xo)‖ ≤ ε) is the indicator
function, and ε > 0 a tolerance value determining the accuracy of the approximation.
The likelihood of the summary statistics p(S(x)|θ) is implicitly defined, namely samples
from the latter are obtained by first sampling (simulating) x ∼ p(x | θ) and then com-
puting S(x). If S(·) is highly informative for θ, then πε(θ |S(xo)) � πε(θ |xo). Therefore,
for a small ε and an “informative” S(·), ABC may produce a reasonable approximation
to the true posterior π(θ | xo). Finding an appropriate ε is an exercise in balancing
the increasing computational effort when ε is reduced (this in turn increases the rejec-
tion rate of the proposed parameters), against more accurate posterior inference. As a
shorthand, we will denote the summary statistics of the observations by so = S(xo).

The basic ABC algorithm for producing samples from (2) is the ABC with rejection-
sampling (ABC-RS) algorithm (Tavaré et al., 1997; Pritchard et al., 1999), which can
be described in three steps. Suppose we have an importance density g(θ) that is easy to
sample from and has the same support as the prior. Propose (i) θ ∼ g(θ) (where g(θ)
can be the prior π(θ)), (ii) simulate (implicitly) the summary statistic s ∼ p(s | θ), and
(iii) accept θ as a sample from the ABC posterior with probability

1(‖s− so‖ ≤ ε)π(θ)
Cg(θ) , where C = max

θ∈Θ

π(θ)
g(θ) . (3)

1https://github.com/perojov/DataConditionalABC

https://github.com/perojov/DataConditionalABC
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Steps (i)–(iii) are iterated until a desired number M of parameter draws have been
accepted. Since in steps (i) and (ii) both the parameter and the summary statistic
are sampled, the actual sampling density of this algorithm is the joint density g(θ, s) =
p(s|θ)g(θ), and the target is the joint ABC posterior given by πε(θ, s|so) ∝ 1(‖s−so‖ ≤
ε)p(s|θ)π(θ). The sampled summary statistic can be safely discarded since marginalizing
πε(θ, s | so) over s gives πε(θ | so) =

∫
πε(θ, s | so) ds, the ABC posterior (2). The

acceptance probability of ABC-RS is then given by

πε(θ, s | so)
Cg(θ, s) ∝ 1(‖s − so‖ ≤ ε)p(s | θ)π(θ)

Cp(s | θ)g(θ) = 1(‖s− so‖ ≤ ε)π(θ)
Cg(θ) , (4)

with C defined as in (3). The choice of the marginal importance density g(θ) is crucial
to the efficiency of the algorithm. For example, if g(θ) is much more diffuse compared
to the posterior density, most proposed parameter draws will be rejected, and if g(θ) is
too concentrated, the tails of the posterior will not be thoroughly explored. To remedy
the inefficiencies of ABC-RS, many modifications have been proposed, for which we
refer to Sisson et al. (2018), and instead focus on sequential Monte Carlo ABC (Sisson
et al., 2007; Toni et al., 2009; Beaumont et al., 2009; Del Moral et al., 2012; Picchini
and Tamborrino, 2024), which is illustrated in the next section.

1.2 Approximate Bayesian computation – sequential Monte Carlo
Here we consider ABC implemented via a sequential Monte Carlo sampler, denoted
ABC-SMC. In ABC-SMC, a population of M parameter samples (commonly referred
to as “particles”) are propagated along a sequence of T ABC posterior distributions with
decreasing acceptance thresholds ε1 > ε2 > · · · > εT . This has the effect of sampling pa-
rameter particles from regions of increasingly higher posterior density. The initialization
works along the same lines as ABC-RS, however, rather than computing the normalizing
constant as in (4), an importance weight w(θ, s) = 1(‖s−so‖ ≤ ε)π(θ)/g(θ) is assigned
to each sample (θ, s) ∼ g(θ, s). The ABC posterior πε1 at this initial step is constructed
from a set of M weighted samples (θ1:M

1 ,W 1:M
1 ) as πε1(θ | so) =

∑M
j=1 W

j
1K(θi

t | θj
t−1)

(Del Moral et al., 2006). Here, K(· | ·) serves as a transition kernel to move the particles
into regions of (potentially) high posterior density, as well as increase the particle diver-
sity in the population. In the subsequent steps, rather than proposing parameters from
the initial importance density g(θ), they are proposed from a perturbation of the ABC
posterior approximated in the previous step. More precisely, at step t, a particle is sam-
pled from the previous population θ1:M

t−1 with probabilities W 1:M
t−1 , and then perturbed

according to the transition kernel. Since the parameters are sampled from the previous
ABC posterior, the importance weights for the new particle population θ1:M

t at this step
take the form W i

t ∝ π(θi
t)/

∑M
j=1 W

j
t−1K(θi

t | θj
t−1). A typical choice for the transition

kernel is the Gaussian density K(θi
t | θj

t−1) = N (θi
t | θj

t−1,Σt) (Beaumont et al., 2009;
Toni et al., 2009) (here N (x |μ,Σ) denotes the multivariate normal density evaluated at
x with mean μ and covariance Σ), where Σ can be specified in several ways. Algorithm 1
outlines ABC-SMC with Σt chosen to be twice the (weighted) covariance-matrix of the
current particles population (as in Beaumont et al., 2009; Filippi et al., 2013). We note
that novel, efficient parameter proposals for ABC-SMC have been recently introduced
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in Picchini and Tamborrino (2024), though we will not use those in the present work.
Finally, notice that the sequence of thresholds ε1 > · · · > εT does not need to be fixed
as an input to the algorithm, but can be dynamically determined at runtime, typically
as a percentile of simulated distances.

Algorithm 1 ABC-SMC (ε1 > · · · > εT ).
1: for i = 1 to M do
2: while parameter not accepted do
3: Sample parameter θi

1 ∼ g(θ) and summary si1 ∼ p(s | θi).
4: if ‖si1 − so‖ ≤ ε1 then
5: Accept θi

1 and compute W i
1 = π(θi

1)/g(θ
i
1).

6: end if
7: end while
8: end for
9: Normalize W 1:M

1 .
10: for t = 2 to T do
11: Compute particle covariance Σt = 2 × Cov((θ1:M

t−1 ,W
1:M
t−1 )).

12: for i = 1 to M do
13: while parameter not accepted do
14: Sample θ∗ from θ1:M

t−1 with probabilities W 1:M
t−1 .

15: Sample θi
t ∼ N (θ∗,Σt) and simulate si ∼ p(s | θi

t).
16: if ‖si − so‖ < εt then
17: Accept θi

t and compute W i
t = π(θi

t)/
∑M

j=1 W j
t−1N (θi

t | θj
t−1,Σt).

18: end if
19: end while
20: end for
21: Normalize W 1:M

t .
22: end for
23: Output: Weighted sample (θ1:M

T ,W 1:M
T ) of the ABC posterior density.

2 Inferential problem and numerical simulation of SDEs
Consider the time-homogeneous Itô diffusion (Xt)t≥0 satisfying the SDE

{
dXt = μ(Xt,θ)dt + σ(Xt,θ)dBt, if t > 0,
X0 = x0, if t = 0,

(5)

with state space X ⊆ R
d, constant initial condition x0 ∈ X , p-dimensional model

parameter θ ∈ Θ ⊆ R
p and d-dimensional standard Brownian motion (Bt)t≥0. The

drift function μ : X ×Θ → R
d and diffusion coefficient σ : X ×Θ → R

d×d are assumed
to be known in parametric form, and assumed to be sufficiently regular to ensure the
existence and uniqueness of a solution for (5). We denote the transition density of the
process (Xt)t≥0 by p(xt | xs,θ) for times 0 ≤ s < t.

The goal of our work is to perform statistical inference on the parameter θ, based on
discrete-time observations of the diffusion at time instants t1 < t2 < · · · < tn, observed
exactly (i.e. without additional measurement error). Due to the Markov property, the
likelihood of θ factorizes into the product of mutually independent transition densities.
More precisely, for observation xo = (xo

0,xo
1, . . . ,xo

n), with a non-random initial state
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x0 = xo
0, the likelihood is given by

p(xo
1, . . . ,xo

n | θ) =
n∏

i=1
p(xo

i | xo
i−1,θ). (6)

If the transition densities p(xo
i | xo

i−1,θ) are analytically tractable, statistical inference
may proceed via maximum likelihood estimation, or via a Bayesian approach by com-
puting the posterior distribution of θ given the observation xo. However, the transition
densities are tractable only for a handful of specific SDE models, and hence the like-
lihood of θ cannot in general be evaluated. There exist several different approaches
to deal with the problem of intractable likelihoods, see e.g. (Iacus, 2008; Fuchs, 2013;
Craigmile et al., 2022) for a survey. In this work we focus on methods that utilize “data
augmentation”, implying the need to numerically discretize the solution of the SDE
on a finer time-scale than the observational grid (t1, t2, . . . , tn). We assume a regular
observation grid with ti − ti−1 = Δ for simplicity in notation. However, our method
is also applicable to grids with irregular spacing, though special attention will need to
be paid in these cases, see Section 2 in the Supplementary Material. Approximate so-
lutions can be simulated using numerical methods that are based on the discrete-time
approximation of the continuous process. Additionally, the quality of the ABC approx-
imation to the posterior depends on the accuracy of the simulator. Sometimes exact
simulation is possible (e.g. Beskos et al., 2006; Casella and Roberts, 2011), but in the
case where the simulator is a numerical discretization method, e.g. Euler-Maruyama
(EM), the accuracy will be determined by the fineness of the grid. In applications, the
inter-observation times are often large, and direct simulation on that same scale will
lead to bias. Bayesian data augmentation methods (Fuchs, 2013; van der Meulen and
Schauer, 2017; Papaspiliopoulos et al., 2013; Golightly and Sherlock, 2022) introduce
missing data between the observations such that the union of the observation and the
missing data forms a dataset on a finer scale. Motivated by these approaches, we in-
troduce a finer discretization of the interval (t0, t1, . . . , tn) by (τ0, τ1, . . . , τA, . . . τnA),
where τiA = ti, and such that τk − τk−1 = h = Δ/A, where A ≥ 2 is the number of
subintervals between two observational time instants. We denote by N ≡ nA the total
number of elements in the finer discretization, and for the discrete values of (Xt)t≥0 we
adopt the shorthand xiA+k ≡ xτiA+k

. Similarly for the observed trajectory, we adopt
the shorthand xo

i ≡ xo
ti . The EM method is the most commonly used numerical scheme

for SDEs: given the aforementioned finer partition, EM produces the discretization

Xi+1 = Xi + μ(Xi,θ)h + σ(Xi,θ)(Bi+1 − Bi), (7)

for i = 0, . . . , N − 1. By the properties of the Brownian motion, the transition density
p(xi+1 | xi,θ) induced by the EM scheme is multivariate Gaussian with mean xi +
μ(xi,θ)h and covariance matrix σ(xi,θ)σT (xi,θ)h.

In this paper we will consider two ways to simulate a trajectory: the first is “myopic”
forward simulation, meaning that the trajectory is generated from p(x|θ) and is therefore
not conditioned on the observation (this is the standard approach in ABC, e.g. Picchini,
2014). The second way is one of our contributions which we term data-conditional sim-
ulation, where the sample path is generated from p(x | θ,xo), and thereby conditional
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Figure 2: Illustration of simulated trajectories from both the forward and the data-
conditional simulator with P = 30 particles for the CKLS SDE dXt = β(α −Xt)dt +
σXγ

t dBt. The observation is shown in black, the forward trajectories in blue, and the
backward trajectories in red. In (a) 500 trajectories (per simulator) are shown: these
were simulated conditionally on the true parameter θtrue. In (b) 500 trajectories (per
simulator) are shown: these were simulated from the prior-predictive distribution, with
prior π(θ) = U(5, 30)U(0, 3)U(0.5, 2)U(0.6, 1). This prior is chosen only for illustration,
and it is different from the prior used for inference.

on the observed data. In Section 3 we will construct this scheme which is based on a
forward/backward idea. The scheme possesses a “lookahead” mechanism for which the
distribution of the intermediate points depends on the successive observations. In the
forward direction, multiple trajectories are forward propagated and weighted, and then
in the backward direction a single trajectory is simulated using a backward-simulation
particle smoother. For an illustration of the difference between these two approaches,
see Figure 2. There, for the CKLS SDE that we consider extensively in Section 7, we
show that, due to the specific diffusion term, the trajectories produced from the forward
model can vary substantially, even when simulating conditionally on the true parameter
(Figure 2(a)). However using our forward-backward data-conditional approach, simu-
lated trajectories are much more consistent with the observed data. Data-conditional
simulation is illustrated in Section 3.

3 Data-conditional simulation
Backward simulation can be implemented via a sequential Monte Carlo (SMC) scheme
that is based on processing the observation in the forward and then in the backward
direction. In the forward direction, a numerical scheme is used to propagate multiple
particles, which represent numerical solutions to the underlying SDE model. At this
stage the particles are suitably weighted according to how close they are to the ob-
served data xo. In the backward direction, a backward-simulation particle smoother
(BSPS) is applied on the particle system that is obtained from the forward direction, in
order to construct a single (backward) trajectory. This backward trajectory is a sample
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from the conditional distribution p(x | θ,xo). The development of the forward direc-
tion of our data-conditional simulator borrows ideas from the literature of simulation
methods for diffusion bridges using SMC, such as Del Moral and Garnier (2005); Lin
et al. (2010) and in particular, the bridge particle filter (BPF) of Del Moral and Mur-
ray (2015) (see also Golightly and Wilkinson, 2015). In the BPF, the simulation of a
diffusion bridge xiA, . . . ,x(i+1)A (recall that A is the number of subintervals) between
two consecutive observations (xo

i ,xo
i+1) relies on a suitably chosen particle weighting

scheme, such that a set of P particles are guided from xo
i to xo

i+1. Particles are sim-
ulated forward in time using only p(xk | xk−1,θ) for iA ≤ k ≤ (i + 1)A, that is, the
transition density arising from a numerical scheme such as Euler-Maruyama, or if de-
sired, a higher order scheme (e.g. the Milstein scheme in d = 1). Even though the
particles are propagated by the forward density, they are weighted in such a way that,
by looking ahead to the next observation point xo

i+1, those particle trajectories that
are not consistent with xo

i+1 will be given small weights and pruned out with a resam-
pling step which occurs at every intermediate time point τk (unlike in standard particle
filtering where resampling occurs at observation time points only). However, the BPF
will result in a particle system (x1:P

1:N , ω1:P
1:N ) for which (xj

1:N ) is, at the observation time
instants, exactly equal to the observed data, i.e. xj

ti ≡ xo
i for i = 0, . . . , n. The rea-

son is that for every subinterval [ti, ti+1] the states xiA+1, . . . ,x(i+1)A−1 are randomly
generated, whereas xiA = xo

i , x(i+1)A = xo
i+1 is fixed. The consequence is that, in the

backward pass, the backward-simulation particle smoother will construct a backward
trajectory that is exactly equal to xo (at the observation time instants), regardless of
the value of θ. Hence, the event {‖s − so‖ = 0} in (4) will occur with probability 1
for any θ, which is unwanted. Rather, we require acceptance for suitable values of θ,
i.e. those that are representative of the posterior density. To this end, we will change
the BPF as follows. In our adaptation we make two modifications. The first modifica-
tion omits the resampling step in the BPF, in order for the particles (which represent
numerical solutions to the underlying SDE model) to preserve their original sampling
distribution p(xk |xk−1,θ). This will be of fundamental importance when we embed the
data-conditional simulator within ABC-SMC, as well as in assembling the training data
for the partially exchangeable neural network. Although we omit the resampling step,
the particle weights are still computed, and they will be utilized once the forward phase
is completed. The second modification is that we perform one more forward propagation
step, from time τ(i+1)A−1 to τ(i+1)A for every i = 0, . . . , n−1, namely, the states x(i+1)A
are random, as opposed to be deterministically set to xo

i+1 as in the BPF of Del Moral
and Murray (2015). The resulting algorithm reduces to sequential importance sampling
(SIS) and will yield forward (myopic) trajectories that are weighted with respect to
the observations. In order to utilize the weights, once the trajectories have been simu-
lated up to time tn, we complement SIS with a second recursion that evolves backward
in time. In the backward pass, the (backward) trajectory is produced by firstly sim-
ulating x̃N , then x̃N−1, etc. until a complete trajectory x̃0, . . . , x̃N is generated. This
forward-backward idea will allow us to develop a simulator that will generate trajec-
tories which are consistent with the observation xo. The procedure is detailed in next
sections.
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3.1 Lookahead sequential importance sampling

We will begin by deriving the lookahead SIS algorithm for the first observation interval
[0, t1], before considering the remaining intervals. As motivated above, the time interval
[0, t1] is partitioned into A subintervals 0 = τ0 < τ1 < · · · < τA = t1, and the diffusion
takes values xo

0 at t = 0 and xo
1 and t = t1. Along this partition, multiple forward

trajectories will be sampled recursively, by drawing from p(xk | xk−1,θ), and weighting
according to

W̃k(xk−1,xk) = q(xo
1 | xk)

q(xo
1 | xk−1)

, for k = 1, . . . , A, (8)

where q(xo
1 | xk), for k = 0, . . . , A are positive functions. It is important to distinguish

that the tilded Wk differs from the parameter weights used in ABC-SMC. This forms
the basis of the BPF (Del Moral and Murray, 2015), albeit for the case of exact ob-
servations (i.e. when xo

1 is observed without noise). Note that the weighting function
q(xo

1 |xA) at time τA can be omitted because xA is fixed to be equal to xo
1. As alluded to

previously, instead of fixing the last state as in the BPF, we perform one more forward
propagation step, and hence include q(xo

1 | xA). A suitable choice for this weighting
function is important because it greatly affects the efficiency of the inference. We dis-
cuss possible options later in this section. Through the use of the lookahead mechanism,
the intermediate samples between two observations, x1, . . . ,xA−1 (excluding the final
sample xA) are given weights according to how consistent they are with the subsequent
observation xo

1. However, for the final sample xA, this approach is invalid because the
transition density at τA ≡ t1 is a Dirac mass at the observation point. To this end we
propose to take q(xo

1 | xA) to be equal to q(xo
1 | xA−1), which is a plausible choice when

the integration timestep τA − τA−1 = h is small. This way the particles (x1:P
A ) that are

close to the observational point xo
1 will be given greater weights, as opposed to those

that are further away. Another possible choice for q(xo
1 |xA) may be a decaying function

of the distance between xo
1 and xA, for example the Gaussian kernel, or the inverse

of the (squared) Euclidean distance. The conditional distribution of the intermediate
points, given the subsequent observation, admits the following form

p(x1:A | xo
0,xo

1) ∝ q(xo
1 | xA)p(x1:A | xo

0)
q(xo

1 | xo
0)

q(xo
1 | xA)

A∏
k=1

W̃k(xk−1,xk)

∝
A∏

k=1

W̃k(xk−1,xk)p(xk | xk−1). (9)

Note that
q(xo

1 | xo
0)

q(xo
1 | xt1)

A∏
k=1

W̃k(xk−1,xk) = 1.

For a generic observation interval [ti, ti+1], the conditional distribution of the interme-
diate points xiA+1, . . . ,x(i+1)A is similar to (9), except that the state xiA at time τiA
is not equal to the observation xo

i , but to the final value that was simulated on the
previous interval [ti−1, ti]. This is different from the BPF case where the particles are



P. Jovanovski, A. Golightly, and U. Picchini 11

initialized to start from the observation at time ti. Having derived the conditional dis-
tribution of the intermediate points on the first interval, we can easily extend (9) to the
complete discretization (τ0, τ1, . . . , τA, . . . , τN ) as follows

p(x1:N | xo) =
n−1∏
i=0

p(xiA+1:(i+1)A | xiA,xo
i+1)

∝
n−1∏
i=0

(i+1)A∏
k=iA+1

W̃k(xk−1,xk)p(xk | xk−1). (10)

Equation (10) readily implies a sequential scheme where one can incrementally sample
xk ∼ p(xk | xk−1) and weight that sample by W̃k(xk−1,xk), for k = 1, . . . , N . Assume
that we have simulated a set of P particles up to time tn, then we have the particle
system (x1:P

1:N , ω1:P
1:N ) approximating the lookahead densities

p̂(dxiA+k | xo
0:ti+1

) =
P∑

j=1
ωj
iA+kδxj

iA+k
(dxiA+k) for k = 1, . . . , A, (11)

for i = 0, . . . , n − 1, where ωj
k denote the normalized particle weights. Due to the way

the weights W̃k(xk−1,xk) are defined in (8), it is worth noting that in the sequential-
importance-sampling scheme, the weight of the sample xiA+k ∼ p(xiA+k | xiA+k−1) is
proportional to q(xo

i+1 |xiA+k) (see also Algorithm 3 in Del Moral and Murray, 2015 and
the subsequent note on extending it to a time series of observations). In Algorithm 2
we present the lookahead SIS algorithm corresponding to equation (10) for a set of P
particles, an illustration of which can be seen in Figure 3.

Having approximated the lookahead densities up to time tn, we can now obtain an
approximation of the so called backward kernel, to evolve backward in time and obtain
a single trajectory that we use in ABC-SMC to decide on whether to accept or reject the
associated parameter. Backward simulation methods for Monte Carlo (Lindsten et al.,
2013), as well as the derivation of the backward simulation particle smoother for the
finer discretization of [0, tn], is the topic of the following section.

Algorithm 2 Lookahead SIS (xo,θ).
1: for j = 1 to P in parallel do
2: for i = 0 to n − 1 do
3: for k = 1 to A do
4: Sample xj

iA+k ∼ p(xiA+k | xj
iA+k−1, θ) with timestep h.

5: Append the sample to the state history xj
0:iA+k = {xj

0:iA+k−1,x
j
iA+k}.

6: Calculate the weight of the particle according to ωj
iA+k ∝ q(xo

i+1 | xj
iA+k).

7: end for
8: end for
9: end for

10: Output: Particle system (x1:P
1:N , ω1:P

1:N )
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Figure 3: Evolution of a particle system obtained from the Lookahead SIS algorithm.
Observations (red stars) and particles (blue). The size of each particle is proportional
to its weight. Left: the particles are initialized at the initial state, and a single forward
step is performed. Middle: the particles are simulated up to time t1 and are weighted
according to the observed state xo

1. At time t1, the particles start to look towards the
subsequent observation xo

2, and therefore are weighed in a different way, as seen in the
right panel.

3.2 Extracting a single trajectory using particle smoothing

This section describes how to make use of the particles generated in the forward di-
rection (see Algorithm 2) to select a suitable simulated trajectory for use within ABC-
SMC. Backward simulation (BS) is a technique that is used within SMC to address
the smoothing problem for models that have latent stochastic processes, i.e. state-space
models (Lindsten et al., 2013; Särkkä, 2013). In a state-space model, it is assumed that
a dynamical system evolves according to a Markovian (latent) stochastic process having
state xt at time t which is not directly measured; rather, yt is observed as some function
of the latent xt. Smoothing refers to the problem of estimating the distribution of the
latent state at a particular time, given all of the observations up to some later time.
More formally, given a set of observations y = (yt1 , . . . ,ytn), smoothing addresses the
estimation of the marginal distributions p(xtk | y) for k = 1, . . . , n, or sampling from
the entire smoothing density p(xt1 , . . . ,xtn | y). Backward simulation is based on the
forward-backward idea, and assumes that Bayesian filtering has already been performed
on the entire collection of observations, leading to an approximate representation of the
densities p(xt | y1:t) for each time step t ∈ (t1, . . . , tn), consisting of weighted particles
(x1:P

t , ω1:P
t ). The primary goal of BS is to obtain sample realizations from the smooth-

ing density to gain insight about the latent stochastic process. The smoothing density
can be factorized as

p(xt1:tn | y) = p(xtn | y)
n∏

i=1
p(xti | xti+1:tn ,y), (12)

where, under the Markovian assumption of the model, one can write

p(xti | xti+1:tn ,y) = p(xti | xti+1 ,yt1:ti) ∝ p(xti | yt1:ti)p(xti+1 | xti). (13)
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This equation additionally shows that, conditional on y, (xt1 , . . . ,xtn) is an inhomoge-
neous Markov process. In our case we do not have a latent process as in the state-space
model, but rather exact (without measurement error), discrete-time observations of an
SDE. Still, we can utilize backward simulation because of the way that we have con-
structed the lookahead sequential importance sampling (Lookahead SIS, Algorithm 2)
scheme. Moreover, the output of backward simulation will be the simulated trajectories
that will be used in the ABC algorithm. Next, we focus on the backward simulation
step where we derive the backward recursion along the finer discretization that will be
used to generate smoothed trajectories. The key ingredient in this second step is the
backward kernel

BiA+k(dx | xiA+k+1) = P(xiA+k ∈ dx | xiA+k+1,xo
0:ti+1

), (14)

which admits the following density

p(xiA+k | xiA+k+1,xo
0:ti+1

) ∝ p(xiA+k+1 | xiA+k)p(xiA+k | xo
0:ti+1

). (15)

Using the backward kernel we can get the following expression for the backward recur-
sion

p(xiA+k:N | xo
0:tn) = p(xiA+k | xiA+k+1,xo

0:ti+1
)p(xiA+k+1:N | xo

0:tn), (16)

starting from the lookahead density p(xN | xo
0:tn) at time tn. Equation (16) implies the

following scheme: (i) sample
x̃N ∼ p(xN | xo

0:tn), (17)

and then going backwards in time, (ii) incrementally sample

x̃iA+k ∼ p(xiA+k | xiA+k+1,xo
0:ti+1

). (18)

After a complete backwards sweep, the (backward) trajectory (x̃0, . . . , x̃N ) is by con-
struction a realization from the smoothing density p(x | xo). An important property
of the backward kernel density is that at time τiA+k, it depends only on the transi-
tion density p(xiA+k+1 | xiA+k), which we are able to approximate for a small timestep
h, and on p(xiA+k | xo

0:ti+1
), which is approximated by the weighted particle system

obtained in the forward direction. To this end, to utilize the backward recursion, the
lookahead densities p(xiA+k | xo

0:ti+1
) must first be computed for i = 0, . . . , n − 1 and

k = 1, . . . , A. By substituting the particle approximation of the lookahead densities (11)
into the backward density (15) we have the following approximation to the backward
kernel

B̂iA+k(dxiA+k | xiA+k+1) =
P∑

j=1

ωj
iA+kp(xiA+k+1 | xj

iA+k)∑P
l=1 ω

l
iA+kp(xiA+k+1 | xl

iA+k)
δxj

iA+k
(dxiA+k). (19)

Algorithm 3 presents the complete backward recursion given a weighted particle system
obtained from the lookahead SIS algorithm. A visual illustration is given in Figure 4.
Notice that while the complete backward recursion results in a trajectory x̃ of length
nA + 1, we only need the values at the observational timepoints (t1, . . . , tn). As such,



14 Data-Conditional ABC for SDEs

Figure 4: Evolution of a trajectory that is obtained via the backward simulation particle
smoother on the particle system in Figure 3. Observations (red stars) and all particles
(blue). Left: a particle is chosen at random according to equation (17) and a single step
backward is taken according to equation (18) (the chosen particle is in apricot color).
Middle: the backward recursion is taken up to time t1 (in apricot). The right panel
depicts the complete backward trajectory in apricot.

we downsample x̃ at these points. Inspired by this, we explored taking larger time steps
backward, despite deriving our recursions, (17)–(18), on a fine grid. For instance, rather
than retracing steps on the fine grid at intervals of Δt/A (which involves A steps), we
considered intervals of larger lengths, for example Δt/2, transitioning from ti to ti−A/2,
and then to ti−1 (a total of 2 steps). We experimented with different step sizes and found
that stepping backward directly from ti to ti−1 yielded the most consistent trajectories.
As a result, our simulation studies adopt this method. Yet, the forward trajectories
maintain their precision, given the forward simulator integrates at h = Δt/A.

Algorithm 3 BSPS: backward-simulation particle smoother ((x1:P
1:N , ω1:P

1:N ),θ).
1: Sample particle index j ∼ M({ωi

N}P
i=1) and set x̃N = xj

N .
2: for k = N − 1 to 1 do
3: for j = 1 to P do
4: Compute ω̃j

k ∝ ωj
kp(x̃k+1 | xj

k, θ).
5: end for
6: Normalize the smoothing weights {ω̃1:P

k } to sum to unity.
7: Sample particle index j ∼ M({ω̃1:P

k }) and set x̃k = xj
k.

8: Append the sample to the state history x̃k:N = {x̃k, x̃k+1:N}.
9: end for

10: Output: Backward trajectory x̃0:N .

In summary, given a parameter proposal θ∗ and the observation xo, the simulation
of a backward trajectory x̃ is achieved by executing Algorithms 2 and 3. Algorithm 2
returns the particle system that approximates the lookahead densities, and this same
particle system is used as input to Algorithm 3 to approximate the backward kernel
density. We denote by x̃ ∼ p(x | θ∗,xo) the process of sampling a backward trajectory
by executing the two algorithms. This x̃ is the trajectory for which the ABC summary
statistic sit = S(x̃) is calculated and evaluated in line 18 of the ABC-SMC Algorithm 5.
In the next two sections we clarify further steps that are necessary for the adaptation
of ABC-SMC to our specific context. In particular, Section 4 discusses how to appro-
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priately weight the accepted parameter particles in ABC-SMC. Section 5 discusses the
construction of ABC summary statistics that are suitable for SDE inference.

4 Intractable importance ratio and its approximation
Throughout section (3) we have addressed the problem of simulating paths x̃ using a
data-conditional forward-backward procedure. It now remains to be seen how to (i) con-
struct suitable summary statistics that we apply to both x̃ and data xo, and (ii) how to
correct for the fact that x̃ is not simulated from the forward model. We now consider
(ii), and address (i) in Section 5. With a standard, forward only, simulator we would
only need to care for p(s | θ), with s = S(x̃) and S(·) a function still to be determined
(to be addressed in Section 5). The utilization of the backward simulator effectively
changes the distribution of the simulated trajectories. The summary of this backward
trajectory is no longer distributed according to p(s |θ), but rather according to another
density that is conditional on observed data and which we denote by p(s | θ,xo) (this
density is implicitly defined as that of the summary statistic of the backward trajectory
sampled from the joint smoothing density p(x | θ,xo)). Hence, the importance weight
of the parameter-summary pair takes a different form and includes the intractable sum-
mary likelihoods of both the forward and the backward simulator. More precisely, the
sampling density g(s,θ) is no longer p(s | θ)g(θ), but rather p(s | θ,xo)g(θ). We denote
this new sampling density by g(s,θ | xo) to emphasize the dependence on the observed
data. For a proposed parameter-summary pair the importance weight becomes

πε(θ∗, s∗ | so)
g(θ∗, s∗ | xo) ∝ 1(‖s− so‖ ≤ ε)π(θ∗)

g(θ∗)
p(s∗ | θ∗)

p(s∗ | θ∗,xo) . (20)

Unlike the corresponding ratio for forward simulators in (4), the importance weight
in (20) is intractable. Below, we focus on developing a computationally efficient pro-
cedure for approximating the ratio (20), by making use of the Synthetic Likelihood
(SL) method. The SL method was first proposed in Wood (2010) to perform inference
for parameters of computer-based models with an intractable likelihood. SL is charac-
terized by the assumption that the summary statistic s follows a multivariate normal
distribution with unknown mean μθ and covariance Σθ. These can in turn be esti-
mated by implicitly sampling a set of P summary statistics for a particular parameter
θ, sj ∼ p(s | θ) for j = 1, . . . , P , and then computing their empirical mean μP,θ and
covariance ΣP,θ. This results in the approximation p(s | θ) ≈ N (s | μP,θ,ΣP,θ). To
construct an appropriate SL approximation of p(s | θ,xo), we need to look more closely
into the particle approximation to the joint smoothing density of the backward trajec-
tory. By plugging the approximations of the lookahead densities (11) and the backward
kernels (14) into the joint smoothing density (12) along the fine discretization, we get
the following approximation

p̂(dx |xo,θ) =
P∑

j1=1
· · ·

P∑
jn=1

(
n−1∏
i=1

ωji
iAp(x

ji+1
(i+1)A | xji

iA,θ)∑P
l=1 ω

l
iAp(x

ji+1
(i+1)A | xl

iA,θ)

)
ωjn
N δxj1

A ,...,xjn
N

(dx). (21)

This equation defines a discrete distribution on Xn, and can be understood as follows:
for each observational time ti, i = 1, . . . , n along the coarse discretization, the particles
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(x1:P
iA ) generated by Lookahead SIS is a set in X of cardinality P . By picking one particle

at each time point, we obtain a particle trajectory, i.e. a point (xj1
A ,xj2

2A, . . . ,x
jn
N ) ∈ Xn

with entries obtained at the n observational time points. We get Pn such trajectories
by letting the indices j1, . . . , jn range from 1 to P . Clearly the form of (21) is com-
putationally intensive to evaluate, however, it provides a connection to the backward
simulator (Algorithm 3). Implicitly, the particle approximation to the joint smoothing
density (21) depends on the particle system from the forward direction, i.e. p̂(dx|xo,θ) =
p̂(dx | xo,θ, (x1:P

1:N , ω1:P
1:N )). Therefore, conditionally on the particle system from Looka-

head SIS, the backward simulator generates i.i.d. Markovian samples from the distribu-
tion (21). Thus, to appropriately approximate p(s | θ,xo) by a Gaussian likelihood, the
weighted particle system that is obtained from Lookahead SIS needs to remain fixed
whilst the backward trajectories are being sampled. The larger the number of samples
P , the better the approximation to the summary likelihood, albeit at a higher simulation
cost. In our applications, we set the number of simulations for SL to be the same as the
number of particles for the lookahead simulator, which we found to work well in the em-
pirical examples. Hence if P is set to a high number, the cost per one forward-backward
simulation will be increased. Similarly to the forward summary likelihood, the back-
ward summary likelihood can be approximated by sampling a set of P data-conditional
summary statistics s̃j ∼ p(s | θ,xo) and then computing their empirical mean μ̃P,θ and
covariance Σ̃P,θ. The resulting approximation is p(s | θ,xo) ≈ N (s | μ̃P,θ, Σ̃P,θ). The
importance weight for a parameter-summary pair (θ, s) can now be approximated as

w(θ, s) ∝∼
1(‖s − so‖ ≤ ε)π(θ)

g(θ)
N (s | μP,θ,ΣP,θ)
N (s | μ̃P,θ, Σ̃P,θ)

. (22)

Crucially, the form of the importance weight in (22) indicates that the ratio of the
intractable likelihoods need only be computed when the simulated summary is close
enough to the observed summary, i.e. 1(‖s − so‖ ≤ ε) = 1, otherwise the importance
weight can be immediately set to zero without the need to compute the synthetic like-
lihoods. The procedure for computing the ratio is outlined in Algorithm 4.

Algorithm 4 Synthetic likelihood approximation ((x1:P
1:N , ω1:P

1:N ),θ, s).
1: for j = 1 to P do
2: Summarize the genealogy of the jth particle sj = S(xj).
3: Sample x̃j ∼ p̂(x | xo, θ, (x1:P

1:N , ω1:P
1:N )) and summarize s̃j = S(x̃j).

4: end for
5: Calculate the empirical means and covariance matrices from s1:P and s̃1:P , respectively: μP,θ (resp. μ̃P,θ)

and ΣP,θ (resp. Σ̃P,θ).
6: Output: Approximate ratio N (s | μP,θ,ΣP,θ)/N (s | μ̃P,θ, Σ̃P,θ).

In the Supplementary Material, we explore a crucial property of the approximate
importance weight, as defined in (22), which allows for the exclusion of implausible pa-
rameters, independent of the ABC threshold ε value. This method hinges on the variance
of the weights of the particle system, obtained from Lookahead SIS, and its impact on
the covariance matrix Σ̃P,θ of the synthetic likelihood found in the denominator of (22).
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5 Automatic summary statistics for SDEs
The construction of the summary function S(·) has so far been left unspecified. We
address this issue in this section and further details are in a Supplementary Material
section, altogether with notable bibliography. In this work we employ a prediction-based
approach via deep neural networks where, for a generic imputed dataset x, the sum-
maries are given by S(x) = E(θ | x) = fβ(x), with fβ(·) a deep neural network param-
eterised via the parameter β. Specifically, we take as fβ(·) the partially exchangeable
network (PEN) of Wiqvist et al. (2019). PENs offers a powerful way to learn ABC
summary statistics for SDEs, at a much lower computational cost compared to other
networks, since PENs do not have to “learn” the Markovian structure of the data, given
that the network itself is designed to accommodate such a framework. The summary
statistics estimator can be trained before running the inference algorithm. However, for
this strategy to be effective, very many samples from the prior-predictive distribution
are required, and this number is affected by how “vague” the prior is. This is the ap-
proach taken in Picchini (2014); Wiqvist et al. (2019); Fearnhead and Prangle (2012);
Jiang et al. (2017); Chan et al. (2018). Recently, Chen et al. (2020) proposed a dynamic
learning strategy, where the main idea is to learn the summary statistics and the poste-
rior density at the same time, over multiple rounds, which we also advocate here. More
precisely, at round t, the current summary statistics network St(·) is used to approxi-
mate the ABC posterior density, and then the summary statistics network is retrained
on all the data obtained up to round t, and the newly trained network St+1(·) is used in
round t + 1. In order to learn the summary statistics in our approach, we denote with
D the set containing training data. In the standard (forward) ABC-SMC approach, the
dataset D is progressively populated with accepted parameters and their corresponding
simulated trajectories. In our approach, however, this step warrants careful attention.
For a given parameter, a set of P forward trajectories are sampled with Algorithm 2
and one backward trajectory is sampled with Algorithm 3. The backward trajectory is
summarized and then passed to the ABC accept/reject step, but it is not this trajectory
that is stored into D. The distribution of the backward trajectories is markedly different
from that of the forward trajectories, particularly for parameters that do not come from
the posterior (see Section 1 of the Supplementary Material for a detailed discussion).
Therefore, to keep the learning of the summary statistics consistent, we select one of
the P forward trajectories according to how close it is to the observed trajectory. More
precisely, we downsample the P forward trajectories and find the one with the minimum
Euclidean distance to xo, as follows

x = arg min
x∈{x1,...,xP }

√√√√ n∑
i=1

(xiA − xo
i )

2
,

and this particular x is the trajectory that gets added into D altogether with its data-
generating parameter. See also Algorithm 5 which is discussed in Section 6.
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Algorithm 5 Dynamic ABC-SMC with data-conditional simulation (ABC-SMC-DC).
1: Initialize the dataset D = ∅.
2: Generate R prior-predictive samples (x1:R, θ1:R) iid∼ p(x | θ)π(θ) and append D := D ∪ (x1:R, θ1:R).
3: Train PEN on D to obtain S1(·) and summarize the observation so1 = S1(xo).
4: for i = 1 to M do
5: Sample θi

1 ∼ π(θ) and sample a particle system (x1:P
1:N , ω1:P

1:N ) with Algorithm 2.
6: Sample backward trajectory x̃ with Algorithm 3 and compute di

1 = ‖S1(x̃) − so1‖.
7: Store θi

1, compute the parameter weight wi
1 by N (S1(x̃) | μP,θ,ΣP,θ)/N (S1(x̃) | μ̃P,θ, Σ̃P,θ) using

(x1:P
1:N , ω1:P

1:N ).
8: Pick a trajectory x from the forward trajectories x1:P

1:N as detailed in Section 5, and append it to the
dataset D := D ∪ (x, θi

1).
9: end for

10: for t = 2 to T do
11: Normalize w1:M

t−1 . Retrain PEN on D to obtain St(·) and summarize sot = St(xo).
12: Compute particle covariance Σt = 2 × Cov((θ1:M

t−1 , w
1:M
t−1 )).

13: Take εt to be the α-quantile of distances d1:M
t−1 corresponding to accepted particles.

14: for i = 1 to M do
15: while parameter not accepted do
16: Sample θ∗ from θ1:M

t−1 with probabilities w1:M
t−1 and perturb θi

t ∼ N (θ∗,Σt).
17: Sample a particle system (x1:P

1:N , ω1:P
1:N ) with Algorithm 2.

18: Sample backward trajectory x̃ with Algorithm 3 and compute di
t = ‖St(x̃) − sot‖.

19: if di
t ≤ εt then

20: Accept θi
t, compute the parameter weight wi

t by (23) using (x1:P
1:N , ω1:P

1:N ).
21: Pick a trajectory x from the forward trajectories x1:P

1:N as detailed in Section 5, and append
it to the dataset D := D ∪ (x, θi

t).
22: end if
23: end while
24: end for
25: end for
26: Output: Weighted sample (θ1:M

T , w1:M
T ) of the ABC posterior distribution.

6 Dynamic ABC-SMC with data-conditional simulation
We now combine the ideas presented in the previous sections to give a unified ABC-
SMC framework for SDE inference. We sequentially re-learn the summary statistics with
the PEN from Section 5, in every ABC-SMC round, echoing the method in Chen et al.
(2020). Prior to ABC-SMC, we produce a dataset comprising of prior-predictive samples,
and train PEN on this dataset. At the initial round the summary statistics function is
denoted as S1(·). With every new round (say, round t), the dataset is expanded with
newly accepted parameters and trajectories, and PEN is re-trained on this dataset,
yielding an updated summary statistics function that we denote by St(·). As outlined
in Algorithm 1, a parameter θ∗ is proposed from the density gt(·), and a summary
statistic s̃ is implicitly sampled from the data-conditional simulator s̃t ∼ p(s |xo,θ∗) by
sampling the conditional trajectory x̃ ∼ p(x | xo,θ∗) and then computing s̃t = St(x̃).
The importance weight in this multi-round scenario takes the form

wt(θ, St(x̃)) ∝∼
1(‖St(x̃) − so

t )‖ < εt)π(θ)∑M
i=1 W

i
t−1N (θ | θi

t−1,Σt−1)
N (St(x̃) | μP,θ,ΣP,θ)
N (St(x̃) | μ̃P,θ, Σ̃P,θ)

. (23)

The complete procedure is given in Algorithm 5, and our data-conditional inference
method is denoted with ABC-SMC-DC, while we call ABC-SMC-F (where F stands for
“forward simulation”) a typical ABC-SMC procedure where simulated data is produced
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by the forward model. We do not predefine the thresholding schedule ε1 > ε2 > · · · > εT
of ABC-SMC, but rather utilize the adaptive schedule proposed in Prangle (2017), where
the threshold εt+1 is chosen as an α-quantile of the distances corresponding to accepted
summaries at round t. Recall from end of Section 5 that the training data D for PEN
is combined in a different way from that of the standard ABC-SMC algorithm. Because
PEN is designed to learn from samples from the forward model, and not from the data-
conditional model, D cannot include the accepted trajectories x̃ where x̃ ∼ p(x |xo,θ∗).

7 Simulation studies
7.1 Chan–Karaolyi–Longstaff–Sanders family of models

The Chan–Karaolyi–Longstaff–Sanders (CKLS) family is a class of parametric SDE
models that are widely used in finance applications, in particular to model interest
rates and asset prices (Chan et al., 1992). The diffusion term of CKLS depends on two
parameters and the state, taking the form σXγ

t , where σ > 0 is the diffusion coefficient
and γ ∈ [0, 1]. The CKLS family includes the Ornstein–Uhlenbeck process for γ = 0, the
Cox–Ingersoll–Ross process for γ = 1/2, and the Black–Scholes process for α = 0 and
γ = 1. The state-dependent diffusion term can substantially increase the randomness
of the SDE paths, and therefore CKLS presents a considerable inferential challenge for
ABC algorithms when the forward simulator is used. The CKLS process satisfies the
SDE {

dXt = β(α−Xt)dt + σXγ
t dBt, if t > 0,

X0 = x0, if t = 0,
(24)

for α, β ∈ R and σ, γ ∈ R+. We will restrict ourselves to the case where α, β > 0
and 0 ≤ γ < 1. This section describes numerical experiments for the different SDE
models from the CKLS family, with tractable as well as intractable likelihoods. For
the CKLS model, we already illustrated the benefits of generating trajectories by the
data-conditional simulator in Figure 2. A similar figure for the Ornstein–Uhlenbeck,
Cox–Ingersoll–Ross and an SDE model with nonlinear drift, can be seen in the Sup-
plementary Material. We evaluate the efficiency of our proposed data-conditional Algo-
rithm 5 (denoted ABC-SMC-DC) compared to ABC-SMC with Euler-Maruyama as a
forward simulator (denoted ABC-SMC-F). For the data-conditional simulator we will
take as weighing functions the Gaussian densities induced by the EM approximation
of (24), namely,

q(xo
i | xiA−1) = N (xo

i | xiA−1 + β(α− xiA−1)h, σ2x2γ
iA−1h). (25)

We run Algorithms 1 and 5 with M = 10, 000 parameter particles and T = 20
rounds (T = 10 for the simpler case of the Ornstein–Uhlenbeck), but we preemptively
stop the inference once the acceptance rate of the parameters falls below 1.5% when
t > 2. In our experiments, we use the Wasserstein distance as a measure of similarity
between probability distributions. If the true posterior is available, we use that as a
reference posterior. In the case of an intractable likelihood, we choose as reference
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Figure 5: Results from the standard ABC-SMC-F, and our novel ABC-SMC-DC for
(a) Ornstein–Uhlenbeck, (b) Chan–Karaolyi–Longstaff–Sanders, (c) Cox–Ingersoll–Ross
and (d) a SDE with Nonlinear drift. The median Wasserstein distance between the ABC-
posteriors at each round and a reference posterior is shown on the y-axis, and the median
cumulative elapsed time per round is shown on the x-axis. A circle represents a round
of ABC-SMC. Medians are taken over 20 runs.

the ABC posterior obtained from a run of the standard ABC-SMC algorithm with
the same stopping condition and with fixed summary statistics, obtained by training
PEN on 300,000 prior-predictive samples before starting ABC-SMC. Throughout this
subsection, PEN is composed of dense layers and is structured as 2-100-100-100-dim(θ).

Fixed γ = 0 (Ornstein-Uhlenbeck): inference for (α, β, σ)

In this example, the CKLS model is considered with γ fixed to γ = 0, yielding the
ubiquitously utilized Ornstein–Uhlenbeck (OU) process. A notable characteristic of the
OU process is that its transition densities are known (see the Supplementary Material),
and hence it is an example of a tractable diffusion, because its likelihood function is
available via the product of transition densities. Therefore exact inference via MCMC
is possible. Details about the inference setup are given in Supplementary Material. For
the inference, we treat γ as known and fixed at γ = 0, while (α, β, σ) are considered
unknown. Our data-conditional ABC-SMC is denoted with ABC-SMC-DC, while pure
forward simulation is denoted with ABC-SMC-F. The result of the analysis is in Fig-
ure 5(a) and is based on 20 independent runs on the same observed trajectory xo. The
figure displays the computation time versus the Wasserstein distance between the ABC
posteriors and the reference posterior (obtained via MCMC using the exact likelihood
which is available for this model). In this case, the parameters of the OU model are eas-
ier to estimate compared to the general CKLS instance examined further below, where
all parameters are unknown and the diffusion is state-dependent. However even in this
simpler case, Figure 5(a) clearly displays that with our sampler we require about 3–4
rounds, and about 8–9 rounds with the standard sampler. Reducing the total number
of rounds is important in our context, as at each round the PEN network is retrained,
which brings a consequent computational overhead. In terms of running time, by com-
paring similar Wasserstein distances that are obtained at round 3 with our sampler and
at round 8 with the standard sampler, it takes about 600 seconds to reach round 3 in
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the former case and around 2,100 seconds to reach round 8 for the latter, thus with our
sampler we have a 3.5-fold acceleration on average. In Table 1 we show that by round
3–4 the data-conditional ABC-SMC achieves a significant reduction of the Wasserstein
distance, while showing a larger acceptance rate than the pure forward approach. For
later rounds, the acceptance rate of our simulator decreases, however this is expected
since very small Wasserstein distances are achieved.

Round 1 2 3 4 5 6 7 8 9 10
CKLS SDE with (α, β, σ) unknown and γ = 0 (Ornstein–Uhlenbeck)

Acc. rate (F/DC) 100/100 46/42 37/42 29/30 21/30 18/20 17/11 12/7 10/5 8/2
Wasser. (F/DC) 15/4.4 10/1.8 6.5/0.9 4.9/0.5 3.2/0.5 2/0.3 1.3/0.2 0.9/0.2 0.7/0.3 0.4/0.3

CKLS SDE with (α, β, σ, γ) unknown
Acc. rate (F/DC) 100/100 54/52 39/19 26/19 22/5 18/2 14/1 12/1 9/1 6/NA
Wasser. (F/DC) 15/3 13.6/1.7 10.5/0.9 8/0.7 6.2/0.5 4.6/0.5 3.5/0.5 2.6/0.5 2/0.6 1.4/NA

CKLS SDE with (α, β, σ) unknown and γ = 1/2 (Cox–Ingersoll–Ross)
Acc. rate (F/DC) 100/100 54/78 34/50 31/55 22/40 17/33 15/25 13/14 11/8 9/5
Wasser. (F/DC) 9.8/4.1 6.8/2.7 4.2/0.9 3.2/0.5 2.3/0.2 1.6/0.1 1.1/0.1 0.8/0.1 0.5/0.1 0.4/0.1

SDE with nonlinear drift
Acc. rate (F/DC) 100/100 50/85 36/53 30/59 25/46 21/37 18/24 15/14 13/8 11/4
Wasser. (F/DC) 14.7/4 9.2/3 5.9/0.8 4/0.5 2.7/0.2 1.8/0.2 1.2/0.2 0.8/0.2 0.5/0.2 0.4/0.2

Table 1: Comparison of median acceptance rates (in %) and median Wasserstein
distances for both ABC-SMC algorithms, forward (F) and forward-backward data-
conditional simulation (DC), in the first 10 rounds. Each cell in the table reports num-
bers as a/b, where a refers to the performance using F and b refers to B.

CKLS with four unknown parameters (α, β, σ, γ)

In this example, we examine the SDE (24), where the parameters (α, β, σ, γ) are all
unknown, and the likelihood is intractable. Figure 2 displays the observed data along-
side simulated trajectories from both simulators. The analysis results are illustrated in
Figure 5(b), derived from 20 independent runs on the observed trajectory depicted in
Figure 2. Additionally, the posterior distributions resulting from these 20 runs are visu-
alized in Figure 6. Figure 5 reveals a significant reduction in the Wasserstein distance
even from the initial round using our method, as opposed to the standard ABC-SMC-F.
Moreover, when viewed in conjunction with Figure 6, it is evident that our method at-
tains satisfactory inference for all parameters by the third round. ABC-SMC-F takes
roughly 2,500 seconds to reach a Wasserstein distance of 3.1, while the data-conditional
ABC-SMC-DC starts at that value already at round one. Additionally, ABC-SMC needs
about 4,645 seconds to attain a Wasserstein distance of 0.9, compared to our method,
which requires 1,625 seconds to reach the same distance, thus with our sampler we
have a 2.8-fold acceleration on average. See Table 1 for further results: there it is clear
that at round 2 the large decrease in the Wasserstein distance brought by our ap-
proach is not paired with a drastic drop in the acceptance rate, since the latter is on
par with the pure forward simulator. This is a strength of our simulator and, as pre-
viously mentioned, the run of our data-conditional simulator here could be halted at
round 3.
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Figure 6: CKLS with four unknown parameters. Marginal posterior distributions across
several rounds of ABC-SMC: marginals from our data-conditional ABC-SMC-DC are
in red, and those from the forward ABC-SMC-F are in blue. The reference marginal
posteriors are depicted in black, and the true parameter values as black vertical lines.

7.2 Biochemical reaction networks
A biochemical reaction network consists of a set of d chemical species, X1, . . . , Xd that
interact via a network of R reactions

Rj :
d∑

i=1
ν−i,jXi

θj−→
d∑

i=1
ν+
i,jXi, j = 1, 2, . . . , R, (26)

where ν−i,j and ν+
i,j are the number of reactant and product molecules. When the system

contains a large number of molecules and reactions occur frequently, the behavior of the
biochemical reaction network can be closely approximated using the chemical Langevin
equation (see e.g. Wilkinson, 2018). The chemical Langevin equation is an Itô SDE of
the form

dXt =
R∑

j=1
νjaj(Xt)dt +

R∑
j=1

νj

√
aj(Xt)dB(j)

t , (27)
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Figure 7: Lotka–Volterra model. Marginal posterior distributions at several rounds of
ABC-SMC: for ABC-SMC-DC the marginals are displayed in red, and for ABC-SMC-F
in blue (ABC-SMC-DC terminated before round 17). The reference marginal posteriors
are depicted in black, and the true parameter values as black vertical lines. Each panel
reports, in the upper right corner, the number of seconds since the algorithm started.

where νj is the jth column of the stoichiometry matrix ν with elements νi,j = ν+
i,j−ν−i,j ,

aj(·) is the hazard of reaction j (typically computed via a mass-action rate law) and B(j)
t ,

j = 1, . . . , R, are uncorrelated Brownian motion processes. For these models the param-
eter inference problem involves calculating the posterior distribution of the reaction rate
constants θ1, . . . , θR. This section presents numerical experiments for two distinct types
of biochemical reaction networks: the Schlögl model and the Lotka–Volterra model.
The Schlögl model is a one-dimensional SDE that demonstrates stochastic bistability.
The Lotka-Volterra model is a two-dimensional SDE and is explored for its character-
istic oscillatory behavior. The Supplementary Material gives simulation details and the
inference setup for both models.

Lotka–Volterra model

The Lotka–Volterra model is composed of two biochemical species, predator and prey,
and three reactions (prey reproduction, prey death and predator reproduction, predator
death). A reference posterior was returned by a run of (correlated particles) pseudo-
marginal Metropolis-Hastings, with the likelihood function obtained using the modified
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Figure 8: Schlögl model. Marginal posterior distributions for ABC-SMC-DC displayed in
red, and ABC-SMC-F in blue. The reference marginal posteriors (via particle MCMC)
are depicted in black, and the true parameter values as black vertical lines. Each panel
reports, in the upper right corner, the number of seconds since the algorithm started.

diffusion bridge of Durham and Gallant (the version found in Whitaker et al., 2017)
to impute points between observations. The results of the analysis can be seen in Fig-
ure 7. We notice that for θ2, ABC-SMC-DC finds a region of high posterior density
in the first round (318 seconds on average), whereas for ABC-SMC-F about 6 rounds
are required (3206 seconds on average) to arrive at a similar posterior approximation,
hence a 10-fold acceleration with ABC-SMC-DC. For ABC-SMC-DC, a crude posterior
approximation is already obtained by round 6 with an average Wasserstein distance of
0.08 (0.28 for ABC-SMC-F), and displaying an inference quality that by round 11 is
considerably more accurate than ABC-SMC-F, with an average Wasserstein distance
of 0.015 (0.07 for ABC-SMC-F). We recall that a possible use of ABC-SMC-DC is to
rapidly find the bulk of the posterior (say in six rounds in this case), and from there
initialize the standard ABC-SMC-F.

Schlögl model

The Schlögl model is a notable instance of a reaction network showcasing bistability.
It describes how, by a specific set of reactions, solutions of the deterministic repre-
sentation gravitate towards one of two stable states and remain there indefinitely. In
contrast, in stochastic versions of the model, the system can spontaneously alternate
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Figure 9: Schlögl model. a) the Wasserstein distance between the ABC-posteriors at each
round and the reference posterior from particle MCMC is shown on the y-axis, and the
cumulative elapsed time per round is shown on the x-axis. b) the ABC thresholds are
shown on the y-axis, and the x-axis is the same as for a). A circle represents a round of
ABC-SMC.

between these stable states due to inherent noise. The interval between switching events
is unpredictable. This makes data from a single experiment challenging to replicate with
simulated data in a particular experimental context, typically resulting in very low ac-
ceptance rates for ABC schemes. The Wasserstein results are presented in Figure 9(a),
and the ABC thresholds are shown in Figure 9(b), based on five independent runs.
Additionally, the posterior distributions from these five runs are visualized in Figure 8.
ABC-SMC-DC effectively localizes the posterior region for θ1 even in the first round.
Conversely, ABC-SMC-F fails to find an accurate approximation of the θ3 posterior
within the given allocated time. ABC-SMC-DC achieves a much lower Wasserstein dis-
tance, and the ABC thresholds decrease much faster compared to ABC-SMC-F. This
observation suggests a hybrid algorithm: once a sufficiently low threshold/Wasserstein
distance is achieved, reverting to ABC-SMC-F can increase the inference accuracy at a
lower computational cost.

8 Discussion
We have constructed a novel, efficient approach for parameter inference in stochastic dif-
ferential equation (SDE) models when using approximate Bayesian computation (ABC)
algorithms. Our sequential Monte Carlo ABC method with data-conditional simulation
(ABC-SMC-DC) proposes trajectories resulting from smoothing approaches (using a
carefully constructed combination of forward- and backward-simulated paths), produc-
ing a method converging much more rapidly to some reference posterior, as shown via
Wasserstein distances. This is especially evident in the first round of our ABC-SMC-
DC method, where the initial Wasserstein distance is much lower compared to the one
produced from standard ABC-SMC where trajectories are instead myopically resulting
from a forward model simulation. This often means that already at rounds 3–5 of our
ABC-SMC-DC the posterior approximation is close to the bulk of the reference pos-
terior, and moreover having to run very few rounds is a favorable feature, given that
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at each round we also retrain a neural network to learn summary statistics, which is
further discussed below. This could be exploited to create a “hybrid” algorithm, where
our method is used for a few initial rounds allowing rapid converging to the bulk of
the posterior, to then revert to purely forward ABC-SMC simulation for the remaining
rounds, as the latter is computationally favorable when the approximated posterior is
close to the target. Our method was tested on simulation studies that include several
members of the Chan–Karaolyi–Longstaff–Sanders family of SDEs, and we found that
the most dramatic display of the efficiency of our method comes from the more complex
case studies, where the solution to the SDE is very erratic. We conjecture that more
drastic accelerations can be achieved with even more challenging case studies with very
erratic solution paths.

An important component of our proposed ABC-SMC-DC scheme with backward
simulation is that the forward-pass in the procedure can be executed with any numerical
discretization scheme, not just the customary Euler-Maruyama scheme. While in the
present work we have illustrated our approach by using Euler-Maruyama in step 4 of the
lookahead sampler (Algorithm 2), this need not be the case. Any higher-order scheme
can be used in the forward-pass, and while this may imply that the scheme does not enjoy
a closed-form expression for the associated transition density, the weights ω computed
in step 4 of Algorithm 3 are only necessary towards obtaining a backward trajectory.
Moreover, these weights could be computed with an approximate transition density such
as the one resulting from the Euler-Maruyama or the Milstein schemes. This apparent
contradiction means that, although when using weights ω from the latter two schemes
to pick in the backward pass a trajectory from the cloud generated in the forward pass
(which would instead use a higher-order method) we would have an inconsistency in
the construction of the ω-weights in Algorithm 3, nevertheless this will allow to sample
a backward trajectory that is picked from a set of accurate forward trajectories. This
procedure could still be highly beneficial, as Buckwar et al. (2020) have shown that
the ABC posterior can be inaccurate when employing the Euler-Maruyama scheme, for
some SDE models. Another important feature of our ABC-SMC-DC is that it makes
use of sequential learning of the summary statistics, which are refined after each round
of ABC-SMC-DC, using the neural-network denoted PEN (Wiqvist et al., 2019), which
is especially suited to Markov processes. However, we wish to emphasize that while
PEN is a recommended choice to automatically construct summary statistics for SDEs,
since PEN is by construction designed to exploit the Markovianity in the paths of SDEs
solutions, the user may decide to use other ways to determine the summary statistics
while still using our Algorithm 5. While this is entirely possible, the user should be
careful in doing so, as in such case the synthetic likelihoods appearing in (23) may not
be an appropriate approximation to the density of the summary statistics. The latter
aspect is less risky when the summary statistic is an approximation to the parameters
posterior mean (as with PEN, but also with the linear regression method of Fearnhead
and Prangle, 2012, and the neural-network approaches of Jiang et al., 2017 and Akesson
et al., 2021), thanks to central limit theorem arguments. In fact we only needed 30-50
paths to approximate the synthetic likelihoods via PEN. While PEN can so far be
used only with one-dimensional SDEs, this does not prevent the use of our backwards
simulation ABC-SMC with multidimensional SDEs, by constructing summary statistics
using alternative methods.
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