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Abstract

Climate change is rapidly reshaping species distributions in the Arctic, which could pro-

foundly impact ecosystem structure and function. While considerable effort has focused on

projecting future species distributions, assessing the impacts of range-shifting species on

recipient communities and subsequent disruptions to food webs remains largely unstudied.

Here, we address this gap by combining species distribution models and ecosystem models

to explore the emergence of novel ecosystems in the North Water Polynya. The North

Water Polynya is an open-water area between Greenland and Canada, surrounded by sea

ice and one of the world’s most productive ocean ecosystems. Using existing literature and

projections from species distribution models of four marine species, we develop six plausi-

ble future ecosystem scenarios for the North Water Polynya. These scenarios include

changing biomass of primary producers, changing biomass and size structure of copepods,

shifting abundances of forage fish species, and the establishment of killer whales. We find

that the biomass of higher trophic levels show pronounced decreases in response to the

decrease in pelagic primary producers, with polar bear biomass halving compared to pres-

ent conditions. Changes in the copepod size structure has the largest impact on the entire

ecosystem compared to the other novel ecosystem scenarios, suggesting a strong reliance

of higher trophic levels on large, lipid-rich copepods. We further show that increasing capelin

with a simultaneous decrease in Arctic cod biomass causes large decreases in the biomass

of marine mammals such as polar bear, beluga and ringed seal. Finally, we show the estab-

lishment of killer whales as a key novel predator could have cascading top-down effects on

the North Water Polynya ecosystem. The framework presented here provides an approach

for exploring the emergence of novel ecosystems and highlights how climate change could

disrupt a high Arctic ecosystem.

1 Introduction

Climate change is rapidly altering Arctic marine ecosystems [1,2]. Sea ice is melting at an

increasing rate [3], waters are warming, and species are shifting their distributions to keep
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pace with the changing climate [4]. As species shift their ranges, biotic interactions and eco-

logical communities change [5], as local extinctions and invasions affect the respective food-

web structure and functioning [6,7]. For example, the potential borealisation of the Arctic

marine ecosystem could have profound implications on community structure and function

[2,6–8]. In the Barents Sea, reduced sea ice and increasing water temperatures have led to colo-

nization by boreal species, such as Atlantic cod (Gadus morhua) and haddock (Melanogram-
mus aeglefinus) [6,9]. These species are large generalists that increase food-web connectivity

between the benthic and pelagic communities [6,7,9]. The movement of Atlantic cod into

northern regions of the Barents Sea also implies increased predation pressure on native Arctic

cod (Boreogadus saida) [2,10,11]. Such climate-driven range changes are likely to lead to for-

mation of novel ecosystems, though the consequences of these new species interactions remain

largely unknown [12,13]. Thus, a major challenge facing both biogeography and community

ecology today is to understand how food webs may change with climate-induced range shifts,

and the implications of these changes for ecosystem structure and function [14,15].

Climate change is presently impacting much of the Arctic, including the North Water

(NOW) Polynya [16,17]. The NOW (Kalaallisut: Pikialasorsuaq; Inuktitut: Sarvarjuaq), a

region in northern Baffin Bay, is the largest and most biologically productive polynya north of

the Arctic circle. It has sustained, for millennia, the world’s northernmost Inuit communities

and several keystone Arctic species, including Arctic cod, beluga whales (Delphinapterus leu-
cas), narwhals (Monodon monoceros), Atlantic walrus (Odobenus rosmarus), and polar bears

(Ursus maritmus) [17,18]. Due to climate change, the NOW Polynya formation has become

less stable [16,19], threatening ecosystem structure and function, as well as Inuit communities

on both sides of the polynya [16].

With climate-related changes in water temperatures and reduction in sea ice, the northward

expansion of southern species into the NOW Polynya is expected [20]. For example, capelin

(Mallotus villosus) has an unknown role in the current NOW ecosystem [20,21] but it may

increase in the region in the future, competing with Arctic cod and zooplanktivorous birds for

calanoid copepods [22]. Furthermore, increasing catches of Greenland halibut (Reinhardtius
hippoglossoides) on the eastern side of the NOW Polynya suggest an abundance increase in the

region, likely due to climate change [23]. However, the impacts of future climate-driven range

shifts on the NOW Polynya ecosystem remains unknown.

Species distribution models (SDMs) are a popular method to understand and predict shifts

in species’ ranges in response to changing environmental factors [4,24–27]. These models use

statistical relationships (correlations) between species occurrence data and environmental var-

iables to infer the ecological niche of a species [28]. One limitation of SDMs is that they do not

explicitly account for, or quantify, species interactions [29], hence the consequences of species

distribution shifts cannot be quantified. The limitations of SDMs have been widely discussed

in the literature [30–32] but, notwithstanding these limitations, they have the ability to

improve our understanding of marine systems under climate change. Coupling SDMs with

ecosystem models could result in a step-change in our understanding of the likely impact of

climate change on marine systems [33].

In contrast to SDMs, marine ecosystem models offer a holistic approach to studying com-

munity ecology by integrating trophic interactions and energy flows among various species in

an ecosystem [34]. These models can account for interactions such as competition and preda-

tor-prey relationships to simulate the complex dynamics of ecosystems [35]. Ecopath with

Ecosim (EwE, http://www.ecopath.org) is one such modeling approach that has been widely

applied to aquatic ecosystems since its development in the 1980s [36]. Ecopath represents static

mass-balanced models of marine ecosystems, and Ecosim is an extension that simulates tem-

poral dynamics [37,38]. EwE models can be used to examine the fundamental dynamics of
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ecosystems and assess their responses to environmental changes and fishing exploitation

[39,40]. EwE models have been developed for several Arctic coastal and shelf ecosystems

[11,41–44], including the NOW [45]. EwE models have been used to investigate the implica-

tions of different harvesting policies, identify data gaps, describe ecological dynamics for

marine conservation purposes, and develop ecological indicators to evaluate the ecosystem-

wide impacts of climate change [46–48]. In this context, EwE can be used to explore novel eco-

systems, as species abundances increase or new species emerge and establish themselves in an

ecosystem (e.g., [49]).

To understand the impacts of shifting species distributions on the structure and function of

the NOW Polynya ecosystem, information on potential distribution shifts of both key novel

and native species can be integrated into EwE models. Unlike SDMs, EwE models were not

developed to predict novel colonists. As a result, the integration of SDMs into ecosystem mod-

els is a very active field [50]. Understanding the dynamics of species responses can aid in antic-

ipating and mitigating the ecological consequences of climate change and facilitating informed

conservation strategies.

Here, we combine SDMs with the EwE modeling framework to explore novel NOW

Polynya ecosystems under two future climate change scenarios. Using the combined model

approach, we address the following question: What are the ecosystem implications for the

NOW Polynya due to climate change driven shifts in species distributions?

2 Materials and methods

2.1 The North Water Polynya ecosystem

The North Water (NOW) Polynya is situated in northern Baffin Bay, between Ellesmere Island

(Canada) and northwest Greenland, and is linked to Lancaster Sound, Jones Sound, Kane

Basin, Lincoln Sea, and central Baffin Bay (Fig 1). It has an average depth of 300 m, (range

170–600 m; [51,52]) and experiences strong seasonal variation through changing light avail-

ability, ice breakup, open water periods, and the timing of the spring phytoplankton bloom

[20,53–55].

The NOW is one of the most productive Arctic ecosystems [53], attributed in part to early

open water conditions that prolong the exposure of primary producers to light, resulting in an

unusually early spring bloom [56,57]. The energy generated during the spring bloom predomi-

nantly accumulates in surface waters, and is subject to intense grazing by herbivorous zoo-

plankton, such as Calanus hyperboreus. Tremblay et al. [56] estimated that only 27% of

particulate primary production during a spring bloom exits the upper 50 m, with 1–7% reach-

ing the benthos, contingent on water depth. Mid- and lower-trophic-level prey, including Arc-

tic cod and meso-zooplankton, assume a crucial role in transferring energy to higher trophic

level seabirds and marine mammals [58].

Delineating the precise boundaries of the NOW proves challenging due to sea-ice dynam-

ics. Sea-ice melting commences in the spring in the southeast with the return of daylight, pro-

gressing northwest under the influence of the warmer West Greenland Current [19]. Extensive

open water becomes prominent by May, reaching its maximum extent by late June or early

July [16,59–61]. The polynya continues to expand until it merges with open water moving

northward from Davis Strait, leading to the dissolution of the NOW Polynya as it joins the

ocean by August [60,62]. The Ecopath model used in this study represents the period of

polynya formation, full open water extent, and dissolution (from April to October). The

model area boundaries are 76–78.5˚N and 80.5–65˚W [45]. This region represents the NOW

Polynya, with an approximate size of 85,000 km2, reflecting the observed peak extension in

2000 [63].
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2.2 Species distribution modeling

2.2.1 Selected species and occurrence data. Three fish and one marine mammal were

selected for species distribution modeling, comprising: one important fish species already present

in the NOW Polynya, Arctic cod (B. saida); one small pelagic fish expected to increasingly move

into the polynya with warming, capelin (M. villosus); one commercially important demersal fish

species, Greenland halibut (R. hippoglossoides); and one top marine predator, killer whale (Orci-
nus orca). We included capelin and Greenland halibut because previous studies suggest their dis-

tributions and abundances are already increasing in other Arctic regions [23,64,65]. Current

information on killer whales in the NOW Polynya is limited [66] but they are considered occa-

sional visitors to the western part of the polynya [67,68]. Sightings and reports suggest they are

mainly observed south and southwest of the NOW [67,69]. Thus, we chose to model the poten-

tial habitat in the NOW Polynya of killer whales under climate change scenarios.

Fig 1. Overview of the study area, representing the maximum, open water extent of the North Water Polynya. From Bryndum-Buchholz et al. [45].

https://doi.org/10.1371/journal.pclm.0000490.g001
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Occurrence data were gathered for the selected species from the Global Biodiversity Infor-

mation Facility (GBIF; http://data.gbif.org) and the Ocean Biodiversity Information System

(OBIS; http://www.iobis.org). GBIF data were downloaded on the 26th October 2022 using the

‘rgbif’ package [70] using the download link https://www.gbif.org/occurrence/download/

0121994-220831081235567. OBIS data were downloaded on the 31st October 2022 using the

‘robis’ package [71]. The occurrence data were thoroughly cleaned and filtered to remove spu-

rious records by (1) removing records from land, (2) removing fossil specimens, (3) removing

records missing coordinates, (4) removing duplicate records, and (5) removing occurrences

predating 2000 to match the temporal range of the environmental data to be used for elucidat-

ing species-environment relationships. Following this process, the GBIF and OBIS occurrences

were combined and any duplicate records were removed. To account for the spatial clustering

of occurrence records, species occurrences were rarefied by gridding them to a 0.5 x 0.5 degree

grid. During the gridding process only one occurrence record per grid cell was retained. This

is analogous to thinning occurrence records with a distance equal to that of the pixel size of the

grid. As the grid was a relatively coarse size, the gridding process was adequate in thinning

presence records whilst retaining as much data as possible.

2.2.2 Environmental data. Environmental data were downloaded from the publicly avail-

able dataset, Bio-ORACLE v2.1 (https://www.bio-oracle.org/; [72]), using the R package

‘sdmpredictors’ [73]. The following seven environmental variables were chosen as predictor

variables in the SDMs: mean sea-surface salinity, mean sea-surface temperature, mean sea-bot-

tom temperature, mean sea-surface chlorophyll concentration, mean sea-surface currents

velocity, distance to shore and bathymetry. The first five variables are dynamic and liable to

change over time, whilst the latter two remain static over our study period. All seven variables

were downloaded for a current period (2000–2014). For the future time periods (2040–2050

and 2090–2100), the first five environmental variables were downloaded for all emissions sce-

narios (see below), available on Bio-ORACLE as averaged data from three atmosphere–ocean

general circulation models (CCSM4, HadGEM2-ES and MIROC5) provided by the Coupled

Model Intercomparison Project Phase 5 (CMIP5) [72]. The emissions scenarios, known as

Representative Concentration Pathways (RCPs), comprised RCP 2.6 (a stringent mitigation

scenario aiming to limit warming to below 2˚C above pre-industrial levels), RCP 4.5 (a stabili-

zation scenario where emissions peak around 2040 and then decline), RCP 6.0 (a stabilization

scenario where emissions peak around 2080 and then decline), and RCP 8.5 (a high emissions

scenario with increasing emissions over the century) [74]. For brevity, future time periods

2040–2050 and 2090–2100 are referred to as 2050 and 2100, respectively. The environmental

variables were chosen based on the methods described in Titley et al. [75] and represent those

used in most SDMs of marine species [76]. Stratification was not considered in our models as

Bio-ORACLE does not provide environmental variables at multiple layers of the ocean. We

do, however, include sea-bottom temperature as a variable in our models which was not collin-

ear with sea-surface temperature and was found to be an important predictor in the SDMs.

The environmental data were resampled to a coarser resolution to match the gridded occur-

rence data (0.5 x 0.5 degree grid).

2.2.3 Presence-only species distribution models. We modeled species-climate relation-

ships following an approach adapted by Titley et al. [75] and others, which broadly follows the

methods of Bagchi et al. [77], and further adapted for presence-only SDMs. We used occur-

rence data from species presence databases; locations where species are absent are unknown

[78]. Presence-only SDMs are an appropriate and commonly used approach, requiring the

generation of background data to be used as pseudo-absences [79]. Here, we used an ensemble

of four model types to predict species distributions: Maximum Entropy (MaxEnt), Generalized

Additive Models, Boosted Regression Trees, and Random Forests. These model types were
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chosen due to their effectiveness in handling presence-only data [79], and based on their prior

performance in previous modeling studies [80,81]. To fit SDMs to presence-only data, 10,000

background pseudo-absences were randomly selected from the same realm(s) in which the tar-

get species currently occur. This minimized the selection of pseudo-absence points that are cli-

matically suitable but unreachable. A brief summary of the four fitting methods is provided in

the(S1 Text).

2.2.4 Model validation. A common issue that requires consideration in SDM techniques

is the spatially dependent nature of the data. To reduce the effects of spatial autocorrelation,

we followed a “blocking” method as per [77], whereby the gridded occurrence data were split

into ten blocks (using ‘blockTools’ package in R [82]), based on marine realms and ecoregions

using the Marine Ecoregions of the World [83] and Pelagic Provinces of the World [84]. We

combined the latter two to get 16 final oceanic realms. For the ecoregions, we largely used the

Marine Ecoregions of the World but as they do not cover the entire world’s ocean, we used the

Pelagic Provinces of the World to create an additional 37 ecoregions, so that there were no

gaps of ocean that did not classify as a specific ecoregion. This resulted in a total 269 ecore-

gions covering the world’s oceans. Each block comprises a subset of the 269 ecoregions, such

that each block samples parameter space adequately. The blocking approach minimizes spatial

autocorrelation of the data points used in the model fitting and testing.

Model performance was assessed using 10-fold cross-validation using the ten blocks. Each

model was trained on nine of the ten blocks and then model performance was tested on the

remaining tenth block. This was repeated ten times for each of the modeling approaches

(resulting in 40 models per species, 10 blocks x four modeling approaches). Model perfor-

mance was assessed using the Area Under the Curve (AUC) of the receiver-operating charac-

teristic plot. AUC values provide a quantitative measure of a model’s ability to correctly

discriminate between presences and absences, with higher AUC scores indicating better model

performance [85]. These models were then used to project future suitable niche-space for spe-

cies in 2050 and 2100 (40 models per species for each emissions scenario), across the same

realms that they currently occupy, as well as in adjacent realms. Projection results were

weight-averaged across the 40 models (per emissions scenario), with individual model weight-

ings based on the AUC scores of each model. In this sense, the best performing model in the

ensemble lent the greatest weight to the final projected species distribution.

The current and future habitat suitabilities (probability of occurrence) were binarized based

on species-specific thresholds that maximized sensitivity and specificity (Thresholds: B.

saida = 0.07;M. villosus = 0.12; R. hippoglossoides = 0.23; and O. orca = 0.27) to summarize

potential changes to species occupancy in the NOW Polynya. We also presented the results of

the raw habitat suitabilities for each species when mapping changing habitat suitability under

emissions scenarios, as thresholded suitabilities can overestimate occurrences.

2.3 Ecosystem model

We expanded a published Ecopath model for the NOW Polynya [45] by adding the following

functional groups: Bowhead whale (Balaena mysticetus), Greenland halibut, and capelin (over-

view of all functional groups in Table 2). All of these species have been observed in the NOW

Polynya [20]. Killer whale was added as a functional group as part of a novel ecosystem sce-

nario in Ecosim to represent a novel establishment of this apex predator in the NOW Polynya

(see below section 2.4 for more details on the justification of adding killer whales as a novel

scenario). With these additions, the Ecopath model included 24 separately defined functional

groups (see S1 Table) to characterize the NOW Polynya ecosystem. Parameter estimates were

based on qualitative and quantitative studies from the NOW Polynya or other Arctic regions if
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local data were not available (S1 Table). Details on the Ecopath modeling framework are

described in the (S1 Text).

2.3.1 Functional groups. For each functional group, biomass (B; tonnes per km2) was

estimated from abundance data found in survey reports and peer-reviewed research specific to

the NOW Polynya (S1 Table). Production to biomass (P/B) was estimated by either computing

values using total mortality rates (natural mortality rate (M) + fisheries mortality rate (F)) or

from FishBase (www.fishbase.org). FishBase integrates mortality rates, parameters of the Ber-

talanffy growth function, and mean temperature to calculateM [86]. Estimates ofM to calcu-

late P/B were sourced from published literature for the NOW or other Arctic ecosystems. In

cases where explicit information on F was unavailable in the literature, we computed F as total

fish catch over the estimated biomass, based on reported subsistence catches from Canada and

Greenland [87]. Consumption to biomass (Q/B) was primarily acquired for taxa in the NOW

when available (S1 Table). In instances where information from the NOW was lacking, we

used values from the literature or from other Ecopath models deemed most suitable for the

NOW ecosystem or similar Arctic regions (S6 and S7 Tables). A diet matrix (S2 Table) was for-

mulated using published diet studies for NOW taxa, when accessible. In the absence of diet

studies specific to the NOW Polynya, we used diet composition estimates from the literature

deemed most appropriate for the NOW region or from similar Arctic species (S1 Table). We

categorized each data source using the Ecopath pedigree index that describes the origin of

input data and assigns confidence intervals based on source to quantify uncertainty associated

([88,89]; S6 and S7 Tables).

Please refer to [45] for a detailed description of the initial functional groups. The North

Water Polynya base model can be accessed in the Ecopath repository Ecobase (https://ecobase.

ecopath.org/). Parameterizations for the additional functional groups of the expanded Ecopath

model are given below. Data used for the parameterization were based on qualitative and

quantitative studies from the North Water Polynya or other Arctic regions if local data were

not available, as well as other Arctic Ecopath models (S1 Table).

Marine mammals–bowhead whales and killer whales—Data for the relevant populations or

sub-populations were obtained from empirical studies and other Arctic Ecopath models,

assuming that all marine mammals inhabited the NOW Polynya throughout the defined

model timeframe. To estimate B, the number of individuals was multiplied by the average

weight per individual (in tonnes), and then divided by the total model area (km2). B estimates

for bowhead whale were based on aerial observations in 2009 [90], 2010 [91], and tagging stud-

ies from 2014 [92], because direct observations for the NOW were not available for the base

model timeframe. P/B and Q/B for bowhead whale consideredM from the Western Baffin Bay

Ecopath model [11] and F based on North Atlantic Marine Mammal Commission

(NAMMCO) catch statistics [87]. Due to a lack of data for killer whales in the NOW, low ini-

tial values for B were defined for Scenario 4 (See next section), and P/B and Q/B values from

the Western Baffin Bay Ecopath model were used.

Fish–Greenland halibut and capelin—B estimates for Greenland halibut were based on Sep-

tember trawl surveys for 2004, 2010, and 2012 for the Area A0 of the Northwest Atlantic Fish-

eries Organization [93,94], because direct observations for the NOW were not available for the

set model timeframe. P/B was calculated accounting forM only (no commercial fisheries for

Greenland halibut in the NOW Polynya), which was derived from the FishBase life-history

tool. Q/B was also derived from the FishBase life-history tool. Due to a lack of data for capelin

in the NOW Polynya, Ecopath estimated B, based on P/B, and Q/B estimates from the FishBase

life-history tool.

2.3.2 Ecological indicators, network analysis, and SURF index. To evaluate the ecologi-

cal roles of the defined functional groups in the NOW Polynya, we analyzed benthic-pelagic
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coupling. To evaluate the role of individual functional groups in benthic-pelagic coupling in

the NOW Polynya ecosystem, we assigned domains based on feeding behavior—pelagic,

bentho-pelagic, demersal, and benthic—to each functional group and let Ecopath calculate the

consumption rate (t km2 t-1). The domains were used to determine the strength of direct inter-

actions (i.e., amount of consumption) among functional groups across domains. Further, we

conducted a Lindeman spine analysis of trophic flows, following Lindeman [95] and a Mixed

Trophic Impact (MTI) analysis to gauge the direct and indirect impacts of changes in the bio-

mass of one group on the biomass of other groups within the ecosystem [96]. Ecopath esti-

mated omnivory and connectance indices, which quantify the width of the trophic spectrum

for each functional group and provide a measure of food-web complexity and interconnection,

respectively [88,96].

We derived ecosystem indicators for the NOW Polynya from the summary statistics and

network analyses provided by Ecopath, including (i) Finn’s Cycling Index, which indicates the

fraction of total system biomass flow recycled in the system before leaving; (ii) Finn’s Mean

Path Length, which represents the average length of each cycle flowing through the food

chain), and (iii) mean trophic transfer efficiency, representing the proportion of mean energy

passed between trophic levels in ecosystems (refer to [88] for detailed explanations of individ-

ual Ecopath statistics and network indices). To identify important prey species, we computed

the SUpportive Role to Fishery ecosystems index (SURF; [97]) for consumers (excluding polar

bears). This index accounts for the level of reliance on prey by predators and adjusts for the

overall number of connections in the food web. Species with values closer to zero are deemed

non-key forage species, while larger values indicate key forage species. If the SURF index

exceeds 0.001, the species is categorized as a central prey species within the ecosystem.

2.4 Novel ecosystem scenarios

SDMs were not coupled to the ecosystem models, as SDM results only provide information on

the distribution of species rather than their local abundance. Instead, SDM results were used

to infer plausible changes in species present to inform six novel ecosystem scenarios for the

NOW Polynya (Table 1). The rationale, hypotheses, and key literature for each scenario are

briefly described below and presented in S3 Table; the modified biomass values for each sce-

nario are in Table 1. The values of the scenario-specific biomass changes in Table 1 were, when

available, defined based on maximum future projected changes for the respective functional

groups as found in published literature (S3 Table). When projections were unavailable, bio-

mass values were defined to reflect the underlying assumptions of the respective scenario (S3

Table). The SDM model projections were used to inform the direction of biomass changes in

the respective scenarios (Tables 1 and S3).

Scenario 1.1 and 1.2: Changes in biomass of primary producers—Climate change is likely to

impact future primary production in the NOW Polynya [20]. Whether primary production

will decrease or increase in the polynya is not yet determined. For the Arctic Ocean more gen-

erally, primary producer biomass is expected to increase due to a longer growing season

caused by increases in both the extent and duration of the open water season and increasing

storminess, enhancing average annual light availability for photosynthesis and mixing [98–

100]. Congruently, projections by Earth System Models of primary production and phyto-

plankton biomass show increases for the NOW Polynya [101,102]. In contrast, if the Nares

Strait ice-bridge disappears completely; primary producer biomass in the NOW Polynya is

expected to decrease due to nutrient limitation caused by reduced mixing and/or upwelling,

increased stratification, and reduced light penetration due to increased drifting of ice through

the polynya [18,103]. Consequently, to consider these two possible future scenarios in our
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modeling, we devised two scenarios representing an increase (Scenario 1.1) and a decrease in

the biomass of primary producers by the end of the 21st century (Scenario 1.2) (Table 1).

Scenario 2.1. and 2.2: Changes in biomass and size structure of copepods—Due to climate-

change driven environmental alterations, such as increasing sea temperature, shifts in zoo-

plankton distribution are expected to impact zooplankton biomass and species composition

[20]. Shifts in the size composition within the NOW Polynya Calanus community are expected

in the future due to increasing biomass of smaller, less fatty calanoid copepod species, such as

Calanus finmarchicus [104,105]. This shift is suggested to decrease energy transfer in the

NOW Polynya ecosystem, since larger copepods are richer in lipids, and so provide a higher

energy intake per calorie spent searching and handling prey by consumers [106]. Overall,

copepod biomass is expected to decrease in the NOW region, caused by an earlier onset of the

phytoplankton spring bloom [107]. The earlier spring phytoplankton bloom escapes the cope-

pod grazing due to a mismatch between onset of the spring bloom and the end of the copepod

diapause [104], leading to reduced food availability for the copepod community in the spring

[107]. Based on these two possible future changes in the copepod community, we devised two

scenarios representing a change in the biomass ratio of large and medium copepods (Scenario

2.1) and a second representing a decrease in overall copepod biomass by the end of the 21st

century (Scenario 2.2) (Table 1).

Scenario 3: Shift in forage fish species abundances—With the projected northward shift of

capelin into the NOW Polynya, the Arctic cod population may be negatively impacted through

direct competition for zooplankton prey [20,108]. Corroborated by our SDM projections for

capelin and Arctic cod, and the existing literature (e.g., [109–112]), in Scenario 3 we assumed

that Arctic cod will decrease in their biomass, and capelin biomass increase in the ecosystem.

Scenario 4: Establishment of killer whales—As the sea-ice free season lengthens with a

warmer climate, better access results in abundance increases of marine top predators [20].

Killer whales were added as a functional group because SDMs projected suitable habitat for

them currently (2000–2014) in the NOW. Currently, killer whales are only considered as

Table 1. Overview of novel ecosystem Ecopath with Ecosim (EwE) scenarios for the North Water Polynya and associated biomass (B in t km2) changes.

Scenario Baseline B Total biomass change EwE B
1.1 Increase in pelagic primary producers Lg pelagic

producers (> = 5 μm): 25.00

Sm pelagic producers (0.7–5 μm):

13.00

+20% Lg pelagic producers (> =

5 μm): 27.50

Sm pelagic producers (0.7–

5 μm): 14.30

1.2 Decrease in pelagic primary producers -30% Lg pelagic producers (> =

5 μm): 21.5

Sm pelagic producers (0.7–

5 μm): 11.05

2.1 Change in copepod community size-

structure

Lg copepods: 23.42

Med copepods: 9.49

(ratio ~ 70 (lg copepods): 30(med

copepods)

Change in ratio to 10 (lg copepods): 90 (med

copepods).

Lg copepods: 3.35

Med copepods: 29.65

2.2 Decrease in copepod biomass Lg copepods: 23.42

Med copepods: 9.49

-30% Lg copepods: 21.08

Med copepods: 8.541

3 Shift in forage fish species abundances Capelin: 0.026

Arctic cod (Age 1+): 5.50

+40% capelin

-15% Arctic cod (Age 1+)

Capelin: 0.0364

Arctic cod (Age 1+): 4.675

4 Establishment of killer whales ——————— + killer whale

+40% capelin

-15% Arctic cod (Age 1+)

Killer whale: 0.00014

Capelin: 0.0364

Arctic cod (Age 1+): 4.675

Lg = Large. Med = Medium. Sm = Small. Lg copepods include Calanus hyperboreus, Calanus glacialis, and Metridia longa; Med copedods include Pseudocalanus spp,

and Calanus finmarchicus). The percent values for the respective biomass changes are based on published literature, presented in S4 Table.

https://doi.org/10.1371/journal.pclm.0000490.t001
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‘occasional visitors’ to the western part of the NOW [67,68,113], which corroborates our SDM

projections. The NOW is at a considerably higher latitude than where sub-populations of killer

whales currently inhabit in the Arctic—the largest population being in the Northwest Pacific.

Populations in Nunavut and the NOW could largely be restricted by sea ice extent, and killer

whales were never found in the past in Western Hudson Bay and in the High Arctic Islands.

Their sightings have been steadily increasing in the high Arctic region since the 1950s

[60,101]. Only recently have sightings suggested that killer whales have expanded their ranges

into areas like Hudson Bay and northwest of Baffin Island [67,114], and has been linked to

declining sea ice [114]. Additionally, more prey such as capelin could become available in the

NOW with increasing climate change so the killer whale population may become more estab-

lished and an ecosystem component. The increased frequency and possible establishment of a

novel apex predator indicates a greater predation pressure on other large Arctic mammals,

such as narwhals, belugas, and seals.

2.4.1. Ecopath with Ecosim simulations. To simulate the ecosystem response to B
changes in the above described functional groups (Table 1), we used B values as the representa-

tion of future ecosystem scenarios. In other words, B values for the manipulated functional

groups in each scenario were used as biomass forcing to simulated ecosystem wide responses

due to these changes. We ran each simulation for 100 years for each novel ecosystem scenario

and reported the mean B values for the last decade, for each functional group, after each simu-

lation reached equilibrium. To avoid sudden ecosystem responses or collapse, the forcing com-

menced after 50 years, after a tune-up phase of steady biomass increase based on the estimated

baseline model B from 2005–2007. Details on the Ecosim framework are described in the (S1

Text). Finally, for each scenario, we identified which functional groups differed by<20%, 20–

40% and>40% in biomass compared to the baseline biomass estimates and calculated the pro-

portion of functional groups impacted at each level (leaving out the impacting group).

2.4.2. Sensitivity analysis. We performed a sensitivity analysis for each novel ecosystem

scenario. We ran two simulations to represent a range of parameter values (S4 Table). For B,

where possible, the parameter range was based on the lowest, mid, and highest projected values

found in the literature (S4 Table). When projections were unavailable, initial B estimates were

increased and decreased by increments of 5% to determine the effect on the ecosystem. For

each analysis, we identified which functional groups differed by <20%, 20–40% and>40%

and calculated the proportion of functional groups impacted at each level (leaving out the

impacting group).

3 Results

3.1. Projections from species distribution models

SDMs performed well, with the average Area Under the Curve (AUC) of ensemble models

being 0.97 (± 0.03 SD), with values ranging from 0.88 and 1.0 (see S5 Table for all AUC

results). Overall, the AUCs for Random Forests were slightly higher than the other models

(average Random Forests AUC = 0.98 ± 0.02, c.f. averages of 0.97 ± 0.03, 0.97 ± 0.03 and

0.96 ± 0.03, for Boosted Regression Trees, MaxEnt and Generalized Additive Models respec-

tively). Full model outputs from each SDM type are available on Figshare [115].

The NOW Polynya is projected to become climatically suitable for most of the modeled spe-

cies. Suitable climate for capelin increased by 2050 and 2100 under both emissions scenarios,

especially in northern and western areas of the polynya (Figs 2A, 2C, S5B and S5C). Median

habitat suitability for capelin increased in the polynya by 13% by 2050 under RCP 4.5. In 2100,

capelin range is projected to extend to occupy 80% of the polynya. Suitable habitat for Arctic

cod in 2050 declined in the southwestern region of the polynya but increased slightly in central
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areas (Fig 2E), resulting in an average habitat suitability decrease of 5%. Suitable climate in

2100 generally shifts northward under a medium emissions scenario (Fig 2).

Under the high emissions scenario (RCP 8.5), by 2100, Arctic cod is projected to experience

large declines in habitat suitability across the polynya (S5F Fig). Arctic cod is projected to

occur in all grid cells at present (2000–2014) but to decline in range by 10% by 2050 and 2100

under RCP 8.5. Suitable climate for Greenland halibut was identified in the south-western

region of the polynya (S6A Fig) and was projected to shift towards the northeast of the polynya

and northwest below Ellesmere Island by 2100 (under RCP 4.5 and RCP 8.5). The SDM results

suggest that at present (2000–2014), there may be suitable climate for killer whales in the

Fig 2. Ensemble projections of capelin (Mallotus villosus) (a-c), Arctic cod (Boreogadus saida) (d-f) and killer whales (Orcinus orca) (g-i) distribution in the

North Water Polynya from present-day (2000–2014) to 2050 and 2100 under RCP4.5 emissions scenario. Projection results for the individual model types for

each species are provided in the Supporting Information (S1–S4 Figs). Killer whale icon created by authors, other icons are public domain silhouette images by

Milton Tan (Gadus morhua) and xgirouxb (Thaleichthys pacificus), via PhyloPic (www.phylopic.org).

https://doi.org/10.1371/journal.pclm.0000490.g002
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polynya. Habitat suitability for killer whales generally declined by 2050 under RCP 4.5 across

the polynya (Fig 2H) by as much as 70% by 2100 (Fig 2I).

3.2. Ecopath base model

3.2.1. Model parameters. The pedigree index for biomass parameters was dominated by

values between 4 and 6, meaning that the data relied heavily on local samples and indirect

approximations (S6 and S7 Tables). For production and consumption to biomass ratios (P/Q
and Q/B, respectively), the pedigree index was dominated by values between 3 and 4,

Fig 3. Ecopath base model flow diagram (upper panel), Ecosim flow diagram Scenario 2.1 (lower panel). The size of circles is

proportional to the amount of biomass. Numbers below circles represent the biomass of the functional group in t km2. TL = trophic level.

Direction of energy flow is represented by position of line with relation to circle: Flows positioned on the top of a trophic group indicate

biomass outgoing, while flows positioned on the side indicate entering biomass. The weight of the line indicates the amount of energy

flowing between nodes. Narwhal (Monodon monoceros) icon created by authors, all other icons are public domain silhouette images by

Tracy Heath (Ursus maritimus), Margot Michaud (Odobenus rosmarus) and others, via PhyloPic (www.phylopic.org).

https://doi.org/10.1371/journal.pclm.0000490.g003
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indicating the input relied heavily on Ecopath models from other Arctic regions and empirical

relationships (S6 and S7 Tables). Values for diet parameters were dominated by the index of 2,

indicating the input relied heavily on Ecopath models from other Arctic regions (S6 and S7

Tables). The average pedigree score for the entire base model was 3.61.

3.2.2. Model balancing. This study used a balanced model [45]. To achieve mass-balance

after adding new functional groups, parameter adjustments were made to the biomasses and

P/Q of bowhead whale, Greenland halibut, and Arctic cod (Age 1+) (S8 Table). We considered

the model balanced when Ecotrophic Efficiency (EE) < 1 for all functional groups (Table 2).

3.2.3. Trophic levels and flows. In the base model, trophic levels (TLs) ranged from 1 to

4.73 (Table 2; Fig 3), with polar bear occupying the highest trophic position in the food web,

followed by narwhal (TL 4.35), and beluga (TL 4.02). The groups of walrus, ringed seal, little

auk, Greenland halibut, capelin, Arctic cod (Age 1+), and ‘other fish’ had estimated TLs

between 3 (other fish) and 3.77 (Greenland halibut). Arthropods, bivalves, echinoderms,

worms, the zooplankton groups, and Arctic cod (Age 0) had TLs between 2.06 (Arctic cod

(Age 0)) and 2.50 (echinoderms). Primary producers and detritus were at the bottom of the

food web with TL 1. In general, these estimated TLs agreed with the range of values reported

in the literature for the NOW Polynya and other Arctic ecosystems (S9 Table). Trophic flows

Table 2. Parameters from the balanced Ecopath model for the North Water Polynya in 2005–2007.

Functional group TL Domain B P/B Q/B EE P/Q
1 Killer whale 4.77 PEL 0.00014 0.03 9.11 0.00 0.00
2 Polar bear 4.73 PEL 0.001 0.40 6.00 0.02 0.07
3 Bowhead whale 3.16 PEL 0.002 0.07 9.50 0.00 0.01
4 Beluga 3.95 PEL 0.02 0.29 17.00 0.27 0.02
5 Narwhal 4.35 PEL 0.11 0.001 19.80 0.76 0.00
6 Walrus 3.16 PEL 0.02 0.07 30.4 0.12 0.01
7 Ringed seal 3.68 PEL 0.09 0.17 16.5 0.27 0.01
8 Little auk 3.14 PEL 0.13 0.15 64.61 0.01 0.00
9 Greenland halibut 3.77 DEM 1.78 0.51 1.30 0.88 0.38
10 Capelin 3.17 PEL 0.026 0.66 4.40 0.78 0.15
11 Arctic cod (Age 1+) 3.18 BP 5.50 0.50 2.63 0.92 0.19
12 Other fish 3.00 BP 1.56 0.51 2.40 0.95 0.22
13 Arthropods 2.47 DEM 9.00 0.75 6.00 0.97 0.13
14 Bivalves 2.16 BENT 10.95 0.62 6.33 0.93 0.01
15 Echinoderms 2.51 BENT 12.10 0.55 2.20 0.97 0.25
16 Worms 2.21 BENT 13.78 0.95 4.00 0.85 0.24
17 Lg copepods 2.16 PEL 23.42 5.50 20.00 0.13 0.26
18 Med copepods 2.12 PEL 9.49 18.00 45.00 0.97 0.40
19 Arctic cod (Age 0) 2.06 PEL 0.46 31.60 105.00 0.11 0.31
20 Other meso-zooplankton 2.21 PEL 12.20 22 80.00 0.59 0.26
21 Lg pel. producers 1.00 PEL 25.00 34.50 - 0.71 -
22 Sm pel. producers 1.00 PEL 13.00 64.87 - 0.60 -
23 Pelagic detritus 1.00 PEL 0.50 - - 0.27 -

24 Benthic detritus 1.00 BENT 0.05 - - 0.87 -

Values estimated by Ecopath are in italics; values adjusted during model balancing are in bold. TL = Trophic level; B = Biomass (t km2); P/B = Production/biomass ratio

(yr−1); Q/B = Consumption/biomass ratio (yr−1); EE = Ecotrophic efficiency (the fraction of total production of one functional group that is consumed by other groups;

unitless); P/Q = Production/consumption (yr-1). Lg = Large; Sm = Small; Med = Medium. PEL = Pelagic; BP = Bentho-pelagic; DEM = Demersal; BENT = Benthic. Gray

shading: Functional group added to the base model for Scenario 4. Original parameter values were obtained from [42].

https://doi.org/10.1371/journal.pclm.0000490.t002
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estimated by the model indicated that pelagic and benthic communities were primarily con-

nected by Arctic cod (Age 1+), bowhead whale, walrus, and ringed seal (Fig 3). The Lindeman

spine analysis indicated that most energy flows occurred in the first two TLs, representing

53.3% of the total system throughput (TST; S8 Fig; TL1 = 23.56%, TL2 = 29.74%). TL2 largely

contained large copepods (23.42 t km2), other meso-zooplankton (12.2 t km2), bivalves (10.95

t km2), echinoderms (12.10 t km2), and worms (13.78 t km2) (Fig 3; Table 2), representing

44.64% of the total biomass excluding detritus. Average transfer efficiency (TE) for the NOW

Polynya ecosystem was 9.17% (S10 Table), with the highest TE for TL2 (11.18%; S10 Table).

3.2.4. Ecological indicators, network analysis, and SURF index. The NOW Polynya eco-

system is characterized by many benthic-pelagic couplers, defined by the feeding domains of

the specific functional group (i.e., pelagic, bentho-pelagic, demersal, and benthic). Consump-

tion rates across feeding domains ranged from 9.11 × 10−7 t km2 t-1 for killer whales to 59.95 t

km2 t-1 for Arctic cod (Age 0) in terms of total rates (S7 Fig). Notably, the pelagic and benthic-

pelagic functional groups, such as walrus, narwhal, ringed seal, capelin, and Arctic cod (Age 1+)

couple the pelagic and benthic domains by feeding on the entire range of domains. Arthropods,

echinoderms, and worms, all of which are benthic invertebrates, couple the pelagic and benthic

domain by scavenging on deposits of functional groups originating from the pelagic domain.

The MTI analysis (S9 Fig) revealed that, generally, most functional groups had a negative

impact on themselves, reflecting intraspecific competition for resources, and a negative impact

on their respective prey due to predation pressure. Bowhead whale, walrus, capelin, other fish,

worms, and Arctic cod (Age 0) had very low to no impact on other groups, likely due to their

relatively low B or Q/B ratios. Bivalves showed the largest positive impact on walrus, reflecting

the diet of walrus in the NOW Polynya. Small pelagic producers had the largest positive impact

on Arctic cod (Age 0), through their large role as prey for that age group. Arctic cod (Age 1+)

largely consumes zooplankton and benthic invertebrates (as shown in the diet matrix in S2

Table) and has a negative impact on these functional groups. The largest negative impact was

observed for little auk affecting Arctic cod (Age 0), as well as for beluga on capelin, through

predation and, in the case for little auk, interspecific competition for resources, such as zoo-

plankton. Interestingly, based on the MTI analysis, Arctic cod (Age 1+) had a relatively strong

negative impact on capelin; however, capelin showed no impact on Arctic cod (Age 1+).

Key ecosystem properties (total system throughput, sum of consumption, exports, produc-

tion, and total biomass) of the current iteration of the NOW model were largely comparable to

values for the base model for the NOW Polynya (S11 Table). The system omnivory index for

the NOW Polynya was low, indicating a relatively high diet specialization among the individ-

ual functional groups (S11 Table). Finn’s Cycling Index was similar between the two models,

signifying a relatively short cycling of biomass flow through the ecosystem [116]. Finn’s mean

path length was similar between the two models. Mean transfer efficiency increased from

8.18% in the first iteration of this model to 9.17% in this model (S11 Table), highlighting that

the ecosystem with additional functional groups is more productive but with less energy being

transferred to higher trophic levels. The SURF index identified large copepods, Arctic cod

(Age 1+), other meso-zooplankton, medium copepods, bivalves, arthropods, ringed seal,

worms, echinoderms, and Greenland halibut as key forage species (S10 Fig). Large copepods

and Arctic cod (Age 1+) showed values at least an order of magnitude higher SURF index than

the other functional groups (S10 Fig).

3.3 Novel ecosystem scenarios and sensitivity analysis

Scenarios 1.1 and 1.2: Changes in biomass of primary producers—with increasing biomass of

pelagic primary producers (Scenario 1.1), higher trophic level functional groups showed a
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moderate increase in biomass, with the exception of “other fish”, which showed a biomass

decrease (Table 3; S11 Fig). Biomass across all functional groups responded to a decrease in

pelagic primary producers (Scenario 1.2), with pronounced biomass decreases in higher tro-

phic levels, especially for polar bear, Greenland halibut, beluga, walrus and ringed seal

(Table 3; S12 Fig). Notably, for TLs> 4, biomass was halved compared to the base model (S12

Fig). For both scenarios, the sensitivity analysis showed less pronounced biomass responses in

the ecosystem with lower changes in the biomass of pelagic primary producers (S12 Table).

Scenario 2.1. and 2.2: Changes in biomass and size structure of copepods—Changes in the

copepod size structure (Scenario 2.1) had the largest impact on the entire ecosystem compared

to the other novel ecosystem scenarios. For this reason, we chose to highlight this scenario in

Fig 3 and have included diagrams of the other scenarios in the (S12–S15 Figs). Under this sce-

nario, the relative biomass of the highest TLs (> 4) decreased substantially, to almost a third of

the biomass of the baseline model (Fig 4A). Biomass of key prey species, such as ringed seal,

and Arctic cod (Age 1+) declined while capelin biomass increased by> 40% (Table 3; Fig 3).

Biomass of ringed seal–one of the main predators of Arctic cod (Age 1+)–declined drastically

Table 3. Direction of biomass change by functional groups for each North Water Polynya Ecosim scenario.

Functional group

TL Direction of biomass change by scenario

1.1 1.2 2.1 2.2 3 4
1 Killer whale 4.77 / / / / / """

2 Polar bear 4.73 "" ### ### ## ## ##

3 Bowhead whale 3.16 " ## """ ## " """

4 Beluga 3.95 "" ## ## ## ## ##

5 Narwhal 4.35 " # # # # ##

6 Walrus 3.18 " ## " " # #

7 Ringed seal 3.68 "" ## ### # # ##

8 Little auk 3.14 " ## """ ## " "

9 Greenland halibut 3.77 "" ## " # # #

10 Capelin 3.17 " # """ # "" ""

11 Arctic cod (Age 1+) 3.20 " ## ### # # #

12 Other fish 3.00 # # "" " "" "

13 Arthropods 2.48 " # """ " " "

14 Bivalves 2.16 " # " " # #

15 Echinoderms 2.50 " # "" " # #

16 Worms 2.21 " # " " # #

17 Lg copepods 2.17 " # ### # " "

18 Med copepods 2.12 " # """ # # #

19 Arctic cod (Age 0) 2.06 " # # " " "

20 Other meso-zooplankton 2.22 " # """ " # #

21 Lg pel. producers 1.00 " # " " # #

22 Sm pel. producers 1.00 " # " " " "

23 Pelagic detritus 1.00 " # # " # #

24 Benthic detritus 1.00 " # # " " "

Blue shading indicates biomass increases; red shading biomass decreases. Grey shading are functional groups that were modified as input for a given scenario. One

arrow: < 20% change; two arrows: 20–40% change; three arrows: > 40% change; / = functional group is not part of the scenario. TL = Trophic level. Lg = Large;

Sm = Small; Med = Medium.

https://doi.org/10.1371/journal.pclm.0000490.t003
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(>40%). Bowhead whale and little auk biomasses increased by> 40% (Table 3; Fig 3). In com-

parison, an overall decline in copepod biomass (Scenario 2.2) did not have as large an effect on

the NOW Polynya ecosystem (Table 3; Figs 4 and S13). A copepod biomass decline of 20–30%

produced the largest impacts on polar bear, bowhead whale, beluga, and little auk (Table 3;

S13 Fig; S12 Table).

Scenario 3: Shift in forage fish species abundances—An increase in capelin with a simulta-

neous decrease in Arctic cod (Age 1+) biomass had the largest effect on marine mammals in

the ecosystem (Table 3; Figs 4 and S14). Here, the largest declines were for polar bear, beluga,

and ringed seal, in the scenario itself and the sensitivity analysis (Tables 3 and S12).

Establishment of killer whales—In response to increasing killer whale biomass, polar bear

biomass decreased, as the biomass of their main prey, such as beluga, narwhal, and ringed seal

decreased (Table 3; Figs 4A and S15). This pattern was also observed in the sensitivity analysis

(S12 Table).

4 Discussion

Climate change is rapidly altering species distributions, which could have profound implica-

tions for the structure and function of ecosystems. Whilst the potential for future changes in

species distributions has been extensively explored, largely using correlative models [25,26],

we currently lack a framework to assess the impact of range shifting species on recipient com-

munities and the subsequent disruptions to the ecosystem. Here, by combining two modeling

frameworks, SDMs and ecosystem modeling, we explored the emergence of novel ecosystems

in the NOW Polynya considering both climatic and ecosystem impacts.

Fig 4. Biomass of trophic groups in the base ecosystem model and Ecosim scenarios by trophic level in the North Water Polynya ecosystem. (A) Biomass

changes relative to the base ecosystem scenario. (B) Biomass proportion relative to the total biomass in the ecosystem. The different colors match the colors in

(A); the shading represents the different trophic groups. Proportion of TL> 4 is< 0.005 in the base ecosystem and across Ecosim scenarios; hence not visible

in panel (B). See biomass proportion relative to the total biomass for TL> 4 in S16 Fig.

https://doi.org/10.1371/journal.pclm.0000490.g004
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4.1 Trophic flows

The NOW Polynya supports a high benthic biomass due to strong benthic-pelagic coupling

[117]. One of the main underlying processes for this pattern is the high primary productivity

despite the lower average transfer efficiency of 9.17% in the NOW polynya compared to other

ecosystems in the region, such as Western Baffin and Western Greenland [45,53]. The spring

bloom allows sufficient new production to reach the seabed and support the benthic commu-

nity [117]. This pattern is also supported by our analysis, where the benthic invertebrate

groups have relatively high consumption rates on prey from the pelagic domain.

Climate change is expected to increasingly affect benthic-pelagic coupling, for example, via

(i) phenological shifts leading to trophic mismatches due to reduced sea ice as a result of

increasing water temperatures, (ii) poleward shifts of pelagic and demersal species, (iii) and

changing stratification patterns due to increasing storminess, vertical mixing, and changes in

freshwater influx [8,99,100,118,119]. These mechanisms can manifest in changes in trophic

interactions within an ecosystem. Scenario 2.2 explored the potential of such a trophic mis-

match, whereby the phytoplankton blooms avoid substantial copepod grazing, reducing cope-

pod biomass. The reduced grazing pressure by the copepod community benefits the benthic

invertebrate community, as the phytoplankton carbon supply to the benthic zone from the sur-

face increases.

The opposite can occur if the phytoplankton biomass decreases, as explored in Scenario 1.2,

due to increasing stratification caused by increasing water temperatures and freshening

[18,103], reducing biomass across functional groups in the ecosystem. These responses have

already been observed in other Arctic regions such as the Chukchi Sea [120,121]. Moore et al.

[121] showed that a decline in benthic prey, due to a reduction in phytoplankton carbon sup-

ply from surface waters, caused apex predators dependent on benthic prey (such as gray

whales, Eschrichtius robustus) to shift their foraging ranges northward [121]. Years with

reduced sea ice in the Chukchi Sea caused Pacific walrus (Odobenus rosmarus) to arrive earlier,

stay longer and concentrate their foraging efforts in nearshore areas rather than offshore

waters [120]. While our framework did not resolve movements due to changes in food supply

specifically, we illustrated biomass change within a specific system, which could also reflect

distribution shifts away from the study region.

4.2 Effects of changing copepod size-structure

The larger ecosystem impact of changing size-structure (Scenario 2.1) compared to changing

overall biomass of copepods suggests a strong reliance of higher trophic levels on larger, lipid-

rich copepods. Indeed, large, diapausing copepods are a crucial food source for fish and some

Arctic whales [122], especially for bowhead whales [123]. They are larger targets for visual for-

agers and richer in lipids, and so provide a higher energy intake per calorie spent searching

and handling prey by consumers [106]. Large copepods in the Arctic depend on sea-ice or

deep sea habitats to survive, which reflects their dependence on local food availability, temper-

ature refugia, and refugia from visual predators [124]. With climate change driving sea-ice

melt and retreat, larger zooplankton species are already declining in some regions of the Arctic

[104]. Our results support previous evidence that large copepods are an important trophic link

in Arctic marine ecosystems [125,126], and implies climate change could strongly disrupt Arc-

tic ecosystems by reducing trophic transfer efficiency, if smaller, less fat copepods replace their

larger congenerics [104]. For example, in the Labrador Sea, capelin body size and condition

have declined over 40 years [127] in response to a decline in large zooplankton [128], as cape-

lin grow faster when feeding on larger Calanus species [129]. Similar effects have also been pre-

dicted for little auk [130]. Moreover, because of the variation in life histories and cycles (e.g.,
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diapause timing, generation time, and breeding type) of large compared to smaller copepods,

climate-driven shifts in the size structure can also affect the timing of energy transfer to higher

trophic levels [104]. In Disko Bay, Greenland, longer open water periods resulted in Calanus
glacialis changing from a biennial to an annual life cycle as a result of a change in available lip-

ids. Sea-ice cover is expected to decline further with climate change in the NOW Polynya [18].

As a result, reduced reproductive success and condition of predators is likely due to changes in

their copepod prey, with potential ecological consequences.

4.3 Effects of changing forage fish biomass

The projected increases in habitat suitability for capelin and the subsequent declines for Arctic

cod replicate empirical data, indicating a shifting prey base in the Arctic [131,132]. However,

the effect of changes in forage fish biomass (as a prey base) on higher trophic levels was not as

strong as expected. The sensitivity analysis emphasized the role of Arctic cod (Age 1+) as a key

prey species for predators such as ringed seals, beluga and narwhal. The decrease in beluga bio-

mass could reflect reduced energy transfer and nutrition as a result of fewer Arctic cod (Age 1

+) in their diet [112]. This suggests the increasing abundance of a boreal species such as capelin

may not substitute losses of Arctic cod in high-Arctic ecosystems. Indeed, the maximum lipid

content of capelin is almost three times lower than Arctic cod [133]. Seabirds can shift their

diet depending on local abundance of fish, but when, for example, Brunnich’s guillemot

switched to capelin, the growth rate of nestlings declined [134].

Generally, Arctic cod and capelin are significant consumers of zooplankton in marine eco-

systems [133,135] (S2 Table), indicating a potential increase of resource competition between

these two species in the future. However, the diet of Arctic cod differs with their size [136],

hence prey competition may differ as well [112]. As seen in the diet matrix (S2 Table), imma-

ture and adult Arctic cod show a broader prey spectrum compared to more juvenile stages

[112,133,135]; amphipods and copepods represent the largest fraction in their diet across age

and sizes [112,136]. Notably, krill is preyed upon by both Arctic cod and capelin; however, the

contribution to the prey field is larger for capelin compared to Arctic cod [133], suggesting

that competition between capelin and Arctic cod may be limited. This species-specific differ-

entiation across the prey field for capelin and Arctic cod was not captured in our model.

4.4 Cumulative impacts of changes in prey base and increasing biomass of

apex predator

Our SDMs did not project any substantial increases in habitat suitability for killer whales in

the NOW Polynya by 2050 or 2100. Killer whale movements in the Arctic are likely more

dependent on the open-water season and so may not be distributed in the Arctic year-round

[69]. As the SDMs did not distinguish summer vs. winter distributions of species, they may

not have captured the full extent of killer whale occurrences and movements with climate

change. Also, it is important to note that high or low climate suitability does not necessarily

mean high or low abundance, especially for populations that change rapidly. SDM simulations

suggested that all regions of the NOW are currently suitable for killer whale populations,

which supported Scenario 4 of our analysis to explore the impacts of the addition of an apex

predator to the NOW Polynya ecosystem.

The frequency of killer whale sightings in the NOW has increased since the 1950s [67,113],

and the increasing ice-free, open waters in the Arctic have provided killer whales with better,

more prolonged access to the high Arctic [114]. As such, we would expect the direct consump-

tion of Arctic marine mammals to rise [68,137]. Our simulations supported this, showing bio-

mass decreases in the main prey species of killer whales: narwhals, beluga and ringed seals, and
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also in its main competitor, the polar bear. Killer whales will not only directly affect prey abun-

dances but could also disrupt prey behavior and ultimately their distributions [137,138]. These

results suggest the addition of a key apex predator such as killer whales to the NOW Polynya

ecosystem could have cascading ecosystem effects.

Further, in Scenario 4, bowhead whales responded with a large biomass increase, possibly

due to a release of resource competition, as ringed seals and beluga decreased, which out-

weighed any increased predation by killer whales on bowhead whales. Killer whale predation

was considered to be low in the model, reflecting the uncertainty of their predation effects on

bowhead population sizes, distributions or habitat selection [137]. Predation of bowhead

whales might increase due to longer ice-free periods which provide killer whales better access

[137]. Despite this, other studies found killer whales did not have specialized diet preferences

for bowhead whales (instead feeding mainly on narwhals and beluga) [139], and their feeding

habits on bowhead whales can vary seasonally and regionally depending on population [140].

The specific feeding preferences of killer whale populations in the NOW Polynya remain

unknown, and any potential changes to killer whale predation on bowhead whales are not

reflected in the model but could be integrated by manipulating consumption rates of killer

whales in separate scenarios, which goes beyond the present study.

4.5 Using SDMs to inform ecosystem scenarios

In this study, we present a new method using both SDMs and food-web models to explore

potential future changes to an Arctic ecosystem with climate change. Since ecosystem models

act as a ‘snapshot’ in time and space, we were able to use the results of SDMs to inform novel

ecosystem scenarios for the NOW Polynya. Most attempts to date have used food-web models

to improve outputs of SDMs which do not account for species interactions [14,141]. Previous

studies have not used the output of SDMs to alter ecosystems created by Ecopath (but see

[14]). Our modeling approach allows us to determine the implications of introducing or

increasing southern species to Arctic ecosystems by analyzing the changing feeding links, bio-

mass and energy transfer between species in an ecosystem. Further studies can build on this

novel approach and answer questions about the consequences of climate-driven changes to

species distributions for food-web structure and function. Our approach may also allow the

testing of impacts of local species extinctions on ecosystems. A next step could be to integrate

other human stressors such as fisheries which may spread and develop in the high Arctic as

previously unreachable seas become available for human extraction.

The framework we developed is not limited to the NOW Polynya and could be applied

across other ecosystems in both marine and terrestrial realms. Our approach applied climate

change scenarios to a time static model with a defined change in biomass values. Another

approach could use time dynamic projections with different climate change scenarios to run

scenarios. These are not yet available, however time-series for functional groups are currently

increasing due to increasing sampling efforts and collaborations with Indigenous Knowledge

holders [142]. In addition, regional climate forcings for the NOW region have not yet been

developed. Downscaling of global climate forcings is possible, but there are large uncertainties,

especially in sea-ice systems [143,144]. One avenue for future work to overcome the lack of

data for ecosystem models would be directly modeling species abundances in addition to spe-

cies distributions. Then, information on projected species abundances could be used to infer

biomass values for future scenarios of the NOW Polynya ecosystem.

The approach we developed here is not without its limitations. Marine SDMs are particu-

larly hindered by a lack of full coverage of survey data, and still much is unknown with respect

to the distributions of marine species. However, continuing survey efforts and increasing
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empirical data are expected to improve species distribution data over time. In addition, indi-

rect effects of temperature changes, such as changes in biotic interactions and population

dynamics, cannot be captured using SDMs [145]. Our approach also does not account for the

timing of species distribution shifts and the model results are only a snapshot in time. As such,

SDM results should always be treated with caution. Despite this, we argue they can be viewed

as a complementary tool to explore the potential impacts of climate-driven range shifts on an

Arctic marine ecosystem. Modeled species ranges can be refined and validated as more empiri-

cal data becomes available.

4.6 Conclusion

We present a novel framework for exploring the impacts of climate-driven range shifts on the

NOW Polynya ecosystem, which could be applied across other ecosystems in both marine and

terrestrial realms. We demonstrated the applicability of integrating SDM and ecosystem

modeling methods in new and unexplored ways. We highlight key benthic-pelagic couplers in

the ecosystem, with Arctic cod (Age 1+) and walrus standing out. Moreover, across all novel

ecosystem scenarios, we demonstrated that changes in the copepod size structure had the larg-

est impact on the entire ecosystem, suggesting a strong reliance of higher trophic levels on

larger, lipid-rich copepods. Further, shifts in forage fish abundance had the largest effect on

marine mammals in the food web. Finally, the addition of a key apex predator such as killer

whales to the NOW Polynya ecosystem could have cascading effects on this Arctic ecosystem.

Our method can be adopted and built on to explore the potential emergence of novel ecosys-

tems with future climate change in the Arctic and beyond.
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cific prey domains in the North Water Polynya ecosystem. PEL = Pelagic; BP = Bentho-
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mary production (P) compartment at trophic level (TL) I. P: Primary producers; D: Detritus;

TL: Trophic level; TE: Trophic efficiency; TST: Total system throughput.
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S10 Fig. SUpportive Role to Fishery ecosystems index (SURF; [97]) calculated for prey species

in the North Water Polynya ecosystem. SURF index calculations include consumers only; top

predators and primary producers were excluded. Dashed blue line represents the threshold
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S11 Fig. Ecosim flow diagram for Scenario 1.1. The size of circles is proportional to the
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bers on the left indicate the trophic level. Direction of energy flow defined by position of line
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(TIF)

S12 Fig. Ecosim flow diagram for Scenario 1.2. See S11 Fig for detailed captions.

(TIF)

S13 Fig. Ecosim flow diagram for Scenario 2.2. See S11 Fig for detailed captions.

(TIF)

S14 Fig. Ecosim flow diagram for Scenario 3. See S11 Fig for detailed captions.

(TIF)
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