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Abstract
Using methods of granular mechanics in the quasi-static limit, with inter-
particle interactions derived from the lubrication limit, the intensity of velocity
fluctuations in the slurry is associated with fluctuations in the local distribution
of inter-particle distances. These are shown to consist of a vector intensity and
a scalar intensity; the former couples to the first velocity gradient, the latter
(which is associated with solidosity fluctuations) couples to the second velocity
gradient. Rheologies for both are presented, as is the rheology that links the
particle pressure to the intensity of the velocity fluctuations (also known as the
‘granular temperature’) to the dispersive pressure. The rheologies are informed
by experimental results. The granular temperature profile, modified from pre-
vious work, is responsible for axial particle migration (Bagnold effect). Two
broad categories are assessed: symmetrical vertical and non-symmetrical lat-
eral flow. For the latter the roughness of the boundary walls and a non-zero
density contrast are important; this case is studied for a system in which flow
effects are confined to the immediate vicinity of the boundary. Sensitivity
analysis reveals several key variables including the parameters that control a
slipping boundary condition and the mean solidosity in the conduit. For lateral
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flow, a sedimentary deposit with a solidosity profile may develop near the upper
or lower boundary. The theory predicts an approximate relation between the
fluid-particle density contrast and sediment thickness as a function of the mean
flow rate, conduit width, the mean particle diameter and fluid viscosity that
has utility in a range of engineering and geological situations where particulate
matter is transported in the laminar flow regime.

Keywords: suspension flow, particle migration, fluctuations

1. Introduction

Dense, slow slurry flow is of interest for applications in various branches of engineering, geo-
logy and materials science, and as a phenomenon in its own right as a sub-discipline of fluid
mechanics. The literature is extensive and a full survey of all these fields and its many applic-
ations are beyond the scope of this article. The focus here is to present a first-order approx-
imation of the key characteristics of suspension flows that seeks to better describe particle
migration in congested mixtures of this type.

A simple delineation of the characteristics of these particle-fluid mixture flows is useful
and it is important to distinguish regimes. The first parameter to consider is the mean particle
size. For very small particles both Brownian motion and colloidal (double layer) interactions
are important, as much as the flow properties, so particle size must be specified, both the
mean diameter d as well as possibly a few numbers to characterise the grainsize distribution.
Furthermore, something needs to be known about the particle shape, spherical, elliptical or
otherwise. It may also be useful to obtain an impression of the surface roughness. The solids
concentration properties need to be considered. This is most easily done by stating, in the first
instance, the mean solids volume fraction ϕ (referred to in the chemical engineering literature
as the solidosity). A further feature to consider in the context of applications in which gravity
plays a prominent role, is the mass densities of the particles ρs and that of the fluid ρf.

All in all quite a few parameters describe the flowing motion and now it becomes clear
why giving a summary of the literature is so difficult, because each application has its own
typical parametric regime, thus revealing that what is appropriate for one application may be
entirely irrelevant to another one. The subject has been of intense interest in the fluid dynamics
literature and an extensive and informative review paper by Guazzelli and Pouliquen (2018)
is referenced here.

Another issue is that in many applications the flows are sufficiently captured by a phe-
nomenological approach. The underlying physics of the flow phenomena is not deemed to be
relevant, or—if known—not easily applied to the particular process of interest. Physical mod-
elling insight of fundamentals of processes is most easily obtained under simplified assump-
tions, so generally theories concern themselves with approximately spherical, mono-sized
particles that all have the samemass density in elementary flow conditions, simple shear or pipe
flow, for example. Size segregation of mixtures of particles in a fluid takes place, of course,
but it is an added, albeit interesting, complication.

A feature of dense (ϕ> 0.2, say) particle-fluid mixture flow in cases where there is a shear
velocity gradient, such as in channel flow or Couette flow, is the emergence of a concentration
profile; particles tend to migrate towards the region of low shear. The effect has been observed
both in experiments (Bhattacharji 1967, Frank et al 2003) and in numerical simulations (Nott
and Brady 1994). Similar features are also reported in geological field studies where magma (a
high temperature suspension) has frozen rapidly in narrow conduits, preserving a concentration
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profile consistent with inwards particle migration during flow: Gibb (1968), Komar (1972),
Allgood et al (2024).

In numerical simulations the ambient conditions can be controlled very accurately and all
particle-particle interaction effects can be switched off, so a purely fluid mechanical explan-
ation is required. Also, the migration effect diminishes when Brownian motion, either real or
introduced numerically, is present, see Frank et al (2003) and Koenders et al (2012). This is
a first indication that the emergence of a concentration profile is associated with fluctuations
in the particle motion. In a dense slurry particles must make excursions about their mean path
motion in order to avoid one another, which introduces the irregular paths. When Brownian
motion is introduced, extra fluctuations are added and these swamp the position-dependent
shear-induced ones: the concentration profile disappears. In this paper the emphasis will be
on particles that are large enough for Brownian motion to be irrelevant. The properties of the
particle-particle interactions is going to be determined by hydrodynamic considerations in the
first instance; these will be augmented with a phenomenological addition to capture the phys-
ics when particles are in very close proximity. The issue here is that in reality particles are
never going to be exact mathematical spheres, but will always exhibit some form of rough-
ness. Therefore, when particles come so close that their surfaces are within the roughness
dimension, hydrodynamics is unable to capture exactly what takes place. This aspect of the
problem has been treated in Jenkins and Koenders (2005), in which the surfaces of the particles
are viewed as permeable porous media, thus avoiding the singularity that would appear in the
fluid dynamics if surfaces were perfectly smooth.

Traditional models to describe the appearance of the concentration profile have concerned
themselves with diffusive models. These are reported in the fluid dynamics literature, for
example Leighton and Acrivos (1987), Phillips et al (1992), Miller and Morris (2006). In
these papers the necessity of a collisional mechanism is identified; this in addition to a purely
hydrodynamic interaction. Scaling arguments are put forward to come up with estimates of the
diffusion coefficient. These models rely explicitly on the existence of a shear (or, equivalently,
viscosity) gradient, which is slightly unsatisfactory for the following reason: where migration
takes place in a situation in which there is an external source of fluctuation, for example in
a vibrated system, the mean motion is zero, the shear gradient is zero and so these models
predict no migration. Experiments, however—for example in oscillated filtration, Gundogdu
et al (2003)—show a pronounced concentration profile, the shape and extent of which can be
influenced by varying the vibration intensity. While it may be possible to adapt the diffusive
models to replace the shear flow gradient aspect with an external agitation, it is better to use a
model that makes explicit use of a measure of the velocity fluctuations that capture the nature
of the origin of the migration. One such model is the granular temperature model by McTigue
and Jenkins (1992).

The granular temperature model was much influenced by existing models on dry granular
flow. In these, in addition to stress and strain fields, a temperature field is introduced, which is a
measure for the quadratic velocity fluctuations. The temperature is a field parameter and there-
fore an extra balance equation is required and—again inspired by dry granular flow models—
the one put forward is the rate of working balance. The problem with the model is that it has
quite a large number of coefficients. McTigue and Jenkin’s original idea was to derive these
constants from a kinetic theory approach, much like molecular kinetic theories—see Chapman
and Cowling (1970). The approach certainly gives answers. However, the accuracy of these
must be questioned, as will be seen below. Essentially, for channel flow in which the particle
diameter is much smaller than the conduit width, an extremely narrow solids concentration
profile is predicted, which—alas—has not been found in either physical experiments—Frank
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et al (2003)—or in numerical simulations—Koh et al (1994), Nott and Brady (1994), Lyon
and Leal (1998), Koenders et al (2012).

Davis et al (2008), derive the constants of the granular temperature theory with a rate of
working balance from a cell model. That approach also gives answers; these are very similar
to the ones that follow from the kinetic theory approach and therefore have the same draw-
back. The problem is predominantly due to the implementation of the rate of working balance.
Mixing the concepts of calorific heat and ‘granular heat’ may be neither straightforward, nor
appropriate. Generally speaking, energy balances are very hard to get right in a granular mech-
anics context: Houlsby (1981), Dean (2015)and Koenders (2020) have shown that even simple
stress–strain rate behaviour can only be obtained when fluctuations are taken into account; that
is simply a fundamental property of a granular packing. It is thus well-worth looking at this
issue in some depth.

Despite the difficulties with the constants in the granular temperaturemodel—either derived
from a kinetic theory or from a cell model—certain concepts are physically well-justified and
worth preserving. The key issue is the concept of a particle pressure. While there is gen-
eral acceptance of this concept—see Guazzelli and Pouliquen (2018)—a particular form was
introduced by McTigue and Jenkins (1992) and set to be proportional to the square root of
the granular temperature (that is, the quadratic velocity fluctuations). This same concept is
employed in the cell model by Davis et al (2008). The question is then how to arrive at a reli-
able measure for this parameter. Deriving these constants from a cell model produces a ratio
of the temperature T and its second derivative that is of the order of magnitude of (d/W)2 (W
is the macroscopic length scale of the problem). The cell model is obviously unable to provide
information much beyond the size of the cell. Given such a ratio of length scales it is clear
that the result must be a concentration of solids of the order of magnitude of d/W, which—as
noted above—is clearly not measured in either physical or numerical experiments in conduit
flow. A physically more realistic model should be able to incorporate a length scale that is
something of the order of magnitude of the conduit width itself. While this is obvious, it must
be remembered that the fluctuations are generated on the cell scale, as they are due to particles
in dense shear flow necessarily evading one another due to their finite size and, associated with
the roughness of the surfaces, colliding with one another. Therefore, the challenge is to devise
a model that somehow combines the conduit scale flow properties with the local generation
of velocity fluctuations. Guazzelli and Pouliquen (2018) also identify a non-local element that
needs to be introduced into the theory.

Given the problems that come to the fore in the existing approaches to the migration prob-
lem, a new theory is put forward. The element of a particle pressure that is associated with the
velocity fluctuation intensity, as proposed in the granular temperature theory, has been pre-
served. However, the velocity fluctuations are now obtained from the quasi-static force equi-
librium of the particles. It turns out that they can be related to the fabric fluctuations intensity in
the particle-fluid mixture. As mentioned above, these must exist, because particles in a dense
sheared slurry make excursions from their mean flow paths. It transpires that the velocity fluc-
tuations are associated not only with the first gradient of the flow, but also with the second
gradient. The link with the first gradient couples to a vector-type fabric fluctuation property,
while the link with the second gradient exhibits a scalar-type. Rheologies for these two fabric
fluctuations intensities are put forward; they are informed by experiments and also a bit of
physical intuition. Now, it becomes possible to obtain a particle pressure in terms of the first
and second gradient of the flow field. For flow in a conduit this has the advantage that in regions
where the first gradient (the shear) vanishes, there is still a finite particle pressure, because in
these regions the second gradient does not vanish. So, the ugly singularity in the solidosity
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profile that is a feature of the shear diffusion theories is removed. At the same time the diffi-
culties with the scales of the granular temperature theory are alleviated, because no boundary
value problem that involves the temperature needs to be solved. The second gradient provides
a somewhat non-local element to the theory.

The theory, so derived is applied to conduit flow and also to flow of a thin layer of solids
near a boundary. For the latter it is necessary to invoke slipping boundary conditions in both
the velocity and the temperature.

2. The granular temperature model and the cell model

For dense, dry granular flows the granular temperature theory is a well established tool, Jenkins
and Savage (1983), that has been extensively verified, both experimentally and in numerical
simulations: Delannay et al (2007), Carlo et al (2019), Li et al (2024). The interactions in
this case are collisional and frictional. The temperature is obtained from the fluctuations in the
velocities of the particles, similar to the manner in which it is treated in the kinetic theory of
gases, Chapman and Cowling (1970).

To adapt the theory to a fluid environment the dry version has beenmodified. The interaction
is now the lubrication interaction. In dense flows the fluid merely serves as the interactive
medium and—in a first approach—it is sufficient to treat the motion of the solid phase only.

2.1. Basic equations

The traditional balance equations of continuum mechanics apply (Becker and Buerger 1975).
The quasi-static limit is applied. The rate of momentum balance equations for a mixture of
incompressible particles and fluid in the quasi-static limit are (Drew 1986)

∂ (ϕΣij)

∂xj
+ϕρsgi+ϕR(ϕ)(Ui− vi) = 0 (1)

∂ [(1−ϕ)σij]

∂xj
+(1−ϕ)ρfgi−ϕR(ϕ)(Ui− vi) = 0. (2)

Here, ρs and ρf are the solid and fluid mass densities, ϕ is the particle volume fraction,Σij and
σij are the components of the particle and fluid phase stresses, U and v the fluid and particle
phase velocities, g the gravitational acceleration and R(ϕ) the drag coefficient. Einstein’s sum-
mation convention is used throughout. Adding the two equations together removes the drag
term

∂ (ϕΣij)

∂xj
+

∂ [(1−ϕ)σij]

∂xj
+ϕρsgi+(1−ϕ)ρfgi = 0. (3)

The dominant contribution for the fluid stress is the pressure P, σij =−Pδij. The intergranular
stress, that is the stress that represents the actual force between the particles, t, is tij = ϕΣij+
ϕPδij. Using these then gives

−∂P
∂xi

+ ρfgi+
∂tij
∂xj

+ϕ(ρs − ρf)gi = 0. (4)

The fluid pressure contains a hydrostatic part −ρfgixi and an external pressure part p: P=
−ρfgixi+ p, so in terms of the latter it is seen that

− ∂p
∂xi

+
∂tij
∂xj

+ϕ(ρs − ρf)gi = 0. (5)
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The way McTigue and Jenkins (1992) initially conceived the granular temperature model is as
follows.

The static equation of continuity for the particulate phase is

∂ (ϕvi)
∂xi

= 0. (6)

In the granular temperature model the fluctuations in the particle velocities are treated as heat
motion; it then puts forward a correspondence between the theory of gases—Chapman and
Cowling (1970)—(where the velocity fluctuations are due to actual heat motion) and a similar
theory relevant to dry dilute particle flow (Jenkins and Savage 1983). The balance equation for
the fluctuational energy content takes the form

−∂Qk

∂xk
+ tik

∂vi
∂xk

− γ̄ = 0 (7)

where Q is the granular heat flux and γ̄ the rate of dissipation. The heat flux, Q is related to
the temperature gradient by Fourier’s law.

These are the balance equations for quasi-static situations. The cell model by Davis et al
(2008), uses the same equations; they are essentially at the basis of continuum theory (Becker
and Buerger 1975).

2.2. Constitutive equations

In addition to the balance equations constitutive laws are required. These naturally need con-
stitutive constants. First of all the stress constitutive equation is put forward as a simple iso-
tropic form in terms of the strain rate tensor ḋ

tik = λ̄ḋkkδik+ 2µ̄ḋik (8)

where λ̄ and µ̄ are the bulk and shear viscosities.
The full stress tensor requires a particle pressure. This parameter is taken to depend on

the velocity fluctuations in the lubrication limit; McTigue and Jenkins (1992) and Davis et al
(2008) put forward the following expression

p̄= α4
η

d
ϕ
d
h

√
T. (9)

Here α4 is a constitutive constant, η the fluid viscosity and h the mean surface-to-surface
distance between the particles, which enters the lubrication limit via the ratio d/h. Below this
expression will be analysed further.

In essence a particle pressure exists in those cases where the approach and departure of
a particle pair is not along entirely reversible trajectories. When the particles are perfectly
smooth reversibility may be the case and α4 = 0; α4 ̸= 0 occurs when there is a non-viscous
element. Such a case may arise when particles are rough, which has implications for the lub-
rication interaction. A non-viscous element may also arise when the particles are not perfectly
rigid. In the suspension simulation community both roughness and non-rigidity have been
invoked to avoid the singularity posed by the lubrication limit for h→ 0, see for example
Seto and Giusteri (2018). Surface roughness, which could lead to a contact encounter between
particles has been studied (Jenkins and Koenders 2005), and if a roughness dimension δr on
the surfaces is introduced then the interaction does not behave according to the lubrication
limit ḣ/h, but rather as ḣ/(h+ δr). What this implies is that on approach particles touch when
their surfaces come within a range of δr at relative velocity ḣ/δr. The collision is inelastic and
so the relative velocity collapses to zero. On release the particles depart at relative velocity
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zero; this is an irreversible process and makes α4 ̸= 0. The non-rigidity aspect can be under-
stood when a contact interaction is considered along Hertzian lines. The interaction with an
indentation of magnitude hc due to a contact force Fc has the form Fc ∝ h3/2c . Now, the incre-
mental stiffness is ∂Fc/∂hc ∝ h1/2c , which vanishes for zero indentation hc → 0 and therefore
the particle surface is soft. So elastic effects are possible when two particles come very close
together. Whichever effect takes place, contact or near-contact events are associated with a
particle pressure—purely hydraulic considerations are inadequate.

Estimates of the moduli µ̄ and λ̄ are required and, again in the lubrication limit in which
particles are close together, following McTigue and Jenkins (1992), these are proportional to
the fluid viscosity η and take the form

λ̄= α0ηϕ
d
h
; µ̄= α1ηϕ

d
h
. (10)

The constitutive relations required for the balance equation for the fluctuation content,
equation (7), are more problematic. A way forward is proposed in the cell model (Davis et al
2008). However, the results are not relevant to problems in which the length scale of the prob-
lem is much greater than the particle diameter, as explained in the previous section. Therefore,
this will not be pursued here any further.

The theory is essentially isotropic (refinements to include anisotropic features are possible).
The coefficients α0−4 may then still depend on the volume fraction ϕ. In the theory the fluid
plays the role of a mediator of the forces between the particles. The fluid motion is not treated
separately.

2.3. Force balance analysis

Neither the cell model nor the kinetic theory address the question of time-dependence. In
a quasi-static context this is quite easily introduced, as at all times the sum of forces on a
given particle vanishes. To see how this works a notation (first developed for granular mech-
anics) is adopted as follows Koenders (2020): particles are numbered and they are identified
by a Greek superscript; two superscripts are used to denote relations between particles. For
example, particle µ will have position xµ and the branch vector cµν = xν − xµ. The force
exerted on particle µ by particle ν is Fµν . The latter is approximated in the lubrication limit
as, see Jenkins and Koenders (2005)

Fµν
i =

3π
8
ηd

(
d
hµν

)(
vνj − vµj

)
nµνj nµνi (11)

where η is the fluid viscosity, nµν the unit vector of the branch vector: nµν = cµν/|c|µν and hµν
the surface-to-surface distance between the two particles µ and ν. Expression (11) represents
the first order term in d/h; the next term is of the order logd/h, see for example Kim and
Karilla (1991).

The time-dependent element is introduced bymaking d/h a function of time. It is not known
what the precise form of this function is. However, averages and variances can be used as
parameters.

In passing it is noted that for most realistic cases—especially in geophysical applications—
there will be substantial shape variability and grain size distributions are likely to be heterod-
isperse. Therefore, the theoretical analysis presented here is deficient in many aspects, but the
aim of this paper is to establish the structure of the theory and all particles will be assumed to
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be equal-sized, spherical ones. Shape and size variability can be introduced as refinements at
a later stage.

2.3.1. Averages. Averaging over time and a small group of Na nearby particles of a physical
parameter Π is denoted by ⟨Π⟩ and defined as

⟨Π⟩= 1
τNa

Na∑
λ

ˆ τ

0
Πλ (t)dt. (12)

For the ‘measurement time’ τ a suitable value is chosen, something of the order of m̄/|∂v/∂x|,
where m̄ is a large enough number to give sufficient time for particles to move past one another,
but so small that only a few participating neighbouring particles need to be included. The
particles participating in the averaging process are a central particle and its immediate neigh-
bours. The average is therefore determined in a position defined by the central particle. One
average that is troublesome is ⟨d/h⟩, which is very ill-defined due to the fact that pairs may
touch. Instead the average ⟨h/d⟩ is used, which will be called s. The first estimate of d/h is
thus 1/s. Using this average a smooth, position-dependent parameter is possible. Fluctuations
are time-dependent and denoted by a prime, so for example hµν = ⟨h⟩µ + h ′µν .

2.3.2. Approximating the force balance. The sum of forces on a given particle µ due to Nc

near-neighbours vanishes

F e
i+

Nc∑
ν=1

Fi
µν = 0. (13)

Here an external force Fe is given, which may be due to a fluid pressure gradient or a gravita-
tional contribution. It is assumed to be either a constant, or only varying in a secular manner,
that is, over a time scale that is long compared to τ . The idea is to insert (11) into the sum of
forces and to that end the velocity of the particles is split in a secular and a fluctuating part,
the latter is denoted by a prime; the secular part is expanded in a Taylor series

vνj (t)− vµj (t) =

〈
∂vj
∂xk

〉
cµνk +

1
2

〈
∂2vj
∂xkxl

〉
cµνk cµνl + v ′

ν
j (t)− v ′

µ
j (t) . (14)

Similarly, d/h is split in a constant (or secular) and fluctuating part. Furthermore, the surface-
to-surface distance may have a systematic part that is position-dependent; in order to accom-
modate that a first order Taylor series is used: d/hµν = (sµ)−1 + 1/2cµνl ⟨∂(sµ)−1∂xl⟩µ +
(∂(d/h)/∂h)µh ′µν ; the single superscript µ is necessary to indicate that the time average and
its derivative has been taken at the location of particle µ. The factor 1/2 in front of the gradi-
ent is necessary, because the distance between particles is evaluated half-way between them.
(∂(d/h)/∂h)µ is easily identified as −d−1(d2/h2)µ =−d−1(sµ)−2.

For notational convenience, in what follows, the averages of the components of the single
and double velocity gradients are abbreviated as αjk and αjkl. The expansions for the velocity
difference and the surface-to-surface distance are inserted into (11) and then equation (13)
looks as follows (a superscript µ has been applied in order to make clear that these are strictly
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local variables, evaluated in xµ)

8F e
i

πηd
+

Nc∑
ν=1

[
(sµ)−1

αµ
jkc

µν
k +

1
2

[〈
∂s−1

∂xl

〉µ

αµ
jk+(sµ)−1

αµ
jkl

]
cµνk cµνl

]
nµνj nµνi

+
1
4

Nc∑
ν=1

[〈
∂s−1

∂xl

〉µ

αµ
jkmc

µν
k cµνl cµνm − 1

d
(sµ)−2 h ′µν

(
αµ
jkc

µν
k +

1
2
αµ
jklc

µν
k cµνl

)]
nµνj nµνi

Nc∑
ν=1

[
(sµ)−1

+
1
2
cµνl

〈
∂s−1

∂xl

〉µ][(
v ′j
)ν − (v ′j )µ]nµνj nµνi

− 1
d

Nc∑
ν=1

(sµ)−2 h ′µν [(v ′j )ν − (v ′j )µ]nµνj nµνi = 0. (15)

The equation is approximated to preserve only lowest and first order terms in the fluctuations;
furthermore the sum over neighbouring particles—the ones labelled ν—of the velocity fluc-
tuations is neglected and regarded as a higher order term.

The focus is now on the ‘structural sums’. These are sums over strings of branch vectors.
In an average packing, with neighbours more or less uniformly (or at least symmetrically)
distributed over the solid angle, the sum over an odd number will be much smaller than the
sum over an even one. Using the methodology described by Davis et al (2008), the average
values of these sums may be found by replacing the sum with an integral over a solid angle
with a weight equal to Nc/(4π). Thus,

Nc∑
ν=1

nµνj nµνi ≈ Nc

4π

ˆ
unit sphere

ninjdΩ=
Nc

3
δij (16)

Nc∑
ν=1

nµνj nµνi nµνl ≈ 0 (17)

Nc∑
ν=1

nµνi nµνj nµνk nµνl ≈ Nc

4π

ˆ
unit sphere

ninjnknldΩ=
Nc

15
(δijδkl+ δilδkj+ δikδjl) . (18)

Using this equation (15) reduces to

− v ′
µ
i (s

µ)
−1 Nc

3
− 1

d(sµ)2

Nc∑
ν=1

h ′µνcµνk nµνj nµνi αµ
jk−

1

d(sµ)2

Nc∑
ν=1

h ′µνcµνk cµνl nµνj nµνi αµ
jkl

+
Nc

30
(δijδkl+ δilδkj+ δikδjl)

[
(sµ)−1

αµ
jkl+

(
∂s−1

∂xl

)µ

αjk

]
+

8
3πηd

F e
i = 0. (19)

Approximating h≪ d, so that |c| ≈ d leaves the lowest order terms only

3πηd3Nc

80
(δijδkl+ δilδkj+ δikδjl)

[
(sµ)−1

αµ
jkl+

(
∂s−1

∂xl

)µ

αjk

]
+F e

i = 0. (20)

It is easy to recognise the stress equilibrium—equation (5)—here, where there is a viscosity
tensor A. To that end the external force is derived from a pressure gradient (possibly including

9



Fluid Dyn. Res. 56 (2024) 055508 M A Curt Koenders and N Petford

a gravity term). The pressure comes from two contributions, a fluid pressure p and a particle
pressure p̄. The force on a particle with surface area Ap and volume Vp is then

Fei =−
ˆ
Ap

(p+ p̄)ni dA+
ˆ
Vp

(ρs − ρm)gi dV. (21)

Using Gauss’ theorem the first integral may be recast in a volume integral and Fe becomes

Fei =
ˆ
Vp

(
−∂ (p+ p̄)

∂xi
+(ρs − ρm)gi

)
dV → Vp

(
−∂ (p+ p̄)

∂xi
+(ρs − ρm)gi

)
(22)

where Vp = πd3/6.
The viscosity tensor is defined such that the link between the pressure gradient and the strain

rate ḋ is (∂p/∂xi) = ∂(Aijklḋkl)/∂xj; the strain rate is ḋkl = 1/2(∂vk/∂xl+ ∂vl/∂xk). Sweeping
it all together then

Aµ
ijkl =

9ηNc

40
(sµ)−1

(δijδkl+ δilδkj+ δikδjl) . (23)

Given the pressure gradient, the solidosity profile, the profile of ⟨d/h⟩ and boundary con-
ditions these low order results can be used to determine the velocity, velocity gradient and
double gradient.

An alternative route to the viscosity tensor is to impose the viscous rheology on the stress
tensor t; the latter may be derived from the first moment of the interactive force. This was
first derived, based on quasi-static equilibrium, by Love (1934) and subsequently much used
in granular mechanics publications, see Koenders (2020) for details. Both the method to get
to (23), as done here, or Love’s elegant approach are based on equilibrium and thus equivalent.

Now turning to the fluctuations in equation (19), an equation is left to determine the velocity
fluctuations

v ′µi (sµ)−1 Nc

3
+

1

d(sµ)2

Nc∑
ν=1

h ′µνcµνk nµνj nµνi αµ
jk+

1

d(sµ)2

Nc∑
ν=1

h ′µνcµνk cµνl nµνj nµνi αµ
jkl = 0.

(24)

The structural sums can be evaluated if h ′(t) fluctuates either as a vector or a scalar. The vector
variation is especially plausible when it is kept in mind that particles in shear flow have to avoid
one another and therefore—in an ever-changing direction—they are closer together or further
apart. The scalar variation is associated with a phenomenon of hole formation that has been
observed in numerical simulations. More dense and less dense regions appear ephemerally
whether there is shear or not. It is simply a property of slurry flow, see for example the two-
dimensional simulations in Koenders et al (2012). To make progress the fluctuations h ′(t)—in
a rather primitive assertion—are expressed as fractions of the average value as

h ′µν

d
(t) =−sµ

(
a ′µ (t)+ b ′µ

m (t)n
µν
m

)
. (25)

The averages ⟨a ′µ(t)⟩ and ⟨b ′µ⟩ are obviously zero. The structural sums in equation (24) can
now be evaluated using the expressions in (16); this leads to an estimate for v ′µ(t)

v ′
µ
i (t) =−d

5

(
b ′µ

l (t)α
µ
jk+

d
2
a ′µ (t)αµ

jkl

)
(δijδkl+ δilδkj+ δikδjl) = 0. (26)

In order to obtain an estimate for the local granular temperature v ′µ is squared and then the
time average will be taken; the latter, of course does not vanish, but yields a value. The average

10
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will contain terms ⟨(a ′µ)2⟩, ⟨b ′µ
q b

′µ
r ⟩ and ⟨a ′µb ′µ

q ⟩. A reasonable simplifying assumption that
can be made is that over the averaging time, the direction of the vector b ′µ is random. That
would imply that ⟨a ′µb ′µ

q ⟩ is negligible and that ⟨b ′µ
q b

′µ
r ⟩ contributes significantly only when

q= r.
Implementing these ideas then, for transparency and compact presentation two auxiliary

tensors are introduced

α̂µ
il = αµ

jk (δijδkl+ δilδkj+ δikδjl) ; α̂µ
i = αµ

jkl (δijδkl+ δilδkj+ δikδjl) . (27)

Using these the local granular temperature takes the form

⟨v ′µi (t)v ′
µ
i (t)⟩=

d4

100
(α̂µ

i )
2 ⟨
(
a ′µ)2⟩+ d2

25
α̂µ
iqα̂

µ
ir⟨b

′µ
q b

′µ
r ⟩. (28)

Following the notion that ⟨b ′µ
q b

′µ
r ⟩ only has diagonal components that contribute significantly

leads to an expression with two constants ⟨
(
a ′µ)2⟩ and ⟨

(
b ′µ

r

)2⟩
Tµ = ⟨v ′µi (t)v ′

µ
i (t)⟩=

d4

100
(α̂µ

i )
2 ⟨
(
a ′µ)2⟩+ d2

25
α̂µ
iqα̂

µ
iq⟨
(
b ′µ

r

)2⟩. (29)

Now the granular temperature T may be inserted into the expression for the particle pres-
sure (9)

p̄= α4
η

d
ϕ
d
h

√(
d4

100
(α̂µ

i )
2 ⟨(a ′µ)

2⟩+ d2

25
α̂µ
iqα̂

µ
iq⟨(b ′µ

r )
2⟩
)
. (30)

For d/h the average value 1/s is used
In the literature a convenient expression for the relation between s and the solidosity ϕ is

given (Torquato et al 1990),

1
s
=

12ϕ(2−ϕ)

(1−ϕ)
3 . (31)

Plotting this functional relationship—figure 1—on a logarithmic scale, it is seen that a good
power law fit in the range 0.2< ϕ < 0.6 can be achieved, which works out as

1
s
≈ 447ϕ 2.5; ϕ≈ 0.087s−2/5. (32)

In many instances this may be quite a practical approximation. Note that s−1 is quite a steep
function of the solidosity.

From the combination of Nc and the ϕ dependence of s as given by equation (31) the estim-
ated viscosity follows through equation (23). This is used by Davis et al (2008) and it is
found that for Nc ≈ 6 a very good fit is obtained compared with experiments. In Guazzelli
and Pouliquen (2018) a number of estimates is presented for the solidosity dependence of the
shear viscosity. In passing it is noted that these do vary somewhat; typically, at the high end
of the validity range that is of relevance in this paper (0.2< ϕ < 0.6) by some 30 percent.

Another measure for d/h is Bagnold’s linear concentration (Bagnold 1954). Jenkins and
Hanes (1998) mention this parameter and then relate it to Torquato et al (1990); the linear
concentration and equation (31) are thus equivalent.

2.4. The rheology of p̄, ⟨
(
a ′µ)2⟩, ⟨b ′µ

qb
′µ
r ⟩

Although it is generally recognised that the particle pressure—and thereby the shear-induced
migration process—is associated with fluctuations that necessarily take place in a flowing
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Figure 1. The functional relationship, equation (31), of d/h as a function of ϕ.

slurry, the partition of the fluctuations into a scalar and a vector part is the main focus of this
paper. A rheology for these three parameters—pressure, scalar and vector decomposition—
needs to be derived from experiments. They will depend of course on the local value of the
solidosity; however a more global influence may be present as well. Furthermore, if the rhe-
ological sensitivity should contain a length scale, then, disappointingly, no obvious one comes
to the fore. Thus, the rheology needs to be captured in power law expressions.

Starting point for the particle pressure is the expression (9). This expression accounts
primarily for themagnitude of the force that gives rise to the particle pressure. More plausibil-
ity for this expression can be injected by making use of the analysis in the previous section. A
special case is studied in which there is a shearing strain rate in two dimensions only; thus α12

is the only non-zero component ofα and the double gradient is zero. This implies that ⟨
(
a ′µ)2⟩

is irrelevant and—in this special case only—is set to zero. It then follows from equation (26)
that

⟨v ′2⟩µ =
d2

25
α2
12⟨b ′2⟩µ =

d2

25
α2
12
⟨(h ′)

2⟩µ

d2
s−2. (33)

The coefficient of variation
√
⟨(h ′)2⟩µ/d2/s may be related to the fraction of the space

between the particles in which they ‘jitter’ to the average space available. The available space
is approximately πd2h/4 a variation is πd2

√
⟨(h ′)2⟩/4 and the ratio of the two is just the coef-

ficient of variation. The probability of a solid contact event between two particles is plausibly
proportional to this coefficient. This is a purely spatial argument that shows that

√
T is propor-

tional to the probability of an encounter. What it does not deal with is the number of encounters
in the measurement time τ , which is concerned with the frequency of the jitters. A measure
for this would be the inverse of the time it takes to traverse the gap between particles, which
is proportional to 1/s.

These ideas inform how the coefficient in the expression for the particle pressure depends
on the solidosity: a power factor is inserted into (9)

p̄= ᾱ4
η

d
ϕ

(
d
h

)np d
h

√
T. (34)
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Figure 2. Image of a slurry flow in 2-d. Reproduced from Koenders et al (2012) with
permission from the Royal Society of Chemistry. Note the fluctuations in the solidosity.

Below, experiments will provide some guidance as to what value for the exponent np is reas-
onable. However, it is expected—based on the hand-waving arguments given in the previous
paragraph—that np is close to 1.

In order to understand the rheology of ⟨
(
a ′µ)2⟩ the distribution of fluctuations in a sheared

slurry needs to be understood. Solidosity fluctuations may have any size and a flowing slurry
exhibits a spectrum of fluctuations, which is both pervasive and persistent. These global
solidosity fluctuations will somehow become manifest in the scalar parameter sensitivity,
though at this stage it is difficult to say how exactly.

Parenthetically it is noted that the large-scale fluctuations (which are also the largest in
magnitude) operate on a scale that is comparable to the size of the problem. These effects are
clearly visible in a two-dimensional numerical simulation, see figure 2. It is immediately clear
that these solidosity variations do not take place on the cell scale (one particle, surrounded
by its immediate neighbours), but rather involve a substantial number of cells. Similarly, in
the images produced by the simulations by Seto and Giusteri (2018) the variations are clearly
visible.

The functional sensitivity of the coefficient ⟨b ′µ
q b

′µ
r ⟩ is required. As noted above, the vector

b ′µ operates on the cell level. It can only depend on the local solidosity and in such a way that
it is large when the excursions that particle µ needs to carry out take place in a very dense
medium, while they will be smaller in a less densely packed slurry.

In this context it must bementioned that themuch-discussed jamming transition is generally
not directly relevant to the problem to hand. When the solidosity reaches a critical maximum
value, enduring contacts between the solid particles become evident. The jamming ‘transition’
has been studied quite extensively in the physics literature, for example Liu and Nagel (2010)
(it is of special interest for physicists, as it is regarded as a phase transition) and in cooling
magmas close to the maximum crystal packing fraction: Marsh (1996), Hoyos et al (2022)
and Florez et al (2024).

Now, when there is a region in the flow where the solidosity is so large that jamming takes
place, the surface-to-surface distance between particles is of the order of magnitude of the
roughness scale of the constituents. This scale is small compared to the particle size (although
in certain geophysical applications it may be of the same order of magnitude), but also small
compared to the value of h in the mean flow. Because of the fluctuations in the problem a region
of the flow that has a mean solidosity that is close to the jamming solidosity will exhibit some
regions where the slurry is actually jammed and the fluctuations in the surface-to-surface dis-
tance lead to near-infinite values of d/h. The extent of these regions depends on the proximity
of the mean solidosity in this region of the flow to the jamming solidosity. However, the mean
solidosities in the current flow problems—ϕ≈ 0.2–0.4—are generally well below the jamming
transition solidosity of ϕ≈ 0.6. Also relatively smooth particle surfaces will be assumed with
δr/d< 0.01 typically.
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The motion of the particles in a cell causes an evolution in the parameters a′ and b ′. The
change in hµν follows from (v ′ν − v ′µ)nµν . Estimates of the velocity fluctuations are avail-
able through expression (26). In lowest order the contribution from the surrounding particles
(labelled ν) are neglected. The question is then how the motion of the central particle (labelled
µ) affects a′ and b ′. The influence on the vector parameter is quite easily ascertained by eval-
uating v ′µb ′µ. Using expression (26) it follows

v ′
µ
i b

′
i
µ =

d
5
b ′µ

i

(
b ′µ

l (t)α
µ
jk+

d
2
a ′µ (t)αµ

jkl

)
(δijδkl+ δilδkj+ δikδjl) . (35)

Consider strain rate paths that are isotropically contracting, that is αjk = αδjk (α< 0, as these
are generally associated with particles coming very close (the strain rate gradient is neglected
for the moment). Now it is seen that

v ′
µ
i b

′
i
µ = dα(b ′µ)

2
. (36)

Thus it follows that the velocity fluctuation opposes the vector b ′ and therefore this vector will
reduce in magnitude in a contraction. No such argument can be put forward for the scalar a ′µ,
which in this lowest order approximation remains unchanged. The reduction in the magnitude
of (d/h)b ′ is especially pronounced when d/h is large. All in all then, it is expected that the

rheology of ⟨b ′µ
q b

′µ
r ⟩ is rather different than the one for the particle pressure and ⟨

(
a ′µ)2⟩.

The former involves no influence from the global solidosity fluctuations, while the latter will
contain both global and local elements. As remarked above, experiment must be the guide.

It was noted in the introduction that one of the problems with the cell model and granular
temperature model is the fact that the term in the temperature that is proportional to the strain
rate is a—generally huge—factor (W/d)2 greater than the term that is proportional to the strain
rate gradient. The rheological dependence on power laws makes the problem very sensitive
to the relevant exponents; this is exacerbated by the fact that all the coefficients appear as
quadratic terms. So it is easy to see how two somewhat different exponents could lead to a
substantial factor of (d/h)ϵ, which could easily balance (W/d)2 if ϵ is of the order of 1− 4.

3. Form of the equations in conduit flow

The problem is treated in two dimensions. The flow is in the x-direction, propelled by a scaled
external pressure gradient

G=
40

(9ηNc

∂p
∂x

. (37)

d2G has the dimension of a velocity. Themean velocity v has an x-component: v1(y). Migration
takes place in the y-direction; therefore the primary variables T, p̄ and ϕ are functions of y only
and p does not depend on y. The balance equations take the form

∂v1
∂y

d
h
= Gy+C+

ˆ y

0
ϕ(y)dy(ρf − ρs)g1 (38)

where C is an integration constant. It follows that the only non-vanishing components of αjk
and αjkl are

α12 = α̂12 = s(Gy+C)+
ˆ y

0
ϕ(y)dy(ρf − ρs)g1;

α122 = α̂1 =
∂

∂y

[
h
d
(Gy+C)

]
+ϕ(y)(ρf − ρs)g1. (39)
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The other stress equilibrium equation is with H= (ρs − ρf)g2

−∂p̄
∂y

+Hϕ = 0 → ∂

∂y

(
ᾱ4

η

d
ϕs−np−1

√
T
)
= Hϕ (40)

→ ᾱ4
η

d
ϕs−np−1

√
T= H

ˆ y

0
ϕ (y)dy+D (41)

where D is another integration constant with the dimension of a pressure.
Below a special case is studied in which the particles are neutrally buoyant (ρf = ρs); as a

consequence—for this case H= 0. This situation is especially relevant when it comes to the
comparison with experiment with symmetrical flow in a conduit. Another special case that
pertains to horizontal flow in a conduit is also considered; for this case g1 = 0.
s is a steep function of ϕ. There are two ways of dealing with ϕ in the front factor in

equation (40). The first is to set the solidosity to an average ϕ̄, leaving a differential equation
in s(y). However, it is very easy to absorb ϕ(y) into s(y) in equation (40), using the term s(y)
through (32). In the cases where g2 = 0 the latter is used. The former is the preferred way
forward where only a small range of values of ϕ is relevant.

The rheology is introduced as follows. For the particle pressure equation (34) is used.

Similarly, for ⟨
(
b ′µ

r

)2⟩ a local form is introduced: ⟨
(
b ′µ

r

)2⟩= c2s−nb . The form of ⟨
(
a ′µ)2⟩

contains both local and global influences and is unknown at this stage, but will be informed
by experiment; for convenience the abbreviations

⟨
(
a ′µ)2⟩= c1 (s) and ⟨

(
b ′µ

r

)2⟩= c2s
−nb (42)

are employed. Using these forms and the expression for ϕ(y) as outlined above, the differential
equation turns into

(0.087)2 ᾱ2
4
η2

d2
s(y)−4/5 s(y)−2−2np

(
c1 [s(y)]

d4

100
(α̂µ

i )
2
+
d2

25
α̂µ
iqα̂

µ
iqc2s(y)

−nb

)
(43)

=

(
H
ˆ y

0
ϕ(y)dy+D

)2

. (44)

3.1. Symmetrical flow

For symmetrical flow, which is a situation that can be quite easily tested against experiments
with neutrally buoyant particles, H= 0 and C= 0. The domain is −W< y<W; the length
scales in the problem can be scaled to W, so that y= ỹW. Equation (43) takes the form

s(ỹ)−14/5−2np (0.087)
2
ᾱ2
4η

2d2G2

100

(
c1 (s)

[
∂

∂ỹ
(s(ỹ) ỹ)

]2
+ 4

W2

d2
ỹ2c2s

2−nb

)
= D2. (45)

This would be easy enough to solve if only it was known what the functional form of c1(s) is.
To find that out an experiment is interrogated. The paper by Frank et al (2003), is consulted.
Here the solidosity profile in conduit flow is examined for various Peclet numbers. The one
of interest in this case is the highest Peclet number, so Brownian motion is negligible. The
migration is studied for particles with a diameter of 2 µmflowing through rectangular channels
with a cross section of 50µm× 500µm; the ensuing solidosity profile is studied using confocal
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Figure 3. Dashed line: solidosity profile of a Brownian suspension from data as meas-
ured by Frank et al (2003) at Pe = 4400; solid line: fit according to equation (46).

microscopy. The experiments pertinent to this paper were carried out at a bulk solidosity of
ϕ̄= .34.

In order to fit the findings by Frank et al (2003) to the experiments a simple rational approx-
imation is employed, setting

s(ỹ) = s0 +
Aỹ2

1+Bỹ2
. (46)

A reasonable approximation of experiments is obtained for A≈ 0.11, B≈ 9.6 and s0 = 0.026,
see figure 3. The fit deviates somewhat from the tails in the experiment and is such that the
’nose’ of the profile and the bulk solidosity are accurately represented. Substituting the fit (46)
into the ruling differential equation and expressing the result back as a function of s gives c1
as a function of s.

Before embarking on this exercise the behaviour of s(ỹ) in the vicinity of ỹ= 0 is invest-
igated. To that end set s(ỹ) = s0 + s1ỹ2 + s2ỹ4 and substitute in the differential equation. It
follows immediately that

D2 = (0.0087)2 ᾱ2
4η

2d2G2 c1 (s0)

s
4/5+2np
0

; s1 = 4
W2

d2
c2s

−nb+2np+19/5
0

(2np − 16/5)c1 (s0)− s0
(
∂c1
∂s

)
s0

. (47)

In passing it is noted that s1 = A. From the experiments it is seen that s1 > 0 and so it follows
that if, say, in the vicinity of s0 c1(s) behaves as a1s−na , then the condition np > 8/5− na/2
must be satisfied.

The scheme of implementing the fit (46) can now be implemented. First ỹ2 is expressed in
terms of s(ỹ). A simple inversion gives

ỹ2 =
s− s0

B(s0 − s)+A
. (48)

For the values of s0, A and B as quoted above there are two points of particular interest. The
first is the point at which ỹ= 1, which yields s≈ 0.036640 and marks the end of the validity
range of the current fit. The second is slightly beyond this point; the denominator vanishes—
corresponding to ỹ→∞—at s= 0.037746. It is seen that these two value are very close to
one another and as a result in the vicinity of s≈ s(ỹ= 1) the inversion is not very reliable.
This must be kept in mind when the method is implemented.
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Figure 4. c1(s)/c1(s0) as a function of s for np = 1.1, c(r)2 = 0.01 and various values of
nb. The irregularity near the peak for nb = 1.4 is the result of a small numerical error.

Substituting (46) into the differential equation and applying the inversion (48) by straight-
forward algebra yields the following form for c1(s)

c1 (s)
c1 (s0)

= A2

(
As0−2np−4/5 +Bs01/5−2np

)
s2np+14/5 −Bs19/5+2nps0−2np−4/5 + c(r)2

(
s−nb+2s0 − s−nb+3

)
9
(
−2/3(s− s0)

2B+A(s− 2/3s0)
)2

(A+(s0 − s)B)

(49)

with c(r)2 =
4W2c2
c1 (s0)d2

. (50)

In order to obtain an impression of the shape of this function an order of magnitude of c(r)2
is needed. For the experiments to hand the front factor 4W2/d2 ≈ 500. c1(s0) is the quadratic
ratio of the scalar contribution to the fluctuations to the mean value of d/h at the densest point;
it is of order unity or larger. The vector contribution of this same quantity is rather smaller due
to the ameliorating evolution effect outlined in the section on the rheology of ⟨(b)2⟩ and may
be of the order of 0.1 or even smaller. Thus c2s−nb on average is of the order of 0.1. Setting
the average value of s to 0.03 it follows that c(r)2 is of the order of 0.05 if nb ≈ 2. These are
obviously ballpark figures.

In figure 4 an illustrative set of plots is presented of the resulting values of c1(s)/c1(s0) as
a function of s for various values of nb. These plots show first of all that the outcome is highly
dependent on the choice of parameters. Nevertheless, a pattern can be discerned that points to
the underlying physics. At the low end of s, that is high solidosity, the behaviour of c1 is expo-
nential. At the high end of the graph peculiar things happen and these are entirely associated
with the fact that the approximation (46) is inadequate for s greater than the limiting value.
Inbetween these extremes the exponential behaviour for low s transitions to either a plateau
or a slightly increasing behaviour of c1. This reflects the origin of the scalar intensity of the
solidosity fluctuations. For large solidosities a local effect dominates, one that operates on the
cell scale. For smaller solidosities the distribution of fluctuations at a larger scale is manifest.
In extremis it could be argued that for small mean solidosities the quadratic fluctuation content
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Figure 5. Solid line: c1(s)/c1(s0) as a function of s for np = 1.1, c(r)2 = 0.01 and nb =
1.5; dashed line: the estimate (52) for aa =−6, na = 3 and cm ≈ 1 and sm ≈ 0.027. The
slight irregularity post-peak is the result of a numerical error.

is independent of the solidosity, as these would be dominated by the large-scale effects, and
therefore the ratio (s ′)−2/(s−1)2 (which is proportional to c1) would behave proportional to
sϵ, with ϵ= 2. It does not go quite like that, as local effects ameliorate this dependence and—
certainly at medium solidosities—the value of ϵwill be smaller. Looking at the graph, figure 5,
ϵ≈ 1 is not unreasonable.

Many more variations with different variables can be carried out—varying np, c
(r)
2 , as well

as nb—however, the pattern displayed in figure 5 persists to a greater or lesser extent. This
confirms the underlying physics, although it is not a simple theory.

It is now desirable to have a simple approximation for the behaviour of c1. Noting the
exponential behaviour at small values of s and increasing tendency at larger s, the following is
put forward

c1
c1 (s0)

≈ Aas
−na + aa+ sba. (51)

The curve has a minimum at c1/c1(s0) = cm for s= sm and using that the approximation in
these terms becomes

c1
c1 (s0)

≈ aa−
aa− cm
na+ 1

[(
s
sm

)−na

+ na
s
sm

]
. (52)

This may be substituted into the differential equation and using cm ≈ 1 and sm ≈ 0.027 it is
found that the value B= 9.62 is achieved for the combination na = 3 and aa ≈−6 and requir-
ing the approximation to give the correct result at ỹ= 0.8. The latter has been chosen as a
compromise between the fact that B comes into play for large values of ỹ, but also that ỹ= 1
is just where the fit to experiments (46) becomes inaccurate. In the graph, figure 5, the two
approaches are shown: the approximation (52), which has few parameters and has validity
beyond s≈ 0.08 and the result from fitting (46) directly to the differential equation.

While most of the effort so far has been on finding constitutive expressions to describe the
experiments, it is now possible to investigate the sensitivity to other parameters as long as the
solidosity is still operating in broadly the same range. One parameter that is easily changed
is the channel width. Setting (W/d)2 to twice the value as the one appropriate to Frank et al
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Figure 6. Solidosity profiles for various ratios of W2/d2. Solid line: the situation as
given by the approximation, equation (46), to Frank et al (2003) (4W2/d2 ≈ 500), long
dash: 4W2/d2 ≈ 1000, short dash: 4W2/d2 ≈ 2000.

Figure 7. Solidosity profiles at constant bulk solids fraction for two ratios of W2/d2.
Solid line: the situation as presented by the approximation, equation (46), to Frank et al
(2003) (4W2/d2 ≈ 500), long dash: 4W2/d2 ≈ 1000.

(2003), the solidosity profile is established in the same approximation as before, that is by
fitting the form (46) with A also increased by a factor of 2 (A is proportional to (W/d)2). B is
determined from the differential equation in the vicinity of ỹ= 0.8. It follows that B≈ 13 and
the ensuing solidosity profile is shown in figure 6. Increasing (W/d)2) by another factor of 2
yields B≈ 18, again shown in figure 6. In this calculation s0 has been kept constant, implying
that ϕ̄ varies. Alternatively ϕ̄ may be kept constant, which leads to a rather more complicated
(numerical) calculation. Essentially, equation (47) has to be integrated using (52) while s0 is
varied until the correct value of ϕ̄ is achieved (ϕ̄ = 0.34). The result is shown in figure 7.

It is seen that a broader channel makes the profile relatively more sharply defined around the
centre of the conduit; relatively, because the values of y are scaled to the conduit half-width.
The value of the volume fraction at the tip of the nose is not much affected by the channel
width.
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3.2. Non-symmetrical flow

For non-symmetrical flow neither C nor D vanish. The asymmetry may be associated with the
density contrast being non-zero, that is H ̸= 0, or the boundary conditions being different at
either side of the conduit. Scaling as before results in

c1 (s)

{
∂

∂ỹ

[
s(ỹ)

(
ỹ+ C̃

)]}2

+ 4
W2

d2
[
s(ỹ)

(
ỹ+ C̃

)]2
c2s

−nb

=
100

(0.087)2 ᾱ2
4G

2η2d2

(
WH
ˆ ỹ

0
ϕ(ỹ)dỹ+D

)2

s14/5+2np (53)

where C̃= C/(GW).
At the same time the velocity field is to be studied. From equation (38)

∂v1
∂y

d
h
= Gy+C → v1 (y) =

ˆ y

−W
(Gy+C)s(y)dy+ v1 (−W) . (54)

A special case of the non-symmetrical flow is one in which there are few solids and these are
distributed in a thin layer on the side of one of the walls of the conduit. Depending on the sign
of the density contrast this will be either the top or the bottom. Here the case of the latter is
considered; the problem is then not dissimilar from the bed-loading problem; the difference is
that the traditional bed-loading problem is usually studied in the context of a turbulent flow—
see Jenkins and Hanes (1998), Raudviki (1998)—whereas here the flow is laminar due to the
high viscosities of the fluids involved. The special case of a thin layer of solids at the bottom
involves a large region with no particular content where the flow is dictated by the viscosity
of the fluid η and the small region (with a thickness of a few particle diameters) where a dense
slurry may be expected and which is ruled by the current granular temperature model. The
latter needs some modification due to the presence of the solid boundary.

A procedure for the determination of the constant C is now put forward. It makes no sense
to determine this constant from a boundary condition that is far away from the dense slurry and
therefore boundary conditions at, or near, the bottom of the conduit must be considered. At the
same time the flow at the bottom must be connected to the flow properties in the large region
as this obviously drives the dense slurry flow. The boundary conditions that will be used at the
bottom is the slipping boundary condition for the velocity and the temperature, see Chapman
and Cowling (1970), Petford and Koenders (1998). This boundary condition reads

vbd =
2− θ

θ
λ|∂v
∂y

|bd (55)

where the subscript bd refers to the boundary, θ is a constant, λ the mean free path and another
constant. The idea behind this condition, which is relevant to gases, is that on collision with the
wall a proportion of the particles θ is ‘caught’ in the interstices of the boundary (and thus it says
something about the roughness of the wall) while the remainder is reflected elastically. Before
the particles hit the boundary they have a velocity λ∂v/∂y and thus there is a temperature
jump as described by equation (55). While it is doubtful that such a relation for gases will hold
exactly for dense slurries, its form certainly will be not unlike it. Note that if the mean free
path is zero then the velocity at the wall must also be zero and that if no particles are captured,
that is θ= 0, then the velocity gradient must vanish.

In principle a numerical approach may now be used using the rheologies determined in
the previous sections. Here, analytical insight is preferred and to that end it is advantageous
to introduce a tentative form for the solidosity profile near the boundary. By way of a first
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approach a simple two-parameter form is used, one to specify the solidosity at the boundary
and another one indicating the extent of the thickness of the layer of solids

ϕ(y) = ϕ(−W)exp−(W+y)/∆ . (56)

The shape of this curve is suggested by the low-Shields number solution, that is the one closest
to the laminar regime, in Jenkins and Hanes (1998). The extent of the layer at the bottom is
small, so it may be assumed that∆≪W. The total solids content may then be evaluated asˆ ∞

−W
ϕ(−W)exp−(W+y)/∆ dy=∆ϕ(−W) . (57)

This will be a prescribed amount, corresponding to a mean solidosity ϕ̄, so∆ϕ(−W) = 2Wϕ̄,
which fixes ϕ(−W). Employing (32), furthermore, gives an approximation for s(y)

s(y)≈ 0.0022

ϕ(−W)
2.5 exp

2.5(y+W)/∆; s(−W)≈ 0.0022

ϕ(−W)
2.5 . (58)

Next the attention is focussed on the determination of C. The connection between the flow
in the conduit region—where there are no particles—and the flow in the region where the
cumulant is located is established. The former region is ruled by the viscosity η. For conduit
flow (width 2W) it holds that the mean flow velocity ⟨v⟩ is related to the pressure gradient as

∂p
∂x

=−3η⟨v⟩
W2

. (59)

The velocity of the fluid near the boundary a distance y0 away from it (y=−W+ y0) is

vf (y) =
1
2η

∂p
∂x

(
y2 −W2

)
→ vf (y) =−1

η

∂p
∂x
Wy0. (60)

From equation (54) the velocity of the particles is known, as long as the boundary condition
is specified. For the moment a very rough boundary is assumed, so that v1(−W)≈ 0, then

v1 (y) =
0.0022

ϕ(−W)
2.5

×
(
0.4∆C− 0.16∆2G− 0.4∆GW−

(
0.4∆C− 0.16∆2G+ 0.4∆Gy

)
e2.5

y+W
∆ .
)

(61)

The velocity of the particles and the velocity of the fluid are now assumed to be equal, so in
the limit ∆≪W, y0 ≪W the condition for C becomes

C
G

≈ (0.4∆+W− y0)
e2.5y0/∆

e2.5y0/∆ − 1
− W

e2.5y0/∆ − 1
− ϕ(−W)

2.5

0.0022
0.5625NcWy0

∆
(
e2.5y0/∆ − 1

)
→ C

G
≈W− ϕ(−W)

2.5

0.0022
0.5625NcWy0

∆
(
e2.5y0/∆ − 1

) =W
[
1− fbd

(
ϕ(−W) ,

y0
∆

)]
. (62)

The evaluation of the second term on the right hand side involves some speculation; set
ϕ(−W)≈ 0.4, Nc ≈ 6 then the function fbd(ϕ(−W),y0/∆) gives the correction to C/G=W.
The function is plotted in a range 2< y0/∆< 5, figure 8.

The question is then, what is a reasonable value for the ‘thickness’ of the boundary flow.
Once a value is established, or estimated, C is known.

The behaviour of the granular temperature at the boundary is more problematic. The reason
is that the temperature, the solidosity and the velocity are all continuum variables, but the
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Figure 8. Sensitivity of the second term in equation (62) to ϕ(−W) and y0/∆.

distance between the particles and the relative velocity with which they approach, or depart
from, each other very near the boundary is not a continuum property, as it involves individual
particles. So, the continuum view and individual particle behaviour have to be reconciled.
Starting point is the force balance equation (40), which reads

∂

∂y

(
ᾱ4

η

d
ϕ

(
d
h

)np d
h

√
T

)
= ϕH; → ᾱ4

η

d
ϕb

∂

∂y

(
s−np−1

√
T
)
= ϕbH. (63)

Here, the continuum variable ϕ has been replaced by an average parameter ϕb that represents
a mean over the first couple of particle diameters near the boundary. Now the boundary con-
dition for the temperature needs to be imposed. Following Chapman and Cowling (1970) this
boundary condition is similar to the one put forward in (55)

Tbd =
2− θ

θ
λ

∣∣∣∣∂T∂y
∣∣∣∣
bd

. (64)

Developing (63) gives

ᾱ4
η

d
∂

∂y

(
s−np−1

√
T
)
= H;

→ ᾱ4
η

d

[
(−np − 1)s−np−2 ∂s

∂y

√
T+ s−np−1 ∂T

∂y
1

2
√
T

]
= H. (65)

The field variable T is a continuum variable that gives an average over the first few particle
diameters near the boundary, but is here merely used to impose the boundary condition (64);
the result is

ᾱ4
η

d

[
(−np − 1)s−np−2 ∂s

∂y

√
T+ s−np−1 θ

2λ(2− θ)

√
T

]
= H. (66)

At this point the temperature may be replaced by its average field value Tbd, leaving a differ-
ential equation in s(y), which describes the relative distance between the particle surfaces in
the first layer near the boundary, but which is not a continuum variable. The solution for the
differential equation is

s(y) =

[
2λHd(2− θ)

ᾱ4ηθ
√
Tbd

+ cnstexp

(
− θy
2λ(2− θ)

)]−1/(np+1)

. (67)
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Figure 9. A sketch to give an impression of the set up and the various length scales.

The temperature in the boundary region needs to be estimated. The role of the temperature
in this context is to describe the speeds with which particle approach or depart to and from
each other. The particles in the boundary are supposed to lie still, so the speed that needs to
be estimated is that of the first layer, which is at a distance y1 from the particles at the bottom:
y1 ≈ 2d. A sketch that gives an impression of the set-up is presented in figure 9.

From the velocity gradient it follows that

v(y1) =

(
∂v
∂y

)
y=−W

y1 = s(−WG−C)y1 =−sWGfbdy1 (68)

with fbd = 1+
C
WG

. (69)

From the solution (67) it is seen that the critical parameter for the distance from the boundary is
the mean free path λ. This parameter is likely to be of the order of magnitude of the surface to
surface distance between neighbouring particles, so λ≪ d, in fact λ is of the order of h= sd.
A solidosity dependence need to be introduced as well, because the denser the medium the
more likely it is that particles will collide; thus, as a first estimate λ∝ ϕ−1

b . This implies that
the exponential term in (67) becomes negligible once y has moved to a distance of a particle
diameter away from the boundary, which is the beginning of the region where continuum
variables begin to make sense.

The temperature at the boundary is associated with the velocity difference between the
particles at y= y1 and those at y= yb = y(−W); the latter are considered to lie still. Hence,
just above the first moving layer, where y≈ y1, it holds that

s(y1)≈
[
2λHd(2− θ)

ᾱ4ηθ
√
Tbd

]−1/(np+1)

, with
√
Tbd ≈ |v(y1) |= |sWGfbdy1|. (70)

Solving for H yields

H=
20
3

ᾱ4ηfbdθ
Nc (2− θ)

y1
λd
s(y1)

−np ⟨v⟩
W

(71)
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where G= 40/(9ηNc)(∂p/∂x) and ∂p/∂x=−3η⟨v⟩W2 were used.
It is seen that for an equilibrium to materialise the density contrast H must be proportional

to a macroscopic shear rate ⟨v⟩/W. Now, identify s(y1) with s(−W), ϕb = ϕ(−W), y1 ≈ 2d
and set the mean free path as λ≈ 2s(−W)d/ϕb and a condition for ∆ emerges

H=
40
3

ᾱ4ηfbdθ
Nc (2− θ)

s(−W)
−np−1

∆
ϕ̄
⟨v⟩
d
. (72)

This has transformed the condition from one phrased in terms of ϕb and ⟨v⟩/W to one that
depends on the mean solidosity ϕ̄ and the shear gradient per particle ⟨v⟩/d. Using then
equation (58) and the preferred value of np = 1.1, the condition reads

H= 1.9× 108
ᾱ4ηfbdθ
Nc (2− θ)

1
∆

(
∆

Wϕ̄

)−21/4 ⟨v⟩
d
. (73)

Note that WLϕ̄ represents the total volume of solids per unit breadth and unit length in the
conduit. These solids will be concentrated near the lower boundary, forming a cumulate layer.
The value of∆ is most easily represented as a multiple of the grainsize: n∆ =∆/d.

In evaluating the result it is noted that the group of parameters 1.9×
108ᾱ4ηfbdθ/ [Nc(2− θ)]⟨v⟩ operates as one block. Below the values of all these are fixed,
except ⟨v⟩, as in varying this one, implicitly variations in the other ones are also studied. The
other parameter variations pertain to ϕ̄ and d.

The results, which are meant to illustrate the sensitivity to various parameter variations, are
plotted in figure 10. Note that the parameters used are relevant to geophysical applications that
have a high value for the viscosity, ensuring laminar flows.

From the figure it is seen that the thickness of the cumulate decreases with increasing dens-
ity contrast, while the solidosity at the boundary increases with increasing density contrast (the
physically realistic range of ϕ(−W)< 0.65 is investigated). This is obviously as expected: the
cumulate is more compressed as the density contrast is larger. Furthermore the figure demon-
strates the opposite effect to the density contrast as the parameters involved in the particle
pressure are varied, or when the total available solids volume is modified. The choice of the
parameters has been such that they are in a plausible geological range.

It is noted that for this analysis no value ofD had to be evaluated, as all the relevant physics
is represented in the analysis of the boundary conditions. D may be obtained by studying a
case well beyond the boundary, for example at a distance y=−W+∆ using the rheology
parameters as established in the previous sections. Because all the insights in the formation of
the cumulate are already evident from the boundary conditions analysis, no explicit calculation
of D is presented here (D will depend on∆ and also on all the other parameters that define the
flow).

4. Conclusions

For dense suspensions particles in a flow field need to be able to make excursions around their
mean flow path. These lead to fluctuations in the distance between the particles, which in turn
may cause a particle pressure. The intensity of the fluctuations is the key parameter, which
is known as the ‘granular temperature’. Using methods of granular mechanics this intensity
may consist of a part due to an asymmetry in the fabric—the vector part—and a part due to
the scalar variations in the fabric, which are local volume fraction variations. It transpires that
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Figure 10. (A) Measure of cumulate thickness n∆ =∆/d as a function of the mass
density contrast H= (ρs − ρf)g2 for various cases. (B) Solidosity at the bottom of the
cumulate as a function of the density contrast. Parameters are: ᾱ4 = 0.004, η= 1.0
Pa s, fbd = 0.1, θ= 0.8, Nc = 6. Solid lines: ⟨v⟩= 0.1 m s−1, d= 0.01 m, ϕ̄ = 0.05;
dashed lines: ⟨v⟩= 0.1 m s−1, d= 0.01 m, ϕ̄ = 0.02; dotted lines: ⟨v⟩= 0.05 m s−1,
d= 0.01 m, ϕ̄ = 0.05; dash-dotted lines:⟨v⟩= 0.1 m s−1, d= 0.005 m, ϕ̄ = 0.05.

the former couples to the first gradient of the flow rate and the latter is associated with the
double gradient. Rheologies for these two contributions to the fluctuation intensity, which is
a time-averaged measure, are put forward and are further informed by experiments by Frank
et al (2003). The elements of the granular temperature that pertain to the ‘energy balance’ as
put forward by McTigue and Jenkins (1992) are not needed. For symmetrical flow in a conduit
it is then possible to calculate the solidosity profile under various flow conditions and conduit
dimensions. Using the double gradient avoids having an unphysical sharp peak in the profile
that plagues theories that depend solely on the first gradient of the flow rate field.

25



Fluid Dyn. Res. 56 (2024) 055508 M A Curt Koenders and N Petford

For asymmetrical flow a special case is studied: a thin layer of solids by the side of the
conduit. In order to maintain analytical insight an exponentially declining solidosity field is
postulated. For these situations of dense slurries near a boundary slipping boundary conditions
must be introduced. The thickness of the sediment layer may be determined under various flow
and boundary conditions; a further parameter of interest is the mass density contrast, which
has implications for geological resource exploration in magmatic systems, e.g. Barnes and
Robertson (2019). The results are indicative and many refinements to the theory are possible.
Induced anisotropy is one of them. Particle shape is also an unexplored area that is worthy of
further study. For heterodisperse particle content, segregation is a worthwhile field of investig-
ation. To study these and other interactions further, numerical simulations would be an appro-
priate tool, building on the analytical results presented here.
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