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ABSTRACT
A novel approach will be applied to the domain of virtual
education, which involves an adaptive learning management
system using Bayesian Learning. The student’s progress is
considered partially observable based on what has been mon-
itored. The acquired skills by students are monitored by
taking into account the results obtained from each activity
performed by the student. Bayesian learning and Partially
Observable Decision Processes (POMDPs) are used to guide
and adapt (with the use of interventions) the learning plans
according to the needs and individual characteristics of the
students and their learning progress.
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1. INTRODUCTION
Learning management systems (LMS)[19] are becoming
ubiquitous due to the fact that both feedback and assess-
ment are increasingly autonomously performed by software-
based systems. Further, distance education is increasingly
common in educational systems around the world [6], which
has been more evident and accentuated by the COVID
global crisis during 2020-21 [3, 20].

LMS usually use context to provide the students with au-
tonomously adapted learning plans to provide a good learn-
ing experience based on both the progress made by the
student and their own abilities and traits. The decision-
making of the LMS can demarcate the student’s character-
istics and context attributes (e.g. learning style and person-
ality). Based on the latter, LMS can provide students with
a tailored set of learning activities.

In this paper, we argue that the decision-making process
in LMS can be improved by using autonomous re-appraisal
and updating the priorities associated with the skills to learn

while using Bayesian inference and Reinforcement Learning
techniques, such as Partially Observable Markov Decision
Process (POMDPs)??.

The work presented in this paper is motivated by a case
study in the area of virtual education. In the case study, an
extension of the Multi-Reward Partially Observable Markov
Decision Process (MR-POMDP) [14, 15, 11] is used to au-
tonomously adapt the information that is provided to the
student when their performance in a particular skill is either
not at the desired level or is higher than expected. Due to
changes in the context and progress of the learning process,
the relevance of the information provided to the student, the
learning activities and skills to be acquired may be affected.
The information and plan are relevant only if they help the
student to achieve the learning goals (e.g. developing a new
skill). Changes in the relevance of information and activities
mean changes in the priorities associated. An advantage is
that the learning plan and the priorities implied are adapted
according to the current characteristics, progress and needs
of the student and his/her learning progress. In the way how
we approach the domain problem, signalling how relevant
some learning objectives are is done by using weights and
or preferences used by the multi-objective decision-making
process [11] to decide on the adapted learning plans, which
correspond to adaptations.

2. MOTIVATING SCENARIO
The main goal of the LMS considered in Fig 1 based on [7]
is to use context information to perform dynamic adaptive
planning that best suits the student’s requirements accord-
ing to their own performance, progress and given traits.

The process starts with the creation of an adaptive plan. At
this initial stage, the instructor defines a set of skills that
need to be acquired by the students by the end of a virtual
course. To achieve each skill, a set of learning plans are
created that are composed of several academic activities.

When the student interacts with the LMS for the first time,
the application will use context information such as the stu-
dent’s learning styles and personality traits. As is depicted
in Fig. 1, this information is measured by using a set of pre-
defined tests. With the results of the tests, the application
creates a user profile. After, the profile is used to select the
most suitable plan for the student.

A relevant issue in the case study is that the pertinence



of the learning plan, based on a specific context, is usually
determined before the study starts. This task is usually per-
formed by experts in education and pedagogy based on gen-
eral knowledge that may not completely agree with the traits
of individual students [4]. In a traditional non-autonomous
setting, when the experts detect that the learning plan is not
helping to improve the required skill anymore (e.g. when the
student gets a lower grade), the plan needs to be adjusted to
ensure that the information provided to the student is still
relevant for helping to acquire the skill. Adjusting and mon-
itoring the execution of a learning plan for a single student
may be a complex and time-consuming activity. Therefore,
the process of adapting and monitoring, for instance, 20 dif-
ferent plans for a group of 20 heterogeneous students may
turn out to be even more challenging. We argue that us-
ing the approach based on [11] if the expected utility value
is not the targeted value, the application can re-adjust au-
tonomously the tailored learning plan to be provided to the
student to improve the learning experience. This process is
scalable, as it can be done for both a single student and a
large group of them.

Figure 1: LMS Process (from [7])

3. PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES (POMDPS)

This section describes the baseline concepts of single-
objective and multi-objective POMDPs. POMDPs [16, 17]
are Reinforcement Learning techniques used to solve sequen-
tial decision-making problems under uncertainty. In order to
incorporate uncertainty about the state of the environment,
POMDPs consider the decision-making agents working in a
partially observable environment.

Single and Multi-objective POMDPS
A single-objective POMDP is specified as a tuple:

<S, A, Z, T, O, R, γ >

where S represents the set of states referring to a description
of the state of the environment; A represents the set of Ac-
tions that the decision-making agent can choose to perform
at a particular point of time; Z represents the set of Obser-
vations describing the information received by the decision-
making agent using sensors associated with the set of states

S; T is the transition function T (s, a, s′) = P (s′|s, a) repre-
senting the probability of moving to the next state s’ given
an action a and current state s; O represents the observation
function O(s, a, z) = P (z|s, a) referring to the probability of
observing the observation z given an action a and resultant
state s; R is the reward function R(s,a) specifying a scalar
real value generated by the environment as a result of the
action a taken by the decision-making agent given the state
s of the environment; γ is the discount factor. The diagra-
matic representation of POMDP as presented in [8] is shown
in Fig 2. A policy π, a mapping from the state of the en-
vironment to action, is found by the decision-making agent
such that it maximizes the value function i.e. the expected
utility value of the sum of discounted rewards as follows:

Vπ = Eπ[Rt + γRt+1 + γ2Rt+2...|st] (1)

Due to the partially observable nature of states in a
POMDP, a belief b over the hidden state of the environ-
ment is maintained. Hence, the value function Vb is defined
in terms of the belief and can be represented by a set of α
vectors A [16, 12]. Each α vector, associated with an action
a, has a length of |S| providing a value for each state s is
computed as follows:

αa = [V (si), V (si+1), ..., V (s(n))] (2)

Here V (si) represents the value of the value function for
state si provided the n number of states in total.

Thus, the value of the belief given A is computed as:

Vb = max
α∈A

b.α (3)

Therefore, for each belief b, a set of α vectors A provides a
policy πA for the selection of the action that maximizes the
value.

Figure 2: POMDP process

In comparison to single-objective POMDPs, multi - objec-
tive POMDPs [10] are POMDPs with more that one reward



value. Instead of scalar reward, multi-objective POMDPs
have a vector-valued reward function. The size of the re-
ward vector is equal to the number of objectives. Each sin-
gle element in the reward vector is associated with each in-
dividual objective. As reward is a vector in multi-objective
POMDPs, the value function given an initial belief is also a
vector. Hence, the expected utility value for each objective
is separately computed during the decision-making process
in case of multi-objective POMDPs.

4. POMDPS FOR DECISION-MAKING
SUPPORT FOR LMS

It is possible to cast the decision-making of an LMS as a
POMDP. The main contribution of this paper is framing the
decision-making for LMS as that of a POMDP. The graph-
based structure of a POMDP matches that of the decision-
making of an LMS.

The hidden state correspond to the level of skills met by
the student at any point of the learning process, which is
partially observable based on the grades obtained by the
student. This is because we cannot be 100% sure but hold a
belief about how well a student has reached the skills based
on the marks obtained. Therefore, based on the mathemat-
ical model of the POMDP, the partially observable state of
the POMDP corresponds to the belief b about how well the
student skills have been met. Moreover, the extent to which
the skill has been reached by the student is monitored based
on the evaluations that yield grades or mark. This is dic-
tated by the observation model. The actions in the POMDP
correspond with the activity plans in the LMS. The time
steps are mapped to an activity execution and evaluations
in the LMS. The execution and evaluation of these activi-
ties and assessments may have different temporal frequencies
(e.g. weekly or daily).

As the states associated with students’ skills evolve based on
the learning process, the plans currently assigned to them
may not be suitable anymore. To address this situation, the
POMDP would adapt the student’s plan, which means that
whenever students change their state, the POMDP would
create and suggest a new plan to better suit the new condi-
tions and context of the student.

When performing the above, the priorities associated with
the activities to be chosen may need to be changed based
on the evidence collected about the current state of skills
acquired by the student (e.g. some activities that initially
were considered to have a higher priority may not be critical
anymore or the opposite). Accordingly, the LMS empowered
by the POMDP would autonomously change the priorities.
Therefore, the decision support would autonomously adjust
or suggest the pertinence of alternative activities when ev-
idence exists that the student has not been able to reach a
required skill.

4.1 Scenario
A scenario we have worked out using our POMDP
solver [11], is the following:

Let’s assume a simple example of three learning activi-
ties (essay, simulation, and presentation) which help to ac-

quire the skills critical-thinking, assertive communication
and problem-solving with different preferences and transi-
tion probabilities associated.

Let’s also assume that the student has interacted with the
LMS and has performed a set of suggested activities. At the
end of these activities, the evaluation indicates that his/her
grade for the skill problem-solving is still at the basic level.
This means that in the next iteration, the application should
suggest an activity that should help strengthen the given
skill. In order to do that, the initial preferences for activi-
ties given the current state may need to be re-assessed, by
using multi-objective POMDPs [11] by the computation of
expected utilities as described in Section 3. Multi-objective
POMDPs allow the reasoning of the individual preferences
related to the activities, in order to reach the level of skills
targeted. The new preferences suggest that in the next iter-
ation the student shouldn’t perform the essay activity (sug-
gested by the initial preferences) but the simulation activity,
which according to what the experts have established, is an
alternative activity that also helps to develop the skill crit-
ical thinking. Having a lecturer to do this level of individu-
alisation would require many hours of work. However, the
POMDP solver is able to offer such a level in just seconds.

4.2 Challenges
The kind of individualisation [9] focus offered by a POMDP
does not come for free, as the elicitation of the transition
model, the observation model, and the initial preferences
require work and expertise.

As shown in Section 3, the transition model represents the
probability to move to the next state s’ given an action a
and current state s. In other words, and for the case of
the LMS, it is the probability to acquire a new skill sk’ by
undertaking the learning activity la and the current skill sk.

The observation function O(s, a, z) = P (z|s, a) refers to the
probability of observing the observation z given an action a
and the resulting state s, which in the LMS corresponds
with the observation of the mark m achieved given the skill
acquired sk and the learning activity la.

The elicitation of these probabilities requires new techniques
[18, 5].

We also would like to explore the use of Bayesian inference to
study the process of learning skills to define singular profiles
that describe the generic learning skills of students based on
their previous performance. In other words, using Bayesian
inference, the LMS system could infer (i.e. learn) and there-
fore, make conclusions about the performance of students
in the future, including other modules. This is an exciting
research line that we did not foresee before. We consider
the research venue CausalEDM’22 an excellent one to get
feedback to pursue further our research on Reinforcement
Learning techniques such as POMDPS for Education [13].
We believe that our work on decision-making under uncer-
tainty for autonomous, self-adaptive systems[11, 2, 1], is of
great value for the Artificial Intelligence in Education (AIE)
community.
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Ashyi-edu: Applying dynamic adaptive planning in a
virtual learning environment. In Proceedings of the 7th
International Conference on Computer Supported
Education - CSEDU,, pages 52–63. INSTICC,
SciTePress, 2015.

[8] David Poole and Alan Mackworth. Artificial
Intelligence - foundations of computational agents -
Partially Observable Decision Processes. Cambridge
University Press, 2017.

[9] Ethan Prihar, Aaron Haim, Adam Sales, and Neil
Heffernan. Automatic interpretable personalized
learning. In Proceedings of the Ninth ACM Conference
on Learning @ Scale, L@S ’22, page 1–11, New York,
NY, USA, 2022. Association for Computing
Machinery.

[10] Diederik Marijn Roijers, Shimon Whiteson, and
Frans A. Oliehoek. Point-Based Planning for
Multi-Objective POMDPs. In Twenty-Fourth
International Joint Conference on Artificial
Intelligence, June 2015.

[11] Huma Samin, Nelly Bencomo, and Pete Sawyer.
Decision-making under uncertainty: be aware of your
priorities. Software and Systems Modeling (SoSyM),
2022.

[12] Guy Shani, Joelle Pineau, and Robert Kaplow. A
survey of point-based pomdp solvers. Autonomous

Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[13] Adish Singla, Anna N. Rafferty, Goran Radanovic,
and Neil T. Heffernan. Reinforcement learning for
education: Opportunities and challenges, 2021.

[14] Harold Soh and Yiannis Demiris. Evolving policies for
multi-reward partially observable Markov decision
processes (MR-POMDPs). In Proceedings of the 13th
annual conference on Genetic and evolutionary
computation, pages 713–720, January 2011.

[15] Harold Soh, Yiannis Demiris, Harold Soh, and Yiannis
Demiris. Multi-Reward Policies for Medical
Applications: Anthrax Attacks and Smart
Wheelchairs. In Proceedings of the 13th annual
conference companion on Genetic and evolutionary
computation, pages 471–478, 2011.

[16] M. T. J. Spaan and N. Vlassis. Perseus: Randomized
Point-based Value Iteration for POMDPs. Journal of
Artificial Intelligence Research, 24:195–220, August
2005. arXiv: 1109.2145.

[17] Matthijs TJ Spaan. Partially observable markov
decision processes. In Reinforcement Learning, pages
387–414. Springer, 2012.

[18] Alistair Sutcliffe, Pete Sawyer, Gemma Stringer,
Samuel Couth, Laura JE Brown, Ann Gledson,
Christopher Bull, Paul Rayson, John Keane, Xiao-jun
Zeng, et al. Known and unknown requirements in
healthcare. Requirements engineering, 25(1):1–20,
2020.

[19] Darren Turnbull, Ritesh Chugh, and Jo Luck.
Learning management systems: a review of the
research methodology literature in australia and china.
International Journal of Research & Method in
Education, 44(2):164–178, 2021.

[20] Ewelina Zarzycka, Joanna Krasodomska, Anna
Mazurczak-M ↪aka, and Monika Turek-Radwan.
Distance learning during the covid-19 pandemic:
students’ communication and collaboration and the
role of social media. Cogent Arts & Humanities,
8(1):1953228, 2021.



Citation on deposit:    

Bencomo, N., Samin, H., & Pavlich-Mariscal, J. (2022, 
July). Decision-Making Support for Adaptive 
Learning Management Systems based on Bayesian 
Inference. Paper presented at CausalEDM'22, 

Durham 

For final citation and metadata, visit Durham Research Online URL: 
https://durham-repository.worktribe.com/output/2993933   

Copyright Statement:   

This content can be used for non-commercial, personal study. 

https://durham-repository.worktribe.com/output/2982917

	PaperCaseStudy
	Citation page-V1-2023

