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Determining the absolute number density of a thermal vapor via photon correlations
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We propose a technique to determine the absolute number density N of an alkali-metal vapor confined within
a nanocell. This method is based on near-resonant driving of the vapor’s constituent atoms and determining the
mean interparticle distance (or equivalently the temperature) from the power spectrum associated with the offset
photon intensity-intensity correlation function g(2)(τ ) − 1. In our investigation, we treat the atoms as an average
of interacting and radiating dipole pairs randomly positioned within the nanocell. We observe that the power
spectrum of the emitted light has a central dip for interparticle distances corresponding to ∼λ/5 and that this
result is robust to variations in the driving Rabi frequency and the average detuning. With our proposed method,
we can overcome the limitations in defining the absolute number density N , which is currently typically deduced
from the temperature of heating elements applied externally to the cell.
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Alkali-metal vapor cells have been used extensively in
atomic physics since at least the 1950s [1–8]. Compared
to laser-cooled and trapped atoms, experiments with ther-
mal atomic vapors are simpler, cheaper, and more compact,
while still offering high precision. Applications include
atomic clocks [9,10], sensing [11–13], single-photon sources
[14–16], other quantum technologies [17–20], and the study
of fundamental physics [21–26]. Many exciting recent de-
velopments have been facilitated by spectroscopic micro- or
nanocells. The key idea is to confine thermal atomic va-
pors, usually alkali-metal atoms (which, due to their simple
electronic structure, are easier to model) in cells with the
narrowest internal dimension as small as ∼ 100 nm [27–32].
Typical cells are made of (transparent) dielectric materials
such as sapphire, quartz, or fluoride [33,34]. One can vary
the atomic number density over several orders of magni-
tude; high-density vapors allow interactions among atoms to
be studied, for example, modifying light-matter interactions,
leading to emission of quantum light from densely packed
driven atoms [35–39].

To describe the physical processes occurring in such cells,
or any physical quantities, it is typically necessary to know
the atomic number density N . However, there is significant
uncertainty in determining N in dense vapors, with its precise
and accurate determination being a challenging task. If we
have reliable vapor pressure curves, N can be inferred from
the cell’s temperature [40,41], assuming the atomic vapor is
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in thermal equilibrium with the condensed phase [42]. Due to
its reactivity with the cell walls, this is often not true [43,44].
Moreover, there is always the issue of correctly measuring
the temperature; there are, for example, deviations from the
temperature applied externally to the cell compared to the
temperature of the enclosed vapor. Recent work suggests a
significantly more reliable thermometer based on Doppler-
broadening thermometry [45], although to determine N we
still depend on model-dependent vapor pressure curves [41].

It is also possible to determine N using absorption methods
[46–48]. Although this does not assume thermal equilibrium,
the determination of N depends on the product NL (where
L is the path length through the vapor) and the oscillator
strength f , as driven by the resonant light [42]. It is also only
applicable for lower densities and not for optically thick va-
pors as the resonant light will be almost completely absorbed.
For optically thick vapors, one can exploit the diamagnetic
Faraday effect, as it is based on the far wing absorption line
[42,49], or other methods, for example, using reduced absorp-
tion coefficients [50].

We propose a potentially more direct methodology to
find N for hot, dense vapors confined within dielectric
nanocells. We theoretically study the photon emission of an
ensemble of interacting atoms, confined in a nanocell and
driven by a coherent running laser field, as described in
Ref. [51]. We closely model the experimental setup described
in Refs. [29,52], where the photon statistics are measured
via the total internal reflection fluorescence method [see
Fig. 1(a)]. Although we focus on this configuration, the central
point of this article is the photon number statistics, not the spe-
cific experimental setup. In this configuration, we study a form
of power spectrum determined from g(2)(τ ) − 1, where g(2)(τ )
is the intensity-intensity correlation function. For a thermal
vapor, due to averaging over essentially random phase terms,
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FIG. 1. Scheme of the geometry for the observation of intensity
correlations. (a) Example of a measurement scheme of the photon
statistics via the total internal reflection fluorescence method. A
resonant laser beam enters a nanocell off axis, causing excitation and
fluorescence in the atomic vapor. The photon statistics are considered
to be measured at a point in the far-field zone of the radiation emitted
by the atomic system. (b) In the theoretical model, we place pairs
of atoms inside cubic boxes, the size of which ensures the desired
average spacing, and place the different boxes in positions along the y
direction according to a Gaussian distribution. (c) Example resulting
from distribution of atomic pairs along the y axis, where the location
of the pair determines the relevant value of �R. The photon statistics
are considered to be measured at a point in the far-field zone of the
radiation emitted by the atomic system. For simplicity, we consider
the direction of observation along the z axis, and the driving field
kL = (kL, 0, 0). (Not to scale.)

our final result for the photon emission is independent of the
observation angle, making our proposal insensitive to the light
collection angle. For particular interatomic separations ∼λ/5,
a characteristic central dip emerges in the power spectrum.
Noting that, for a random three-dimensional (3D) distribution
of atoms, the spacing between the atoms r has the distribution
[53]

W3D(r) = 4πNr2 exp

(
− 4π

3Nr3

)
, (1)

and the average distance between the atoms can be found from
N to be

rav =
∫ ∞

0
drrW (r) ≈ 5

9
N−1/3. (2)

Hence, with this proposal we can systematically and indepen-
dently measure the absolute number density N from photon
correlations.

To describe the photon statistics of the nanocell confined
thermal vapor, we use the same approach as in our previous
article [51]. We consider two two-level atoms, at fixed posi-
tions r1 and r2 (where r12 = r1 − r2), with the dipole moment
deg for ground state |g〉 and excited state |e〉, and transition
frequency ω0. The atoms are driven by a running laser field
with frequency ωL. The system-reduced dipole density opera-
tor ρ evolves, in the laboratory frame, according to the master
equation [39,54]

∂ρ

∂t
= − iω0

2∑
j=1

[
σ̂ z

j , ρ
] − i

2

∑
j �=l

g jl [σ̂
+
j σ̂−

l + H.c., ρ]

+ i

2

2∑
j=1

[� j σ̂
+
j exp (iωLt ) + H.c., ρ]

−
2∑

j,l=1

γ jl (σ̂
+
j σ̂−

l ρ + ρσ̂+
j σ̂−

l − 2σ̂−
l ρσ̂+

j ), (3)

where σ̂+
j = |e〉 j j〈g| and σ̂−

j = |g〉 j j〈e| are the raising and
lowering operators for the jth emitter, σ̂ z

j = (|ei〉〈ei| −
|gi〉〈gi|)/2, 2γ j j = 2� is the Einstein A coefficient for spon-
taneous emission from a single dipole, and γi j (i �= j) and gi j

are collective parameters describing the damping rate and the
dipole-dipole coupling (the interatomic coupling arising from
the mutual influence of the atoms through the electromagnetic
field). We use the master equation (3) in the rotating-wave,
Born, and Markoff approximations to produce coupled equa-
tions of motion for average values of the atomic operators and
atomic correlations. We solve these coupled equations to find
the dynamics for random pairs of emitters and average the
photon statistics of multiple random pairs. In the limit of many
atoms, the single-atom contributions to the photon statistics
become unimportant relative to the two atoms’ contributions
and can safely be neglected (see Supplemental Material [55]
and Ref. [51] for details).

In Refs. [56,57], the authors describe how a form of power
spectrum, derived from g(2)(τ ) − 1, can be used to gather
information on the interatomic distance and orientation of
two atoms. Our goal is to gather information on the average
distance between atoms by modeling this power spectrum
S(ω) when associated with light scattered by an atomic vapor.
Following the same notation for coherence functions as in our
previous work [51,58], we determine (and effectively define)
S(ω) by taking the Fourier transformation of the autocorrela-
tion function g(2)(τ ) − 1:

S(ω) =
∫ +∞

−∞
dτ [g(2)(τ ) − 1]ei(ω−ωL )τ . (4)

Noting that generically g(2)(τ ) → 1 as τ → ∞, the −1 offset
has the effect of ensuring the Fourier transform is always
well-defined (removing a δ-peak contribution at ω = ωL). As
g(2)(τ ) = g(2)(−τ ) and real, S(ω) is also necessarily real and
symmetric about ω = ωL [59]. We consider a regime where
antibunching may occur, meaning that the Siegert equation
g(2)(τ ) − 1 = β|g(1)(τ )|2 does not apply; if g(2)(τ ) < 1 (an-
tibunched light), the left-hand side of the Siegert equation
will be negative and therefore cannot equal the positively
valued right [60]. From our previous studies [51], we have

L031701-2



DETERMINING THE ABSOLUTE NUMBER DENSITY … PHYSICAL REVIEW A 110, L031701 (2024)

shown that due to atom-atom interactions, our light source
produces antibunched light at high temperatures. In particular,
note that S(ω) is not the power spectrum associated with
the fluorescence, but there is a nontrivial relation between
the two. The experimental protocol is, therefore, to observe
the photon statistics to determine g(2)(τ ) and then perform the
Fourier transformation of the offset autocorrelation function
g(2)(τ ) − 1.

We perform a Monte Carlo simulation where pairs of
atoms are placed randomly inside a cubic box, (0, L) ×
(−L/2, L/2) × (−L/2, L/2), with the scale L chosen to en-
sure the desired average spacing (note there is a relationship
between the size of the cubic box L and the average distance
between two random points inside it, i.e., if L = 1, 〈ri j〉 ≈
0.6617). As in previous works [51,58], we set a minimum
distance of 0.01λ between the two atoms; this codifies in a
simple way that, at the energy scales under consideration, we
do not expect the atomic dipoles to occupy the same space,
which would in any case require inclusion of additional effects
beyond the scope of the model. To account for Doppler broad-
ening due to atomic motion, we assign a random velocity to
each particle according to the Boltzmann distribution [61,62].
This is equivalent to randomly attributing a different detuning
�i to each atom around an average. For a thermal vapor, one
would by default expect a broad atomic velocity distribution.
However, we consider the vapor to be confined within a nar-
row nanocell. High-velocity atoms hit the cell walls and do
not contribute to the measured photon statistics, i.e., only a
narrow velocity window should be accounted for [29]. We
therefore determine a temperature-dependent Gaussian dis-
tribution of detunings around a set average value, �av, and
truncate this to the restricted interval �i = [�av − 5 �, �av +
5 �] (resulting in a nearly uniform distribution). Finally, to
incorporate the “real” size of the cell, we average over the
different boxes along the laser profile (see Fig. 1). To do so, we
consider

� j = �R exp(−i kL · r j ) exp

(
− y j

2σL

)
, (5)

where we set kL = (kL, 0, 0). We average over spatially de-
pendent Rabi frequencies by choosing randomly for each pair
yi = ybox,i + yrandom, where ybox,i ∈ [−L/2, L/2] and yrandom is
a random number following a Gaussian distribution with the
standard deviation σL = 3λ. The final distribution of the 1500
pairs of emitters is depicted in Fig. 1(c). Such averaging, not
considered in previous works [51,58], will not alter signifi-
cantly the value of g(2)(0), but will reduce the oscillations of
g(2)(τ ) over time, which is in accordance with experimental
observations [52].

The approximate discrete equivalent of our continuous,
infinite, power spectrum definition in Eq. (4), considering an
interval of τ = −T to τ = T , sampled at 2N equally spaced
points, is [63]

S(�/T ) = 2T Re(Q�)

NP(N )
, (6)

where we have assumed a T value sufficiently large to set
g(2)(−T ) = g(2)(T ) = 1, and where

Q� = P(N )
N−1∑
j=0

[g(2)( jT/N ) − 1] e2iπ� j/N (7)

is the general form of an in-built numerical finite Fourier
transformation (FFT), with P(N ) being an implementation-
specific prefactor dependent on the number of sample points
N .

After finding numerical g(2)(τ ) for multiple pairs, we
calculate g(2)(τ ) − 1 in the interval τ � ∈ [0, 10] (i.e., T =
10/�) for N = 1000 equally spaced values. The default nu-
merical FFT implementation in MATHEMATICA we used to
determine Q� has P(N ) = N−1/2, and we note that, although
Eq. (6) shows that strict equivalence with the power spectrum
of Eq. (4) requires taking the real part of Q�, in practice
this makes little difference to the key features, and we find
it sufficient to consider

|S(ω/�)| = 2T �√
N

|Q�|, (8)

where ω/� = 2π�/(T �). This is also consistent with the
approach taken by Refs. [56,57] and is what we refer to as
the power spectrum from now on.

For two two-level atoms, driven by a near-resonant stand-
ing laser field, the power spectrum exhibits several spectral
lines, in frequency components related to the distance (dipole-
dipole interaction strength) and position of the two atoms
(Rabi frequency) [56,64]. In Ref. [57], when the dipole-dipole
interaction is weak, the authors show the typical spectrum of
two two-level atoms in a running laser field consists of five
peaks; the middle peak occurs at ωL and the two side peak
doublets are symmetrically located at ωL ± � j (r j ). Analyz-
ing the power spectrum peaks gives us a direct measure of
the position of each atom via the position-dependent Rabi
frequencies. When the dipole-dipole interactions between the
two atoms dominate the system dynamics, the side peaks
move to the coupling strength energy ωL ± g12. In the in-
termediate regime, more peaks can be observed, with the
splitting of the peak in ωL ± � j by the coupling strength,
going from five to nine peaks. For both standing and running
laser fields, this method also allows the determining of the
orientation of two nearby atoms in arbitrary geometry, where
the peak structure can be interpreted in terms of the system’s
dressed states [56,57,64].

In Fig. 2, we depict calculated spectra emitted from a
many-atom system driven by a resonant laser field (ωL = ω0).
We perform our simulation for multiple atomic pairs in a
running-wave laser field with �R(r = 0) = 20 �, where we
fix the average values of detuning for both atoms at �av/� =
0, for different atomic distances. We compare these results to
an idealized system of pairs at a fixed distance and a random
distribution in space, shown as the dash-dotted lines. For each
data point, we run the simulation over 1500 pairs. We ob-
serve three defined broad peaks; a central peak at ω − ωL = 0
and two side peaks at ω − ωL = ±�R(r = 0) = ± 20 �. At
such small atom-atom distances, �1 ≈ �2, and the doublet
peaks observed at ωL ± � j for two two-level atoms become
single broader peaks. Moreover, in Fig. 2, as we approach
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FIG. 2. Power spectrum peaks for multiple atomic pairs in a
running-wave laser field with �R(r = 0)/� = 20, where we have
fixed the average values of detuning for both atoms at �av/� equal
to 0. We plot |S(ω/�)| [defined in Eq. (8)] as a function of angular
frequency for different atomic distances 0.10 � 〈ri j/λ〉 � 0.40, and
we compare the results with a configuration where the two atoms are
at a fixed distance (dash-dotted line). For each data point, we run the
simulation over 1500 pairs. Units are chosen such that the quantities
are scaled by λ or �.

FIG. 3. (a) g(2)(0) (see also Refs. [51,58]) and (b) |S(ω = ωL)|
[see Eq. (8)] as functions of different atomic distances 〈ri j/λ〉. We
compare the case of randomly positioned pairs (squares) separated
on average by 〈ri j/λ〉 with the two atoms a fixed distance apart
(circles). The atomic pairs are subjected to a running-wave laser field
with �R(r = 0)/� = 20, where we have fixed the average values of
detuning for both atoms at �av/� equal to 0. For each data point, we
run the simulation over 1500 pairs. Units are chosen such that the
quantities are scaled by λ or �.

〈ri j〉 → λ/5, we observe splitting of the peak at ω − ωL =
±�R(r = 0) = ± 20 � (clearer in the dashed lines, where the
atoms are at idealized fixed distances) and also of the central
line, which at ω − ωL = 0 of the spectrum can go to 0.

FIG. 4. g(2)(τ ) − 1 (see also Refs. [51,58]) for multiple atomic
pairs in a running-wave laser field with �R(r = 0)/� = 20, where
we have fixed the average values of detuning for both atoms at
�av/� equal to 0. We plot g(2)(τ ) − 1 as a function of delay time
for different atomic distances 〈ri j/λ〉 ≈ 0.10, 0.21, and 0.40, and we
compare the results with a configuration where the two atoms are at
a fixed distance (dash-dotted line). For each data point, we run the
simulation over 1500 pairs. Units are chosen such that the quantities
are scaled by λ or �.
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In Fig. 3, we consider how the values for (a) g(2)(τ = 0)
and (b) |S(ω − ωL = 0)| vary with average atomic distance
〈ri j/λ〉. The emergence of a spectral dip is due to the com-
petition of different physical effects: the intensity of driving,
and the dipole-dipole coupling strength. The change of be-
havior from bunching to antibunching can be correlated to the
appearance of the dip, due to a distance-dependent crossover
in the averaging of the pairs. In fact, S(ω − ωL = 0) → 0;
i.e., a dip emerges whenever we find ∫ dτ [g(2)(τ ) − 1] → 0
[setting ω = ωL in Eq. (4)]. In this distance regime, g(2)(τ )
remains relatively close to 1 with small deviations, hence
g(2)(τ ) − 1 (averaged over different pairs) tends at a faster rate
to 0 as τ → ∞, i.e., pairs of emitted photons are uncorrelated
after shorter delay times (see Fig. 4). When we look at the
region 0.19 � 〈ri j/λ〉 � 0.25 (see Fig. 2), a small dip can still
be observed for fixed distances at 〈ri j/λ〉 = 0.18, although
the contrast could be challenging to resolve experimentally.
This effect is nonetheless clear looking just at the values of
|S(ω − ωL = 0)| in Fig. 3. Were we to consider the real rather
than the absolute values of S(ω), we would see a crossover
between positive and negative values when 〈ri j〉 ∼ λ/5. This
is robust to changes in detuning or driving (see Ref. [55]).

In conclusion, we have presented a proposal for deter-
mining the absolute number density N in a hot alkali-metal
vapor confined within a nanocell. Our theoretical investiga-
tions show that, by studying the emergence of a dip in the

power spectrumS(ω), it is possible to infer the average atomic
distance in the vapor cell. Since average atomic distance,
temperature, and density are straightforwardly interrelated,
we can then determine the number density, which in turn could
be fed into, e.g., next-generation thermometry protocols based
on Doppler broadening.

We repeat that this is not the power spectrum directly
connected to fluorescence and that the protocol in a real exper-
iment is to measure the intensity-intensity correlation function
g(2)(τ ) of the emitted light field for different applied temper-
atures and to evaluate S(ω) from it, by taking the Fourier
transform of g(2)(τ ) − 1. From this, we can extract spatial
information and the corresponding absolute number density.
This method provides a straightforward, precise approach to
determine the absolute number density.

Additional data related to the findings reported in this paper
are available from the source in Ref. [65].
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