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ABSTRACT

We present the deepest wide-field 115–166 MHz image at sub-arcsecond resolution spanning an area of 2.5◦ × 2.5◦ centred at the
ELAIS-N1 deep field. To achieve this, we improved the direction-independent (DI) and direction-dependent (DD) calibrations for the
International LOw Frequency ARray (LOFAR) Telescope. This enhancement enabled us to efficiently process 32 h of data from four
different 8-h observations using the high-band antennas (HBAs) of all 52 stations, covering baselines up to approximately 2000 km
across Europe. The DI calibration was improved by using an accurate sky model and refining the series of calibration steps on the
in-field calibrator, while the DD calibration was improved by adopting a more automated approach for selecting the DD calibrators
and inspecting the self-calibration on these sources. For our brightest calibrators, we also added an additional round of self-calibration
for the Dutch core and remote stations in order to refine the solutions for shorter baselines. To complement our highest resolution at
0.3′′, we also made intermediate resolution wide-field images at 0.6′′ and 1.2′′. Our resulting wide-field images achieve a central noise
level of 14 µJy beam−1 at 0.3′′, doubling the depth and uncovering four times more objects than the Lockman Hole deep field image at
comparable resolution but with only 8 h of data. Compared to LOFAR imaging without the international stations, we note that due to
the increased collecting area and the absence of confusion noise, we reached a point-source sensitivity comparable to a 500-h ELAIS-
N1 6′′ image with 16 times less observing time. Importantly, we have found that the computing costs for the same amount of data are
almost halved (to about 139 000 CPU h per 8 h of data) compared to previous efforts, though they remain high. Our work underscores
the value and feasibility of exploiting all Dutch and international LOFAR stations to make deep wide-field images at sub-arcsecond
resolution.
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1. Introduction

The International LOw Frequency ARray (LOFAR) Telescope
(ILT) is an interferometer uniquely designed to measure low
frequency radio waves between 10 and 80 MHz with the low-
band antennas (LBAs) and between 110 and 240 MHz with the
high-band antennas (HBAs) (van Haarlem et al. 2013). With its
baselines extending up to ~2000 km coupled with a degree-
scale field of view, it can thus produce wide-field images at
sub-arcsecond resolution. Nevertheless, reducing data from all
38 Dutch and 14 international stations of LOFAR for wide-field
imaging is nontrivial, as it requires a carefully optimised calibra-
tion strategy to correct for various corrupting effects on the data
and extensive computing facilities to handle the substantial data
volumes and perform the final imaging (Sweijen et al. 2022b,
Ye et al. 2023).

In recent years, significant efforts have been devoted to auto-
matically calibrating and imaging observations with the Dutch

HBA stations located in the Netherlands. This has led to the
LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017,
2019, 2022; Williams et al. 2019) and the LoTSS-Deep Fields
(Kondapally et al. 2021; Duncan et al. 2021; Tasse et al. 2021;
Sabater et al. 2021; Best et al. 2023; Bondi et al. 2024), which
have provided wide-field images of the northern sky at 144 MHz
and 6′′ resolution. Despite the fact that these works discovered
many new radio sources at the lowest frequencies, approximately
90% of these sources at 6′′ remain unresolved at 144 MHz.
This becomes an issue when, for instance, one aims to examine
the detailed dynamics of bright radio-loud active galactic nuclei
(RLAGN) (e.g. Mahatma et al. 2023), derive source size dis-
tributions at the smallest angular scales (e.g. Sweijen et al., in
prep.), separate radio emission from (radio-quiet) AGN and star
formation (e.g. Morabito et al. 2022b), or when the 6′′ resolu-
tion limit introduces selection effects in the study of the cosmic
evolution of resolved RLAGN (e.g. de Jong et al. 2024). This,
among other scientific objectives, underscores the scientific
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value of the sub-arcsecond wide-field imaging capabilities of
LOFAR.

Calibrating data at low frequencies is challenging due to
direction-dependent effects (DDEs), which are variations of data
corruption across the field of view. At low frequencies, most
DDEs are posed by the ionosphere, resulting in propagation
delays of radio waves (Intema et al. 2009; Smirnov 2011b;
van Weeren et al. 2016; Tasse et al. 2018). Correcting these
factors inadequately results in image fidelity issues due to cal-
ibration artefacts that extend from arcsecond up to arcminute
scales. These effects are destructive for the quality of the high-
resolution images if not properly corrected. Incorporating data
from all international LOFAR stations during calibration makes
the data reduction more complicated, as extra phase delays are
induced by the fact that the international stations have inde-
pendent clocks (Morabito et al. 2022a). Moreover, the fact that
the availability of bright sources reduces towards higher resolu-
tions complicates the calibration strategy, as this heavily relies
on (self-)calibration of sources with a high S/N on all baselines.
On top of this is the substantial volume of visibility data that
needs to be processed. A typical LOFAR observation with an
integration time of 8 h and a time and frequency resolution of
1 s and 12.21 kHz is in the order of 16 TB, which can be reduced
to 4 TB with Dysco compression (Offringa 2016). To process
LOFAR data, it is therefore essential to have access to machines
with enough computational power and with extensive storage
capacities.

Early pioneering works have demonstrated how to utilize all
HBA antennas from LOFAR’s international stations to produce
images at sub-arcsecond resolutions (e.g. Varenius et al. 2015,
2016; Ramírez-Olivencia et al. 2018; Harris et al. 2019). Subse-
quent efforts by Morabito et al. (2022a) standardised and partly
automated the calibration and imaging process with the interna-
tional stations, which resulted in a first version of the LOFAR
Very Long Baseline Interferometry (VLBI) calibration work-
flow1. The value of their work is directly evident through the
large number of studies that have already utilised their work-
flow (e.g. Sweijen et al. 2022a, 2023; Bonnassieux et al. 2022;
Timmerman et al. 2022b,a; Harwood et al. 2022; Kukreti et al.
2022; Morabito et al. 2022b; Mahatma et al. 2023; Venkattu et al.
2023). During the same time, Sweijen et al. (2022b) extended
this strategy to perform wide-field imaging and produced with
8 h of LOFAR data from the Lockman Hole the first 6.6 deg2

wide-field image at a resolution of 0.30′′ × 0.38′′ at 144 MHz
with a sensitivity down to 25 µJy beam−1. This image, produced
with a computational cost of 250 000 CPU h, captured in one
snapshot 2483 high-resolution sources, each with peak inten-
sities five times greater than their local RMS. These types of
wide-field images contain approximately 10 billion pixels, which
makes imaging the most dominant part of the total computational
costs. Another recent study by Ye et al. (2023) adopted a simi-
lar calibration approach to Sweijen et al. (2022b) but with the
aim to make an intermediate resolution wide-field image of the
ELAIS-N1 deep field at 1.2′′ × 2′′. This resolution serves as a
scientifically valuable intermediary that improves the 6′′ reso-
lution from LoTSS and recovers extended emission that is lost
at the finer 0.3′′ resolution, such as from low-excitation radio
galaxies (LERGs) (Ye et al. 2023). Since imaging represents
the main computational bottleneck for the complete data pro-
cessing pipeline, Ye et al. (2023) achieved a total computing
time speedup of nearly a factor five compared to Sweijen et al.
(2022b).

1 https://github.com/LOFAR-VLBI

Even though one of the primary objectives of achieving
higher resolutions is to resolve more sources, high-resolution
images are less suitable for studying low surface brightness
structures, as these are more likely to be resolved out. For
instance, Sweijen et al. (2022b) showed that only 40% of the
sources that are detected and unresolved at 6′′ are detected in
their corresponding 8-h radio map at 0.3′′, of which 11% of these
are resolved at 0.3′′. The number of 6′′ counterparts at 1.2′′ dou-
bles, as shown for ELAIS-N1 by Ye et al. (2023). Hence, in
order to recover more resolved sources at higher resolutions, it
is essential to enable the production of deeper images through
the use of multiple 8-hour observations of the same field and
to get more information out of the data by making images at
intermediate resolutions (between 0.3′′ and 6′′) as well. This
approach is further supported by the fact that confusion noise
limits the sensitivity obtainable by deep wide-field imaging
using only the Dutch stations, as was demonstrated by Sabater
et al. (2021) in their imaging of ELAIS-N1 with 163.7 h of
LOFAR observations. They reached a best noise level of approx-
imately ~17 µJy beam−1, which is expected to be achievable with
about ten times less LOFAR observing time when including both
the Dutch and international stations.

We aim in this paper to produce the deepest wide-
field images currently available at sub-arcsecond resolution at
140 MHz (115–166 MHz) by jointly calibrating four LOFAR
observations, totalling 32 h, of the ELAIS-N1 deep field. Build-
ing upon the work from Morabito et al. (2022a), Sweijen
et al. (2022b), and Ye et al. (2023), we refined the direction-
independent (DI) calibration steps and improved the direction-
dependent (DD) calibrator selection. This enabled us to obtain
the final merged calibration solutions for Dutch and international
LOFAR stations, which are required for facet-based imaging
at (sub-)arcsecond resolutions. Utilising the calibrated data, we
produced wide-field images at 0.3′′, 0.6′′, and 1.2′′ resolution.
This allowed us to make source catalogues at different reso-
lutions and thereby analyse source detections across different
resolutions and sensitivities2.

In Sect. 2, we discuss the details of our four LOFAR obser-
vations, which leads into a detailed discussion of the calibration
process in Sect. 3. Following calibration, we address the imaging
process in Sect. 4 and then detail the creation of the associated
source catalogues in Sect. 5. Our discussion extends to evaluat-
ing the quality of our image and catalogue outputs in Sect. 6, and
we finish with our conclusions in Sect. 7.

2. Data description

The area covered by ELAIS-N1 has been studied in the opti-
cal (e.g. McMahon et al. 2001; Aihara et al. 2018), infrared
(e.g. Lawrence et al. 2007; Mauduit et al. 2012), ultraviolet (e.g.
Martin et al. 2005), X-rays (e.g. Manners et al. 2003), and radio
(e.g. Ciliegi et al. 1999; Sirothia et al. 2009; Croft et al. 2013;
Ocran et al. 2020). This extensive multi-wavelength coverage
has made ELAIS-N1 an invaluable field for extra-galactic sci-
ence and it was therefore selected as one of the LOFAR Deep
Fields (Sabater et al. 2021; Kondapally et al. 2021; Best et al.
2023).

In order to make the deepest sub-arcsecond resolution wide-
field radio map of this field with LOFAR, we selected four
8-h LOFAR observations of ELAIS-N1 by examining calibra-
tion solutions of calibrator sources 3C 295 or 3C 48 that were
already observed for 10 min before or after 16 different available

2 All data products are published at https://lofar-surveys.org/
hd-en1.html
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Table 1. Metadata from the four ELAIS-N1 observations used in this paper.

Observation ID L686962 L769393 L798074 L816272

Project LT10_012 LT10_012 LT14_003 LT14_003
Calibrator 3C 295 (L686958) 3C 295 (L769389) 3C 295 (L798082) 3C 295 (L816280)
Observation date 26-11-2018 24-05-2020 14-11-2020 13-5-2021
Pointing centres 16:11:00, +54.57.00 16:11:00, +54.57.00 16:11:00 +55.00.00 16:11:00 +55.00.00
Integration time 8 h 8 h 8 h 8 h
Frequency range 120–166 MHz 120–166 MHz 115–164 MHz 115–164 MHz
Stations (International) 51 (13) 51 (13) 50 (12) 52 (14)

ELAIS-N1 observations stored in the LOFAR long-term archive
(LTA). This calibration step is an important part of the entire
calibration (as discussed in Sect. 3.1) and provides a compu-
tationally cheap way to assess the ionospheric conditions and
the quality of the data (as discussed in Sect. 3.1). Although we
could select more than these 4 observations, it is important to
stress that the compute costs for calibrating and imaging data at
sub-arcsecond resolutions are expensive and limit us to selecting
more than 4 observations (as highlighted by Sweijen et al. 2022b
and by us in Sect. 4.3). Our selected observations are part of two
different observing projects (LT10_012 and LT14_003, PI: P.N.
Best) and were retrieved from the LTA3.

We provide a description of our selected observations in
Table 1. All four observations have 3C 295 as the primary cal-
ibrator. The pointing centres of two observations are 0.03◦ offset
from the other two, which necessitates a phase-shift correction
to a common right ascension (RA) of 16:11:00 and declination
(DEC) of +54.57.00 to enable combined imaging (see Sect. 4).
Prior to the storage of the observations L798074 and L816272 on
the LTA, their data was averaged from a time resolution of 1–2 s.
The pre-averaging leads to additional time smearing effects on
the data. This was unfortunately only noticed after doing most of
the calibration discussed in Sect. 3 and thus we kept the data in
our final images. Whilst the time smearing cannot be completely
mitigated (see Fig. 1), we reduce the impact during calibration
by flagging the baselines that are most severely affected (see
Sect. 3.3).

The observations we have used have variations in the stations
used. The observation with ID L816272 has the largest number
of stations (52), as it includes also the Latvian station that only
recently became operational (Vrublevskis et al. 2020). This adds
more baselines longer than ~1700 km with the stations located in
Ireland and France (see Table 2). Observation IDs L686962 and
L769393 have the same stations as L816272 but without the Lat-
vian station. Observation L798074 includes the Latvian station
but misses one German and the Polish station in Łazy, leading
to the absence of the longest LOFAR baseline (see Table 2). The
different combinations of LOFAR stations result in different uv-
coverages, as displayed in Fig. 2. The uv sampling gaps between
80 and 180 km are due to the sparsity of LOFAR stations between
the Dutch remote and German stations.

3. Calibration

Our calibration strategy of all our observations builds upon the
procedures described in Morabito et al. (2022a) and Sweijen
et al. (2022b), where we further refined parts of their calibra-
tion strategy. Sweijen et al. (2022b) averaged their data to a time

3 https://lta.lofar.eu/

Fig. 1. Intensity I as a function of distance from the pointing cen-
tre due to a combination of bandwidth and time smearing over the
original intensity at the pointing centre I0. We used the smearing for-
mulas according to Bridle & Schwab (1999) with a central frequency
of 140 MHz and a bandwidth of 12.21 kHz. This plot includes the
smearing from the longest baseline (1980 km) between the LOFAR sta-
tions in Birr (Ireland) and Łazy (Poland), reaching a resolution of about
0.2′′ (red). We also added I/I0 for our target resolution of 0.3′′ (blue),
corresponding to a baseline of 1470 km. This figure shows both the
smearing for the 1 s and 2 s pre-averaged datasets.

resolution of 2 s. Given that half of our data is averaged to 2 s
while the remainder is at a 1-s resolution, it follows that our data
volume is about 6 times larger than the data from Sweijen et al.
(2022b). This introduces additional challenges regarding storage
and computational demands, leading to our decision to utilize a
high-throughput compute cluster named Spider for our full data
processing4. Spider enables us to run many of our jobs embar-
rassingly parallel, which reduces the wall-clock time of our full
data processing.

In the following subsections, we discuss the calibration work-
flow starting with downloading the data to arriving at the final DI
and DD corrected solutions necessary for imaging. We will also
highlight the improvements we have made compared to previous
work.

3.1. Initial Dutch calibration

The first calibration steps focus on calibrating the uv-data of the
Dutch stations. This follows the standard procedure, similar to

4 https://doc.spider.surfsara.nl
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Table 2. Five longest baselines between LOFAR stations according to the Euclidean distance of the Earth-centered coordinates of these stations.

Łazy Birr Bałdy Nançay Borówiec
(PL611HBA) (IE613HBA) (PL612HBA) (FR606HBA) (PL610HBA)

Irbene X 1930 km X 1735 km X
(LV614HBA)

Birr 1980 km X 1880 km X 1679 km
(IE613HBA)

Notes. The station IDs are given between brackets.

Fig. 2. uv-coverage of all four LOFAR observations utilised in this paper. These define the shape of the dirty beam. The uv-coverages in this plot
include flagging and are plotted with conjugate uv points. They also include the full frequency bandwidth, which produces the radial extent. These
figures are made with the Python library shadems.
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Fig. 3. Workflow corresponding to the
calibration steps explained in Sect. 3.1
for the general case with N observa-
tions. The workflow starts with the uv-
data pulled from the LTA and ends with
pre-calibrated uv-data, ready for cali-
brating the international stations for N
different observations of the same field.
Purple ovals are input data, blue boxes
are operations on the data, and green
ovals are output data. Stacked ovals
imply that there are output products for
each observation. Dashed lines indicate
the presence of numerous observations
that can run for this workflow in paral-
lel. For a description of the calibration
operations, we refer to Table 3.

LoTSS (Shimwell et al. 2017, 2019, 2022), but with the goal to
pre-process our data up to the stage where we can start with the
calibration of the international stations (Morabito et al. 2022a;
Sweijen et al. 2022b). The steps, as described in this section, are
summarized in the workflow from Fig. 3.

After downloading the data from the LTA, we ran the stan-
dard data reduction pipeline from Prefactor5 on our four
separate datasets (van Weeren et al. 2016; de Gasperin et al.
2019). This pipeline starts with a calibration of our primary cal-
ibrator 3C 295. Prefactor corrects for all stations the phase
differences between XX and YY polarisations, and derives con-
stant clock offsets between the stations, and the bandpass. The
pipeline proceeds with the target pipeline where the goal is
to correct the Dutch stations of the target data of ELAIS-N1
for DI effects. This starts by transferring the calibrator solu-
tions to the target data and removing the international stations
to reduce the data volume. The pipeline involves flagging bad
data and problematic stations, finding Faraday corrections with
RMextract (Mevius 2018), and phase calibration against a
sky model from the TIFR Giant Metrewave Radio Telescope
(GMRT) Sky Survey (TGSS, Intema et al. 2017). This proce-
dure results in the first DI solutions for all Dutch stations. We

5 Predecessor of the LOFAR Initial Calibration (LINC) pipeline.

utilised the solution inspection plots from LoSoTo6 to conduct a
first assessment of the quality of our observations and to notify
whether there were substantial parts of the data flagged or entire
stations removed.

Using the output from the Prefactor target pipeline, we
also ran the DDF-pipeline7 to obtain DI and DD corrections,
DDE-corrected images, and DDE-corrected models for the
Dutch core and remote stations (Shimwell et al. 2019; Tasse et al.
2021). This pipeline uses KillMS8 (Tasse 2014a,b; Smirnov &
Tasse 2015) to derive phase and amplitude corrections, which
are applied during imaging with DDFacet9 (Tasse et al. 2018).
The resulting 6′′ wide-field images of each of our 8-h observa-
tions were used to assess the quality of the corrections on the
data from the Dutch stations and to gauge the calibratability of
the ionosphere during each of our selected observations.

Following the strategy from Morabito et al. (2022a), we pre-
pare our data for international DI calibration by transferring the
Dutch DI calibration solutions, predicting and flagging (part of)

6 https://github.com/revoltek/losoto/
7 https://github.com/mhardcastle/ddf-pipeline
8 https://github.com/saopicc/killMS
9 https://github.com/saopicc/DDFacet
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Fig. 4. Workflow corresponding to the
calibration steps explained in Sect. 3.2
for the general case with N observa-
tions. The workflow starts with pre-
processed uv-data and ends with DI-
calibrated uv-data for N different obser-
vations of the same field. These steps
follow after the workflow in Fig. 3. Pur-
ple ovals are input data, blue boxes are
operations on the data, red boxes are
data filters, yellow boxes are calibration
steps, and green ovals are output data.
Stacked ovals imply that there are output
products for each observation. Dashed
lines indicate the presence of numerous
observations that can run in parallel. For
a description of the calibration opera-
tions we refer to Table 3.

the response of bright off-axis so-called ‘A-team’ sources (Cas-
siopeia A, Cygnus A, Taurus A, and Virgo A), and perform
concatenation of datasets into subbands of 1.95 MHz. Unlike
when processing just Dutch stations, we do not perform any
averaging. Given that the full width at half maximum (FWHM)
is smaller at sub-arcsecond resolutions, due to the size differ-
ence between Dutch and international LOFAR stations, we adopt
a narrower field of view compared to the 6′′ resolution. We
made therefore use of the DDF-pipeline models and solutions
to subtract sources outside a box of 2.5 × 2.5 deg2 centred on
the pointing centre. This box size sets the field of view of our
final image products. The subtraction step suppresses artefacts
induced by sources outside this field of view. After performing
these steps, we have a final total data volume of ~12 TB after
compression (Offringa 2016). This total consists of 4 TB for the
two datasets with 1-s resolution and 2 TB for the two datasets
with 2-s resolution. The data is now prepared for calibration with
international stations using DI.

3.2. Direction independent calibration of full array

After obtaining the pre-calibrated data using existing pipelines,
as described in the previous subsection, we proceed with the
initial DI calibration of the international stations. This step
is challenging as there are fewer suitable calibrators available
with enough S/N compared to observations at lower resolutions
(Morabito et al. 2022a; Jackson et al. 2022). Finding the best fit-
ting calibration strategy remains partly empirical and therefore
needs additional attention. In Fig. 4, we illustrate the workflow
starting with the pre-calibrated data, as detailed in Sect. 3.1, and

concluding with the final DI calibrated data, discussed in this
subsection.

3.2.1. Direction independent calibrator selection

An important step in the DI calibration is the selection of a suit-
able primary in-field calibrator. Not every bright source is a good
primary in-field calibrator (Jackson et al. 2016, 2022). Proxies for
good DI calibrators are:

– Signal-to-noise. The source must exhibit high S/N on the
longest baselines, ensuring sufficient signal to calibrate the
phases and amplitudes of the data from the international
stations. The source should ideally be one of the brightest
within the field of view, having a peak intensity of at least
~25 mJy beam−1 at 0.3′′.

– Position. The primary in-field calibrator needs to be well
within the FHWM of the international station beam to avoid
too much attenuation due to the primary beam. Therefore, it
is desirable to have a source located within 1◦ of the pointing
centre.

– Polarisation (optionally). If the information is available, it
is an advantage to select an unpolarised in-field calibrator,
as this allows for polarisation calibration on the in-field
calibrator; we explain this further in Sect. 3.2.3.

Identifying the best in-field calibrator is essential as bad ampli-
tude or phase corrections will be largely irreversible. This is due
to the higher time and frequency resolution that we use when cal-
ibrating the primary in-field calibrator compared to the time and
frequency resolution used when correcting DDEs, as we later
discuss in Sect. 3.3.
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Fortunately, we already knew from the calibration of ELAIS-
N1 by Ye et al. (2023) which source satisfied the in-field
calibrator selection criteria above. For their selection, they
used the Long-Baseline Calibrator Survey (LBCS, Jackson
et al. 2022), and selected the Seyfert 2 galaxy identified by
ICRF J160607.6+552135 (Charlot et al. 2020; Sexton et al.
2022). This source, with a compact flux density of ~0.28 Jy at
140 MHz, is located about 0.8◦ away from the ELAIS-N1 point-
ing centre. Moreover, there is no evidence to suggest that this
source is polarized (Herrera Ruiz et al. 2021; Callingham et al.
2023).

3.2.2. Sky model

For the calibration of the primary in-field calibrator, we con-
structed a point source sky model, as our source does not show
any structure at sub-arcsecond scale. In order to determine the
spectral index for our calibrator, we used the measured flux
densities from observations by the NRAO VLA Sky Survey at
1.4 GHz (NVSS; Condon et al. 1998), the GMRT at 610 MHz
(Garn et al. 2008), the Westerbork Northern Sky Survey at
325 MHz (WENSS; Rengelink et al. 1997), LoTSS DR2 at
144 MHz (Shimwell et al. 2022), and the 6C and 7C survey at
151 MHz (Vollmer et al. 2010). We found the flux density to turn
over between WENSS and LOFAR HBA frequencies, which led
us to decide to better characterise the spectrum by processing
an LBA observation at 54 MHz from the ELAIS-N1 field using
the LiLF10 calibration pipeline (de Gasperin et al. 2018, 2019,
2020). We have also added the flux density limit from the Very
Large Array Low-frequency Sky Survey Redux (VLSSr; Lane
et al. 2014). This supports the accuracy of our fitted spectrum.
With the flux densities and frequencies, we fitted a second-order
logarithmic polynomial

log S (ν) = log S 0 + c0 log
(
ν

ν0

)
+ c1 log

(
ν

ν0

)2

,

where S is the flux density as a function of frequency ν. Using ν0
as the reference frequency at 141 MHz, we found log S 0 = 2.45,
c0 = 1.11 and c1 = −1.13. This gave the fit shown in Fig. 5. With
these results, we obtained a flux density at 141 MHz of 0.28 Jy
and the following spectral index as a function of frequency:

α =
δ log S (ν)
δ log ν

= −2.26 log
(
ν

ν0

)
+ 1.11.

Based on Charlot et al. (2020), we also have the coordinates
of our in-field calibrator with a positional precision for the RA
and Dec of dRA = 1.88 mas and dDec = 1.83 mas respec-
tively. We used this information together with the source spectral
index as input for our point source sky model. Our sky model
ensures an accurate astrometry and flux density scale (as we later
demonstrate in Sects. 6.3 and 6.4).

3.2.3. In-field calibration

Before performing any calibration on our selected in-field cal-
ibrator, we first phase-shifted the visibilities to the position of
our calibrator source, after which we averaged the data down to
488 KHz and 32 s, which decreases the data volume by a factor
640 or 1280 (depending on the original 2 s or 1 s data resolu-
tions). This was followed by a primary beam correction at the

10 https://github.com/revoltek/LiLF

Fig. 5. Fit of the radio spectrum of our primary in-field calibrator using
data from WENSS at 330 MHz, the GMRT at 610 MHz, NVSS at
1.4 GHz, LoTSS DR2 at 144 MHz, the 6C and 7C surveys at 151 MHz,
and the LoLSS image at 54 MHz constructed by us. We added the green
downward triangle from the VLSSr flux density limit to illustrate the
accuracy of the spectrum at lower frequencies.

position of the in-field calibrator. Applying the primary beam
after averaging helps reduce computational time and is justified
by the fact that the beam only varies very slowly as a function
of time and frequency. We express the operations to prepare
our data for calibration mathematically by using the radio inter-
ferometry measurement equation (RIME; Hamaker et al. 1996;
Smirnov 2011a,b) as follows:

VIF = BIF⟨PIFVprePH
IF⟩B

H
IF,

where Vpre are the visibilities with pre-applied Dutch solutions
and the subtracted 6′′ model outside our 2.5◦ × 2.5◦ field of
view. BIF is the beam correction in the direction of the in-field
calibrator, PIF is the phase-shift to the position of the in-field
calibrator, VIF the corresponding visibilities centred on the in-
field calibrator as starting point of the calibration. The angular
brackets represent the averaging over time and frequency, while
H denotes the conjugate transposed matrix.

For the DI calibration of our in-field calibrator, we used
facetselfcal11, which utilizes the Default Preprocessing
Pipeline (DP3, van Diepen et al. 2018; Dijkema et al. 2023)
and WSClean (Offringa et al. 2014) to perform (self-) cali-
bration on a source. This calibration algorithm allowed us to
derive the best phase and amplitude solutions on station level
through minimisation of the difference between our sky model
and the input visibilities. facetselfcal uses an “iterative-
perturbative” approach, where after each calibration step the
model is adjusted with the new solutions before going to the next
step. This procedure gives us full flexibility to incorporate our
own calibration strategy to correct for different effects on dif-
ferent time, frequency, and antenna selections, on our data. The
calibration steps used in this paper are described in Table 3. To
allow ourselves to tailor the magnitude of phase corrections as
a function of time and frequency for different subsets of anten-
nas, we split below the scalarphase calibration up into three
separate iterations (scalarphase I, II, and III), where in each
iteration we reset the solutions for a set of antennas to phase 0

11 https://github.com/rvweeren/lofar_facet_selfcal
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Table 3. Description of the calibration operations used in this paper.

Operation name Description

scalarphase Solving for phase errors as a function
of time and frequency, independent of
polarisation.

scalarcomplexgain Solving for phase and amplitude errors
as a function of time and frequency,
independent of polarisation.

fulljones Solving for phase and amplitude errors
as a function of time and frequency for
both diagonal and cross-hand polarisa-
tions simultaneously.

scalarphasediff Derive a diagonal phase correction to
eliminate any phase difference present
between circular RR and LL (or linear
XX and YY) polarisations as a function
of time and frequency.

Notes. The names originate from the operation names used by DP3
(van Diepen et al. 2018; Dijkema et al. 2023) and facetselfcal
(van Weeren et al. 2021).

and amplitude 1 values after running the calibration operation.
After experimenting with various solution intervals, smooth-
ness constraints, and calibration steps from facetselfcal,
we found that the strategy described below performed best on
our in-field calibrator source. This strategy is illustrated by a
selection of solution plots from different LOFAR stations in
Figs. 6 and 7.

– scalarphasediff. Our in-field calibrator is unpolarised
(Tremblay et al. 2016; Herrera Ruiz et al. 2021; Callingham
et al. 2023). The absence of a signal in Stokes V polari-
sation enables us to employ scalarphasediff calibration
in circular polarisation basis to correct for differential Fara-
day rotation after converting our data polarisation basis from
linear to circular. We constrain the Dutch stations for this
step to have the same solutions, as the effect of differen-
tial Faraday rotation is negligible on shorter baselines. We
found a suitable solution interval for this step to be 8 min
and the frequency to be best constrained by a smoothness
kernel of 10 MHz. The varying calibration solutions for the
international stations are illustrated in the first row of Fig. 6.

– scalarphase I. After having corrected the RR and LL
polarisation phase difference, we derive polarisation-
independent corrections for phase errors with the
scalarphase solve. In the first scalarphase itera-
tion, we solve for ‘fast’ phase variations for the international
stations by taking a solution interval of 32 s and a small
frequency smoothness kernel of 1.25 MHz. These are
the smallest solution interval and frequency smoothness
constraints, as we expect the largest phase variability across
the longest baselines. The reset option setting the phase
solutions to 0 and amplitude solutions to 1 for the Dutch
core and remote stations results in only solutions for the
international stations. On the second row in Fig. 6 we see
how the solutions corresponding to this step are wrapping
fast from −π to π radians for the international stations.

– scalarphase II. In the second scalarphase iteration,
we solve again for ‘fast’ phase changes with a solution

interval of 32 s. However, we now include the Dutch remote
stations by only resetting the solutions for the Dutch core
stations to phase solutions equal to 0 and amplitude solu-
tions equal to 1 after the solve. Compared to the previous
scalarphase solve, we found a larger frequency constraint
with a smoothness kernel of 10 MHz to work best. The solu-
tions are most significant for remote stations because the
phases for the international stations are already corrected,
as is illustrated on the third row in Fig. 6.

– scalarphase III. In the third scalarphase iteration we
solve for ‘slow’ phase changes for all stations, including the
Dutch core stations, by taking a solution interval of 20 min
and without using a reset of solutions. With a smoothness
kernel of 20 MHz we use a larger frequency constraint
compared to the other two scalarphase iterations. The
Dutch core stations observe a similar ionosphere and were
already corrected for DI effects (see Sect. 3.1). This results
in small corrections between these stations, as illustrated on
the fourth row in Fig. 6.

– scalarcomplexgain I. After correcting for phase
errors, we also incorporate polarisation-independent
phase and amplitude corrections by doing a ‘slow’
scalarcomplexgain solve with a solution interval of
20 min. We constrained the frequency axis here by a
smoothness kernel of 7.5 MHz. On the fifth row in Fig. 6
we see that the phase corrections are negligible, due
to the phase corrections from the previous iterations.
The amplitude corrections on the first row of Fig. 7
are most significant for the more distant international
stations.

– fulljones. After having corrected for phases and ampli-
tudes for the diagonal RR and LL polarisation directions, we
also correct with a full-Jones correction for leakage in the
RL and LR cross-hands. As we have already applied full-
Jones DI corrections for the Dutch stations (see Sect. 3.1),
we expect the leakage of Dutch stations to be similar. Hence,
we constrained these stations to have the same value. This
also boosts the calibration signal at these stations. We opt
for solution intervals of 20 min and constrain the frequen-
cies with a smoothness frequency kernel of 5 MHz. In
Figs. 6 and 7, we find the most significant corrections for
the off-axis polarisations of the international stations.

– scalarcomplexgain II. Finally, we performed an addi-
tional final round of scalar corrections, by using a slow
scalarcomplexgain solve set to a solution interval of
40 min and a frequency smoothness constraint of 7.5 MHz.
This step serves as a final verification to ensure the stabil-
ity of the solutions. In Figs. 6 (eighth row) and 7 (fourth
row), we see that the corrections are minor compared to the
solutions from the previous calibration steps. This confirms
the reliability of the iterative calibration up to the full-Jones
calibration.

Throughout the calibration we ignored baselines with a length
smaller than 20 000 times the wavelength (λ), by setting a con-
straint on the uvmin parameter. This is to prevent possible issues
related to having an incomplete sky model. This uvmin corre-
sponds to a largest angular scale (LAS) of ~10′′ at 140 MHz.
Each calibration step returned an h5parm solution table. We
merged all solutions derived for each of the four observations
to obtain four final solution tables with phase and amplitude cor-
rections. If we let GDI represent the final solutions after merging
all solutions, we express the RIME equation to obtain the final
DI calibrated visibilities on the Vpre visibilities with pre-applied
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Fig. 6. Phase calibration solution plots corresponding to the different calibration steps (rows) and different stations, given by their station IDs
(columns), for calibrating the primary in-field calibrator. These solutions are relative to the CS001HBA0 Dutch core station. For the full-Jones
corrections, we only show the RR and RL solutions. The solutions on the last two rows show how these solutions are combined into a final
merged solutions. It is important to note that the scalarcomplexgain and fulljones corrections have small phase corrections for RR (and
LL) polarisations, due to the fact that these are already corrected in the previous steps. However, the same scalarcomplexgain steps do correct
significantly for amplitudes (see Fig. 7) and the fulljones step for the RL (and LR) polarisations.

Dutch solutions as

VDI = B−1
IF GDIBIFVpreBH

IFGH
DIB

H−1
IF , (1)

where B−1
IF is the inverse beam correction from the centre of the

in-field calibrator back to the pointing centre of the ELAIS-N1
observation.

It is important to stress that the order of merging solu-
tions is essential, as our scalarphasediff and fulljones
corrections do not commute. This implies that we need to
merge the solutions in the order of the steps we have iteratively
solved for. Similarly, the order of applying the beam corrections
(BIF and B−1

IF ) and the full-Jones solutions from (GDI) in
Eq. (1) are not commutative either, due to the fact that they

are typically not simultaneously diagonalisable Jones matrices
(Smirnov 2011a,b).

3.3. Direction-dependent calibration of full array

The ionosphere and errors in the beam model introduce DDEs
that corrupt the ‘real’ visibilities across the field of view. These
are not corrected by the DI calibration, as they depend on
the direction of the calibration. We therefore divided the sky
area up into smaller facets by selecting and calibrating for
bright compact secondary calibrators distributed across ELAIS-
N1 (van Weeren et al. 2016; Williams et al. 2016). The main
challenge in the selection is that from the best existing radio
images we only have source information available at 6′′ res-
olution, while we need to find compact calibrators that have
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Fig. 7. Amplitude calibration solution plots corresponding to the different calibration steps (rows) and different stations, given by their station IDs
(columns), for calibrating the primary in-field calibrator. For the full-Jones corrections we only show the RR and RL solutions. The solutions on
the last two rows show how these solutions are combined into a final merged solutions.

enough S/N to calibrate at 0.3′′ resolution. It is therefore vital,
after the initial selection and performing self-calibration on the
DD calibrators, to examine both the calibration solutions and the
resulting images to ensure that we have selected good calibrators
with good calibration solutions. The workflow discussed in this
subsection is illustrated in the diagram in Fig. 8 for the general
case of N observations.

3.3.1. Direction-dependent calibrator selection

To initiate the search for compact sources, we used the ELAIS-
N1 deep-field catalogue constructed from a 6′′ resolution
LOFAR HBA map (Kondapally et al. 2021; Sabater et al. 2021).
From this catalogue we selected a sample of 86 sources with
peak intensities above 25 mJy beam−1 inside our 2.5◦ × 2.5◦ field
of view. To investigate whether these sources may be good cal-
ibrators, the sources were first all split off by phase-shifting the
DI corrected visibilities from Eq. (1). We averaged the phase-
shifted data down to 32 s and 390.56 kHz, which decreased the
data volume by a factor 512 or 1024 (depending on the original
2 s or 1 s data resolutions). The averaging also reduced the effects
from other nearby sources, without introducing smearing effects
in our calibrator data. The full procedure can be expressed as

VS,n = BS,n⟨PS,nB−1
IF GDIBIFVpreBH

IFGH
DIB

H−1
IF PH

S,n⟩B
H
S,n

= BS,n⟨PS,nVDIPH
S,n⟩B

H
S,n,

where VS,n are the visibilities after applying the DI corrections,
phase-shifting and beam corrections in the direction of source n,
and where we substituted Eq. (1) on the second line.

We expect a significant fraction of the selected sources to be
resolved out at 0.3′′ resolution. If we were to run self-calibration
naively on all 86 candidates and visually examine the results,

it would not only cost extensive manual inspection time but it
would also be computationally demanding. We therefore came
up with a computationally cheap but reliable metric to iden-
tify which of our 86 candidate sources have enough S/N at the
longest baselines, as we outline below.

For the selection metric we use the fact that circularly
polarised sources are very rare at low frequencies, as Callingham
et al. (2023) found in their 20′′ V-LoTSS survey at 144 MHz only
68 circularly polarised sources across 5634 deg2. One of their
detections appears within our field of view (Callingham et al.
2021) but is not in our list of candidate calibrators. Considering
that Callingham et al. (2023) reports a completeness above 1 mJy
and all our ELAIS-N1 calibrators have flux densities exceeding
25 mJy, it is reasonable to assume that none of our 86 calibrators
are strongly circularly polarized. This implies that differences
between corrections on RR and LL polarisations of our cali-
brators are attributed to the amount of noise on the solutions
(ignoring polarisation leakage variations and the small effect of
DD differential Faraday rotation, see further below). Therefore,
calibrators with a high S/N will have more similar phase correc-
tions on both RR and LL polarisations, whereas diffuse sources
with a low S/N will exhibit noisier phase corrections.

To quantify the differences in RR and LL polarisations
we first run one round of scalarphasediff calibration with
facetselfcal (see Table 3). To make the assessment consistent
when comparing different sources, we use a fixed solution inter-
val of 10 min. Since we are interested in the amount of S/N at the
longest baselines, we only consider the scalarphasediff solu-
tions from the Dutch and German stations. From the obtained
solutions we take the discrete difference along the frequency axis
to account for small differential Faraday rotation, after which we
use the circular standard deviation as a measure of the phase
noise. The circular standard deviation serves as an alternative
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Fig. 8. Workflow corresponding to the
calibration steps explained in Sect. 3.3
for the general case with N observa-
tions. The workflow starts with DI-
corrected uv-data and ends with DD-
corrected uv-data for N different obser-
vations of the same field. These steps
follow after the workflow in Fig. 4.
In the first source selection, based on
the brightest sources from the LoTSS
catalogue, we select K sources, after
which M of these are filtered out
during the phase noise selection met-
ric (see Sect. 3.3.1). This leaves us
with (K − M) solutions for each of
the N observations. We note that the
scalarcomplexgain is only option-
ally triggered in facetselfcal for
brighter sources (See van Weeren et al.
2021). Purple ovals are input data, blue
boxes are operations on the data, red
boxes are data filters, yellow boxes are
calibration steps, and green ovals are
output data. Stacked ovals imply that
there are output products for each obser-
vation. Dashed lines indicate the pres-
ence of numerous observations that can
run in parallel. For a description of
the calibration operations we refer to
Table 3.

to the traditional standard deviation to account for phase wrap-
ping (e.g. Mardia 1972). The formula for the circular standard
deviation is given by

σc =
√
−2 ln R,

where R is the mean resultant length given by

R =
√

C̄2 + S̄ 2,

with the mean cosine angles

C̄ =
1
N

N∑
i=1

cos θi

and the mean sine angles

S̄ =
1
N

N∑
i=1

sin θi (2)

for N phase solutions (θ). To test this metric and find a rejection
threshold for the standard deviation, we applied this first on
40 sources from one of our four observations. With this sample,
we empirically found sources below a circular standard devi-
ation of 2.3 rad to be sufficient for self-calibration with the
international LOFAR stations. Upon rejecting sources above this
threshold from our initial 86 sources, we were left with 30 candi-
date sources. One of the 30 sources was less than 0.1◦ away from
a neighbouring selected calibrator, which made us decide to pick
the source with the lowest circular standard deviation value. This
procedure narrowed our selection down to 29 candidates.
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Fig. 9. Merged phase calibration solution plots corresponding to the different facets (rows) and different stations, given by their station IDs
(columns). These solutions are relative to the CS001HBA0 Dutch core station. The facets have the DD solutions from their corresponding calibrator,
as depicted in Fig. 14.

This phase noise metric takes ~1 CPU h for each source,
which includes averaging down the uv-data to calculate the circu-
lar standard deviation. By implementing this metric we reduced
the number of self-calibration runs by about a factor of 3, com-
pared to running self-calibration on all 86 original candidates.
This decreases the total computing time in our case of using 4
observations by ~18 000 CPU h. While this is a small fraction of
the total computing costs (see Sect. 4.3), it does remove a large
part of the visual inspection when doing this fully automated (see
also Appendix A).

3.3.2. Self-calibration

For the remaining sources, we carried out up to 12 rounds of self-
calibration by employing the auto option in facetselfcal.
This calibration step is essential to calibrate for the ionospheric
differences across the field of view. The number of cycles was
set based on experience (Sweijen et al. 2022b; Ye et al. 2023), as
it has consistently been shown to achieve convergence for good
calibrators. The auto setting automatically adjusts the solution
intervals, and frequency smoothness constraints, among other
parameters, based on the available flux density from the source,
as discussed in van Weeren et al. (2021). As we also have two
observations that were pre-averaged by a factor two in time (see
Sect. 2), we utilised an additional setting, flagtimesmeared,
that flags visibilities where the amplitude reduction due to time
smearing is more than a factor of two. This is especially impor-
tant at the longest baselines and for calibrators more distant
from the pointing centre, as these suffer most from smearing
(as we see in Fig. 1 and later in Sect. 6.2). Before the first cal-
ibration, we let facetselfcal also apply a phase-up of the
Dutch core stations into a superstation in the centre of the Dutch
array. This suppresses the signal from nearby sources on shorter
baselines. To further tune the calibration for structures on small
angular scales, we apply the same uv-cut at 20 000λ as used
for the DI calibration of the in-field calibrator (corresponding
to a LAS of ~10′′). The phase-up also reduces the data volume
from each measurement by about 80% (Morabito et al. 2022a),
which therefore speeds up the self-calibration significantly. The
auto setting performs calibration during the first four rounds for
phases by applying a scalarphase solve, while the subsequent
eight rounds might, depending on the available S/N from the
calibrator, apply scalarcomplexgain calibration to find ampli-
tude corrections as well (van Weeren et al. 2021). To make sure
that the flux density scale, after applying amplitude corrections,

is not drifting, we normalize the global amplitude corrections
over all antennas and our four observations to one.

The final phase and amplitude solutions for a selection of
stations from three selected DD calibrators are given in Figs. 9
and 10. This shows that we allow phases to have shorter solu-
tion intervals because we anticipate these to vary more rapidly
over time than amplitudes. From the amplitude solutions we
also see the solution interval size differences, which is because
facetselfcal ensures that there is enough S/N on the longest
baselines. To illustrate the self-calibration image quality, we
show in Fig. 11 four examples of sources with self-calibration
cycles 0 (no correction), 3 (phase correction only), and 10 (phase
and amplitude corrections). These demonstrate how the phase
and amplitude corrections have improved the image fidelity.

3.3.3. Direction-dependent calibration inspection

Although self-calibration is well-established (e.g. Cornwell &
Fomalont 1999) and facetselfcal has proven to be reliable
to calibrate our best candidate DD calibrators (e.g. van Weeren
et al. 2021; de Jong et al. 2022; Sweijen et al. 2022b; Ye et al.
2023), it is essential to perform a final quality control on the self-
calibration output products, as was done by Ye et al. (2023). This
ensures our phase noise selection metric discussed in Sect. 3.3.1
did not include any false-positives and the calibration algorithm
from facetselfcal performed as expected.

We inspect for each self-calibration cycle of each source the
following characteristics:

– RMS noise. We expect for self-calibration improvements on
calibrators with compact emission the RMS to be signifi-
cantly lower compared to the image that is only calibrated
with DI solutions (cycle 0 in Fig. 11). In the left panel of
Fig. 12 we have an example of a stable improvement of the
RMS. The source corresponding to the curve in the right
panel has an RMS that is going up after cycle 4, which is due
to the effects of the scalarcomplexgain calibration lifting
the amplitude values. Although the increase is minor, this
example demonstrates that relying exclusively on the image
RMS to assess the self-calibration quality is insufficient.

– Dynamic range. Since the RMS does not fully convey the
quality of the image, we also evaluate the dynamic range
of the self-calibration images. We define the dynamic range
in the figures as the absolute value of the minimum pixel
value divided by the maximum pixel value. We expect for
image improvements the most negative pixels to get closer to
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Fig. 10. Merged amplitude calibration solution plots corresponding to the different facets (rows) and different stations, given by their station IDs
(columns). The facets have the DD solutions from their corresponding calibrator, as depicted in Fig. 14.

0, which improves our measure of the dynamic range. Both
cases in Fig. 12 corresponding to two of our DD calibrator
sources show dynamic range improvements.

– Solution stability. Another important metric is the stabil-
ity of the solutions over self-calibration cycle, as we expect
the solutions to converge over self-calibration cycles. To
assess this, we subtract the phase solutions for each time
and frequency solution value between two consecutive self-
calibration cycles and take the circular standard deviation
as a measure of the stability. Similarly, to examine the
behaviour of the amplitude solutions, we calculate the stan-
dard deviation of the ratio between solutions from two
consecutive self-calibration cycles. Both measures should
for stable self-calibration converge to small values, depend-
ing only on the solution noise. This converging behaviour is
illustrated in Fig. 13 for the same sources as in Fig. 12.

Using these metrics, we can quickly assess both the qual-
ity of self-calibration and the best self-calibration cycle (see
Appendix A for automatic approaches). This aligns with the ad-
hoc calibrator selection criteria implemented by Ye et al. (2023).
Among our 29 self-calibrated sources we did not find any diverg-
ing behaviour. These results also reassured us that the phase
noise selection metric, discussed in Sect. 3.3.1, did not select
false-positive candidates.

During testing of our selection metrics, we did also run self-
calibration on some of the sources that were above our phase
noise selection threshold (see Sect. 3.3.1). Although sources with
scores close to our selection threshold did slightly improve after
self-calibration, were the corrections too small to sufficiently
improve the DDEs within a facet. In Appendix B we discuss
two examples with strong divergent calibration behaviour. These
illustrate the effectiveness of performing an additional inspection
of the image and solution quality.

3.3.4. Facet layout

After selecting the best self-calibration cycles of each source,
we merge all solutions from each direction together into one
multi-direction solution file for each of our observations, stored
in HDF5 format (Folk et al. 2011). We also add phase and ampli-
tude solutions of 0 and 1, respectively, from our primary in-field
calibrator, as we did not have to apply self-calibration on this
source after doing the thorough calibration, which includes DD
calibration, as discussed in Sect. 3.2.3. The positions of the
30 calibrator sources (1 primary in-field calibrator source and the
29 DD calibrator sources) determine our facet layout through a
Voronoi tessellation. This assigns each point in our field of view

to the solutions of their nearest calibrator source. Across each
facet, we assume that calibration solutions are constant (Schwab
1984; van Weeren et al. 2016).

In Fig. 14 we show an 1.2′′ DI image from one of our obser-
vations, which we produced with WSClean12 (Offringa et al.
2014), after applying the solutions from our DI calibrator. On top
of this image, we projected the Voronoi tessellation correspond-
ing to our 30 calibrators. The figure illustrates the successful
correction of DDEs near the DI calibrator (indicated by the yel-
low star) and highlights how strong the DDEs are around our
selected calibrator. Imaging including our final DD solutions is
discussed in Sect. 4.

3.3.5. Refining Dutch calibration

Our calibration strategy is specifically designed to enhance the
calibration solutions for international stations, by incorporating
the phase-up of the Dutch core stations and excluding baselines
shorter than 20 000λ (see Sect. 3.3.2). However, after applying
DD calibration corrections, we observed strong artefacts from
18 of our 30 calibrators when we created facet images at 6′′.
This arises from bright sources outside the facet boundaries
that affect the calibration of shorter baselines during DD self-
calibration. Adding subtraction of sources near our calibrators
before DD calibration, using for instance the 6′′ models, would
have been too expensive, as this brings an additional cost of
~800 000 CPU h. However, as we are using subtraction around
our facets before imaging (see Sect. 4.1), we could still fur-
ther refine the calibration solutions for the shorter baselines,
as we outline below. The workflow for refining the solutions
corresponding to the Dutch LOFAR stations, discussed in this
subsection, is also presented in the diagram in Fig. 15 for the
general case of N observations.

To suppress calibration issues introduced by bright sources
beyond the facet boundaries, we subtracted sources from our vis-
ibility data that correspond to sources outside our facets, using
image models at 1.2′′. These model images were produced for
each of our four observations with the merged DD solutions dis-
cussed in Sect. 3.3.2. As the subtraction of sources is part of
our imaging procedure, we refer to Sect. 4.1 for further discus-
sion about this process. After subtraction, we conducted extra
rounds of self-calibration on the entire facet with only the Dutch
core and remote stations, using a uv-cut of 750λ (correspond-
ing to a LAS of ~275′′). Since we calibrate at 6′′ and our facets
are smaller than the entire wide-field image, we are allowed

12 https://gitlab.com/aroffringa/wsclean
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Fig. 11. Four examples of self-calibration from
our selected DD calibrators. Cycle 0 is the
first image with only DI solutions applied from
the in-field calibrator (see Sect. 3.2). Cycle 3
corresponds to the self-calibration image after
3 rounds of scalarphase calibration. After
this cycle, scalarcomplexgain calibration is
added. This also calibrates for amplitude errors.
Cycle 10 shows the result after the 10th self-
calibration round. In some cases, the RMS noise
(given by σ in the figures) goes slightly up
when comparing cycles 3 and 10. This is due
to the introduction of amplitude corrections,
which can cause slight increases or decreases in
the overall local RMS values when for instance
larger corrections for stations closer to the
Dutch core are obtained. The angular size scale
is indicated in the right top corner.
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Fig. 12. Self-calibration image stability for two different sources. The red line displays the progression of the RMS over self-calibration cycles,
while the blue line represents the dynamic range (absolute min/max pixel) over self-calibration cycles. The black dashed line is the best calibration
cycle according to a combined assessment of the solution and image stability. Left panel: this example corresponds to the self-calibration cycles of
the source in the first row of Fig. 11. Right panel: this example corresponds to the self-calibration cycles of the source in the second row of Fig. 11.

Fig. 13. Self-calibration solution stability for two different sources (corresponding to the sources from Fig. 12). The red line displays the circular
standard deviation of the phase solution difference between the current and previous self-calibration cycle for each time and frequency value for
each station. The blue line gives the standard deviation of the amplitude ratio of each time and frequency value for each station between the current
and previous self-calibration cycle. We note that amplitude solves are only optionally triggered from cycle 3 onward, when the S/N is deemed
sufficient by metrics from facetselfcal. The black dashed line corresponds to the selected calibration cycle, based on a combined assessment
of the solution and image stability.

to average our data to 20 s and 244 kHz and apply on top
of this additional averaging based on the facet size. With the
resulting uv-data sets we found 10 rounds of self-calibration to
be sufficient to reach convergence. After experimenting with
different settings, we found for each self-calibration cycle the
following steps to work best (see Table 3 for the operation
description):

– scalarphase I. We start by solving for ‘fast’ phase
variations for the Dutch remote stations, by applying
scalarphase corrections with a solution interval of 1 min
and a frequency smoothness kernel of 10 MHz for the Dutch
remote stations. This is because the remote stations have
faster phase variations.

– scalarphase II. To solve for the slower varying phases for
the Dutch core stations, we then employed scalarphase

corrections with solution intervals of 5 min and a larger
frequency smoothness kernel of 20 MHz.

– scalarcomplexgain. While the first two self-calibration
cycles only have scalarphase corrections, we introduce in
the third self-calibration also scalarcomplexgain calibra-
tion to correct for scalar amplitude effects as well. This step
solves with a solution interval of 30 min and a frequency
smoothness kernel of 15 MHz.

The final merged solutions from three different facets for differ-
ent Dutch stations across the Netherlands are shown in Figs.16
and 17. Figure 18 demonstrates for 1 facet the significant image
improvements at 6′′ resolutions. We merged the resulting Dutch
core and remote solutions back into our full merged solu-
tions for all stations that we obtained after DD calibration (see
Sect. 3.3.2). To compare how these new solutions improve the
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Fig. 14. Final facet-layout on top of the
1.2′′ DI image, created by applying DI cor-
rections on data from one of our observa-
tions. The yellow star indicates the position
of the primary in-field calibrator, the red
crosses correspond to the DD calibrators,
and the green boundaries show the Voronoi
tessellation corresponding to these calibra-
tors. The numbers are used for reference
throughout this paper.

Fig. 15. Workflow corresponding to the cal-
ibration steps explained in Sect. 3.3.5 for
the general case with N observations. The
workflow starts with the DD-corrected uv-
data and ends with the refined DD-corrected
uv-data for N different observations of the
same field. These steps follow after the
workflow in Fig. 8. The prediction and sub-
traction steps are in more detail explained in
Sect. 4.1. Purple ovals are input data, blue
boxes are operations on the data, red boxes
are data filters, yellow boxes are calibra-
tion steps, and green ovals are output data.
Stacked ovals imply that there are output
products for each observation. Dashed lines
indicate the presence of numerous observa-
tions that can run in parallel. For a descrip-
tion of the calibration operations we refer to
Table 3.

A80, page 16 of 32



de Jong, J. M. G. H. J., et al.: A&A, 689, A80 (2024)

Fig. 16. Merged phase calibration solution plots corresponding to the different facets (rows) and different stations, given by their station IDs
(columns). These solutions are relative to the CS001HBA0 Dutch core station. The facets have the DD solutions from their corresponding calibrator,
as depicted in Fig. 14.

Fig. 17. Merged amplitude calibration solution plots corresponding to the different facets (rows) and different stations, given by their station IDs
(columns). The facets have the DD solutions from their corresponding calibrator, as depicted in Fig. 14.

image quality at 3 different resolutions, we show for the same
facet in Fig. 19 the image quality.

This additional step was implemented after we already com-
pleted the full imaging of all facets at all resolutions (see Sect. 4).
Since the imaging procedure is computationally expensive and
increases with the image size and the size of our uv-data, we
opted to only use these solution refinements for the imaging at
1.2′′ resolution and just for the 5 facets that we found visually
to be most affected by the Dutch solution issues at 0.6′′ and
0.3′′ resolutions (such as the facet from Fig. 19). This is also
motivated by the fact that the Dutch core and remote stations
have the most short baselines, which implies that the calibration
issues for those stations reduce towards higher resolutions.

4. Wide-field imaging

Following the completion of the calibration procedures and col-
lecting our merged phase and amplitude solutions, we performed
wide-field imaging to obtain our final image products. In this
section, we discuss the imaging method, show parts of our imag-
ing results, and discuss the computational costs of this step in the
process compared to calibration.

4.1. Method

We employed WSClean Version 3.3 to produce the wide-
field images. This imager has, using the wgridder module

(Arras et al. 2021; Ye et al. 2022), a facet-based imaging mode
that enables wide-field imaging with solutions for different
facets. While this option has proven to be fast and reliable for
making large wide-field images corrected for DD effects (e.g.
de Jong et al. 2022; Ye et al. 2023), with the large data volumes
the computational demands for 0.3′′-imaging are so high, at this
resolution, it would take over four months to make at this reso-
lution images up to 1010 pixels directly with four observations
(see Sect. 4.3). For an 1.2′′ resolution wide-field image, it only
takes up to four days for an 8 h dataset. So, we decided to only
utilize the facet-based imaging for making wide-field images at
1.2′′ resolution for each of the four individual observations, as
this gives us an image to assess the quality of our fully cali-
brated data across the entire field of view for each observation.
Additionally, the model images from WSClean were essential for
imaging our facets separately. This involved predicting and sub-
tracting data outside each facet, a process we describe in detail
below.

By making images of our facets separately, we allowed our-
selves to average the visibilities without introducing smearing
effects. The averaging factors in both time and frequency are
determined by the facet size and vary from 3 to 7. This speeds up
the imaging, compared to the original 1 s (or 2 s) and 12.21 kHz
resolutions of the datasets before averaging. We note that the
datasets that were originally averaged to 2 s will have smaller
time averaging factors. To remove emission outside a facet, we
first derived model visibilities corresponding to the sky outside
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Fig. 18. Example of the image improvements after applying extra self-calibration with only Dutch core and remote stations at 6′′ on facet 17 (see
Fig. 14) in a 0.4◦ × 0.4◦ cutout image. Cycle 0 has only DI solutions applied, cycle 3 had the first round of scalarcomplexgain solve where both
phases and amplitudes are calibrated, while cycle 10 shows the result after the final round of self-calibration.

Fig. 19. Image quality changes across four resolutions after applying extra self-calibration with only Dutch core and remote stations on the calibrator
from facet 17 (see Fig. 14) in a 0.4◦ × 0.4◦ cutout image. The top row displays part of the facet images before adding the extra Dutch solutions and
the bottom row displays the results after adding the extra Dutch solutions.

each facet by utilising the model images from the 1.2′′ resolu-
tion radio maps corresponding to each observation. To achieve
this, we masked the facet in the model image and used this
masked model image to predict visibilities with applied DD
solutions in WSClean. This yields the model data visibilities
that we then subtracted from the original DI corrected visibil-
ities. As this process can be done in parallel over frequency

blocks, we did the prediction and subtraction for smaller fre-
quency sub-band for each of our observations, which helped
us reduce the processing wall-clock time by a factor 16 (see
Sect. 4.3). We note that this does not reduce the total CPU time.
After phase-shifting the subtracted data to the centre of the facet,
applying the solutions from the DD calibrator, and account-
ing for the beam at the facet’s centre, we averaged the data for
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Table 4. Resolutions, RMS noises, and source densities of each individual facet.

0.3′′ 0.6′′ 1.2′′

Facet Resolution RMS ρ Resolution RMS ρ Resolution RMS ρ
(arcsec2) (µJy beam−1) (degree−2) (arcsec2) (µJy beam−1) (degree−2) (arcsec2) (µJy beam−1) (degree−2)

1 0.36×0.45 29 668 0.61×0.67 37 797 1.25×2.74 60 668
2 0.35×0.42 21 1278 0.58×0.63 29 1388 1.09×2.03 56 943
3 0.34×0.40 20 1824 0.56×0.61 27 1824 1.05×1.71 50 1450
4 0.34×0.41 20 1491 0.57×0.62 28 1336 1.06×1.81 49 1052
5 0.34×0.41 19 1594 0.57×0.62 26 1403 1.05×1.78 51 989
6 0.34×0.41 19 1596 0.57×0.62 27 1500 1.06×1.87 47 1093
7 0.35×0.42 22 928 0.58×0.63 30 877 1.06×1.97 54 577
8 0.36×0.43 28 718 0.62×0.65 36 778 1.15×2.51 62 692
9 0.35×0.43 22 875 0.58×0.64 30 967 1.08×2.11 55 611
10 0.34×0.41 18 1615 0.56×0.61 25 1456 1.04×1.68 47 1023
11 0.33×0.39 15 2118 0.55×0.59 22 1764 1.02×1.45 48 900
12 0.33×0.39 16 2281 0.55×0.60 22 1811 1.02×1.52 41 1057
13 0.34×0.40 17 1843 0.56×0.61 25 1740 1.03×1.63 44 1214
14 0.34×0.42 21 1435 0.57×0.62 28 1373 1.05×1.78 56 1071
15 0.34×0.40 16 1860 0.55×0.60 22 1571 1.02×1.53 41 1062
16 0.33×0.38 14 2071 0.54×0.59 21 1678 1.00×1.40 40 912
17 0.33×0.39 15 1983 0.55×0.59 21 1721 1.01×1.48 39 1132
18 0.34×0.41 20 1269 0.57×0.62 27 1218 1.04×1.78 49 860
19 0.35×0.43 25 1115 0.59×0.64 33 1158 1.09×2.14 58 974
20 0.35×0.42 21 1203 0.58×0.63 28 1239 1.06×1.92 49 848
21 0.34×0.40 17 1942 0.55×0.60 24 1733 1.02×1.54 43 1152
22 0.33×0.38 15 2315 0.55×0.59 21 1966 1.00×1.41 41 1145
23 0.33×0.40 17 1826 0.56×0.61 24 1756 1.03×1.60 44 1178
24 0.35×0.42 21 863 0.58×0.63 30 1052 1.05×1.94 52 821
25 0.34×0.40 19 1573 0.56×0.61 26 1433 1.03×1.63 51 948
26 0.35×0.42 20 1365 0.57×0.63 27 1455 1.07×2.01 54 997
27 0.35×0.43 28 712 0.60×0.64 37 785 1.12×2.32 63 630
28 0.35×0.42 24 1044 0.58×0.63 32 1121 1.09×2.11 58 742
29 0.36×0.45 28 679 0.56×0.61 38 658 1.28×2.82 71 679
30 0.35×0.44 28 734 0.60×0.66 36 824 1.14×2.50 61 657

Notes. The facet numbers correspond to the numbers in Fig. 14. The source density (ρ) is based on the catalogues after cleaning our source
detections, as discussed in Sect. 5.

each observation before proceeding with the final imaging using
WSClean.

We imaged each facet with all observations together, using a
Briggs weighting of −1.5 (Briggs 1995), a minimum uv-value of
80λ (corresponding to a LAS of ~43′), pixel sizes of 0.1′′, 0.2′′,
and 0.4′′, and corresponding Gaussian tapers of 0.3′′, 0.6′′, and
1.2′′. For efficient deep cleaning and to better recover extended
diffuse emission, we apply ‘auto’ masking, multi-scale decon-
volution, and an RMS box equal to 50 times the synthesized
beam size (Cornwell 2008; Offringa & Smirnov 2017). WSClean
ends by applying a final full primary beam correction to correctly
account for the attenuation of the primary beam.

4.2. Facets and mosaics

Table 4 gives the resolutions, RMS noise, and source density
of each individual facet. We reach a best RMS noise value
of 14 µJy beam−1 for the 0.3′′ facets, 21 µJy beam−1 for the
0.6′′ facets, and 39 µJy beam−1 for the 1.2′′ facets near the
pointing centre (see Sect. 6.1 for a more detailed RMS noise
analysis). This is about twice as deep as the sensitivities reported
by Sweijen et al. (2022b) at 0.3′′ and Ye et al. (2023) at 1.2′′,
who utilised data with four times less integration time. This

aligns with the expected behaviour from the radiometer equation,
which states that sensitivity improves as the square root of the
integration time (Kraus 1966). We find our best resolutions near
the pointing centre, with resolutions of 0.33′′ × 0.38′′ for the
0.3′′ facets, 0.54′′ × 0.59′′ for the 0.6′′ facets, 1.00′′ × 1.40′′ for
the 1.2′′ facets. The stronger elongation of the synthesized beam
for the 1.2′′ target resolution is due to the sparsity of LOFAR
stations between 80 and 180 km (see Fig. 2).

To make wide-field images, we convert the individual reso-
lutions from the facets to one common resolution. Due to issues
with one of our computing nodes, we lost 5 of our residual and
model images of the 0.3′′ facets. We were therefore only able to
convolve our 0.3′′ map to a common resolution equal to the facet
with the lowest resolution, using CASA imsmooth (The CASA
Team 2022). This gives us a resolution of 0.36′′ × 0.45′′. Having
all model and residual images available for the other resolutions,
we were able to restore these maps with WSClean to a common
resolution of 0.58′′ × 0.62′′ and 1.0′′ × 1.5′′.

After mosaicing the individual facets, we have our wide-
field images for all three resolutions with image sizes of
90 000 × 90 000, 45 000 × 45 000, and 22 500 × 22 500 pixels
for the 0.36′′ × 0.45′′, 0.58′′ × 0.62′′ and 1.0′′ × 1.5′′ respec-
tively. In Fig. 20, we present one of our wide-field images with
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Fig. 20. Our final 0.3′′ wide-field image centred on RA = 242.75◦ and Dec = 54.95◦ with cutouts at 0.3′′, 0.6′′, and 0.6′′ from selected areas. The
letters correspond to the selection of sources in Fig. 21.

a few cutouts of areas at different resolutions. In order to assess
visually the quality and level of detail across various resolutions,
we showcase selected cutouts from our radio maps at resolutions
of 0.36′′ × 0.45′′, 0.58′′ × 0.62′′ and 1.0′′ × 1.5′′, and 6′′ in
Fig. 21, where for the 6′′ counterparts we utilised the deep wide-
field image recently created by Shimwell et al. (in prep.), who
used more than 500 h of LOFAR data. These selected cutouts

reveal the structural details at the higher resolutions, notably
evident in the lobes of radio galaxies, while the lower resolu-
tions highlight the diffuse emission from these same sources.
during the rest of this paper, we use our individual facet images,
as these have the best fitted resolutions and depths. We there-
fore continue to refer to these images by 0.3′′, 0.6′′, and 1.2′′
resolutions.

A80, page 20 of 32



de Jong, J. M. G. H. J., et al.: A&A, 689, A80 (2024)

Fig. 21. Different radio galaxies (rows) across resolution (columns) for a selection of cutouts in the wide-field images produced in this paper. The
green letters correspond to the letters depicted in the wide-field image from Fig. 20. The 0.3′′, 0.6′′, and 1.2′′ images are produced by us, the
6′′ images are from the wide-field image of ELAIS-N1 produced by Shimwell et al. (in prep.). The angular size scale is indicated in the right lower
corner.
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Fig. 22. Pie plots depicting the fraction of CPU h of each of the major calibration and imaging steps for 1.2′′-imaging (left panel) and 0.3′′-imaging
(right panel). The 1.2′′ processing was done for one observation with the facet-mode from WSClean in about 7000 CPU h, and the 0.3′′-imaging
was done for one observation using the predict-subtract method for one observation in about 139 000 CPU h. These numbers scale roughly linearly
with the number of observations. The ‘Subtract DDF FoV’ includes the subtraction of sources outside the 2.5◦ × 2.5◦ field of view from the
last paragraph of Sect. 3.1. The ‘DI VLBI calibration’ includes the DI calibration from Sect. 3.2. The ‘DD VLBI calibration’ includes the DD
calibration selection and self-calibration from Sect. 3.3. To highlight the computational costs for imaging compared to the other data reduction
steps combined, we indicate in the figure ‘Imaging’ and ‘Other’ in the pie plots.

4.3. Computing costs

Making wide-field images in the order of 109–1010 pixels
requires significant computing resources. For processing our
data we utilised AMD EPYC 7551 and AMD EPYC 7702P pro-
cessor nodes with each 60 cores and with 0.5 TB and 1 TB
RAM. Although the predict-subtract method before imaging of
the individual facets (see Sect. 4.1) incurs a large computational
cost, accounting for approximately 76% of the total imaging
costs, we managed to reduce the wall-clock time by a factor 16
through additional parallelisation by splitting our total frequency
bandwidth in smaller blocks and performing the prediction and
subtraction step for each block separately. The final imaging
costs for four observations total 550 000 CPU h, which brings us
to a total of about 680 000 CPU h for full data processing includ-
ing calibration. With the large data volumes, we found a linear
relationship between data volume and computing costs. Using
this linear relationship, we find an improvement of about a factor
2 compared to Sweijen et al. (2022b), who worked with only a
sixth of the data size we processed (taking into account that they
pre-averaged their 8 h dataset by a factor 2 in time). This speedup
is primarily due to a combination of software enhancements
in WSClean and the optimisation of our software containers
for the appropriate hardware. While we observe an improve-
ment in processing speed, it is notable that when mapping the
sky at the highest resolution the imaging expenses account for
81.5% of our overall processing costs, as depicted in the right
panel of Fig. 22, which is slightly higher compared to the 76%
reported by Sweijen et al. (2022b). This difference could be due
to a combination of different numbers of facets and software
improvements that have affected parts of the pipeline differently
than other parts. That computational demands for 0.3′′-imaging
are predominantly driven by imaging, highlights that full data
reduction speedups need development for this step. For creating
the 0.6′′ resolution wide-field image, we averaged our data to 2 s
and 24.42 kHz, before imaging and changed the final imaging
parameters. We could similarly for the facets at 1.2′′ resolution
average again by a factor two (4 s and 48.84 kHz) compared to
the 0.6′′ resolution. The averaging makes only the final imaging
after the prediction and subtraction 4 (0.6′′) or 16 (1.2′′) times
faster, compared to 0.3′′-imaging.

As a part of the prediction and subtraction step for the
0.3′′ and 0.6′′ resolution imaging, we made wide-field model
images at 1.2′′ for each of our four observations. The computing
costs for this step, using the WSClean facet-based imaging mode,
required 7000 CPU h per observation. This is almost two times

Table 5. PyBDSF settings modified from the default values.

Parameter Value

rms_box (120, 15)
rms_box_bright (40, 10)
adaptive_rms_box True
atrous_do True
group_tol 10.0

Notes. We refer to the documentation for a full description of these
parameters.

faster than what Ye et al. (2023) reported for wide-field imag-
ing. The improvement is again due to a combination of recent
software improvements and the different computing nodes they
used for imaging. In the left panel of Fig. 22 we display the
imaging costs for 1.2′′-imaging. Comparing this with the plot
corresponding to 0.3′′-imaging from the right panel, it is evident
that 1.2′′-imaging with the facet-mode from WSClean signifi-
cantly reduces the weight of the imaging step on the complete
data reduction workflow. The reduced computational costs, rela-
tive to sub-arcsecond imaging, make imaging at 1.2′′ resolution
an interesting intermediate resolution for specific science goals
or surveys, as was also highlighted by Ye et al. (2023). The sci-
entific benefits of the different resolutions are discussed further
in Sect. 6.5.

5. Cataloguing

We constructed catalogues with radio sources for all three of our
image resolutions (0.3′′, 0.6′′, and 1.2′′) by employing PyBDSF13

on our individual facets (Mohan & Rafferty 2015). All parameter
settings that we modified from the default settings are displayed
in Table 5. The rms_box sets the sliding box parameters for cal-
culating the RMS and mean flux density per beam over the entire
image. With the rms_box_bright parameter we enable PyBDSF
to more effectively increase the noise in regions of artefacts, by
using a smaller box around brighter sources. The group_tol
parameter groups Gaussian components fitted by PyBDSF. We
opted to use the value 10 for this parameter, as this value has
been often adopted for source detections at the same or similar
frequencies (e.g. Williams et al. 2019; Ocran et al. 2020; Sabater
et al. 2021; Ye et al. 2023). PyBDSF detected with these settings

13 https://pybdsf.readthedocs.io
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Fig. 23. Examples of resolved sources where the integrated flux density
and source position were obtained by using an enveloping polygon (light
green) circumventing all source islands. Similar to PyBDSF, we require
each polygon to have a peak intensity exceeding 5 times the local RMS.
The final source position, determined using moment analysis, is marked
by the red star. The black star is at the position of the peak intensity of
the source within the polygon boundary.

24 251 objects for our 0.3′′ resolution radio map, 14 099 objects
for our 0.6′′ resolution radio map, and 10 229 objects for our
1.2′′ resolution radio map.

Although we set the group_tol higher than the default value
to enhance the association of components, we find by eye unas-
sociated detections by PyBDSF that are part of the same physical
object. We therefore decided to apply additional source asso-
ciation. Automated source association approaches at 6′′, using
for instance a convolutional neural network, have shown to pro-
vide a similar accuracy to what visual inspection by astronomers
would obtain (Mostert et al. 2022). Since we have radio maps
at higher resolutions, these models require extra training and
testing, introducing additional challenges that are beyond the
scope of this paper. Fortunately, our field of view is confined
to 2.5◦ × 2.5◦, limiting the number of large resolved sources.
We therefore decided to visually inspect all clusters of sources
within a distance of 50′′ from each other and associate com-
ponents that are likely part of the same source. For guidance,
we used images at each of the four different resolutions, which
allowed us, in case of doubt, to make comparisons during the
association of extended objects. After this visual inspection, we
were left with 22 804, 13 119, and 9577 sources at 0.3′′, 0.6′′, and
1.2′′ respectively.

Following component associations, we employed the
shapely14 Python package to automatically find the integrated
flux densities of the visually associated components. With this
package, we automatically drew polygons enveloping all islands
from each source and summed the pixels within to obtain the
integrated flux density. For the final central source position,
we applied, similar to PyBDSF, moment analysis (Hu 1962),
which calculates the weighted mean of the brightness distribu-
tion, thus providing a robust measure of the centroid of extended
sources. We carried out an additional visual inspection of the
sources that we identified by eye as having a bad polygon fitting.
Consequently, this led us to manually calculate the integrated
flux density of 67 sources. To illustrate our method, we show
in Fig. 23 two examples of extended sources that have been
subjected to our fitting procedure.

To ensure the reliability of the sources in our final cata-
logue, we decided to use a S/N threshold at 5σ, which implies
that we reject all sources with a peak intensity below 5 times
the local RMS. This is reported by PyBDSF in the Isl_rms

14 https://shapely.readthedocs.io

Fig. 24. Source density as a function of distance from the pointing cen-
tre in degrees for all three resolutions. This figure was constructed by
evaluating the median source density in bins of 0.2◦.

column. After removing these sources we had 13 058, 10 241,
6997 sources at respectively 0.3′′, 0.6′′, and 1.2′′. The remain-
ing sources were cross-matched with the catalogue from the
6′′ ELAIS-N1 LOFAR HBA map by Shimwell et al. (in prep.),
where we reject sources from our catalogue that do not have a
cross-match within 6′′. Their map has a minimal sensitivity of
11 µJy beam−1 and is therefore deeper than our images. This
additional selection step ensured the reliability of our catalogue
content and left us with final source counts of 9203, 8567, 5872
sources at 0.3′′, 0.6′′, and 1.2′′ respectively.

Going about two times deeper than Sweijen et al. (2022b)
and Ye et al. (2023), we find respectively 4 and 2.5 times more
objects at the same resolutions. To illustrate the source distribu-
tion across our different facets and resolutions, we give in Table 4
the source densities across our 30 facets and plot in Fig. 24 the
source density as a function of distance from the pointing centre.
In Sect. 6.5 we further discuss the different sources detected at
different resolutions.

6. Discussion

We have created the deepest (sub-)arcsecond wide-field images
of ELAIS-N1 at 140MHz, accomplished by processing together
four 8 h observations including all available LOFAR stations. In
this section, we do additional analysis of the image and source
detection quality.

6.1. RMS noise

In Sect. 4.2 we touched upon the RMS noise across different
facets. This variation is also notable in the RMS noise map from
PyBDSF, as shown in Fig. 25. The higher RMS noise values at
lower resolution are due to a combination of tapering and Briggs
weighting, which we set for all three resolutions at −1.5 (see
Sect. 4.1). Given that we have not optimized the Briggs weight-
ing for all resolutions, this may particularly negatively effect the
RMS noise at 1.2′′ resolution, as this resolution is most sus-
ceptible to the uv sampling gaps between 80 and 180 km (see
Fig. 2). However, optimising the Briggs weighting parameter is
with the current computing costs too expensive (see Sect. 4.3).
The RMS noise offsets between facets in Fig. 25 are attributed to
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Fig. 25. RMS maps for different resolutions. Left: 0.3′′. Middle: 0.6′′. Right: 1.2′′. These maps are made with PyBDSF and scaled between one and
three times the best RMS noise in the image (see Fig. 26).

Fig. 26. Median RMS noise as a function of distance from the pointing centre in degrees for all three of our resolutions. The median RMS noise
values are calculated in bins of 0.06◦ and fitted by a second-order polynomial. Left panel: absolute RMS. Right panel: RMS divided by the RMS
at the pointing centre, where we added the inverse primary beam intensity for an international and Dutch core station.

solution quality differences across the DD calibrators, with each
facet having its own set of DD solutions. The peaks in the local
RMS noise at the positions of bright sources are due to remain-
ing DDEs that are not completely removed around the brightest
sources. The sensitivity variation due to the attenuation from
the primary beam is also a key contributor to the RMS noise
increases towards the edge of the field. This is demonstrated with
the median RMS noise as a function of distance in the left panel
of Fig. 26.

In the right panel of Fig. 26 we compare the shape of the
RMS curves as a function of distance from the pointing cen-
tre for the 0.3′′, 0.6′′, and 1.2′′ resolution. The larger steepness
of the relative RMS noise for higher resolution reflects the pri-
mary beams of the stations used at that particular resolution. This
explains why the source densities converge for the three resolu-
tions at the edges of the field, as shown in Fig. 24 and Table 4.
In the right panel of Fig. 26 we plot for comparison also the
inverse primary beam intensity (IP) for an international and a
Dutch core station as a function of distance (θ) from the pointing
centre, using a simple Gaussian model given by

IP = exp
(
−4 ln 2

θ2

FWHM2

)
,

where the FWHM is the full width at half maximum of the
synthesized beam and determined by

FWHM = α ·
λ

D
.

In this formula λ represents the wavelength (corresponding to
140 MHz) and D signifies the diameter of the stations, where
we used a diameter of 30.75 meters for a Dutch core station,
and 56.5 for the international station (van Haarlem et al. 2013).
The value for α varies based on the station layout and additional
tapering, being 1.02 for a perfect circular aperture (Napier 1999),
and 1.3 for LOFAR15. As anticipated, we observe that the relative
RMS noise across all resolutions falls between the primary beam
intensities of the international and Dutch core stations.

6.2. Smearing

Bandwidth and time smearing are important effects that degrade
the quality of our radio maps and cannot be corrected by calibra-
tion. These effects cause sources to appear smeared or elongated
in the radial direction in the case of bandwidth smearing and tan-
gentially in the case of time smearing with respect to the pointing
centre. This makes accounting for smearing effects essential
for accurately measuring source sizes, morphologies, and peak
intensities. Since smearing becomes more pronounced closer to
the edge of the field of view, it contributes to the decrease in
source detections in Fig. 24.

An effective measure for assessing smearing levels is to
compare the peak intensity with the integrated flux density of

15 https://science.astron.nl/telescopes/
lofar/lofar-system-overview/observing-modes/
lofar-imaging-capabilities-and-sensitivity
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Fig. 27. Smearing across distance from the pointing centre. Left panel: ratio of peak over integrated flux density as a function of the distance from
the pointing centre for the 3 different resolutions considered in this paper. The plot is made by taking the median ratio for several distance bins.
The error bars are based on the errors on the peak and integrated flux densities measured by PyBDSF. Right panel: fraction of sources with peak
over integrated flux densities above 0.85 for different distance bins. To enhance the reliability of our source sample, we considered for both panels
only sources fitted by a single Gaussian by PyBDSF and a peak intensity at least 15 times above the local RMS noise.

unresolved sources across the field. This is because smearing
affects the peak intensity much more than the integrated flux
density, as the integrated flux density only reduces when flux
disappears below the detection threshold, while the peak inten-
sity always decreases. For an ideal, unsmeared point source, the
ratio of the peak intensity over the integrated flux density should
be one. In the left panel of Fig. 27, we illustrate the variation
of this ratio with distance from the pointing centre, by selecting
sources with peak intensities at least 15 times above their local
RMS and fitted by a single Gaussian, across our three resolu-
tion images. The figure demonstrates a noticeable reduction in
this ratio towards the edge of our field of view, most pronounced
at the highest resolution. These declining trends are due to the
inevitable effects of smearing, which in our case are intensified
by the fact that half of our observations were stored in the LTA
with a factor of two extra time averaging. Although we find the
peak over integrated flux densities for some sources to be close
to one near the pointing centre, the sources with much lower
ratios push the median peak over integrated flux density down to
below 0.8 in our distance bins. Part of the reason why our ratios
are not at unity is due to our source selection where we are plot-
ting all sources that are fitted by PyBDSF by a single Gaussian,
while a source might still be a partly resolved source. Therefore,
to quantify the number of sources with a peak over integrated
flux density closer to 1, we show in the right panel of Fig. 27
the fraction of sources with a peak over integrated flux density
above 0.85. Similar to the left panel, we find only the 0.3′′ and
0.6′′ to have a declining trend from the pointing centre towards
the edge of the field, which implies that smearing is negligible
at 1.2′′.

6.3. Astrometry

We used an in-field calibrator source in our sky model of which
the position was known with milliarcsecond-level accuracy (see
Sect. 3.2.2). To evaluate the quality of the final astrometry
from our radio maps, we conduct a comparison between our
catalogue and the 6′′ catalogue from the LOFAR deep field
DR1 (Kondapally et al. 2021; Sabater et al. 2021). The wide-
field image behind the 6′′ catalogue has a sensitivity up to
20µJy beam−1. The source detections have been associated

with sources across multiple wavelengths, enabling an astro-
metric reference frame. The multi-wavelength data includes
the Hyper-Suprime-Cam Subaru Strategic Program (HSC-SSP)
survey (Aihara et al. 2018), Panoramic Survey Telescope and
Rapid Response System (Pan-STARRS; Kaiser et al. 2010),
the UK Infrared Deep Sky Survey Deep Extra-galactic Survey
(UKIDSS-DXS; Lawrence et al. 2007), the Spitzer Adaptation
of the Red-sequence Cluster Survey (SpARCS; Wilson et al.
2009; Muzzin et al. 2009), the Space Infrared Telescope Facil-
ity (SIRTF) Wide-Area Infrared Extragalactic Survey (SWIRE;
Lonsdale et al. 2003) and the Spitzer Extragalactic Representa-
tive Volume Survey (SERVS; Mauduit et al. 2012). The multi-
wavelength catalogues were generated by combining imag-
ing datasets from all of these surveys across optical-infrared.
The astrometry for the optical datasets used was calibrated to
Two-Micron All Sky Survey (2MASS; Skrutskie et al. 2006).
Kondapally et al. (2021) compared the astrometry between their
generated catalogues to publicly available catalogues, finding
typical offsets of around 0.1′′–0.2′′.

We first associate for each of our sources at 0.3′′ a near-
est radio counterpart from the 6′′ catalogues from Kondapally
et al. (2021), where we allowed a maximum distance of 6′′. Since
point sources are most accurately cross-matched, we only select
sources fitted by PyBDSF with a single Gaussian with major and
minor axes less than 1.25 the size of the synthesized beam. To
ensure that we cross-match sources that are with high certainty
detected in both radio observations, we select from both cata-
logues sources with peak intensities 15 times larger than the local
RMS. As our goal is to determine the astrometry using the opti-
cal cross-matches from Kondapally et al. (2021), we use flags in
their catalogue to exclude sources in regions around bright stars,
as the positions of the optical counterparts of our radio galaxies
might be affected due to close proximity to these bright stars.
We also use a threshold on the likelihood ratio (LR), as deter-
mined by Kondapally et al. (2021). This value indicates the ratio
of the probability that a galaxy is a correct cross-match against
being an incorrect cross-match. The LR is an often used statisti-
cal value to assess the quality of the counterpart cross-matching
(e.g. de Ruiter et al. 1977; Sutherland & Saunders 1992; Smith
et al. 2011; McAlpine et al. 2012). We opt for selecting the top
30% of sources with the highest LR scores, as this leaves us with
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Fig. 28. Position offsets between our 0.3′′ radio source detections and optical counterparts according to the 6′′ catalogue from Kondapally et al.
(2021), where we used selection filters based on the accuracy of the associations at 6′′ as described in the text. Left panel: two-dimensional
hex-bin histogram with the RA/DEC offsets (dRA and dDec) between the 0.3′′ catalogue and the optical counterparts. The median offsets are
given by the black dashed line at dRA = 0.094 ± 0.093′′ and dDec = −0.067 ± 0.064′′. Right panel: position offsets of the selected 192 sources at
0.3′′ resolution, where the colourbar corresponds to their absolute offsets and the arrow direction to their directional offset. We added the positions
of the DD calibrator with red crosses and the in-field calibrator with a red star. Facets are given by black contours.

a sufficient number of sources (192) with the best optical-radio
cross-matches. With this sample, we find median offsets of
dRA = 0.094 ± 0.093′′ and dDec = −0.067 ± 0.064′′ between
our 0.3′′ radio positions and the optical positions selected from
Kondapally et al. (2021) catalogue. These offsets are within
the astrometric uncertainty of the optical positions reported by
Kondapally et al. (2021).

The scatter on the positional offsets is illustrated in the
left panel of Fig. 28. A positional ‘random’ scatter around the
median value is expected because, due to the possible complex
morphological nature of radio sources, there is no guarantee that
the brightest point of a radio source aligns exactly with the posi-
tion of an optical host. However, calibration errors can lead to
systematic offsets. Since each facet has its own calibration solu-
tions (see Sect. 3.3), we assess systematic offsets in the right
panel of Fig. 28, by plotting the distribution of the selected radio-
optical associations with absolute offsets and offset directions
across our 30 facets. While most facets do not show any pre-
ferred positional offset direction, we only find for facets 17, 22,
and 23 hints of a positional offset direction in the +RA direc-
tion (see Fig. 14 for the corresponding facet numbers). However,
noting that the absolute offsets for these facets are not signif-
icantly larger than what we find for other facets, we do not
apply astrometric corrections. To conclude, our small astromet-
ric offsets confirm the high accuracy of our astrometry as a
result of calibrating the in-field calibrator against an accurate sky
model. Despite the presence of hints of minor systematic offsets
in a few facets, the accuracy is largely maintained during DD
calibration.

Additionally, we conducted a similar astrometric analysis
with our 0.6′′ and 1.2′′ data and found within the uncertainties
the same accurate results. This consistency is expected because
the same calibration solutions were applied for all resolutions,
with the exception of some extra facets at 1.2′′ that received
additional calibration for the Dutch core and remote stations
(see Sect. 3.3.5). Nevertheless, we do not observe any impact
from this additional Dutch calibration on the positional offsets
because the calibration solutions for the international stations,

which primarily determine the smallest angular scales, have
remained unchanged.

6.4. Flux scale

Similar to the astrometry evaluation, we verified our flux den-
sity scale by using the catalogue from Kondapally et al. (2021)
(see Sect. 6.3). For this purpose, we utilised only the radio source
information from their catalogue. We selected in both catalogues
sources that were fitted by PyBDSF with a single Gaussian, have
a maximum position offset of 6′′, and which exhibited a peak
intensity at least 25 times greater than the local RMS noise. This
brightness threshold ensures we select sources without any loss
of flux density, considering the resolution difference. With the
remaining 368 sources, we find a median flux density ratio of
S 6

S 0.3
= 0.97 ± 0.14 between the cross-matches of the 6′′ cata-

logue and the 0.3′′ catalogue, demonstrating the consistency of
our flux scale. Similar to the astrometry, the accurate flux density
scale stems from the sky model that we used for calibrating the
primary in-field calibrator (see Sect. 3.2.2).

We also compared the flux scales across our three resolu-
tions. After selecting again sources identified by PyBDSF by a
single Gaussian and with peak intensities 25 times above the
local RMS noise, we cross-matched the three catalogues using
a maximum position offset of 1′′. This yielded 215 sources. For
these sources, we find flux density ratios of S 0.3

S 0.6
= 1.00 ± 0.04,

S 0.6
S 1.2
= 0.99 ± 0.08, S 0.3

S 1.2
= 0.98 ± 0.09. The consistency of these

ratios supports the robustness of our flux density scale across
different resolutions. When we remove the brightness constraint
but keep the 1′′ position offset for sources fitted by single Gaus-
sians, we find with the 3607 remaining sources the following
flux density ratios S 0.3

S 0.6
= 0.97 ± 0.17, S 0.6

S 1.2
= 0.92 ± 0.24, S 0.3

S 1.2
=

0.89 ± 0.28. Despite the large uncertainties, these results align
with our expectations that lower resolutions tend to capture more
diffuse emission compared to higher resolutions. The resolution
differences are discussed further in the next section.
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Fig. 29. Source detection across resolution. Left panel: source counts as a function of the integrated flux density for our 3 resolutions below 10 mJy.
Right panel: detected fraction between sources from our radio maps and the compact sources detected by Shimwell et al. (in prep.) at 6′′. For the
errors, we propagate Poisson uncertainties.

6.5. Sensitivity versus resolution

Higher resolutions allow for accurate astrometry and detailed
characterisation of compact and extended structures whilst also
allowing for more precise optical and near-infrared identification
of host galaxies. The enhanced ability to discriminate between
sources is demonstrated in the lower panel of Fig. 21, where at
6′′ we initially identify 3 Gaussians that appear to belong to the
same source, while at 0.3′′ resolution, we find this to actually be
multiple sources with complex components. However, the detec-
tion of objects with low surface brightness is more challenging
in high-resolution images and requires further image processing
(e.g. smoothing), causing some extended sources, that are visible
at lower resolutions, to not be trivially detectable at higher reso-
lutions. For example, we observe that 22% of the sources in our
1.2′′ catalogue do not have a counterpart at 0.3′′, even though the
0.3′′ map is deeper. This demonstrates the importance of consid-
ering a trade-off between resolution, sensitivity, and scientific
objective.

To illustrate the above, we plot in the left panel of Fig. 29 the
number of sources as a function of integrated flux density across
resolution. This figure demonstrates the effect of enhanced sen-
sitivity at higher resolutions on the number of sources detected
at lower flux densities. As most of our sources are below 1 mJy,
we expect a large fraction of our detections to be part of the star-
forming galaxy population (Best et al. 2023). Above ~0.25 mJy,
we find the number of detections at 0.6′′ resolution to be higher
than the 0.3′′ resolution detections. This is likely due to the fact
that at these flux densities the S/N at 0.6′′ is large enough to
detect many sources and because the source population here
contains many distant star-forming galaxies (with redshifts of
approximately z ∼ 0.5−1.0) that have typical sizes of a few tenths
of an arcsecond. These sources are therefore more likely to be
resolved (out) at 0.3′′ compared to the 0.6′′. Similarly, above
~0.5 mJy the 1.2′′ resolution detects the most sources, which is
because fewer sources are resolved at this resolution.

The 1.2′′ resolution has the best surface brightness sensitiv-
ity of our three resolutions and is therefore the best to identify
extended sources. This includes the population of LERGs, which
are the most dominant radio source population in the LOFAR
Deep Fields DR1 above ~1.5 mJy (Best et al. 2023). However, at

higher redshifts, LERGs will be fainter and more compact and
more often hosted by star-forming galaxies (Kondapally et al.
2022), leading to selection biases when being unable to separate
radio jets from star formation (Mingo et al. 2022; de Jong et al.
2024). This underscores again the value of making wide-field
images at multiple resolutions with the same calibrated data.

We assess in the right panel of Fig. 29 the fraction of sources
detected as a function of resolution by cross-matching our cat-
alogues with the compact sources (fitted by a single Gaussian)
from a deeper 6′′ catalogue (Shimwell et al., in prep.). This fig-
ure shows that the fractions detected at 0.3′′ and 0.6′′ resolutions
yield similar results, despite the lower sensitivity of the 0.6′′ res-
olution map. The 1.2′′ resolution has a low fraction of sources
detected below 0.4 mJy, while above this flux density, all resolu-
tion images have about the same detection fraction and approach
completeness between 1 and 10 mJy. The decline in the detected
fraction towards lower flux densities is explained by a combi-
nation of being less sensitive to detect low surface brightness
sources at higher resolutions and the fact that the 6′′ resolution
map based on 500 h of LOFAR data is slightly deeper than our
maps.

7. Summary and conclusion

We have presented the currently deepest wide-field image of
ELAIS-N1 at about 0.3′′ resolution and 140 MHz. This image
has a field of view of 2.5◦ × 2.5◦ with a sensitivity down
to 14 µJy beam−1 at the pointing centre. This was achieved
by implementing an improved DI and DD calibration strategy
built upon the existing VLBI calibration and imaging strategies
(Morabito et al. 2022a; Sweijen et al. 2022b; Ye et al. 2023) and
applying it to four 8-h LOFAR HBA observations. As additional
products, we produced wide-field images at 0.6′′ and 1.2′′ res-
olution with sensitivities of respectively 21 µJy beam−1 and
39 µJy beam−1 near the pointing centre. In these radio maps,
we report the detection of 9203 sources at 0.3′′, 8567 sources at
0.6′′, and 5872 sources at 1.2′′.

For accurate calibration, we generated a sky model for our
primary in-field calibrator by fitting the spectral index using
different surveys and by imaging ELAIS-N1 at 54 MHz with
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LOFAR LBA data. This approach, along with refinements in the
calibration steps for calibrating the in-field calibrator, improved
our DI calibration of the international LOFAR stations. We
adopted a quantitative approach to assess the selection of the
DD calibrators. This enabled us to quickly and robustly select
the best secondary calibrators to correct for the varying iono-
sphere across our field of view. Although we improved the DD
calibration, we identified existing inaccuracies in the calibration
solutions for the Dutch core and remote stations. This likely
stems from the fact that in this work, due to computational
cost, we initially ignored bright sources in our field beyond the
facet image boundary during self-calibration. To rectify this, we
introduced an extra calibration round specifically for the Dutch
stations after subtracting the sky outside each facet. After imag-
ing each individual facet separately in parallel, we mosaiced
everything back together into our final wide-field images for each
resolution. We find our complete data processing from calibra-
tion to imaging to be about two times faster compared to the
previous work by Sweijen et al. (2022b) and Ye et al. (2023).
This is due to software and hardware improvements.

We find the smearing in our images to be the most severe
at the highest resolution, which is intensified by the fact that
half of our observations from the LTA were pre-averaged to 2 s.
As a result of our primary in-field calibration strategy, using
an accurate sky model, we achieved precise astrometry with
median offsets of dRA = 0.094 ± 0.093′′ and dDec = −0.067 ±
0.064′′ after comparing with optical counterparts selected from
the catalogues by Kondapally et al. (2021). We also found
accurate flux density scales for the wide-field images.

By comparing the three resolutions, we find 1.2′′ to be a
good intermediate resolution to detect sources with extended
low surface brightness emission, while the depth and detail in
our 0.3′′ resolution map are expected to be great for separat-
ing source components or detecting compact objects at higher
redshifts. The 0.6′′ resolution map complements these two reso-
lutions for objects that are resolved out at 0.3′′ and unresolved at
1.2′′, such as star-forming galaxies at low flux densities. We also
find the detected fraction across the three resolutions to reach
completeness between 1 and 10 mJy.

Our work demonstrates the feasibility of making deep wide-
field images at sub-arcsecond resolutions with LOFAR. Near the
pointing centre, we reached RMS noise values close to what has
been recently achieved with the Dutch LOFAR stations at 6′′,
with about 16 times less observation time. Currently, computa-
tional costs are the primary obstacle in processing all 500 h of
LOFAR observations of ELAIS-N1 stored in the LTA (Shimwell
et al. in prep.). Addressing the computational challenges will
enable the creation of the deepest LOFAR wide-field image,
which can be used to uncover objects at the smallest angular
scales in the low-frequency radio sky.
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Appendix A: Towards an automated VLBI pipeline

Given the large data volumes, processing LOFAR data with
international stations incurs significant computing costs (see
also Section 4.3). This makes it essential to carefully optimize
each of the steps in the current calibration strategy. In addition,
removing the manual data processing and visual inspection from
the current strategy could lead to the possibility of conducting
more automated processing, allowing for a larger high-resolution
survey of the northern hemisphere survey. We explore in this
appendix section parts of the pipeline that could be replaced
by automated approaches with strategies to test and implement
these.

The initial steps for obtaining the DI calibration for Dutch
stations with Prefactor pipeline16 and running the DDF
pipeline are already automated. However, human intervention
is still required to inspect the output from the Prefactor and
DDF pipelines, as it is important to validate the quality of the
observations before proceeding with the data reduction of the
long-baselines. A preliminary examination of the data flagging
percentages catches the severeness of RFI and can help eliminate
corrupted observations. Nonetheless, the flagging fraction does
not catch all instances of corrupted data. One therefore typically
manually inspects calibration solution plots from the calibrator
and target solutions generated by LoSoTo. The wide-field image
at 6′′, after running the DDF pipeline, also allowed us to assess
the image quality with only Dutch stations of the observation.
This provides information about the effects of the ionosphere on
the final wide-field image quality and is therefore a direct indi-
cator of the calibratability of our data. The manual interactions
with the data in these steps could be replaced by adopting an
automated inspection process such that the future pipeline could
determine which observations require modifications to the input
data, adjust calibration parameters in the pipeline, or perhaps
decide to reject a particular observation.

The next important manual input starts when selecting suit-
able calibrators in both the in-field DI calibrator and DD calibra-
tors. These steps are highlighted in red in Figures 4 and 8. For
the primary in-field calibrator selection (see Section 3.2.1), one
typically selects first the calibrator candidates from the LBCS
catalogue (Jackson et al. 2016, 2022). If no sources are avail-
able or the quality of the solutions and calibration proves after
visual inspection to be inadequate, one tries other bright unre-
solved sources from the LoTSS catalogue (Shimwell et al. 2017,
2019, 2022). The standard method for selecting DD calibrators
is similar, but begins by directly identifying candidates from the
LoTSS catalogue above a specified flux density threshold. Cur-
rently, users inspect visually the calibration solutions and image
qualities and perhaps change the parameters or decide to exclude
the candidate calibrator entirely. In both steps, we suggest apply-
ing the selection procedure described in Section 3.3.1, where
in the selection we evaluate the circular standard deviation on
the phase RR and LL phase difference. This is computation-
ally cheap, as it requires just about 1 CPU hr for each source,
and eliminates candidates with an insufficient S/N at the longest
baselines. Following this up by an additional selection after self-
calibration, will eliminate falsely selected sources (as discussed
in 3.3.3).

It is important to stress that we can currently not guar-
antee that our empirically selected circular standard deviation
score of 2.3 rad from the scalarphasediff calibration will
be generally good enough for selecting DD calibrators of other

16 Note that this step has been recently replaced by the LOFAR Initial
Calibration (LINC) pipeline: https://linc.readthedocs.io.

fields. For instance, we found the scores to differ up to ~0.5 rad
between the individual nights, which is a significant difference
on a score that has a maximum around π. One could for example
expect that sky areas at lower declinations would have on aver-
age much higher scores. Hence, for implementing these steps for
automation, additional tests on different observations and fields
are required. Moreover, the process of manually adjusting cal-
ibration parameters for self-calibration could be automated by
linking it to specific circular standard deviation scores from the
scalarphasediff calibration and by incorporating additional
metrics. We have not yet explored this in detail, but as the cir-
cular standard deviation links to the brightness of a source, we
expect this to link to the solution interval as well.

After obtaining the image output products, it requires –
despite having tools such as PyBDSF – a vast amount of work
to catalogue source detections. The primary challenge involves
source association. Work has been done to automate this through
machine learning (e.g. Mostert et al. 2022). However, work needs
to be done to re-train the models and improve them for our
high-resolution data.

To summarize, we suggest replacing the following manual
steps in the calibration strategy with automated approaches:

– Solution inspection. Inspection of for instance
Prefactor/LINC calibration solution output to vali-
date data quality before moving to the calibration for the
international LOFAR stations. Solution inspection can be
similarly done after every calibration step, such as the DI
and DD calibration (see Sections 3.2.3 and 3.3.2).

– DDF-image inspection. Inspection of the DD-corrected
wide-field image quality at 6′′, which is produced by the
DDF-pipeline. This indicates the severeness of the ionosphere
and therefore the calibratability of our data.

– Quantity inspection. An inspection of the output data after
every main step in the pipeline can ensure that no data gets
‘lost’, which involves monitoring for excessive flagging or
tracking job failures on portions of the data.

– Calibrator selection. Select the best in-field calibrator source
and the best DD calibrator sources by using computational
cheap metrics, such as the phase noise metric discussed in
Section 3.3.1.

– Calibration parameters. The metrics for the calibrator selec-
tion could be linked to optimising the calibrator parameters,
such as the solution interval or smoothness constraints.

– Source association. To prepare our output images for sci-
entific analysis, it would be advantageous to automatically
and accurately perform source association for our high-
resolution data.

Appendix B: Potential self-calibration issues

In Section 3.3.2, we discuss the self-calibration of our DD
calibrators. While our source selection performed well (see Sec-
tion 3.3.3), we ran during testing also self-calibration on a
few sources that were not selected by our selection metric. We
highlight below two examples of sources that were above our
selection threshold from Section 3.3.1 (so were not selected) but
diverged strongly due to various issues.

In Figure B.1 we find in the upper panel a source that
has a bright calibrator nearby, which introduces during phase
(scalarphase) calibration strong artefacts. This results in bad
calibration solutions and no improvements of their images, as
is evident from the graphs in the left panel of Figure B.2, where
neither the RMS nor the dynamic range shows any improvement.
The phase solutions remain also unstable in the right panel. In
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Fig. B.1. Two examples of self-
calibration issues. Cycle 0 is the first
image with only DI solutions applied
from the in-field calibrator (see Sec-
tion 3.2). Cycle 3 corresponds to the
self-calibration image after 3 rounds
of scalarphase calibration. After this
cycle, scalarcomplexgain calibra-
tion is added. This also calibrates for
amplitude errors. Cycle 10 shows the
result after the 10th self-calibration
round.

the lower panel of Figure B.1 we display self-calibration cycles
from a source that was partly subtracted on the edge of our
2.5◦×2.5◦ field of view. This introduced strong artefacts after
amplitude calibration, starting from cycle 3. In Figure B.3, we
find in the left panel the RMS goes up after cycle 4, which
corresponds in the right panel to the instability of the phase
solutions after this same cycle. Although these sources were not
selected by our algorithm, they do demonstrate the effectiveness
of performing a pre-selection for bright compact sources and
for self-calibration inspection in case of similar or other issues
that are not guaranteed to be captured by the phase noise metric
selection in Section 3.3.1.
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Fig. B.2. Self-calibration and solution stabilities for the source in the upper panel of Figure B.1. The interpretation of these figures is discussed in
the captions of Figures 12 and 13. It is important to note that this source did not have amplitude corrections, as according to the auto settings from
facetselfcal, this source was not sufficiently bright enough to trigger scalarcomplexgain corrections.

Fig. B.3. Self-calibration and solution stabilities for the source in the lower panel of Figure B.1. The interpretation of these figures is discussed in
the captions Figures 12 and 13.
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