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We show that for any ε > 0, α ∈ [0, 1
2 ), as g → ∞ a generic finite-area genus g

hyperbolic surface with n = O (gα) cusps, sampled with probability arising from the

Weil–Petersson metric on moduli space, has no non-zero eigenvalue of the Laplacian

below 1
4 − (2α+1

4

)2 − ε. For α = 0 this gives a spectral gap of size 3
16 − ε and for any α < 1

2

gives a uniform spectral gap of explicit size.

1 Introduction

A hyperbolic surface is a smooth, connected, orientable Riemannian surface with

constant Gaussian curvature −1. Let X be a finite-area non-compact hyperbolic surface.

The L2(X) spectrum of the Laplacian �X consists of the following:

• A simple eigenvalue at 0 and possibly finitely many eigenvalues in
(
0, 1

4

)
.

• Absolutely continuous spectrum
[1

4 , ∞)
with multiplicity equal to the num-

ber of cusps of X.

• Possibly infinitely many discrete eigenvalues in
[1

4 , ∞)
, embedded in the

absolutely continuous spectrum.

Spectral gap refers to the gap between the zero eigenvalue and the remaining spectrum.

The spectral gap is closely related to the connectivity of a surface and the rate of mixing

of the geodesic flow. We are interested in the size of the spectral gap for a random
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17412 W. Hide

surface with large genus. The random model we shall consider is the Weil–Petersson

model, arising from the Weil–Petersson metric on moduli space, explained in Section 3.

Motivation for this paper arises from recent results for compact surfaces. In

contrast to our setting, the spectrum of a compact hyperbolic surface Y consists of

eigenvalues

0 = λ0 (Y) < λ1 (Y) � · · · � λk (Y) � . . . ,

with λj (Y) → ∞ as j → ∞. The first spectral gap result for Weil–Petersson random

compact surfaces was due to Mirzakhani in [17], who proved the following.

Theorem 1.1 (Mirzakhani ’13). The Weil–Petersson probability that a genus g compact

hyperbolic surface has a non-zero Laplacian eigenvalue below 1
4

(
log(2)

2π+log(2)

)2 ≈ 0.0024

tends to zero as g → ∞.

Recently this result was improved, independently by Wu and Xue in [31] and

Lipnowski and Wright in [14] to the following.

Theorem 1.2 (Wu–Xue and Lipnowski–Wright ’21). For any ε > 0, the Weil–Petersson

probability that a genus g compact hyperbolic surface has a non-zero Laplacian

eigenvalue below 3
16 − ε tends to zero as g → ∞.

The purpose of this paper is to extend Theorem 1.2 to non-compact finite-area

surfaces. We prove the following.

Theorem 1.3. For any 0 � α < 1
2 , if n = O (gα) then for any ε > 0 the Weil–Petersson

probability that a genus g non-compact finite-area surface with n cusps has a non-zero

Laplacian eigenvalue below 1
4 − (2α+1

4

)2 − ε tends to zero as g → ∞.

When α = 0, that is the number of cusps is bounded as g → ∞, Theorem 1.3

returns a spectral gap of size 3
16 − ε as in Theorem 1.2. For any α < 1

2 , Theorem 1.3 gives

an explicit positive uniform spectral gap.

The hypothesis n = O (gα) for 0 � α < 1
2 has geometric consequences in

terms of Benjamini–Schramm convergence. In [19, Corollary 4.4], Monk proved that with

high probability, Weil–Petersson random surfaces with genus g and n = O (gα) cusps

Benjamini–Schramm converge to the hyperbolic plane. The regime n = O (gα) with

0 � α < 1
2 is studied by Le Masson and Sahlsten in [13] where they prove a quantum

ergodicity result for eigenfunctions of the Laplacian.
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Spectral gap for Weil–Petersson random surfaces with cusps 17413

Remark 1.4. Due to a recent work of Shen and Wu [29], the hypothesis n = O (gα) for

0 � α < 1
2 cannot be relaxed much further. In particular, they prove that if n satisfies

n � g
1
2 +β for some β > 0 then for any ε > 0, a Weil–Petersson random surface with

genus g and n cusps has a non-zero eigenvalue below ε with probability tending to 1 as

g → ∞. They also prove the analogous result for g fixed and n → ∞.

1.1 Other related works

The first spectral gap result for random surfaces was due to Brooks and Makover

[2]. They considered a random closed surface formed by gluing 2n copies of an ideal

hyperbolic triangle with gluing determined by a random trivalent ribbon graph and

then applying a compactification procedure. They proved the existence of a non-explicit

constant C > 0 such that the first non-zero eigenvalue is greater than C with probability

tending to 1 as n → ∞.

1.1.1 Spectral theory in the Weil–Petersson model

The work of Monk in [18] gives estimates on the density of Laplace eigenvalues below 1
4

for Weil–Petersson random compact surfaces. In [5], Gilmore, Le Masson, Sahlsten, and

Thomas obtain bounds for the Lp norms of Laplace eigenfunctions for Weil–Petersson

random compact surfaces.

1.1.2 Random covers

In [20], Magee and Naud introduced a model of a random surface by picking a base

surface X and considering random degree n covers Xn of X, sampled uniformly. Building

on work from [23], in [22], Magee, Naud, and Puder prove that for X compact, Xn has no

new eigenvalues of the Laplacian below 3
16 − ε with probability tending towards one as

n → ∞. Following an intermediate result [20], Magee and Naud prove in [21] that for X

conformally compact, Xn has no new resonances in any compact set K ⊂ {s | Re(s) > δ
2 }

with probability tending to 1 as n → ∞, where δ is the Hausdorff dimension of the

limit set of 
X . In contrast to our setting, a conformally compact hyperbolic surface has

infinite area and no cusps.

1.1.3 Selberg’s eigenvalue conjecture

Spectral theory of the Laplacian on arithmetic hyperbolic surfaces has important

consequences in Number Theory; see, for example, [27]. Let N � 1, the principal
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17414 W. Hide

congruence subgroup of SL2(Z) of level N is


 (N) = {
T ∈ SL2(Z) | T ≡ I mod N

}
.

Consider the quotient X (N)
def= 
 (N) \H. For N > 2, the quotient X (N) is a finite-area

non-compact hyperbolic surface with the number of cusps n(N) > 0 given by

n(N) = N2

2

∏
p|N

(
1 − p−2

)
,

and genus

g(N) = 1 + (N − 6) N2

24

∏
p|N

(
1 − p−2

)
,

by, for example, [1, Theorem 2.12]. Letting λ1 (X (N)) denote the first non-zero eigenvalue

of the Laplacian on X (N), in [28] Selberg made the following conjecture.

Conjecture 1.5. For every N � 1,

λ1 (X(N)) � 1

4
.

Conjecture 1.5 remains open; however, there have been a number of results in

this direction. Selberg proved in [28] that Conjecture 1.5 holds with the bound 3
16 . After

many intermediate results [6–8, 11, 12, 26], the best known result is the following due to

Kim and Sarnak [10].

Theorem 1.6 (Kim-Sarnak ’03). For every N � 1,

λ1 (X(N)) � 975

4096
.

In light of this, it would be interesting to know if Theorem 1.3 can be extended

to the case that the number of cusps satisfies n ∼ g
2
3 .

Question 1.7. Does a Weil–Petersson random surface with genus g and n ∼ g
2
3 cusps

have a uniform positive spectral gap as g → ∞?
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Spectral gap for Weil–Petersson random surfaces with cusps 17415

Remark 1.8. Since the preprint version of the current paper first appeared in July

2021, Question 1.7 has been answered in the negative by Shen and Wu [29]; c.f.

Remark 1.4.

1.2 Structure of the paper

In the compact case, both proofs of Theorem 1.2, in [31] and [14], rely on Selberg’s trace

formula, for example, [3, 9.5.3], to relate the Laplacian eigenvalues of a surface to its

length spectrum. In the non-compact finite-area setting, there is a version of Selberg’s

trace formula, for example, [9, Theorem 10.2], but it is more complicated with additional

terms related to the absolutely continuous spectrum. It is not clear to the author how

to control these additional terms. To get around this, in Section 2 we prove that if a

surface X ∈ Mg,n has λ1 (X) � 3
16 , then λ1 (X) satisfies an inequality (Theorem 2.1)

involving the set of oriented primitive closed geodesics P(X), which closely resembles

the form of Selberg’s trace formula for compact surfaces, up to well-behaved error terms

depending only the topology of the surface. Roughly, we prove that there are strictly

positive functions R and f such that

R
(
λ1 (X) , g, n

)
�

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (x)

2

) f
(
klγ (X)

)
, (1.1)

where lγ (X) is the length of the geodesic γ ∈ P (X). The proof of Theorem 2.1 relies on

results from [4]. The function R is large for small λ1 (X) and bounding the Weil–Petersson

expectation of the right-hand side of (1.1) will allow us to conclude Theorem 1.3 through

Markov’s inequality.

After we have established Theorem 2.1, we can proceed as in the compact case,

making the necessary adaptations along the way. Section 3 introduces the necessary

geometric background on moduli space, the Weil–Petersson model, and Mirzakhani’s

integration formula. Then in Section 4 we bound the Weil–Petersson expectation of the

right-hand side of (1.1), closely following the approach taken in [31]. Finally, in Section 5

we apply Markov’s inequality to bound the probability that X ∈ Mg,n has a small

eigenvalue to conclude the proof of Theorem 1.3.

In order to deduce Theorem 1.3, we need to be able to estimate expressions

involving the Weil–Petersson volumes Vg,n where n grows with g, which is the focus

of the Appendix A.
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17416 W. Hide

1.3 Notation

For real valued functions f , h depending on a parameter g we write f � h or f = O (h)

if there exists C, G > 0 such that |f (g)| � Ch(g) for all g > G. We add subscripts to the

� sign if the constant C, G depend on another variable. For example, we write f �ε h if

exists C = C(ε), G = G(ε) such that |f (g)| � Ch(g) for all g > G. We write f ∼ h if f � h

and h � f . We write (0j, a1, . . . , ak) to denote (0, . . . , 0, a1, . . . , ak) ∈ R
j+k and we write

R�0 (resp. Z�0) to denote the non-negative real numbers (resp. integers).

2 Analytic Preparations

In this section we develop the necessary analytic machinery to prove Theorem 1.3. We

prove a version of Selberg’s trace formula, using a pre-trace inequality in place of the

usual pre-trace formula.

In Section 2.3 we exhibit a family of test functions fT where T = 4 log g, and

fT is a non-negative, even, smooth function with support exactly (−T, T) whose Fourier

transform f̂T is non-negative on R∪ iR with f̂T

(
i
2

)
= O

(
g2

)
. The family of test functions

fT is defined by (2.2) with T = 4 log g.

The goal of this section is to prove the following.

Theorem 2.1. For g � 2, let fT be the test function defined by (2.2) with T = 4 log g.

For any ε > 0, there exists a constant C(ε) > 0 such that for any non-compact finite-area

surface X with genus g, n = o
(
g

1
2

)
cusps and λ1(X) � 3

16 ,

C(ε) log (g) g4(1−ε)

√
1
4 −λ1(X) �

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (x)

2

) fT

(
klγ (X)

)
− f̂T

(
i

2

)
+ O (ng) .

(2.1)

The left-hand side depends on λ1(X) and the right-hand side depends on the the

length spectrum of X.

Remark 2.2. Given κ > 0, we could have stated Theorem 2.1 with the hypothesis

λ1(X) � 1
4 − κ, (the statement is almost the same except the constant C(ε) will also

depend on κ); however, our geometric estimates (Section 4) are not strong enough to

prove a spectral gap larger than 3
16 . We therefore state Theorem 2.1 with the hypothesis

λ1(X) � 3
16 to simplify notation.
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Spectral gap for Weil–Petersson random surfaces with cusps 17417

2.1 The Laplacian on hyperbolic surfaces

Consider the upper half plane

H = {x + iy | x, y ∈ R, y > 0},

with metric given by

dx2 + dy2

y2 .

The orientation preserving isometry group of H is PSL2(R), acting via Möbius transfor-

mations. The Laplacian on H, denoted �
H

, is given by

�
H

= −y2
(

∂2

∂x2 + ∂2

∂y2

)
.

A non-compact finite-area hyperbolic surface can be realized as a quotient 
X\H where


X is a finitely generated discrete free subgroup of PSL2(R), containing parabolic

elements (elements with trace ±2). �
H

is invariant under the action of PSL2(R) and

descends to an operator on C∞
c (X). It extends uniquely to a non-negative unbounded

self-adjoint operator on L2(X). We let �X denote the Laplacian on X and write spec
(
�X

)
for the spectrum of �X . We write λj (X) to denote the jth smallest non-zero eigenvalue

of �X if it exists.

A parabolic cylinder is the quotient of H by a parabolic cyclic group. We define

a cusp to be the small end of a parabolic cylinder, with boundary the unique closed

horocycle of length 1. By [3, Lemma 4.4.6], in any finite-area hyperbolic surface, cusps

must be pairwise disjoint. Throughout Section 2 we let X = 
X\H be a fixed non-

compact finite-area hyperbolic surface with genus g and n = o
(
g

1
2

)
cusps and, for

the sake of argument, λ1(X) � 3
16 .

2.2 Fundamental domains

In this subsection we introduce a decomposition of the fundamental domain, which we

will need in the proof of Theorem 2.1. We shall closely follow [9, Section 2.2], and refer

the reader there for all of the notions introduced in this subsection.

We write F to denote a Dirichlet fundamental domain for 
X . Since F is a non-

compact polygon, it has some of its vertices on R ∪ ∞ in H ∪ ∂H. We call such a vertex

a cuspidal vertex. By, for example, [9, Proposition 2.4], we can ensure that the cuspidal
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vertices are distinct modulo 
X . The sides of F can be arranged in pairs so that the side

pairing motions generate 
X . The two sides of F meeting at a cuspidal vertex have to be

pairs since the cuspidal vertices are distinct modulo 
X . The side-pairing motion has to

fix the vertex and is therefore a parabolic element of 
X . This gives rise to a cusp in the

quotient 
X\H and each cuspidal vertex corresponds to a unique cusp in this way. We

label the cuspidal vertices by a1, ..., an. We denote the stabilizer subgroup of the vertex

ai by


ai

def= {γ ∈ 
X | γ ai = ai}.

Each 
ai
is an infinite cyclic group generated by the parabolic element γai

, which is the

side-pairing motion at the vertex ai. There exists σai
∈ SL2 (R) such that

σ−1
ai

γai
σai

=
(

1 1

0 1

)
.

σai
is determined up to right multiplication by a translation. We choose σai

so that for

each l � 1, the semi-strip

P (l)
def= {z ∈ H | 0 < x < 1, y � l},

is mapped into F by σai
.

Definition 2.3. For i = 1, . . . , n and l � 1, we define

Dai
(l)

def= σai
P (l) ,

and

D (l)
def= F\

n⊔
i=1

Dai
(l) .

Dai
(l) is the part of the fundamental domain in the ith cusp bounded below by

the length 1
l horocycle and D (l) is a pre-compact region of F . By, for example, [3, Lemma

4.4.6], the cusps Dai
(1) are pairwise disjoint and since l � 1, Dai

(l) ∩ Daj
(l) = ∅ for i �= j

and we can partition the fundamental domain as

F =D (l) �
n⊔

i=1

Dai
(l) .
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Spectral gap for Weil–Petersson random surfaces with cusps 17419

2.3 Test functions

In this subsection we introduce the family of test functions used in Theorem 2.1.

Proposition 2.4. There exists an f1 ∈ C∞
c (R) with

1. Supp(f1) = (−1, 1).

2. f1 is non-negative and even.

3. The Fourier transform f̂1 satisfies f̂1(ξ) � 0 for ξ ∈ R ∪ iR.

4. f1 is non-increasing in [0, 1).

Proposition 2.4 is based on [22, Section 2.2], with the extra condition (4) for

convenience later on.

Proof of Proposition 2.4. Let ψ0 be an even, C∞, real valued non-negative function

whose support is exactly (−1
2 , 1

2 ), which is non-increasing in [0, 1
2 ). Let

f1(x)
def=

∫
R

ψ0(x − t)ψ0(t)dt.

It is proved in [22, Section 2.2] that f1 satisfies (1) − (3). It remains to check (4). Since f1

is even we have f ′
1(0) = 0. If 0 < x < 1

2 , one can calculate that

f ′
1(x) =

∫ 1
2 −x

0

(
ψ0(x − z) − ψ0(x + z)

)
ψ ′

0(z)dz +
∫ 1

2

1
2 −x

ψ0(x − z)ψ ′
0(z)dz.

Since ψ0 is positive, even and non-increasing in [0, 1
2 ), we have ψ ′

0(z) � 0 and ψ0(x − z) −
ψ0(x + z) � 0 for all 0 � z � 1

2 − x, so the first integrand is non-positive. The second

integrand is also non-positive since ψ0 is non-negative. Therefore, f ′
1(x) � 0 in [0, 1

2 ). If
1
2 � x < 1, then

f ′
1(x) =

∫ 1
2

x− 1
2

ψ ′
0(t)ψ0(x − t)dt � 0,

and f1 is non-increasing in [0, 1). �

From here on in, we fix such a function f1. For T > 1 we define

fT(x)
def= f1

( x

T

)
. (2.2)
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Then by Proposition 2.4, for each T > 1, fT is a non-negative, even, smooth function with

support exactly (−T, T) whose Fourier transform f̂T is non-negative on R ∪ iR. We also

have that fT is non-increasing in [0, T).

Let kT denote the inverse Abel transform of fT , that is,

kT (ρ)
def= −1√

2π

∫ ∞

ρ

f ′
T(u)√

cosh u − cosh ρ
du, (2.3)

which is well defined since fT is compactly supported. We see that kT is smooth,

Supp
(
kT

) ⊆ [0, T) and since fT is non-increasing in [0, T), kT is non-negative.

We now have a fixed family of test functions fT for T > 1. We conclude this

subsection by stating a lower bound on f̂T in iR from [22].

Lemma 2.5 ([22, Lemma 2.4]). For any ε > 0 there exists a constant Cε > 0 such that for

all t ∈ R�0 and for all T > 1 the Fourier transform f̂T satisfies

f̂T(it) � TCεeT(1−ε)t. (2.4)

Lemma 2.4 in [22] applies for any function satisfying properties (1) − (3) from

Proposition 2.4 so it also applies here. Lemma 2.5 tells us that small values of λ1 imply

large values of f̂T

(
i
√

1
4 − λ1

)
.

2.4 Eigenfunction estimates

Now we have a family of test functions, we proceed with the proof of Theorem 2.1. For

z, w ∈ H, T > 1 we define

kT(z, w)
def= kT (d(z, w)) .

Let r : [0, ∞) → C be the function given by

r(x) =
⎧⎨
⎩i

√
1
4 − x if 0 � x � 1

4 ,√
x − 1

4 if x > 1
4 .

Let uj ∈ L2(X) denote the normalized eigenfunction of the Laplacian on X corresponding

to the eigenvalue λj. Our starting point is the following.
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Lemma 2.6 (Pre-trace inequality [4, Proposition 5.2]). For all T > 1 and z ∈ H we have

that

∑
j:λj<

1
4

f̂T

(
r
(
λj

))
|uj(z)|2 �

∑
γ∈
X

kT (z, γ z) . (2.5)

Lemma 2.6 is immediately deduced from [4, Proposition 5.2], using the fact that

f̂T is non-negative on R ∪ i[0, 1
2 ] (the image of [0, ∞) under r). We refer to the left-hand

side of (2.5) as the spectral side and the right-hand side as the geometric side. We prove

Theorem 2.1 by integrating (2.5). We cannot integrate (2.5) over the full fundamental

domain as the contribution of the parabolic elements

∑
{γ∈
X\{Id}||tr(γ )|=2}

kT (z, γ z) ,

is not absolutely integrable over the fundamental domain F . We get around this by

integrating over the region D(l), as defined in Definition 2.3, with l = 2 (the choice

l = 2 could be replaced by any fixed l > 1). This leads to another issue: we could

potentially lose information on the spectral side after integrating. This could happen

if an eigenfunction concentrated outside D(2). The following lemma resolves this issue.

From now on we write D = D(2).

Lemma 2.7 ([4, Lemma 4.1]). For any κ > 0, there is a constant c (κ) > 0 such that for

any uj with λj � 1
4 − κ, we have

∫
D

|uj(z)|2dμ(z) � c (κ) .

The constant c does not depend on the surface X.

The upshot is that when we integrate (2.5) over D, we obtain something bounded

on the geometric side and we get a definite contribution from each eigenvalue on the

spectral side.

Remark 2.8. [4, Lemma 4.1] is stated for quotients of H by geometrically finite

subgroups of SL2(Z). The proof extends trivially to all finite-area non-compact surfaces,

as noted in [4, Footnote 10].
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2.5 Proof of Theorem 2.1

We conclude this section by proving Theorem 2.1.

Proof of Theorem 2.1. Recall that X is a finite-area non-compact hyperbolic surface

with genus g, n = o
(
g

1
2

)
cusps. We write λj = λj (X) and recall that X has first non-zero

Laplacian eigenvalue λ1 � 3
16 . Let T = 4 log g. By Lemma 2.6,

∑
j:λj<

1
4

f̂T

(
r
(
λj

))
|uj(z)|2 �

∑
γ∈
X

kT (z, γ z) . (2.6)

Since f̂T is non-negative on iR, f̂T ◦ r is non-negative on [0, 1
4 ] and (2.6) still holds if we

reduce the sum to just λ0 and λ1. Integrating (2.6) over D, we get

f̂T

(
r
(
λ0

)) ∫
D

|u0(z)|2dμ(z) + f̂T

(
r
(
λ1

)) ∫
D

|u1(z)|2dμ(z) �
∫

D

∑
γ∈
X

kT (z, γ z) dμ(z). (2.7)

First we look at the spectral side. The eigenvalue λ0 = 0 corresponds to the constant

eigenfunction

u0 (z) = 1√
Vol(X)

.

We have

f̂T

(
r
(
λ0

)) ∫
D

|u0(z)|2dμ(z) = Vol (D)

Vol (X)
f̂T

(
i

2

)
.

Recall that

D = F\
n⊔

i=1

Dai
(2) .

Since Dai
(2) is isometric to {z ∈ H | 0 < x < 1, y � 2}, Vol

(
Dai

(2)
)

= 1
2 for each i. By

Gauss–Bonnet, Vol(X) = 2π (2g − 2 + n) and we see that

Vol(D)

Vol(X)
= 2π (2g − 2 + n) − n

2

2π (2g − 2 + n)
= 1 + O

(
n

g

)
.
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For the contribution of λ1, by Lemma 2.7 with κ = 1
16 , there is a constant c > 0 with

f̂T

(
r
(
λ1

)) ∫
D

|u1(z)|2dμ(z) � cf̂T

(
r
(
λ1

))
. (2.8)

Let ε > 0 be given, then since λ1 � 3
16 , r(λ1) = i

√
1
4 − λ1, then by Lemma 2.5, there is a

constant Cε > 0 with

f̂T

(
r
(
λ1

))
� TCεeT(1−ε)

√
1
4 −λ1 . (2.9)

Combining (2.7), (2.8), and (2.9), we see there exists a constant C(ε) > 0 with

TC(ε)eT(1−ε)

√
1
4 −λ1 +

(
1 + O

(
n

g

))
f̂T

(
i

2

)
�

∫
D

∑
γ∈
X

kT (z, γ z) dμ(z). (2.10)

We now look at the geometric side. We arrange the sum in the geometric side into the

contribution from the identity, parabolic and hyperbolic elements to obtain

∫
D

∑
γ∈
X

kT (z, γ z) dμ(z) =
∑

γ∈
X

∫
D

kT (z, γ z) dμ(z)

=
∫

D
kT (z, z) dμ(z) +

∑
{γ∈
X ||tr(γ )|>2}

∫
D

kT (z, γ z) dμ(z)

+
∑

{γ∈
X\{Id}||tr(γ )|=2}

∫
D

kT (z, γ z) dμ(z).

Interchanging summation and integration is justified since D is a compact region and

kT is supported in [0, T), then for each z ∈ D, #{γ ∈ 
X | d(z, γ z) < T} is finite and the

summation is over finitely many terms.

First we treat the contribution of the identity. Since kT(z, w) = kT (d(z, w)) ,

∫
D

kT (z, z) dμ(z) = Vol(D)kT(0).

A calculation involving the Abel Transform, see for example the proof of [3, Theorem

9.5.3], gives that

kT(0) = 1

4π

∫ ∞

−∞
rf̂T(r) tanh(πr)dr.
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We calculate

∫ ∞

−∞
rf̂T(r) tanh(πr)dr = T

∫ ∞

−∞
rf̂1 (Tr) tanh(πr)dr

= 1

T

∫ ∞

−∞
r′f̂1

(
r′) tanh

(
πr′

T

)
dr′

� 2

T

∫ ∞

0
r′f̂1

(
r′)dr′ � 1

T
,

where the last line follows from the fact that f1 is compactly supported, thus f̂1 is a

Schwartz function and decays faster that the inverse of any polynomial. Since Vol(D) =
2π (2g − 2 + n) − n

2 , and X has o
(
g

1
2

)
cusps, this tells us that

∫
D

kT (z, z) dμ(z) = O (g) . (2.11)

Now we look at the hyperbolic terms. By the non-negativity of kT ,

∑
{γ∈
X ||tr(γ )|>2}

∫
D

kT (z, γ z) dμ(z) �
∑

{γ∈
X ||tr(γ )|>2}

∫
F

kT (z, γ z) dμ(z).

By arranging the sum into conjugacy classes and unfolding the integral, one can

compute that

∑
{γ∈
X ||tr(γ )|>2}

∫
F

kT (z, γ z) dμ(z) =
∑

γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (x)

2

) f
(
klγ (X)

)
. (2.12)

This computation is carried out in detail in [9, Section 10.2].

It remains to bound the contribution of the parabolic elements. Any γ ∈ 
X\{Id}
with |tr(γ )| = 2 is conjugate to γ l

ai
for some unique pair i ∈ {1, . . . , n} and l ∈ Z\{0}. Since

the centralizer of γ l
ai

in 
X is 
ai
, we see

∑
{γ∈
X\{Id}||tr(γ )|=2}

∫
D

kT (z, γ z) dμ(z) =
n∑

i=1

∑
l∈Z∗

∑
τ∈
ai\


∫
D

kT

(
z, τ−1γ l

ai
τz

)
dμ(z).
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Since kT and dμ are invariant under isometries, by unfolding the integral, denoting


 · D
def= ∪γ∈
γ D, we calculate

∑
τ∈
ai\


∫
D

kT

(
z, τ−1γ l

ai
τz

)
dμ(z) =

∫

ai\
·D

kT

(
z, γ l

ai
z
)

dμ(z).

We can choose a fundamental domain F̃i for the action of 
ai
on 
 · D so that

F̃i ⊆ σai
{z ∈ H | 0 < x � 1, 0 < y � 2},

and we see, recalling that σ−1
ai

γai
σai

(z) = z + 1,

∑
τ∈
ai\


∫
D

kT(z, τ−1γ l
ai

τz)dμ(z) =
∫
F̃i

kT(z, γ l
ai

z)dμ(z)

=
∫

σ−1
ai

(
F̃i

) kT(z, z + l)dμ(z)

�
∫ x=1

x=0

∫ y=2

y=0
kT(z, z + l)dμ(z).

We sum over the parabolic conjugacy classes to calculate,

∑
{γ∈
X\{Id}||tr(γ )|=2}

∫
D

kT(z, γ z)dμ(z) � n
∑
l∈Z∗

∫ 1

0

∫ 2

0
kT(z, z + l)dμ(z)

= n
∑
l∈Z∗

∫ 2

0
kT

(
arcosh

(
1 + l2

2y2

))
y−2dy

= n
∑
l∈N

√
2

l

∫ T

min
{
arcosh

(
1+ l2

8

)
,T

} kT(ρ) sinh(ρ)√
cosh(ρ) − 1

dρ. (2.13)

On the second line we used that cosh d (z, z + l) = 1 + l2

2y2 and on the third line we

used the change of variables ρ = arcosh
(
1 + l2

2y2

)
and that Supp

(
kT

) ⊆ [0, T). When

arcosh
(
1 + l2

8

)
� T, we use that fT is the Abel transform of kT to see that

∫ T

min
{
arcosh

(
1+ l2

8

)
,T

} kT(ρ) sinh(ρ)√
cosh(ρ) − 1

dρ �
∫ T

0

kT(ρ) sinh(ρ)√
cosh(ρ) − 1

dρ = fT (0) = f1 (0) .
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If arcosh
(
1 + l2

8

)
� T then the contribution to the sum (2.13) is 0 and we conclude that

∑
{γ∈
X\{Id}||tr(γ )|=2}

∫
D

kT(z, γ z)dμ(z) � 2nf1(0)

�√8 cosh T�∑
l=1

1

l
� 2nf1(0) log

(
2
√

2e
T
2

)
.

Thus, combining (2.10), (2.11), (2.12), and (2), we conclude that

TC(ε)eT(1−ε)

√
1
4 −λ1 +

(
1 + O

(
n

g

))
f̂T

(
i

2

)

�
∑

γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (X)

2

) fT

(
klγ (X)

)
+ 2nf1(0) log

(
2
√

2e
T
2

)
+ O (g) .

Recalling that T = 4 log g, since fT is even,

f̂T

(
i

2

)
=

∫ ∞

0
2 cosh

(x

2

)
fT(x)dx = O

(
g2

)
,

and we deduce that

C(ε) log (g) g4(1−ε)

√
1
4 −λ1 �

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (x)

2

) fT

(
klγ (X)

)
− f̂T

(
i

2

)
+ O (ng) ,

as claimed. �

Remark 2.9. By considering only the zero eigenvalue, the proof of Theorem 2.1 gives

that there exists a constant ν � 0 such that for sufficiently large g and for any X ∈ Mg,n,

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (x)

2

) fT

(
klγ (X)

)
− f̂T

(
i

2

)
+ νng � 0.

This fact will be important in Section 5 when we want to apply Markov’s inequality to

the above quantity, viewed as a random variable on Mg,n.

3 Geometric Background

In this section we shall introduce the necessary background on moduli space, the

Weil–Petersson metric and Mirzakhani’s integration formula. A detailed account of the

material in this section can be found in [30].
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Spectral gap for Weil–Petersson random surfaces with cusps 17427

3.1 Moduli space

Let Sg,n denote an oriented topological surface with genus g and n labeled punctures

where 2g − 2 + n � 1 and n � 0. A marked surface of signature (g, n) is a pair (X, ϕ)

where X is a hyperbolic surface with genus g and n cusps and ϕ : Sg,n → X is a

homeomorphism. The Teichmüller space, denoted by Tg,n, is defined by

Tg,n
def= {Marked surfaces(X, ϕ)}/ ∼,

where
(
X1, ϕ1

) ∼ (
X2, ϕ2

)
if there exists an isometry m : X1 → X2 such that ϕ2

and m ◦ ϕ1 are isotopic. Let Homeo+(
Sg,n

)
denote the group of orientation preserving

homeomorphisms of Sg,n, which do not permute the punctures and let Homeo+
0

(
Sg,n

)
denote the subgroup of homeomorphisms isotopic to the identity. The mapping class

group is defined as

MCGg,n
def= Homeo+ (

Sg,n

)
/Homeo+

0

(
Sg,n

)
.

Homeo+(
Sg,n

)
acts on Tg,n by precomposition of the marking and Homeo+(

Sg,n

)
acts

trivially hence MCGg,n acts on Tg,n and we define the moduli space by

Mg,n
def= Tg,n/MCGg,n.

Mg,n can be thought of as the set of equivalence classes of genus g hyperbolic surfaces

with n labeled cusps where two surfaces are equivalent if they are isometric by an

isometry, which preserves the labeling of the cusps.

Given l ∈ R
n
�0, in a similar way, we define Tg,n

(
l
)

as the Teichmüller space of

genus g hyperbolic surfaces with labeled geodesic boundary components
(
b1, ..., bn

)
with lengths

(
l1, ..., ln

)
. We allow li = 0, then the boundary component bi is a replaced by

a cusp and we recover

Mg,n = Mg,n (0, ..., 0) .

3.2 Weil–Petersson metric

The space Tg,n

(
l
)

carries a natural symplectic structure known as the Weil–Petersson

symplectic form and is denoted by ωWP. It is invariant under the action of the mapping

class group and descends to a symplectic form on the quotient Mg,n

(
l
)
. The form ωWP
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induces the volume form

dVolWP
def= 1

(3g − 3 + n) !

3g−3+n∧
i=1

ωWP,

which is also invariant under the action of the mapping class group and descends to

a volume form on Mg,n

(
l
)
. The quantity 3g − 3 + n appears as the dimension of the

Teichmüller and moduli space. We write dX as shorthand for dVolWP. We let Vg,n

(
l
)

denote VolWP

(
Mg,n

(
l
))

, the total volume of Mg,n

(
l
)
, which is finite. We write Vg,n to

denote Vg,n

(
0
)
.

As in [14, 17, 31], we define a probability measure on Mg,n by normalizing

dVolWP. Indeed, for any Borel subset B ⊆ Mg,n,

P
g,n
WP [B]

def= 1

Vg,n

∫
Mg,n

1BdX,

where

1B (X) =
⎧⎨
⎩0 if x /∈ B,

1 if x ∈ B.

is the indicator function on B. We write E
g,n
WP to denote expectation with respect to P

g,n
WP.

3.3 Mirzakhani’s integration formula

We recall Mirzakhani’s integration formula from [15]. We define a multi-curve to be

an ordered k-tuple
(
γ1, ..., γk

)
of disjoint, simple, non-peripheral closed curves. Let 
 =[

γ1, ..., γk

]
denote the homotopy class of a multi-curve. The mapping class group MCGg,n

acts naturally on homotopy classes of multi-curves and we denote the orbit containing


 by

O
 =
{(

g · γ1, ..., g · γk

) | g ∈ MCGg,n

}
.

Given a function F : Rk
�0 → R�0, define F
 : Mg,n → R by

F
 (X) =
∑

(α1,...,αk)∈O


F
(
lα1

(X) , ..., lαk
(X)

)
,
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where lαi
(X) is defined for (X, ϕ) ∈ Tg,n as the length of the geodesic in the homotopy

class of ϕ
(
αi

)
. Note that the function F
 is well defined on Mg,n since we are

summing over the orbit O
. Let Sg,n (
) denote the result of cutting the surface Sg,n

along
(
γ1, ..., γk

)
, then Sg,n (
) = �s

i=1Sgi,ni
for some

{(
gi, ni

)}s
i=1. Each γi gives rise to

two boundary components γ 1
i and γ 2

i of Sg,n (
). Given x = (
x1, ..., xk

) ∈ R
k
�0, let

M
(
Sg,n

(


)
; l
 = x

)
be the moduli space of hyperbolic surfaces homeomorphic to Sg,n (
)

such that for 1 � i � k, lγ 1
i

= lγ 2
i

= xi. Let x(i) denote the tuple of coordinates xj of x such

that γj is a boundary component of Sgi,ni
. We have that

M
(
Sg,n (
) ; l
 = x

)
=

s∏
i=1

Mgi,ni

(
x(i)

)
,

and we define

Vg,n

(

, x

) def= VolWP

(
M

(
Sg,n (
) ; l
 = x

))
=

s∏
i=1

Vgi,ni

(
x(i)

)
.

In terms of the above notation we have the following.

Theorem 3.1 (Mirzakhani’s Integration Formula [15, Theorem 7.1]). Given 
 =[
γ1, ..., γk

]
,

∫
Mg,n

F
 (X) dX = C


∫
R

k
�0

F
(
x1, ..., xk

)
Vg,n

(

, x

)
x1 · · · xkdx1 · · · dxk,

where the constant C
 ∈ (0, 1] only depends on 
. Moreover, if g > 2 and 
 = [
γ
]

where

γ is a simple, non-separating closed curve, then C
 = 1
2 .

4 Geometric Estimates

Recall that the family of test functions fT in Theorem 2.1 is defined in (2.2) with T =
4 log g. For X ∈ Mg,n, γ ∈ P(X), k ∈ N, we shall denote

HX,k(γ )
def= lγ (X)

2 sinh
(

klγ (x)

2

) fT

(
klγ (X)

)
.

The goal of this section is to prove the following.
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Theorem 4.1. For 0 � α < 1
2 , let n = O (gα). For any ε1 > 0 there exists a constant

c1

(
ε1

)
> 0, independent of α, with

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)⎤⎦ � n2g + log (g)5 · g + c1

(
ε1

)
(log g)β+1 · n2 · g1+4ε1 ,

where β > 0 is a universal constant.

Throughout Section 4, we shall always have n = O (gα) for fixed 0 � α < 1
2 .

Remark 4.2. The proof of Theorem 4.1 closely follows [31, Chapters 6 & 7], making

the necessary adaptations to the case of surfaces with cusps. We therefore omit some

arguments that are identical in the compact and non-compact case and instead refer the

reader to the relevant place.

4.1 Method

We prove Theorem 4.1 by considering separately the contribution of different types of

geodesics. As in [31], we introduce the following notation.

Definition 4.3. For X ∈ Mg,n we define the following:

1. Ps
sep(X)

def= {γ ∈ P(X) | γ is simple and separating}.
2. Ps

nsep(X)
def= {γ ∈ P(X) | γ is simple and non-separating}.

3. Pns(X)
def= {γ ∈ P(X) | γ is non-simple}.

Notice that P(X) = Ps
sep(X)�Ps

nsep(X)�Pns(X). We partition the sum
∑

γ∈P(X)

∑∞
k=1 HX,k(γ )

as

∑
γ∈P(X)

∞∑
k=1

HX,k(γ ) =
∑

γ∈P(X)

HX,1(γ ) +
∑

γ∈P(X)

∞∑
k=2

HX,k(γ )

=
∑

γ∈Ps
sep(X)

HX,1(γ ) +
∑

γ∈Ps
nsep(X)

HX,1(γ ) +
∑

γ∈Pns(X)

HX,1(γ )

+
∑

γ∈P(X)

∞∑
k=2

HX,k(γ ).
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Subtracting f̂
( i

2

)
and taking Weil–Petersson expectations, we see

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)⎤
⎦

�E
g,n
WP

⎡
⎣ ∑

γ∈Ps
sep(X)

HX,1(γ )

⎤
⎦

︸ ︷︷ ︸
(a)

+
∣∣∣∣∣∣Eg,n

WP

⎡
⎣ ∑

γ∈Ps
nsep(X)

HX,1(γ )

⎤
⎦ − f̂

(
i

2

)∣∣∣∣∣∣︸ ︷︷ ︸
(b)

+ E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=2

HX,k(γ )

⎤
⎦

︸ ︷︷ ︸
(c)

+E
g,n
WP

⎡
⎣ ∑

γ∈Pns(X)

HX,1(γ )

⎤
⎦

︸ ︷︷ ︸
(d)

. (4.1)

The remainder of this section is dedicated to bounding terms (a) − (d), from

which Theorem 4.1 will follow.

• Since terms (a) and (b) depend on simple geodesics, we can bound them by

applying Mirzakhani’s integration formula directly.

• To bound (c) we consider geodesics with length < 1 and length � 1

separately. The contribution of geodesics with length � 1 can be bounded

deterministically. Any geodesic with length < 1 must be simple (e.g. [3,

Theorem 4.2.4]), so we can apply Mirzakhani’s integration formula directly

to bound their contribution.

• To bound (d), we cannot apply Mirzakhani’s integration formula directly

since the geodesics are not simple. Instead, we pass from non-simple

geodesics to subsurfaces with simple geodesic boundary and apply

Mirzakhani’s integration formula to the simple boundary geodesics.

4.2 Contribution of simple separating geodesics

In this subsection we bound term (a) in (4.1), the contribution of simple separating

geodesics. In particular, we prove the following.

Lemma 4.4.

E
g,n
WP

⎡
⎣ ∑

γ∈Ps
sep(X)

HX,1(γ )

⎤
⎦ � n2g.
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Proof. We have

E
g,n
WP

⎡
⎣ ∑

γ∈Ps
sep(X)

HX,1(γ )

⎤
⎦ = 1

Vg,n

∫
Mg,n

∑
γ∈Ps

sep(X)

HX,1(γ )dX. (4.2)

We shall apply Mirzakhani’s integration formula, Theorem 3.1, to bound the integral

in (4.2). Recall that Sg,n is a topological surface with genus g and n labeled punctures.

For 0 � i � �g
2�, 0 � j � n, let αi,j be a simple closed curve in Sg,n, which separates

Sg,n into subsurfaces Si,j+1 and Sg−i,n−j+1, each with one boundary component and j and

n − j punctures respectively. Then αi,j partitions the punctures into two disjoint subsets

I and J of size j and n − j, respectively. Let
[
αi,j

]
denote the homotopy class of αi,j. The

orbit MCGg,n · [αi,j

]
is determined by the set {(i, j + 1, I) , (g − i, n − j + 1, J)}, since the

mapping class group does not permute the punctures. Therefore, given i and j, there

are
(n

j

)
MCGg,n-orbits of simple separating closed curves on Sg,n, which separate off a

subsurface with genus i and with j punctures. Recalling that

HX,1(γ ) = lγ (X)

2 sinh
(

lγ (X)

2

) fT

(
lγ (X)

)
,

we now apply Mirzakhani’s integration formula, Theorem 3.1, to see

1

Vg,n

∫
Mg,n

∑
γ∈Ps

sep(X)

HX,1(γ )dX

�
∑

0�i�g,0�j�n
2�2i+j�2g+n−2

∫ ∞

0

(
n

j

)
x2

sinh
(x

2

) fT(x)
Vi,j+1

(
0j, x

)
Vg−i,n−j+1

(
0n−j, x

)
Vg,n

dx.

By Lemma A.1,

Va,b(0b−1, x) �
2 sinh

(x
2

)
x

Va,b,

giving

1

Vg,n

∫
Mg,n

∑
γ∈Ps

sep(X)

HX,1(γ )dX

� 4

Vg,n

⎛
⎜⎜⎝ ∑

0�i�g,0�j�n
2�2i+j�2g+n−2

(
n

j

)
· Vi,j+1Vg−i,n−j+1

Vg,n

⎞
⎟⎟⎠

∫ ∞

0
sinh

(x

2

)
fT(x)dx.
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Spectral gap for Weil–Petersson random surfaces with cusps 17433

Since fT is bounded independently of T and supported in [0, T), we see

∫ ∞

0
sinh

(x

2

)
fT(x)dx � e

T
2 .

By Lemma A.4,

∑
0�i�g,0�j�n

2�2i+j�2g+n−2

n!

j! (n − j) !
· Vi,j+1Vg−i,n−j+1

Vg,n
� n2

g
,

giving

E
g,n
WP

⎡
⎣ ∑

γ∈Ps
sep(X)

HX,1(γ )

⎤
⎦ � n2

g
· e

T
2 � n2g,

as claimed. �

4.3 Contribution of simple non-separating geodesics

In this subsection we deal with the contribution of simple non-separating geodesics

(term (b) in (4.1)). We prove the following.

Lemma 4.5.

∣∣∣∣∣∣Eg,n
WP

⎡
⎣ ∑

γ∈Ps
nsep(X)

HX,1(γ )

⎤
⎦ − f̂

(
i

2

)∣∣∣∣∣∣ � n2g + n · log (g)2 · g.

Proof. Let α0 be an unoriented simple non-separating closed curve in Sg,n. There is

just one MCGg,n-orbit of simple non-separating closed curves on Sg,n and we have

∑
γ∈Ps

nsep(X)

HX,1(γ )dX = 2
∑

γ∈MCGg,n·α0

HX,1(γ ),

where the factor of 2 occurs since geodesics in P (X) are oriented. Applying Mirzakhani’s

integration formula, we get

∫
Mg,n

∑
γ∈Ps

nsep(X)

HX,1(γ )dX = 1

2

∫ ∞

0

x2

sinh(x
2 )

fT(x)Vg−1,n+2

(
0n, x, x

)
dx,
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where the factor 1
2 occurs since α0 is simple and non-separating; c.f. Theorem 3.1. By

Theorem A.3,

Vg−1,n+2 = Vg,n ·
(

1 + O
(

n2

g

))
.

Then we have, by applying Lemma A.1,

Vg−1,n+2

(
0n, x, x

)
Vg,n

=
(

2 sinh x
2

x

)2 (
1 + O

(
n2 + nx2

g

))
.

This gives

1

Vg,n

∫
Mg,n

∑
γ∈Ps

nsep(X)

lγ (X)

sinh
(

lγ (X)

2

) fT

(
lγ (X)

)
dX

=
∫ T

0
2 sinh

(x

2

)
fT(x)

(
1 + O

(
n2 + nx2

g

))
dx.

Since f̂T

(
i
2

)
is even,

f̂T

(
i

2

)
=

∫ T

0
2 cosh

(x

2

)
fT(x)dx,

and we have

∣∣∣∣∣∣Eg,n
WP

⎡
⎣ ∑

γ∈Ps
nsep(X)

HX,1(γ )

⎤
⎦ − f̂T

(
i

2

)∣∣∣∣∣∣
=

∣∣∣∣
∫ T

0
2 sinh

(x

2

)
fT(x)

(
1 + O

(
1 + n2 + nx2

g

))
dx −

∫ T

0
2 cosh

(x

2

)
fT(x)dx

∣∣∣∣
�

∣∣∣∣
∫ T

0
2
(
sinh

(x

2

)
− cosh

(x

2

))
· fT(x)dx

∣∣∣∣ +
∣∣∣∣
∫ T

0
2 sinh

(x

2

)
fT(x)

(
n2 + nx2

g

)
dx

∣∣∣∣ .

Using that 2
(
cosh

(x
2

) − sinh
(x

2

)) = e−x,

∣∣∣∣
∫ T

0
2
(
sinh

(x

2

)
− cosh

(x

2

))
· fT(x)dx

∣∣∣∣ � 1.
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Spectral gap for Weil–Petersson random surfaces with cusps 17435

Recalling T = 4 log g, we calculate

∣∣∣∣
∫ T

0
2 sinh

(x

2

)
fT(x)

(
1 + n2 + n2x

g

)
dx

∣∣∣∣ � e
T
2
(
n2 + nT2

)
g

� n2g + n · log (g)2 · g,

and

∣∣∣∣∣∣Eg,n
WP

⎡
⎣ ∑

γ∈Ps
nsep(X)

HX,1(γ )

⎤
⎦ − f̂T

(
i

2

)∣∣∣∣∣∣ � n2g + n · log (g)2 · g,

as claimed. �

4.4 Iterates of primitive geodesics

We now look at the contribution of iterates of primitive geodesics (term (c) in (4.1)). The

aim of this subsection is to prove the following.

Lemma 4.6.

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=2

HX,k(γ )

⎤
⎦ � log (g)2 · g.

In order to prove Lemma 4.6, we need the following soft geodesic counting

bound.

Lemma 4.7. For any X ∈ Mg,n and any L > 0 we have

#{γ ∈ P (X) | 1 � lγ (X) � L} � geL.

Proof. Let #0(X, L) denote the number of closed geodesics on X with length � L, which

are not iterates of closed geodesics of length � 2arcsinh(1). An immediate adaptation

of the proof of [3, Lemma 6.6.4] using the non-compact version of the Collar Theorem [3,

Lemma 4.4.6] tells us that

#0(X, L) �
(
g − 1 + n

2

)
eL+6.
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Lemma 4.4.6 in [3] also tells us that the number of primitive geodesics on X with length

� 4arcsinh(1) is bounded above by 3g − 3 + n. Using that n = o
(√

g
)
, we conclude that

#{γ ∈ P (X) | 1 � lγ (X) � L} �
(
g − 1 + n

2

)
eL+6 + 3g − 3 + n � geL,

as claimed. �

We now proceed with the proof of Lemma 4.6.

Proof of Lemma 4.6. Let X ∈ Mg,n. We write

∑
γ∈P(X)

∞∑
k=2

HX,k(γ ) =
∑

{γ∈P(X)|lγ (X)<1}

∞∑
k=2

HX,k(γ ) +
∑

{γ∈P(X)|lγ (X)�1}

∞∑
k=2

HX,k(γ ).

By Lemma 4.6,

#{γ ∈ P (X) | 1 � lγ (X) � L} � geL.

We then have

∑
{γ∈P(X)|lγ (X)�1}

∞∑
k=2

HX,k(γ ) �
∑

{γ∈P(X)|1�lγ (X)� T
2 }

lγ (X) e−lγ (X)

�
� T

2 �∑
m=1

me−m · #{γ ∈ P (X) | m � lγ (X) � m + 1}

� g

� T
2 �∑

m=1

m � (log g)2 · g.

Taking Weil–Petersson expectations, we see

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=2

HX,k(γ )

⎤
⎦ =E

g,n
WP

⎡
⎣ ∑

{γ∈P(X)|lγ (X)<1}

∞∑
k=2

HX,k(γ )

⎤
⎦

+ O
(
(log g)2 g

)
. (4.3)
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Spectral gap for Weil–Petersson random surfaces with cusps 17437

For each γ ∈ P(X),

HX,k(γ ) = lγ (X)

2 sinh
(

klγ (x)

2

) fT

(
klγ (X)

)
� f (0) ,

and if k � T
lγ (X)

then fT

(
klγ

(
X
)) = 0. This tells us that

E
g,n
WP

⎡
⎣ ∑

{γ∈P(X)|lγ (X)<1}

∞∑
k=2

HX,k(γ )

⎤
⎦ � f (0) · T · Eg,n

WP

⎡
⎣ ∑

{γ∈P(X)|lγ (X)<1}

1

lγ (X)

⎤
⎦ . (4.4)

It remains to bound

E
g,n
WP

⎡
⎣ ∑

{γ∈P(X)|lγ (X)<1}

1

lγ (X)

⎤
⎦ .

Any geodesic γ ∈ P(X) with length lγ (X) � 1 < 4arcsinh1 must be simple by, for

example, [3, Theorem 4.2.4]. Therefore, we can apply Mirzakhani’s integration formula

to get

E
g,n
WP

⎡
⎣ ∑

{γ∈P(X)|lγ (X)<1}

1

lγ (X)

⎤
⎦ � 1

Vg,n

∫ 1

0
Vg−1,n+2(0n, t, t)dt

+
∑

0�i�g,0�j�n
2�2i+j�2g+n−2

n!

j! (n − j) !
· Vi,j+1Vg−i,n−j+1

Vg,n

� Vg−1,n+2

Vg,n
+ n2

g
� 1, (4.5)

where on the last line we applied Lemma A.4 and Theorem A.3. Thus, combining (4.3),

(4.4) and (4.5) we see

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=2

HX,k(γ )

⎤
⎦ � (log g)2 · g,

as required. �
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4.5 Non-simple geodesics

We now need to deal with the contribution of the non-simple primitive geodesics (term

(d) in (4.1)). In this subsection we shall prove the following:

Lemma 4.8. There is a constant β1 > 0 such that for any ε1 > 0 there is a constant

c1

(
ε1

)
> 0 such that

E
g,n
WP

⎡
⎣ ∑

γ∈Pns(X)

HX,1(γ )

⎤
⎦ � (log g)6 · g + c1

(
ε1

)
(log g)β1 · n2 · g1+4ε1 .

We prove Lemma 4.8 through a sequence of lemmas. Before we give a brief

outline of the method, we need the concept of a filling closed curve.

Definition 4.9. Let X be a finite-area hyperbolic surface with possible boundary. A

closed curve η ⊂ Y is filling if the complement Y\η is a disjoint union of disks and

cylinders such that every cylinder either deformation retracts to a boundary component

of Y or is a neighbourhood of a cusp. We let #fill(X, L) denote the number of oriented

filling geodesics on X with lengths � L.

Idea of the proof of Lemma 4.8

We shall extend the method of [31, Section 7] to non-compact surfaces. The basic idea is

as follows:

• Given a surface X ∈ Mg,n and a geodesic γ ∈ Pns (X), we construct a

subsurface X(γ ) of X with geodesic boundary (of controlled length), which is

filled by γ . The multiplicity of the map γ �→ X(γ ) is bounded by the number

of filling geodesics of X(γ ). This allows us to write

∑
γ∈Pns(X)

HX,1(γ ) �
∑

Y subsurface of X
Y has geodesic boundary

∑
filling geodesics γ on Y

HX,1

(
lX (γ )

)
.

• We control the length of a filling geodesic in terms of lX (∂Y) in Lemma 4.11

and apply [31, Theorem 4] to bound the number of filling geodesics on a

subsurface and show that there is an explicit function A, supported in [0, 2T),
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Spectral gap for Weil–Petersson random surfaces with cusps 17439

with

∑
γ∈Pns(X)

HX,1(γ ) �
∑

Y subsurface of X
Y has geodesic boundary

A
(
lX (∂Y)

)
.

• Since the boundary of each subsurface Y consists of simple closed geodesics,

we can apply Mirzakhani’s integration formula to bound the Weil–Petersson

expectation of

∑
{Ysubsurface of X with geodesic boundary}

A
(
lX (∂Y)

)
.

Definition 4.10. Let X ∈ Mg,n be a hyperbolic surface and let γ ⊂ X be a non-simple

closed geodesic. Let Nδ(γ ) denote the δ-neighborhood of γ where δ is sufficiently small

to ensure that Nδ(γ ) deformation retracts to γ and that the boundary ∂Nδ(γ ) is a disjoint

union of simple closed curves. We define X(γ ) to be the connected subsurface obtained

from Nδ(γ ) as follows, for each boundary component ξ ∈ Nδ(γ ):

• If ξ bounds a disc we fill the disc into Nδ(γ ).

• If ξ is homotopically non-trivial we shrink it to the unique simple closed

geodesics in its free homotopy class and deform Nδ(γ ) accordingly.

• If two different components ξ , ξ ′ deform to the same geodesic then we do not

glue them together, we view X(γ ) as an open subsurface of X.

• If ξ is freely homotopic to a closed horocycle bounding a cusp Ci we fill the

cusp into Nδ(γ ).

After deforming Nδ(γ ) in this way we obtain the surface X(γ ).

The construction of X(γ ) allows us to control Vol (X(γ )) and the length of

∂X(γ ) in terms of lγ (X), as summarized by the following lemma. Bounding Vol (X(γ ))

corresponds to bounding the Euler characteristic of X(γ ) by Gauss-Bonnet.

Lemma 4.11. Let X ∈ Mg,n and γ be a non-simple closed geodesic on X. The

subsurface X(γ ) of X satisfies the following:

1. γ is a filling geodesic of X(γ ).

2. The length of the boundary satisfies

l (∂X(γ )) � 2lγ (X).
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3. The volume satisfies

Vol (X(γ )) � 4lγ (X).

Lemma 4.11 is proved in [25, Proposition 47] for compact surfaces. The proof in our case

is identical. This leads us to make the following definition.

Definition 4.12. With T = 4 log g, X ∈ Mg,n, we define

Sub(X)
def= {Y ⊂ X | Y is a connected subsurface of X with geodesic boundary},

and

SubT(X)
def= {Y ∈ Sub(X) | l(∂Y) � 2T, Vol(Y) � 4T},

where we allow two distinct simple closed geodesics on the boundary of Y to be a single

simple closed geodesic in X.

Lemma 4.11 tells us that for any X ∈ Mg,n, any non-simple geodesic γ with

length � T fills a subsurface X(γ ) ∈ SubT(X). If any other γ ′ ∈ P(X) satisfies X(γ ′) =
X(γ ) then γ ′ is also a filling geodesic of X(γ ) with length � T. We have

{γ ′ ∈ Pns(X) | X(γ ′) = X(γ )} ⊆ {oriented filling geodesics of X(γ ) with length � T}.
(4.6)

Therefore, we will need to control the number of non-simple geodesics, which fill a

given subsurface. This is achieved by the following theorem.

Theorem 4.13 ([31, Theorem 4]). Let m = 2g′ − 2 + n′ � 1. For any ε1 > 0 there exists

a constant c(ε1, m) only depending on ε1 and m such that for any X ∈ Mg′,n′(x1, ..., xn′)

where xi � 0, we have

#fill(X, L) � c(ε1, m) · eL− 1−ε1
2

∑n
i=1 xi .

Remark 4.14. Theorem 4 in [31] is stated in for surfaces without cusps, that is, xi > 0;

however, the extension to xi � 0 is immediate. Indeed, [31, Theorem 4] follows from

[31, Theorem 38] and [31, Lemma 10]. Theorem 38 in [31] already holds for non-compact

surfaces and it is straightforward to check that the basic counting result [31, Lemma

10] generalizes to non-compact surfaces.
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We can now pass from non-simple geodesics to subsurfaces with geodesic

boundary. This is done in the following lemma, proved in [31, Proposition 30] for

X ∈ Mg. The proof is identical in our case.

Lemma 4.15. For any ε1 > 0, X ∈ Mg,n, there exists a constant c1

(
ε1

)
only depending

on ε1 such that∑
γ∈Pns(X)

HX,1(γ ) � TeT
∑

Y∈SubT (X)
|χ(Y)|�34

e− l(∂Y)
4 + c1

(
ε1

)
T

∑
Y∈SubT (X)

1�|χ(Y)|�33

e
T
2 − 1−ε1

2 l(∂Y). (4.7)

Remark 4.16. The difference between the first and second term arises because

we apply Theorem 4.13 to subsurfaces with 1 � |χ(Y)| � 34 whereas we only

apply a soft geodesic counting result, #fill(X, L) � Area(X) · eL+6, to subsurfaces with

|χ(Y)| � 34. The reason for this is that it is not clear how badly the constant c(ε1, m)

from Theorem 4.13 depends on the Euler characteristic m so we can only apply

Theorem 4.13 to subsurfaces with uniformly bounded Euler characteristic. As a con-

sequence of forthcoming calculations, the Weil–Petersson expectation of the number of

subsurfaces Y ∈ SubT(X) with |χ(Y)| � k is sufficiently small for any k � 34 so that we

can accept the loss from the soft geodesic counting.

For the remainder of the section, we assume that g is sufficiently large so that

for Y ∈ SubT(X), the map Y �→ ∂Y is injective. This is justified since any two distinct

subsurfaces in Y1, Y2 ∈ SubT(X) with ∂Y1 = ∂Y2 must satisfy Y1 ∪ Y2 = X, giving

Vol (X) = 2π (2g − 2 + n) � Vol
(
Y1

) + Vol
(
Y2

)
� 8T = 32 log g,

which is not possible for sufficiently large g.

We now want to apply Mirzakhani’s integration formula to bound the Weil–

Petersson expectation of the right-hand side of (4.7). We introduce the following

notation.

Notation 1. Let X ∈ Mg,n. For a subsurface Y0 ∈ SubT(X), we write

Y0 = Y0

(
q,

(
g0, a0, n0

)
,
{(

g1, a1, n1

)
, . . . ,

(
gq, aq, nq

)})
= Y0

(
q, g, a, n

)
,

to indicate that Y0 has the following properties.

• Y0 is homeomorphic to Sg0,k+a0
where k > 0.
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• Y0 has a0 cusps and k simple geodesic boundary components. There are n0 �
0 pairs of simple geodesics in Y0, which correspond to a single simple closed

geodesic in X.

• The interior of its complement X\Y0 consists of q � 1 components Y1, ..., Yq

where Yi is homeomorphic to Sgi,ni+ai
. We observe that ni � 1 and

i)
∑q

i=1 2gi − 2 + ni + ai = 2g − 2 + n − ∣∣χ (
Y0

)∣∣ .

ii)
∑q

i=1 ni = k − 2n0.

iii)
∑q

j=1 aj = n − a0.

Given X ∈ Mg,n and a choice of marking, any Y0(q, a, n, g) ∈ SubT(X) is freely

homotopic to the image under the marking of a subsurface Y ⊂ Sg,n where Y is in

the MCGg,n-orbit of a subsurface Ỹ0 = Ỹ0(q, a, n, g) ⊂ Sg,n (with Ỹ0 homeomorphic to

Sg0,k+a0
, where Sg,n\Ỹ0 has q components Ỹ1, ..., Ỹq with Ỹi homeomorphic to Sgi,ni+ai

with ni boundary components and ai punctures). We write
[
Ỹ0

]
to denote the homotopy

class of Ỹ0. Since the mapping class group does not permute the punctures of Sg,n, the

number of distinct MCGg,n-orbits of subsurfaces corresponding to a given choice of

q,
(
g0, n0, g0

)
,
{(

g1, a1, n1

)
, . . . ,

(
gq, aq, nq

)}
is bounded above by

n!

a0! · · · · · aq!
.

Lemma 4.17.

E
g,n
WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
|χ(Y)|�34

e− l(∂Y)
4

⎤
⎥⎥⎦ � (log g)5

g3 . (4.8)

Proof. We start by bounding the contribution of a given MCGg,n-orbit to (4.8). Let

g0, a0, k be fixed with m = 2g0 − 2 + k + a0 � 34. By Gauss–Bonnet, we have that

m � 4T
2π

� 5
2 log g. For n0, n1, . . . , nq, a1, . . . , aq, g1, . . . , gq � 0 with

∑q
i=1 ni = k − 2n0 and∑q

j=1 aj = n − a0, we have

1

Vg,n

∫
Mg,n

∑
[Y]∈MCGg,n·[Ỹ0(q,a,n,g)]

e− l(∂Y)
4 1[0,2T]

(
lX (∂Y)

)
dX

= 1

Vg,n

∫
Mg,n

∑
[∂Y]∈MCGg,n·[∂Ỹ0(q,a,n,g)]

e− l(∂Y)
4 1[0,2T]

(
lX (∂Y)

)
dX,
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Spectral gap for Weil–Petersson random surfaces with cusps 17443

since the map Y �→ ∂Y is injective. By applying Mirzakhani’s integration formula, one

can compute that

1

Vg,n

∫
Mg,n

∑
[Y]∈MCGg,n·[Ỹ0(q,a,n,g)]

e− l(∂Y)
4 1[0,2T]

(
lX (∂Y)

)
dX

�e
7
2 T

Vg0,k+a0
Vg1,n1+a1

· · · Vgq,nq+aq

Vg,n · n0! n1! · · · nq!
.

A near identical computation is carried out in detail in [31, Proposition 31] so we omit it

here. We now sum over the MCGg,n-orbits to bound the contribution of subsurfaces in

SubT (X) with a given Euler characteristic. We calculate

E
g,n
WP

⎡
⎢⎢⎢⎣

∑
Y∈SubT (X)
Y∼=Sg0,k+a0

e− l(∂Y)
4

⎤
⎥⎥⎥⎦

�
� k

2 �∑
n0=0

k−2a0∑
q=1

∑
A

1

Vg,n
·
(

n

a0, . . . , aq

)
·
∫
Mg,n

∑
[Y]∈MCGg,n·[Ỹ0(q,a,n,g)]

e− l(∂Y)
4 1[0,2T]

(
lX (∂Y)

)
dX

�e
7
2 T

� k
2 �∑

n0=0

k−2a0∑
q=1

∑
{(gj,nj,qj)}q

j=1∈A

(
n

a0, . . . , aq

)
.
Vg0,k+a0

Vg1,n1+a1
· · · Vgq,nq+aq

Vg,n · n0! n1! · · · nq!
,

where for a given n0 and q, the summation is over the set of “admissible triples”

A, whose elements we denote by
{(

gj, nj, qj

)}q

j=1
, which we define to be the set of{(

g1, a1, n1

)
, . . . ,

(
gq, aq, nq

)}
where gj, aj � 0, nj � 1 and 2gj + aj + nj � 3 such that

i)
∑q

i=1

(
2gi − 2 + ni + ai

) = 2g − 2 + n − m.

ii)
∑q

i=1 ni = k − 2n0.

iii)
∑q

j=1 aj = n − a0.

Recalling that 34 � m = 2g0 − 2 + k + a0 � 5
2 log g is fixed, we apply lemma A.5 to see

� k
2 �∑

n0=0

k−2n0∑
q=1

∑
{(gj,nj,aj)}q

j=1∈A

n!

a0! · · · · · aq!
.
Vg0,k+a0

Vg1,n1+a1
· · · Vgq,nq+aq

Vg,n · n0! n1! · · · nq!

�
� k

2 �∑
n0=0

k−2n0∑
q=1

(
2g0 + k + a0 − 3

)
! ·n

a0

gm � k2
(
2g0 + k + a0 − 3

)
!

gm .
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Summing over the possible values of g0, a0 and k, we calculate

E
g,n
WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
|χ(Y)|�34

e− l(∂Y)
4

⎤
⎥⎥⎦

�e
7
2 T

∑
0�a0�� 4T

2π
�

∑
1�k�� 4T

2π
�+2−a0

∑
34�2g0−2+k+a0�� 4T

2π
�
E

g,n
WP

⎡
⎢⎢⎢⎣

∑
Y∈SubT (X)
Y∼=Sg0,k+a0

e− l(∂Y)
4

⎤
⎥⎥⎥⎦

�e
7
2 T

∑
0�a0�� 4T

2π
�

∑
1�k�� 4T

2π
�+2−a0

∑
34�2g0−2+k+a0�� 4T

2π
�

k2
(
2g0 + a0 + k − 3

)
! na0

g2g0+a0+k−2

�T5e
7T
2

1

g2g0+ a0
2 +k−2

� T5e
7T
2

g18 ,

since 2g0 + a0 + k � 36 guarantees that 2g0 + a0
2 + k � 18. Recalling that T = 4 log g, we

conclude that

E
g,n
WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
|χ(Y)|�34

e− l(∂Y)
4

⎤
⎥⎥⎦ � (log g)5

g3 ,

as required. �

Lemma 4.18. There is a constant β > 0 such that for any ε1 > 0,

E
g,n
WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
1�|χ(Y)|�33

e
T
2 − 1−ε1

2 l(∂Y)

⎤
⎥⎥⎦ � (log g)β · n2 · g1+4ε1 .

Proof. Let ε1 > 0, g0 � 0, a0 � 0 and k � 1 be fixed with 1 � m = 2g0 − 2 + k + a0 � 33.

The computation in [31, Proposition 34] gives that there exists a fixed β > 0 with

1

Vg,n

∫
Mg,n

∑
Ỹ∈MCGg,n·Ỹ0(q,a,n,g)

e
T
2 − 1−ε1

2 lX
(
∂Ỹ

)
1[0,2T]

(
lX

(
∂Ỹ

))
dX

� Tβe
T
2 +ε1T

Vg,nn0! · · · nq!
Vg1,n1+a1

· · · Vgq,nq+aq
.
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Spectral gap for Weil–Petersson random surfaces with cusps 17445

(Note the value of β in [31, Proposition 34] is 66 and corresponds to the choice to consider

|χ(Y)| � 16 as opposed to our choice of 33. Here we could for example take β <135. Fixed

powers of log g will be negligible in the final calculations.) Then we see that

E
g,n
WP

⎡
⎢⎢⎢⎣

∑
Y∈SubT (X)
Y∼=Sg0,k+a0

e
T
2 − 1−ε1

2 l(∂Y)

⎤
⎥⎥⎥⎦ � Tβe

T
2 +ε1T

� k
2 �∑

n0=0

k−2a0∑
q=1

∑
A

n!

a0! · · · aq!

Vg1,n1+a1
· · · Vgq,nq+aq

n0! · · · nq! Vg,n
,

where, as before, for given n0 and q the summation is over the set A of “admissible

triples”
{(

gj, nj, qj

)}q
j=1 where gj, aj � 0, nj � 1 and 2gj + aj + nj � 3 such that

∑q
i=1 2gi −

2 + ni + ai = 2g − 2 + n − m,
∑q

i=1 ni = k − 2n0 and
∑q

j=1 aj = n − a0. We apply Lemma

A.5 to calculate that

Tβe
T
2 +ε1T

� k
2 �∑

n0=0

k−2n0∑
q=1

∑
A

n!

a0! · · · aq!

Vg1,n1+a1
· · · Vgq,nq+aq

n0! · · · nq! Vg,n

�Tβe
T
2 +ε1T

� k
2 �∑

n0=0

k−2n0∑
q=1

na0

g2g0+a0+k−2
� Tβe

T
2 +ε1T na0

g2g0+a0+k−2
.

We sum over possible values of g0, a0 and k to see that

E
g,n
WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
1�|χ(Y)|�33

e
T
2 − 1−ε1

2 l(∂Y)

⎤
⎥⎥⎦ �

∑
(g0,a0,k)

3�2g0+a0+k�35

Tβe
T
2 +ε1T na0

g2g0+a0+k−2

� Tβe
T
2 +ε1T · n2

g
� (log g)β n2g1+4ε1 ,

as claimed. �

We can now prove Lemma 4.8.
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Proof of Lemma 4.8. Combining Lemma 4.15, Lemma 4.17, and Lemma 4.18 we deduce

that for any ε1 > 0 there exists a constant c1

(
ε1

)
such that

E
g,n
WP

⎡
⎣ ∑

γ∈Pns(X)

HX,1(γ )

⎤
⎦

�eTTEg,n
WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
|χ(Y)|�34

e− l(∂Y)
4

⎤
⎥⎥⎦ + c1

(
ε1

)
TEg,n

WP

⎡
⎢⎢⎣ ∑

Y∈SubT (X)
1�|χ(Y)|�33

e
T
2 − 1−ε1

2 l(∂Y)

⎤
⎥⎥⎦

� (log g)6 g + c1

(
ε1

)
(log g)β+1 n2g1+4ε1 ,

concluding the proof. �

4.6 Proof of Theorem 4.1

Finally, we conclude the section with the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.4, Lemma 4.5, Lemma 4.6, and Lemma 4.8 together

with (4.1) we see that there is a constant β such that for any ε1 > 0 there exists a constant

c1

(
ε1

)
with

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)⎤
⎦ � n2g + log (g)6 g + c1

(
ε1

)
(log g)β+1 n2g1+4ε1 .

�

5 Proof of Theorem 1.3

We now conclude with the proof of Theorem 1.3.

Proof of Theorem 1.3. Let n = O (gα) for some 0 � α < 1
2 and let 0 < ε < min

{1
4 , 1

2 − α
}

be given. For X ∈ Mg,n, we define

λ̃1 (X)
def=

⎧⎨
⎩λ1 (X) if it exists,

1
4 otherwise.
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Spectral gap for Weil–Petersson random surfaces with cusps 17447

Our aim is to prove that

P
g,n
WP

[
λ̃1 (X) � 1

4
− (2α + 1)2

16
− ε

]
→ 0,

as g → ∞. By Remark 2.9, there exists a constant ν � 0 such that for g sufficiently large,

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(

klγ (x)

2

) fT

(
klγ (X)

)
− f̂T

(
i

2

)
+ νng � 0,

for any X ∈ Mg,n. By Theorem 4.1, for any ε1 > 0 there is constant c1

(
ε1

)
> 0 with

E
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)
+ νng

⎤
⎦ �n2g + log (g)6 g + c1

(
ε1

)
(log g)β+1 n2g1+4ε1 ,

where β > 0 is a universal constant. Taking ε1 < ε
8 and applying Markov’s inequality,

P
g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)
+ νng > n2g1+ε

⎤
⎦ �ε

(
1 + log (g)6

n2 + (log g)β+1

)
g− ε

2 ·

However, if X ∈ Mg,n has λ1(X) � 1
4 − (2α+1)2

16 − ε, then since α ∈ [0, 1
2 ) this guarantees

that λ1(X) � 3
16 and we can apply Theorem 2.1 to see

C(ε) log (g) g4(1−ε)

√
1
4 −λ1(X) �

∑
γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)
+ O (ng) .

But since ε < 1
2 − α,

√
1

4
− λ1(X) � 2α + 1

4
+ ε,

and we deduce that

C(ε) log (g) g4(1−ε)

√
1
4 −λ1(X) � C(ε) log (g) g(1−ε)((2α+1)+4ε) �ε g2α+1+2ε−4ε2

> n2g1+ε,
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for sufficiently large g. On the last line we used that ε < 1
4 and that n = O (gα). We

deduce that

∑
γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)
> n2g1+ε,

for sufficiently large g. This tells us that for g sufficiently large,

P
g,n
WP

[
λ̃1 (X) � 1

4
− (2α + 1)2

16
− ε

]
� P

g,n
WP

⎡
⎣ ∑

γ∈P(X)

∞∑
k=1

HX,k(γ ) − f̂T

(
i

2

)
+ νng > n2g1+ε

⎤
⎦

�ε

(
1 + log (g)6

n
+ (log g)β+1

)
g− ε

2 → 0,

as g → ∞. �

A. Volume Estimates

The purpose of this appendix is to prove the necessary Weil–Petersson volume estimates

used in the proof of Theorem 4.1. Similar estimates can be found in, for example, [5, 14,

16, 17, 25].

We need the following lemma in the proof of Lemma 4.4 and Lemma 4.5.

Lemma A.1. Let x1, . . . , xn � 0. For g, n � 0, 2g − 2 + n > 0 we have

Vg,n

(
x1, ..., xn

)
Vg,n

�
n∏

i=1

sinh
(xi

2

)(xi
2

) ,

and

Vg,n

(
0n−2, x1, x2

)
Vg,n

= 4 sinh
(x1

2

) · sinh
(x2

2

)
x1 · x2

(
1 + O

(
n
(
x2

1 + x2
2

)
g

))
,

as g → ∞, where the implied constant is independent of n.

Remark A.2. Lemma A.1 is due to [16, Proposition 3.1] and [25, Lemma 20]. The proof

of the second statement is identical to the proof of [25, Lemma 20], if one uses [14,

Theorem A.1] in place of [17, p. 286].

We require estimates for Vg,n where the number of cusps n is allowed to grow

with the genus g. The starting point is the following theorem of Mirzakhani and Zograf.
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Theorem A.3 ([24, Theorem 1.8]). There exists a constant B > 0 such that if n = o
(
g

1
2
)
,

we have

Vg,n(g) = B√
g

(2g − 3 + n (g)) !
(
4π2

)2g−3+n(g)

(
1 + O

(
1 + n (g)2

g

))
,

as g → ∞.

In order to control the contribution of simple separating geodesics, in

Lemma 4.4 we need the following lemma.

Lemma A.4. If n = o
(
g

1
2
)
, then

∑
0�i�g,0�j�n

2�2i+j�2g+n−2

(
n

j

)
· Vi,j+1Vg−i,n−j+1

Vg,n
� 1 + n2

g
.

The case that n is fixed is treated in [17, Lemma 3.3]. The fact that the number

of cusps is growing with genus and the presence of the multiplicity
(n

j

)
presents the new

difficulty here.

In the following, we shall frequently apply Stirling’s approximation, which tells

us that there exist constants 1 < c1 < c2 < 2 with

c1 · √
2πw

(w

e

)w
< w! < c2 · √

2πw
(w

e

)w
, (A.1)

for all w � 1.

Proof of Lemma A.4. By Theorem A.3, since n = o
(√

g
)
, we have

Vg,n(g) = B√
g

(2g − 3 + n) !
(
4π2

)2g−3+n
(

1 + O
(

1 + n2

g

))
. (A.2)

By [17, Lemma 3.2, part 3] we have that for a, b � 0, 2a + b � 1,

Va,b+4 � Va+1,b+2. (A3)

Applying (A.3) iteratively, for j � 1,

Vi,j+1 � V
i+� j−1

2 �,j+1−2� j−1
2 �.

We can then apply Theorem A.3 to see that

Vi,j+1Vg−i,n−j+1 �
(
4π2

)2g+n (2i + j − 2) !√
i + max

{
� j−1

2 �, 0
} · (2g − 2i + n − j − 2) !√

g − i + max
{
�n−j−1

2 �, 0
} . (A.4)
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We also observe that
√

g√
g − i + max

{
�n−j−1

2 �, 0
}

·
√

i + max
{
� j−1

2 �, 0
} � 1. (A.5)

Then applying (A.2), (A.4), and (A.5),

∑
0�i�g,0�j�n

2�2i+j�2g+n−2

n!

j! (n − j) !
· Vi,j+1Vg−i,n−j+1

Vg,n

�
∑

0�i�g,0�j�n
2�2i+j�2g+n−2

n!

j! (n − j) !
(2i + j − 2) ! (2g − 2i + n − j − 2) !

(2g + n − 3) !
.

If i = 0 then j � 2 and we have

n∑
j=2

n!

j! (n − j) !
· (j − 2) ! (2g + n − j − 2) !

(2g + n − 3) !
=

n−4∑
j=2

n!

j (j − 1) (n − j) !
· (2g + n − j − 2) !

(2g + n − 3) !

�n2

g
+

n−4∑
j=3

nj

gj−1
� n2

g
,

since n = o
(√

g
)
. By symmetry, the same calculation holds for the case that i = g.

Similarly, if i = 1 then j � 0 and we calculate

n∑
j=0

n!

j! (n − j) !
· j! (2g + n − j − 4) !

(2g + n − 3) !
�

n∑
j=0

nj

gj+1
� 1

g
.

The same calculation holds in the case that i = g − 1 by symmetry. If 2 � i � g − 2, then

we claim that

n!

j! (n − j) !
(2i + j − 2) ! (2g − 2i + n − j − 2) !

(2g + n − 3) !
� g−3. (A.6)

It is a straightforward calculation to check that (A.6) holds in the case that i = 2, j = 0

and i = 2, j = 1. Now let L = 2i + j. Then if 6 � L ≤ n,

n!

j! (n − j) !
(2i + j − 2) ! (2g − 2i + n − j − 2) !

(2g + n − 3) !
� L! ·nL

gL � √
L
(

Ln

ge

)L

,

by Stirling’s approximation. If L = 6, then

√
L
(

Ln

ge

)L

�
(

n

g

)6

� g−3.
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If 6 < L � n − 1, then

√
L
(

Ln

ge

)L

= √
L
(

Ln

ge

)L (
6n

ge

)6

·
( eg

6n

)6 � √
Lg−3

(
L

6

)6 (
Ln

ge

)L−6

� L
13
2 e6−Lg−3 · n2

g
� g−3.

If n � L � 1
2 (2g + n − 2), then since (

n

i

)
� 2n,

we have

n!

j! (n − j) !
(2i + j − 2) ! (2g − 2i + n − j − 2) !

(2g + n − 3) !
� 2n L! (2g + n − 2 − L) !

(2g + n − 3) !

� 2nn! (2g − 2 − n) !

(2g + n − 3) !
�

(
2n

g

)n

� g−3.

By symmetry, the case that 2i+j � 1
2 (2g + n − 2) is treated analogously. This establishes

the claim (A.6). We can now use the rough bound

#{(i, j) ∈ Z�0 | 2 � i � g − 2, 0 � j � n, 2 � 2i + j � 2g + n − 2} � ng,

to deduce that ∑
2�i�g−2,0�j�n
2�2i+j�2g+n−2

n!

j! (n − j) !
(2i + j − 2) ! (2g − 2i + n − j − 2) !

(2g + n − 3) !
� n

g2 ,

and the result follows. �

In order to deal with the contribution of non-simple geodesics, we needed the

following Lemma.

Lemma A.5. Let n = o
(√

g
)

and let g0, a0, n0 and k be given with m = 2g0 +a0 +k−2 �
3 log g − 2. For 1 � q � k − 2n0,

∑
{(gj,aj,nj)}q

i=1∈A

n!

a0! · · · aq!
.
Vg0,n0+a0

· · · Vgq,nq+aq

Vg,n
� (

2g0 + k + a0 − 3
)

!
na0

gm ,

where the summation is taken over the set A of all “admissible triples” {(g1, a1, n1), . . . ,

(gq, aq, nq)}, where gj, aj � 0, nj � 1 and 2gj + aj + nj � 3 such that

i)
∑q

i=1

(
2gi − 2 + ni + ai

) = 2g − 2 + n − m,

ii)
∑q

i=1 ni = k − 2n0,

iii)
∑q

j=1 aj = n − a0.
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This is similar to estimates proved in [31] but here we need the number of cusps

to grow with genus and we have the extra multiplicity

n!

a0! · · · · · aq!
.

We take a similar approach as in the proof of Lemma A.4. Lemma A.5 relies on a lot of

computations that, for the sake of readability, are done separately in Lemma A.6.

Proof of Lemma A.5 given Lemma A.6. By [17, Lemma 3.2, part 3] we see that for each

ai + ni � 2, we have

Vgi,ai+ni
� V

gi+� ai+ni−2
2 �,ai+ni−2� ai+ni−2

2 �.

This allows us to apply Theorem A.3, which tells us that there exists C1 > 0 with

Vg1,n1+a1
· · · Vgq,nq+aq

� Cq
1

q∏
j=1

(
4π2

)2gj+aj+nj−3
(
2gj + aj + nj − 3

)
!√

gj + max
{
�aj+nj−2

2 �, 0
} , (A.7)

where since V0,3 = 1 we interpret the product in (A.7) as only over triples with gj +
max

{
�aj+nj−2

2 �, 0
}

> 0. We also see by Theorem A.3 that

Vg0,a0+k � C1

(
4π2

)2g0+a0+k−3 (
2g0 + a0 + k − 3

)
! , (A.8)

and

Vg,n = B√
g

(2g − 3 + n (g)) !
(
4π2

)2g−3+n(g)

(
1 + O

(
1 + n (g)2

g

))
. (A.9)

We introduce the notation aj + nj
def= max

{�aj+nj−2
2 �, 0

}
. By applying (A.7), (A.8), and (A.9)

and noting that ni!� 1 for each i, we calculate that

∑
A

n!

a0! · · · · · aq!
.
Vg0,n0+k · Vg1,n1+a1

· · · · · Vgq,nq+aq

Vg,n · n0! n1! · · · nq!

� (
2g0 + k + a0 − 3

)
!
∑
A

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
.

The result then follows from the fact that

∑
A

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
� na0

gm ,

which is proved in Lemma A.6. �
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We now need to prove Lemma A.6, which is purely computational.

Lemma A.6. Let n = o
(√

g
)
, and let g0, a0, n0 and k be given with m = 2g0 +a0 +k−2 �

3 log g − 2 and 1 � q � k − 2n0. With A as in Lemma A.5, we have

∑
A

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
� na0

gm . (A.10)

In the proof of Lemma A.6, we will frequently apply the following observation:

if xi � 0 with
∑s

i=1 xi = A, then

s∏
i=1

xi!� A! , (A.11)

which can be seen by the fact that the multinomial coefficient
( A
x1,...,xs

)
is bounded below

by 1.

Proof. We first note that q � 3 log g. For
{(

g1, a1, n1

)
, . . . ,

(
gq, aq, nq

)}
∈ A, we claim

that if max1�i�q

(
2gi + ai + ni − 3

)
� 2g + n − 3 − m − 8q, then

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
� g− 7

2 q. (A.12)

This estimate is analogous to (A.6). Once we have established (A.12) we shall apply a

rough counting argument to bound the contribution of such terms to the sum (A.10).

Let max1�i�q

(
2gi + ai + ni − 3

) = 2g + n − 3 − m − L. First we treat the case that

L � 1
2 (2g + n − m − 3). We apply Stirling’s approximation (A.1) to see that

(
2gi + ni + ai − 3

)
!√

gj + aj + nj

< c2

√
2π

(
2gi + ni + ai − 3

)
√

gj + aj + nj

·
(

2gi + ai + ni − 3

e

)2gi+ai+ni−3

< 4
√

π ·
(

2gi + ai + ni − 3

e

)2gi+ai+ni−3

. (A.13)

Applying Stirling’s approximation again, we see that

√
g

(2g + n − 3) !
>

1

c2

√
g√

2π (2g + n − 3)
·
(

e

2g + n − 3

)2g+n−3

�
(

e

2g + n − 3

)2g+n−3

. (A.14)
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We also note that

n!

a0! · · · aq!
� qn, (A.15)

by the multinomial theorem. By (A.13), (A.14), and (A.15),

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !

�qn · (4C1
√

π
)q

∏q
j=1

(
2gj + aj + nj − 3

)(2gj+aj+nj−3)

(2g + n − 3)(2g+n−3)
. (A.16)

We now bound the expression in (A.16). Given s integers xi > 0, Jensen’s inequality for

concave functions applied to the function log x tells us that∑s
i=1 xi log xi∑s

i=1 xi
� log

(∑s
i=1 x2

i∑s
i=1 xi

)
.

If
∑s

i=1 xi = A and max1�i�s xi = B, then

s∑
i=1

xi log xi � A log

(∑s
i=1 x2

i∑s
i=1 xi

)

� A log B,

and by exponentiating, we conclude that

s∏
i=1

xxi
i � BA. (A.17)

Note that (A.17) also holds if instead we just require xi � 0 since we can apply Jensen’s

inequality with only the non-zero terms. Recall that max1�i�q

(
2gi + ai + ni − 3

) = 2g +
n − 3 − m − L for L � 1

2 (2g + n − m − 3). Since
∑q

i=1

(
2gi − 2 + ni + ai

) = 2g − 2 + n − m,

then in particular,
∑q

i=1

(
2gi − 3 + ni + ai

)
� 2g + n − m − 3 and we can apply (A.17) to

(A.16) to calculate that

qn · (4C1
√

π
)q

∏q
j=1

(
2gj + aj + nj − 3

)(2gj+aj+nj−3)

(2g + n − 3)(2g+n−3)

�qn · (4C1
√

π
)q · (2g + n − 3 − m − L)(2g+n−3)

(2g + n − 3)(2g+n−3)

�qn · 23qCq
1

(
1

2

)2g+n−3

� qn
(

1

2

)2g+n−3−3q−q log2 C1

.
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Since q � 3 log g and n = o
(√

g
)
,

qn
(

1

2

)2g+n−3−3q−q log2 C1

�
(

1

2

)g

= g
− g

log2 g � g− 7
2 q.

This justifies the claim in the case that L � 1
2 (2g + n − m − 3).

In order to treat the remaining cases, we first make the following observation.

Recalling that
∑q

j=1

(
2gj + aj + nj − 3

) = 2g + n − m − 3 − (
q − 1

)
and that aj + nj

def=
max

{�aj+nj−2
2 �, 0

}
, we see that

q∑
j=1

(
gj + aj + nj

)
� 1

2

q∑
j=1

(
2gj + aj + nj − 3

)
� 2g + n − m − 3 − (q − 1)

2
.

For any q positive integers xi, we have

q∏
i=1

xi �
q∑

i=1

xi − (q − 1) .

Then,

q∏
j=1

(
gj + aj + nj

)
� 2g + n − m − 3 − (q − 1)

2
− q − 1 � g,

since n = o
(√

g
)

and q, m = O (log g). We see that
√

g∏q
j=1

√
gj + aj + nj

� 1,

and therefore

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !

� Cq
1n!∏q

j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
. (A.18)

The expression in (A.18) will be easier to work with for the remaining cases. Recalling

that max1�i�q

(
2gi + ai + ni − 3

) = 2g+n−3−m−L, we now treat the case that 8q � L �
n − a0. Since max1�i�q

(
2gi + ai + ni − 3

) = 2g + n − 3 − m − L, this forces max1�i�q ai �
n − a0 − L. Indeed if max1�i�q ai < n − a0 − L we would have that

max
1�i�q

(
2gi + ni

)
> 2g − 2g0 − n0,

which is not possible. Since there is an 1 � i � q such that 2gi + ai + ni − 3 = 2g + n −
3 − m − L and we have

∑q
j=1,j �=q

(
2gi + ai + ni − 3

) = L − (q − 1) � L, we apply (A.11) to
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see that
q∏

j=1

(
2gj + aj + nj − 3

)
! = (2g + n − 3 − m − L) !

q∏
j=1,j �=i

(
2gj + aj + nj − 3

)
!

� L! (2g + n − 3 − m − L) ! . (A.19)

We then use the rough bound

n!∏q
j=0 aj!

� n!(
max1�i�q ai

)
!
� n!(

n − a0 − L
)

!
� na0+L, (A.20)

together with (A.19), to see that

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
� na0+LL! (2g + n − 3 − m − L) !

(2g + n − 3) !
� na0+L

gm+L L! . (A.21)

By applying Stirling’s approximation (A.1),

na0+L

gm+L L! � √
L
(

n · L

e · g

)L

· na0

gm .

If L = 8q then since n = o
(√

g
)

and q � 3 log g,

Cq
1

√
L
(

n · L

e · g

)L

� Cq
1g−4q (8q)8q+ 1

2 � g
−7q

2 . (A.22)

Now if 8q < L � n − a0,

Cq
1

na0

gm .
√

L
(

n · L

e · g

)L

� Cq
1

√
L√
g

(
n · L

e · g

)L

·
(

n · 8q

e · g

)8q

·
(

e · g

n · 8q

)8q

� g
−7q

2 ·
(

L

8q

)8q

·
(

n · L

e · g

)L−8q

� g
−7q

2 · eL−8q ·
(

n · L

e · g

)L−8q

� g
−7q

2 ,

which justifies the claim (A.12) in the case that 8q � L � n − a0. Finally, we treat the

case that 8q < n − a0 < L � 2g+n−3−m
2 . We calculate, with (A.19) and (A.15), that

Cq
1n!∏q

j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
� Cq

1 · qn · L! (2g + n − m − 3 − L) !

(2g + n − 3) !

� Cq
1 · qn

(
n − a0

)
!
(
2g + a0 − m − 3

)
!

(2g + n − m) !

� g3 log C1 (3 log g)n+1 nn

(2g)n � g− 7
2 q, (A.23)
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which justifies the claim (A.12) for 8q < n − a0 < L � 2g+n−3−m
2 . Note that in the case

that n � 8q − n0 we can simply apply the argument in (A.23) with L � 8q. The claim

(A.12) is now proved.

Now we have established (A.12), we apply the very rough bound for the size of

the set A,

|A| � g3q,

together with (A.12) to calculate

∑
{(gi,ai,ni)}q

i=1∈A
max1�i�q(2gi+ai+ni−3)�2g+n−2−m−8q

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!
∏q

j=1

(
2gj + aj + nj − 3

)
!∏q

j=0 aj! (2g + n − 3) !

�na0

gm

∑
{(gi,ai,ni)}q

i=1∈A
max1�i�q(2gi+ai+ni−3)�2g+n−2−m−8q

g− 7
2 q � |A| · na0

gm · g− 7
2 q � na0

gm · g− q
2 . (A.24)

We now consider the sum

∑
{(gi,ai,ni)}q

i=1∈A
max1�i�q(2gi+ai+ni−3)>2g+n−3−m−8q

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!
∏q

j=1

(
2gj + aj + nj − 3

)
!∏q

j=0 aj! (2g + n − 3) !
. (A.25)

Let max1�i�q

(
2gi + ai + ni − 3

) = 2g + n − 3 − m − L. Since 2gj + aj + nj − 3 � 0 and∑q
j=1 2gj + aj + nj − 3 = 2g + n − m − 3 − (q − 1), we see that L � q − 1. By the same

arguments as in (A.21) and (A.22), if q − 1 � L � 8q � 24 log g then

n!∏q
j=0 aj!

∏q
j=1

(
2gj + aj + nj − 3

)
!

(2g + n − 3) !
� na0+L

gm+L L! � na0

gm · g− L
4 . (A.26)

We now bound the number of {(g1, a1, n1), . . . , (gq, aq, nq)} ∈ A with max1�i�q(2gi + ai +
ni − 3) = 2g + n − 3 − m − L. Assume we have that 2g1 + a1 + n1 − 3 = 2g + n − 3 − m − L

. The remaining q − 1 triples satisfy∑
2�i�q

(
2gi + ai + ni

) = L + 3 (q − 1) .

Since
∑q

i=1 ni = k − 2n0 and
∑q

j=1 aj = n − a0, the triple
(
g1, a1, n1

)
is determined by

the choice of {(g2, a2, n2), . . . , (gq, aq, nq)}. Then the number of
{(

gi, ai, ni

)}q
i=1 ∈ A with

max1�i�q

(
2gi + ai + ni − 3

) = 2g + n − 3 − m − L is therefore bounded above by(
L + 6 (q − 1)

3 (q − 1)

)
. (A.27)
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Therefore, combining (A.18), (A.26), and (A.27) we see that the sum (A.25) satisfies

∑
{(gi,ai,ni)}q

i=1∈A
max1�i�q(2gi+ai+ni−3)>2g+n−3−m−8q

Cq
1
√

g∏q
j=1

√
gj + aj + nj

n!
∏q

j=1

(
2gj + aj + nj − 3

)
!∏q

j=0 aj! (2g + n − 3) !

�na0

gm

8q∑
L=q−1

(
L + 6 (q − 1)

3 (q − 1)

)
Cq

1

g
L
4

� na0

gm . (A.28)

Combining (A.24) and (A.28), the result follows. �
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