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On Lasso and adaptive Lasso for non-random sample
in credit scoring
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Abstract: Prediction models in credit scoring are often formulated using available data on accepted
applicants at the loan application stage. The use of this data to estimate probability of default (PD)
may lead to bias due to non-random selection from the population of applicants. That is, the PD in
the general population of applicants may not be the same with the PD in the subpopulation of the
accepted applicants. A prominent model for the reduction of bias in this framework is the sample
selection model, but there is no consensus on its utility yet. It is unclear if the bias-variance trade-
off of regularization techniques can improve the predictions of PD in non-random sample selection
setting. To address this, we propose the use of Lasso and adaptive Lasso for variable selection and
optimal predictive accuracy. By appealing to the least square approximation of the likelihood function
of sample selection model, we optimize the resulting function subject to L1 and adaptively weighted
L1 penalties using an efficient algorithm. We evaluate the performance of the proposed approach and
competing alternatives in a simulation study and applied it to the well-known American Express credit
card dataset.
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1 Introduction

Credit scoring models are used to evaluate the likelihood of credit applicants default-
ing in order to decide whether to grant them credit. The scoring systems are based
on the past performance of consumers who are similar to those who will be assessed
under the system. In other words, several loan applicant attributes are used to assign
a score. These scores are used to determine credit worthiness of the applicant. In
practice, the credit scores are transformed into the probability of default (PD). PD is
the expected probability that a borrower will default on the debt before its maturity.
A key concern in the use of these models is that they are typically designed and
calibrated using data from applicants who were previously considered adequately
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creditworthy to have been granted credit (Banasik et al., 2003). Consider, as an ex-
ample, where a loan application is made to a bank. The bank uses the loan applicant
attributes to grant or reject the loan request. If the request is accepted, then the bank
will observe the loan performance over time. Marshall et al. (2010) classified these
procedures into two: the credit granting process (accept or reject) and loan perfor-
mance process (default or non-default). A model developed using the accept-only
applicants from the credit granting process may be a non-random sample from the
target population and can lead to selection bias.

A strategy for addressing the problem of sample selection bias in credit scoring
is the reject inference techniques (Hand & Henley, 1993; Crook & Banasik, 2004).
Reject inference is the process of inferring how rejected loan applicants would have
behaved had they been granted loan. The techniques for reject inference can be
classified under two different assumptions (Kim & Sohn, 2007). The first assumption
is that the distribution pattern of accepted applicants can be extended to that of
rejected ones. That is, P(default|X, rejected) = P(default|X, accepted), where X is the
vector of applicants’ attributes. This implies that PD in the population of accepted
applicants can be applied to the rejected ones. Examples of statistical methods in this
category include re-weighting and extrapolation methods. The second assumption
implies that P(default|X, rejected) �= P(default|X, accepted). In this case, the PD in
the population at large, P(default|X) cannot be approximated by the conditional
model based on P(default|X, accepted) for an applicant selected at random from the
full population. A widely used method under this assumption is the bivariate probit
model with sample selection (Dubin & Rivers, 1989).

There are two discordant viewpoints on the utility of sample selection models
for reject inference in the literature. Greene (1998) and Greene (2008), for example,
analysed the risk of a loan default for credit cardholders using sample selection
model, and concluded that the model with adjustment for sample selection bias
exhibits better discrimination than the model based on accept-only data. By taking
variable selection into account, Marshall et al. (2010) showed that the model without
considering sample selection bias can underestimate PD. Other studies that reported
higher model performance can be found in Banasik et al. (2003), Banasik and Crook
(2007) and Kim & Sohn (2007). On the other hand, Little (1985) and Crook &
Banasik (2004) showed that adjusting for selectivity bias may not yield improved
predictions when the proportion of rejected applicants is low. In a simulation study,
Wu and Hand (2007) also reported the importance of the proportion of accepted
or rejected applicants in reject inference. It was shown that even with the normality
assumption in place for sample selection model, correction for selection bias may
not improve predictions when the proportion of accepted applicants is large. Further
examples can be found in Puhani (2000) and Chen and Åstebro (2012).

There are various reasons for the discordant viewpoints mentioned above. These
include the proportion of rejected applicants, the inclusion of ‘noise’ variables (vari-
ables that are not predictive of PD) in both the loan granting and loan performance
processes, which may lead to overfitting, and the degree of correlation between the
error terms in loan granting and loan performance processes. Indeed, some of these
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issues have been dealt with to some extent in the literature. Marshall et al. (2010)
used bootstrap variable selection to control for the effect of noise variables, but their
method was not optimized for predictions like regularization methods. Data mining
techniques have been used in reject inference to improve the quality of credit score-
cards, but these are yet to be applied to the Heckman-type selection models (see Li
et al., 2017 and references therein). The need to harmonize these issues within the
Heckman-type selection models for reject inference is the motivation for this article.

The contribution of this article is therefore twofold. First, we introduce Lasso
(Tibshirani, 1996) and adaptive Lasso (Zou, 2006) penalized Heckman-type
bivariate probit model and assess its performance in identifying predictive features
of PD in credit scoring. Since the model is made up of two components, each of
which may have different variables, features selection is somewhat complex. Thus,
our framework appeals to the unified treatment of L1-constrained model selection of
Wang and Leng (2007), which is based on least squares approximation (LSA) of the
likelihood function. The resulting LSA is then solved subject to L1 and adaptively
weighted L1 penalties using the coordinate descent algorithm. Unlike the bootstrap
variable selection approach of Marshall et al. (2010), regularization methods have
the advantage of simultaneous estimation of parameters and selection of variables.
Second, since variable selection provides sparse solution for the true model with
true zero coefficients, the predictive performance of the model can be enhanced.
We therefore propose a bootstrap internal validation method (Harrell et al., 1996;
Ogundimu, 2019) for both the regularized and unregularized sample selection mod-
els. Unlike in previous work, where model validation is done using hold-out sample,
the bootstrap approach can be used to quantify the degree of optimism in the model.

The remainder of the article is organized as follows. In Section 2, we describe the
dataset used in the study. The bivariate probit model with sample selection (BPSSM)
and its extension using copula-based sample selection model (CBSSM) are described
in Section 3. We develop Lasso and adaptive Lasso estimators for the models and
provide the computational algorithm for its maximization in Section 4. In Section 5,
we describe five metrics for predictive performance that are not threshold dependent
and the procedure for internal validation. Simulation study and data example are
presented in Section 6. Finally, in Section 7, we provide concluding remarks and
further results are presented in Supplementary Materials. We also provide a package
in R (HeckmanSelect) for the implementation of the methods.

2 Dataset

We used the American Express credit card dataset (Greene, 1998, 2008) in this study.
The dataset consisted of 13,444 observations on credit card applications received in
a single month in 1988. Of the full sample, 10,499 applications were approved,
and the next 12 months of spending and default behaviour were observed. Important
variables in the data include demographic and socioeconomic factors of the applicants
(e.g., Age, Income, whether the applicant owns his or her home, whether the applicant
is self-employed or not and the number of dependents living with the applicant). An
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Table 1 Distribution of the outcomes

(a) Distribution of events (all observations)

Event sample
D = 1, C = 1 996/13444
D = 0, C = 1 9503/13444

C = 0 2945/13444

(b) Distribution of events (selected sample)

Event sample
D = 1 996/10499
D = 0 9503/10499

important factor for granting the credit facility is grouped under ‘Derogatories and
Other Credit Data’. These influential variables are number of major and minor
derogatory reports (60-day and 30-day delinquencies). Details of the variables used
in this study can be found in Table A1 (Supplementary Materials).

The dataset consisted of two outcome variables–Cardholder status (C), which
takes 1 if the application for a credit card was accepted and 0 if not, and Default
status (D) which takes 1 if defaulted and 0 if not. Default is defined as having skipped
payment for six months, and the corresponding status is observed only when C = 1,
that is for 10,499 observations.

Table 1a shows the distribution of the cardholder status. Out of the 13,444
applicants, 2,945 (21.9%) are censored, 996 (7.41%) of those that are selected to
receive the card defaulted and 9,503 (70.7%) applicants paid back their loans. Table
1b shows the default status distribution of the selected sample. As it is common in
credit scoring, the event rate is less than 10%.

3 Sample selection model with binary outcome

The use of sample selection model in reject inference assumes that

P(default|X, rejected) �= P(default|X, accepted).

This implies reject inference can be construed as a missing data problem under the
assumption of missing not at random (MNAR) and Heckman selection model can
be adapted for parameter estimation and inference. Henceforth, we treat the loan
granting process (accept/reject) as the selection equation (Si ) and loan performance
(default/non-default) as the outcome submodel of interest (Yi).

Let Y� and S� be two latent (unobservable) variables characterizing the outcome
and selection equations respectively. That is,

Y�
i = βTxi + ε1i

S�
i = γ Twi + ε2i , i = 1, . . . , n, (3.1)

where βT = (β0, β1, . . . , βp) and γ T = (γ0, γ1, . . . , γq) are unknown parameters with
corresponding covariates xT

i = (1, xi1, . . . , xip) and wT
i = (1, wi1, . . . , wiq); and εT

i =
(ε1i , ε2i ) are random errors with means zero, variances one and correlation ρ. Define
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further Yi and Si as two observable versions of equation (3.1) such that

Yi =
{

1 if Y�
i > 0

0 otherwise
and Si =

{
1 if S�

i > 0
0 otherwise

.

The probability mass function (PMF) of Yi and Si is Bernoulli, where the probability
of success depends on the parameters β and γ respectively.

3.1 Bivariate probit model with sample selection (BPSSM)
Suppose that the error terms in equation (3.1) follow a bivariate normal distribution

(
ε1i
ε2i

)
∼ N2

{(
0
0

)
,

(
1 ρ
ρ 1

)}
,

we have the classical bivariate probit model. The selection process is such that Yi is
observed if Si = 1, and Yi is missing if Si = 0. There is no selection bias when ρ = 0.
In this case, the missing data mechanism is said to be ignorable.

Now, we have three levels of observability: Si = 0 (rejected loans), Si = 1, Yi = 0
(accepted loans and non-default) and Si = 1, Yi = 1 (accepted loans and default).
Thus,

P(Si = 0) = 1 − �(γ Twi ) = �(−γ Twi )

P(Yi = 0, Si = 1) = �(γ Twi ) − �2(βTxi , γ
Twi ; ρ) = �2(−βTxi , γ

Twi ; −ρ)

P(Yi = 1, Si = 1) = �2(βTxi , γ Twi ; ρ), (3.2)

where �(·) and �2(·, ·; ρ) denote the univariate and bivariate standard normal cu-
mulative distribution functions (CDF) respectively. The appropriate log-likelihood
function is easily derived from equation (3.2) as

l(θ ) =
n∑

i=1

(1 − Si ) ln �(−γ Twi ) + Si (1 − Yi ) ln �2(−βTxi , γ
Twi ; −ρ)

+ SiYi ln �2(βTxi , γ
Twi ; ρ), (3.3)

where θ = (β, γ , ρ). The probability of interest is

P(Yi = 1
∣∣∣xi , wi , Si = 1) = �2(βTxi , γ Twi ; ρ)

�(γ Twi )
. (3.4)
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It is straightforward to show that equation (3.4) reduces to �(βTxi ) when ρ = 0. This
is indeed the model for the accept-only applicants. That is, P(Yi = 1|xi ) = �(βTxi ),
a probit regression model. The performance of the rejected loans can be imputed via

P(Yi = 1
∣∣∣xi , wi , Si = 0) = �2(βTxi ,−γ Twi ; −ρ)

�(−γ Twi )
.

The evaluation of the performance of our method is based on equation (3.4). This is
the PD given that a loan is accepted.

3.2 Copula-based sample selection model
Although there is no reason to discountenance the symmetric dependence and the
underlying normal assumption used in Section 3.1 for prediction purposes, the model
can be generalized using copulas. Let us define the marginal CDFs of Y�

i and S�
i as

FY�(Y�
i ) = P(Y�

i ≤ y�
i ) and FS�(S�

i ) = P(S�
i ≤ s�

i ) respectively, then their joint CDF can
be written as

F (y�
i , s�

i |θ ) = P(Y�
i ≤ y�

i , S�
i ≤ s�

i ) = C
(

FY�(y�|β), FS�(s�|γ ); ρ
)
,

where C(·, ·) is a two-dimensional copula function, β and γ are as defined in equation
(3.1) and ρ is an association copula parameter representing the dependence between
the two marginal distributions. Note that ρ is defined as an association measure in
this case and therefore can have values outside the usual correlation range of [−1, 1].

Since the realized ‘outcomes’ Y and S are both binary, we can define the probability
of event (Yi = 1, Si = 1) as

p11i = P(Yi = 1, Si = 1) = C
(

P(Yi = 1), P(Si = 1); ρ
)
,

where

P(Yi = 1) = P(Y�
i > 0) = 1 − FY�(−βTxi ) and

P(Si = 1) = P(S�
i > 0) = 1 − FS�(−γ Twi ).

In addition,

p0i = P(Si = 0) = FS�(−γ Twi )

p01i = P(Yi = 0, Si = 1) = 1 − FS�(−γ Twi ) − C
(

P(Yi = 1), P(Si = 1); ρ
)
.
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Thus, the likelihood function in equation (3.3) can be generalized as

l(θc) =
n∑

i=1

(1 − Si ) ln(p0i ) + Si (1 − Yi ) ln(p01i ) + SiYi ln(p11i ). (3.5)

If we assume a Gaussian copula with normal marginals, that is

�2

(
�−1�(βTxi ),�−1�(γ Twi )); ρ

)
, then equations (3.5) and (3.3) are essentially

the same. The probability of interest given in equation (3.4) is then generalized as

P(Yi = 1
∣∣∣xi , wi , Si = 1) = P(Yi = 1|xi , Si = 1|wi )

P(Si = 1|wi )
=

C
(

P(Yi = 1), P(Si = 1); ρ
)

1 − FS�(−γ Twi )
.

Details of various copulas that can be used in non-Gaussian sample selection
models, including the marginal distributions can be found in Marra et al. (2017b)
and Gomes et al. (2019). We illustrate the proposed method using Ali–Mikhail–Haq
(AMH) copula function with Gaussian marginal distribution for both the outcome
and the selection equations. We note that AMH copula can only allow for relatively
modest dependence (see Section A.3. in Supplementary Materials), and as such, we
only consider comparable dependence between the outcome and the selection process
of BPSSM and CBSSM in our simulation settings.

4 Lasso and adaptive Lasso

4.1 Lasso and adaptive Lasso for BPSSM and CBSSM
Ogundimu (2021) introduced a regularization method for sample selection model
for continuous outcomes. We generalize the method to binary outcomes by using
the unified Lasso approach of Wang and Leng (2007). Since the model is a two-
component model, similar to mixture models, we adapt the method implemented in
Zeng et al. (2014).

Consider the log-likelihood function l(θ ) given in equation (3.3) (equivalently
equation (3.5)). Suppose that the last three elements of θ are β0, γ0 and ρ, and
that the first p + q elements of θ are β j , j = 1, . . . , p and γk, k = 1, . . . , q. This
construction is to ensure that β0, γ0 and ρ are not penalized. The Lasso estimator
(Tibshirani, 1996) for the sample selection model is given by

θ̂lasso(λ) = argmin
θ

{
−l(θ ) + λ

p+q∑
d=1

|θd|
}

λ ≥ 0, (4.1)
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where the second term in the RHS of equation (4.1) is the L1-penalty which shrinks
small coefficients to zero to obtain sparse representation of the solution and λ is
a tuning parameter controlling the amount of shrinkage, often chosen via cross-
validation. The optimization problem reduces to the familiar maximum likelihood
estimation when λ = 0.

Equation (4.1) does not have a closed form solution and various algorithms for
its computation have been studied. These include the shooting algorithm (Fu, 1998),
the least angle regression (LARS; Efron et al., 2004) and the coordinate descent
algorithm (Friedman et al., 2007). Since the Lasso penalizes all the regression coef-
ficients equally, it over-penalizes the important variables thereby resulting in biased
estimators. The lack of the oracle property (Fan & Li, 2001) of Lasso prompted
the development of the adaptive Lasso (Zou, 2006) with this property. The oracle
property implies the method is consistent in variable selection, unbiased and asymp-
totically normal. The estimator is defined as

θ̂alasso(λ) = argmin
θ

{
−l(θ ) + λ

p+q∑
d=1

wd|θd|
}
, (4.2)

where w = (w1, . . . , wp+q) is data-driven adaptive weight, which is often given as
w = 1/|θ̂ | and θ̂ is any consistent estimator of θ . We take this to be the maximum
likelihood estimator, θ̂ml.

4.2 Least squares approximation
It is not straightforward to optimize the penalized log-likelihood function in equation
(4.2). To simplify the optimization problem, we approximate l(θ ) by the least squares
approximation (LSA) method. Consider the second-order Taylor expansion of l(θ )
at θ̂ml,

l(θ ) ≈ l(θ̂ml) + (θ − θ̂ml)
Tl �(θ̂ml) + 1

2
(θ − θ̂ml)

Tl ��(θ̂ml)(θ − θ̂ml), (4.3)

where l �(·) and l ��(·) are the first- and second-order derivatives of the log-likelihood
function. Since l(θ̂ml) is a constant, l �(θ̂ml) = 0, and l ��(θ̂ml) = �̂−1, where �̂ is the
estimated variance-covariance matrix of θ̂ml, we have

l(θ ) ≈ constant + 1
2

(θ − θ̂ml)
T�̂−1(θ − θ̂ml).
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We fitted the models and obtain θ̂ml and �̂ by using the GJRM package in R (Marra
& Radice, 2020). A pseudo data is created as

X∗ = �̂−1/2, Y∗ = �̂−1/2θ̂ml,

where X∗ is a square matrix containing all the (p + q + 3) predictors along with
the correlation parameter ρ and the intercepts, and Y∗ is the corresponding pseudo
response. Thus, equation (4.2) can be re-written as

θ̂alasso(λ) ≈ argmin
θ

{
1
2

(
Y∗ − θ �X∗

)T(
Y∗ − θ �X∗

)
+ λ

p+q∑
d=1

wd(
∣∣∣θd

∣∣∣)
}
,

which we optimized using the coordinate descent algorithm (see Friedman et al.,
2010; Simon et al., 2011; Ogundimu, 2021).

4.3 Selection of tuning parameter
The optimal tuning parameter, λ can be estimated by using AIC (Akaike informa-
tion criterion), BIC (Bayesian information criterion) and GCV (generalized cross-
validation). It has been shown that the combination of the adaptive Lasso penalty
and BIC-type tuning parameter selector results in LSA estimator that can be as effi-
cient as the oracle estimator (Wang et al., 2007). Thus, we focus on the BIC criterion
although the method is implemented for both AIC and GCV as well. The expression
is given as

BIC(λ) = −2l(θ̂) + dfλ log(n),

where 0 ≤ dfλ ≤ (p + q) is the degree of freedom corresponding to the number of
nonzero coefficients of θ̂ . The optimal value of λ is computed over a grid of candidate
values of λ between λ = 0 and λ = λmax, with step size of 0.1, where λmax is the
value of λ for which the entire vector of θ̂ is zero. We allowed optimal λ = 0 for the
unregularized solution.

4.4 Variance estimation
The variance of the nonzero component of θ̂ (base on the optimal tuning pa-
rameter λ) can be derived using the local quadratic approximation (LQA) sand-
wich formula given in Fan & Li (2001). We suggest alternative formulation using
block decomposition of the Hessian matrix l ��(θ ) (see Section A.2. in Supplemen-
tary Materials) and by generalization the Hessian matrix corresponding to equa-
tion (3.5). Let θ̂1 (with r elements, r ≤ s) be non-vanishing component of θ̂ . Define
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A(θ̂) = diag{1/θ̂11, . . . , 1/θ̂1s}. Let θ̂ = (θ̂1, θ̂2), where θ̂1 is as defined previously, and
θ̂2 are the zero elements of θ̂ . Then,

M = ∇2l(θ̂) =
(

M11 M12
M21 M22

)
,

where M11 corresponds to the first r × r submatrix of M. Further, let A11 be the first
r × r submatrix of A(θ̂). Define E = M22 − M21M−1

11 M12 and M̃11 = M11 + λA11.
Then,

ĉov(θ̂1) = M−1
11 +

(
M−1

11 − M̃−1
11

)
M12 E−1M21

(
M−1

11 − M̃−1
11

)
.

We have presented the variance estimation formula for the sake of completeness as
the focus of the current work is on predictions. Further details on variance estimation
for regularized sample selection model can be found in Ogundimu (2021).

5 Performance metrics and bootstrap validation

We describe the metrics for predictive accuracy and the bootstrap approach for model
validation.

5.1 Metrics for predictive performance
In credit risk assessment, the misclassification of loan defaulters into non-defaulters
will result in a loss for banks/creditors. Therefore, it is more important that the true
defaulters are correctly classified. Here, we focus on model evaluation criteria for
predictions in the context of regression analysis rather than classification. This is to
ensure that the metrics for predictive performance are not threshold dependent and
the users of the model can determine the appropriate threshold for classification.
Unlike in previous studies, where area under the curve is the most common metric
of prediction accuracy, we examined the performance of four other metrics based
on model discrimination and calibration. The following performance metrics are
used:

(1) Area under the receiver operating curve (AUROC): The c-index (Harrell et al.,
1982) is the generalization of the AUROC, which is a measure of model perfor-
mance that separates subjects with the event of interest from subjects without the
event (discrimination). It calculates the proportion of pairs in which the predicted
event probability is higher for the subject with the event of interest than that for
the subject without the event. A model with no discriminatory ability has a value
around 0.5 whereas a value close to 1 suggests excellent discrimination.
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(2) Area under the precision-recall curve (AUPRC): Suppose True positive (TP) is
defined as actual defaulters who are correctly predicted, False negative (FN) as
actual defaulters who are predicted as non-defaulters, and False positive (FP)
as actual non-defaulters predicted as defaulters. Then, Recall = TP/(TP + F N)
and Precision = TP/(TP + F P). Thus, the precision-recall curve shows the
relationship between precision and recall for every possible threshold value. The
area under the curve is a single number summary of the information in the
precision-recall (PR) curve. A key advantage of AUPRC is that it takes into
consideration the prior probability of the outcome of interest, thereby reflecting
the ability of the model to identify defaulters (often the minority class in credit
scoring). Unlike the AUROC, its values range from 0 to 1. Its value approaches
0 as the prior probability of the outcome decreases (Davis & Goadrich, 2006).
We computed this metric by using the PRROC package in R (Grau et al., 2015).

(3) Brier score (BS): It is a measure of agreement between the observed binary out-
come (i.e., default versus non-default) and the predicted PD as shown below

BS = 1
n

n∑
i=1

(Yi − Ŷi )2,

where Yi is the outcome and Ŷi is the predicted PD. It is a proper scoring rule in
that it is maximized when correct probabilities are used. A key advantage is that
it captures both discrimination and calibration, and a low value of the metric is
preferred.

(4) Calibration Metrics: We consider two metrics of calibration–Expected Calibra-
tion Error (ECE) and Maximum Calibration Error (MCE). The metrics are com-
puted by sorting predicted probabilities and partitioning it into K fixed number
of equal-frequency bins. The ECE calculates the average calibration error over
the bins as

ECE =
K∑

i=1

P(i).|yi − ŷi |,

where yi is the true fraction of positive instances in bin i , ŷi is the average of
the probabilities for the instances in bin i , and P(i) is the empirical probability
(fraction) of all instances that fall into bin i , and the MCE calculates the maximum
calibration error for the bins as

MCE = max
i=1,··· ,K

|yi − ŷi |.

The choices between K = 10 and K = 100 have been reported in the literature
(Naeini et al., 2015; Wang et al., 2019). We chose K = 10 in this study. Like
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Brier score, the lower the values of ECE and MCE, the better is the calibration
of a model.

5.2 Bootstrap internal validation
Although we implemented penalized sample selection models to alleviate overfitting,
some degree of optimism may persist, nonetheless. Harrell et al. (1996) presented
a procedure for estimating optimism in predictive models. We extend this method
to incorporate variable selection. Without loss of generality, consider a dataset D =
{xi , Yi , Si}, where xi , Yi and Si are as defined in Section 3.1, and performance metric
P. A generic algorithm for the procedure is given in Algorithm 1.

Algorithm 1: Bootstrap validation with variable selection
Input: D = {xi , Yi , Si}:
for b = 1 to B do

Take a bootstrap sample Db from D
fit model to Db using regularized sample selection model

(grid search for optimal λ is done on each Db)
predict on the same Db sample and compute predictive accuracy metric of

interest, say Pboot
boot(b)

use the model to predict on D and compute predictive accuracy metric, P
orig
boot(b)

compute average optimism: Optimism = 1
B

∑B
b=1

(
Pboot
boot(b)

− P
orig
boot(b)

)

end for
fit model to D using regularized sample selection model
use the model to predict on D and compute apparent performance: P

orig
orig

Output: Optimism corrected metric P is P
orig
orig − Optimism.

The optimism corrected metric P is the metric that has been corrected for overfit-
ting. It is noteworthy that optimal lambda value is selected for each of the b bootstrap
sample.

6 Numerical studies

In this section, we use simulation and a real data to evaluate the utility of the proposed
estimators in reject inference.

Statistical Modelling 2024; 24(2): 115–138



Penalized non-random sample 127Penalized non-random sample 127

6.1 Simulation study
We generated Y�

i = βTxi + ε1i and S�
i = γ Twi + ε2i as follows:

βT =(−2.78, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0.7, 0.7, 0.7)

γ T =(1.90, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0.7, 0.7, 0.7, 1).

The intercepts of the outcome equation, β0 = −2.78 and the selection equation,
γ0 = 1.90 are chosen such that the required event rate and missing data is about
10% and 22% respectively. The 10% event rate is typical of datasets for modelling
PD (Ogundimu, 2019). The simulation design ensures that there is one predictor in
the selection equation that is not in the outcome equation (exclusion restriction–
although this is not essential as demonstrated in Ogundimu, 2021). The covariates xi
and wi are independent of the error terms εT

i = (ε1i , ε2i ). We generated the underlying
error distribution in two ways:

i BPSSM: the errors are generated with mean zero and correlation matrix � =(
1 ρ
ρ 1

)
, where ρ = {0, 0.2, 0.5} (ρ = 0 corresponds to ignorable selection process)

ii CBSSM: the errors are generated from AMH copula with association measure
θAMH = {0, 0.498, 1}. Note that these values are equivalent to the values of ρ in
the distribution of error terms under BPSSM. Specifically,

τ = 0 ⇒ ρ = 0 ⇒ θAMH = 0

τ = 0.128 ⇒ ρ = 0.2 ⇒ θAMH = 0.498

τ = 0.333 ⇒ ρ = 0.5 ⇒ θAMH = 1,

where τ is the Kendall’s tau.

The covariates x1, . . . , x8 are generated such that their distribution are marginally
standard normal with pairwise correlations corr(xj, xk) = �| j−k|. We take � = 0.5 to
allow for moderate correlation between the covariates. The binary versions of Y�

i and
S�

i , denoted as Yi and Si respectively, are generated as in Section 3.1. Yi is observed
if Si = 1 and missing otherwise. A sample of n = 1000 is used with 200 replications.
We have combined weak (β = 0.2) and moderate (β = 0.7) covariates effects in this
design.

We evaluated three classes of models: Bivariate probit model with sample selection
(BPSSM), Copula bivariate sample selection model (CBSSM) and accept-only probit
model (PROBIT). That is, adaptive Lasso penalized BPSSM (BPSSM ALasso), Lasso
penalized BPSSM (BPSSM Lasso) and BPSSM with variables selected using p-value
at 5% level of significance (BPSSM P-value). For the copula-based model, we have
adaptive Lasso penalized CBSSM (CBSSM ALasso) and Lasso penalized CBSSM
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Table 2 Results on the covariate selection based on selection model and corresponding
complete case analyses–Bivariate normal data generation

Method Sensitivity Specificity Sensitivity Specificity

Outcome equation Selection equation
ρ = 0

BPSSM P-value 0.738 0.950 0.846 0.951
BPSSM Lasso 0.955 0.689 0.990 0.606
BPSSM ALasso 0.830 0.913 0.909 0.925
CBSSM Lasso 0.963 0.698 0.989 0.625
CBSSM ALasso 0.828 0.934 0.904 0.936
PROBIT P-value 0.742 0.948 – –
PROBIT Lasso 0.967 0.700 – –
PROBIT ALasso 0.828 0.941 – –

ρ = 0.2
BPSSM P-value 0.713 0.955 0.844 0.946
BPSSM Lasso 0.960 0.693 0.994 0.599
BPSSM ALasso 0.812 0.928 0.904 0.932
CBSSM Lasso 0.961 0.719 0.995 0.622
CBSSM ALasso 0.810 0.941 0.905 0.938
PROBIT P-value 0.726 0.955 – –
PROBIT Lasso 0.960 0.734 – –
PROBIT ALasso 0.795 0.950 – –

ρ = 0.5
BPSSM P-value 0.720 0.952 0.849 0.953
BPSSM Lasso 0.962 0.701 0.995 0.628
BPSSM ALasso 0.817 0.920 0.911 0.926
CBSSM Lasso 0.966 0.716 0.994 0.634
CBSSM ALasso 0.819 0.942 0.908 0.938
PROBIT P-value 0.727 0.954 – –
PROBIT Lasso 0.963 0.729 – –
PROBIT ALasso 0.810 0.950 – –

(CBSSM Lasso), while the accept-only model includes probit model with adaptive
Lasso (PROBIT ALasso), probit model with Lasso (PROBIT Lasso) and probit model
with p-value (PROBIT P-value).

We evaluated the performance of the methods using sensitivity (mean of propor-
tion of nonzero coefficients that were correctly identified) and specificity (mean of
proportion of zero coefficients that were correctly identified). The predictive accu-
racy of the model is evaluated using bootstrap method as described in Section 5. For
each bootstrap sample, optimal λ is computed over a grid of candidate values of λ as
described in Section 4.3 to provide a model having predictors and coefficients based
on that penalty.

In Table 2, we present the results of the sensitivity and specificity of the methods
for variable selection. Lasso methods have higher sensitivity but lower specificity
than the other methods. This observation is not surprising since Lasso estimator
lacks oracle property (Zou, 2006) and it is generally known to include true covari-
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Table 3 Simulation results for the number of times each covariate is selected (out of 200) with both
weak and moderate covariate effects (Outcome equation)–Bivariate normal data generation

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

ρ = 0
BPSSM P-value 109 84 93 8 4 13 13 12 200 200 200
BPSSM Lasso 182 184 180 69 53 64 64 61 200 200 200
BPSSM ALasso 140 126 130 20 9 23 16 19 200 200 200
CBSSM Lasso 186 187 182 65 53 66 62 56 200 200 200
CBSSM ALasso 138 125 130 12 7 17 15 15 200 200 200
Probit P-value 110 85 95 9 7 11 14 11 200 200 200
Probit Lasso 188 188 183 67 54 64 58 57 200 200 200
Probit ALasso 138 127 129 14 6 16 10 13 200 200 200

ρ = 0.2
BPSSM P-value 92 88 76 8 12 7 13 5 200 200 200
BPSSM Lasso 186 190 176 62 58 65 61 61 200 200 200
BPSSM ALasso 126 135 113 19 14 10 19 10 200 200 200
CBSSM Lasso 186 191 176 50 54 60 59 58 200 200 200
CBSSM ALasso 126 134 112 13 13 11 13 9 200 200 200
Probit P-value 97 93 81 9 12 6 13 5 200 200 200
Probit Lasso 187 190 175 52 49 55 56 54 200 200 200
Probit ALasso 118 128 108 12 11 6 15 6 200 200 200

ρ = 0.5
BPSSM P-value 107 81 76 9 10 7 14 8 200 200 200
BPSSM Lasso 186 193 175 59 54 59 68 59 200 200 200
BPSSM ALasso 132 136 112 19 17 11 19 14 200 200 200
CBSSM Lasso 188 194 177 54 54 56 64 56 200 200 200
CBSSM ALasso 131 138 114 10 15 7 16 10 200 200 200
Probit P-value 109 84 79 8 10 8 12 8 200 200 200
Probit Lasso 188 192 176 55 50 52 58 56 200 200 200
Probit ALasso 129 135 108 9 11 6 15 9 200 200 200

ates, but also irrelevant covariates (Meinshausen & Bühlmann, 2006). Although the
data was generated based on a bivariate normal distribution, the performance of
CBSSM methods is superior to the corresponding BPSSM methods in terms of speci-
ficity. There is no clear distinction among the methods in terms of sensitivity. The
adaptive Lasso methods have slightly better overall performance on the combined
effects of sensitivity and specificity. To see the impact of weak and moderate co-
variate effects on the methods, we present the frequency with which the variables
are selected in 200 replications in Table 3. The unregularized methods (BPSSM P-
value and Probit P-value) selected true covariates less often when the effect is weak,
but it is slightly better in selecting fewest covariates with true zero coefficients. CB-
SSM Lasso is slightly better than BPSSM Lasso across the correlation values. There is
no clear advantage of sample selection models over complete case analyses in Tables 2
and 3.

Table 4 shows the result of quantifying optimistic predictions in the models.
Regularized methods are expected to exhibit smaller optimism as the regularization
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Table 4 Results of the optimism corrected model performance–Bivariate normal data generation

Method AUROC AUPRC Brier ECE MCE

ρ = 0
BPSSM P-value 0.929 0.650 0.057 0.014 0.057
BPSSM Lasso 0.931 0.658 0.057 0.020 0.081
BPSSM ALasso 0.930 0.655 0.056 0.015 0.059
CBSSM Lasso 0.931 0.659 0.056 0.020 0.079
CBSSM ALasso 0.931 0.655 0.056 0.015 0.058
Probit P-value 0.929 0.650 0.057 0.014 0.058
Probit Lasso 0.932 0.659 0.056 0.018 0.070
Probit ALasso 0.931 0.656 0.056 0.015 0.056

ρ = 0.2
BPSSM P-value 0.928 0.646 0.057 0.014 0.055
BPSSM Lasso 0.931 0.655 0.056 0.019 0.078
BPSSM ALasso 0.930 0.655 0.056 0.015 0.056
CBSSM Lasso 0.931 0.656 0.056 0.019 0.076
CBSSM ALasso 0.930 0.653 0.056 0.015 0.054
Probit P-value 0.928 0.648 0.057 0.014 0.057
Probit Lasso 0.931 0.657 0.056 0.018 0.073
Probit ALasso 0.930 0.653 0.056 0.014 0.054

ρ = 0.5
BPSSM P-value 0.928 0.647 0.057 0.013 0.052
BPSSM Lasso 0.931 0.656 0.056 0.019 0.076
BPSSM ALasso 0.930 0.653 0.056 0.015 0.055
CBSSM Lasso 0.931 0.657 0.056 0.019 0.072
CBSSM ALasso 0.930 0.653 0.056 0.014 0.055
Probit P-value 0.928 0.648 0.057 0.014 0.054
Probit Lasso 0.931 0.657 0.056 0.018 0.068
Probit ALasso 0.930 0.653 0.056 0.014 0.053

is meant to alleviate the problem of overfitting. The results indicate that the use of
sample selection models in reject inference problem, whether regularized or not, does
not improve the accuracy of complete case analysis. Lasso-based methods are slightly
better than the other methods in terms of the metrics for discrimination (AUROC
and AUPRC). This is counterbalanced by its performance on the two metrics for
calibration (ECE and MCE), where calibration results are consistently poorer than
the other methods. This may be due to the inclusion of unimportant variables in
Lasso methods.

Table A2 in the Supplementary Materials is equivalent to the results in Table 2 but
with the data generated from AMH copula. Overall, CBSSM performance is slightly
better than BPSSM (due to its performance on specificity). In general, complete case
analyses are slightly better in terms of specificity for the outcome model whereas
the regularized CBSSM sample selection models are better in terms of sensitivity.
CBSSM ALasso is better than BPSSM ALasso (see Table A3 in Supplementary Ma-
terials). The results also show that there is slight benefit of the sample selection models
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Table 5 Variable selection for the American Express credit card data (Default Models)

Sample selection (BPSSM) Complete cases (Probit)
P-value Lasso Adaptive Lasso P-value Lasso Adaptive Lasso

(Intercept) −1.056 −1.076 −1.070 −0.905 −0.934 −1.028
AGE −0.006 −0.006 −0.005 −0.005 −0.005 –
ACADMOS – 0.000 0.000 – 0.000 –
ADEPCNT – 0.038 0.043 0.055 0.053 0.035
AEMPMOS 0.001 0.001 0.001 0.001 0.001 0.000
MAJORDRG – −0.019 −0.008 0.114 0.101 0.065
MINORDRG 0.079 0.073 0.074 0.082 0.079 0.055
OWNRENT – – – – −0.008 –
APADMOS – 0.000 0.000 – 0.000 –
AMAMIND – −0.081 −0.107 – −0.094 –
INCOME −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
SELFEMPL – – – – – –
TRADACCT – 0.006 0.005 – −0.002 –
INCPER – −0.000 – – −0.000 –
EXP INC −0.382 −0.164 −0.352 −0.361 −0.110 –
CPTOPNB 0.013 0.012 0.012 0.016 0.015 0.005
CPTOPNG −0.113 −0.112 −0.111 −0.122 −0.121 −0.104
CPT30C 0.246 0.217 0.244 0.297 0.261 0.264
CPTF30 0.065 0.065 0.065 0.086 0.087 0.087
CPTAVRV – 0.003 0.002 – 0.001 –
CBURDEN 0.004 0.003 0.004 0.004 0.004 0.004

over the corresponding complete case analyses. However, the use of sample selection
model does not translate to improved predictions (see Table A4 in Supplementary
Materials).

6.2 Data analysis
We used the American Express credit card dataset that was described in Section 2
to evaluate the performance of our models. Table 5 gives the variables selected and
parameter estimates of the bivariate probit model with sample selection (BPSSM)
and classical probit model (PROBIT) for the default equation. The performance of
BPSSM Lasso and BPSSM ALasso are similar in terms of the variables that are asso-
ciated with PD except for the variable INCPER (income per family member), which
is retained in the former but not the latter. BPSSM P-value removed 10 variables
from the default model, BPSSM ALasso removed three variables and BPSSM Lasso
removed two variables. The variables OWNRENT and SELFEMPL are the two vari-
ables that are removed from the three models. The models under the complete case
analyses (default model only) are based on variable selection using probit regression.
Unlike in BPSSM models, PROBIT ALasso shrinks more parameters (10 variables) to
zero than PROBIT P-value (eight variables). PROBIT ALasso set AGE and EXP INC
to zero whereas these variables are associated with PD in PROBIT P-value method.
The only variable set to zero by PROBIT Lasso is SELFEMPL.
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Table 6 Variable selection for the American Express credit card data
based on BPSSM (Cardholder Models)

P-value Lasso Adaptive Lasso

(Intercept) 2.474 0.006 -0.009
AGE – −0.001 –
ACADMOS 0.001 0.001 0.001
ADEPCNT −0.072 −0.070 −0.075
AEMPMOS – −0.000 −0.000
MAJORDRG −0.777 −0.771 −0.776
MINORDRG – −0.037 −0.033
OWNRENT – – –
APADMOS – 0.000 0.000
AMAMIND 0.184 0.148 0.176
INCOME 0.000 0.000 0.000
SELFEMPL −0.364 −0.331 −0.361
TRADACCT 0.110 0.109 0.109
INCPER – 0.000 –
CPTOPNB −0.022 −0.021 −0.021
CPTOPNG 0.032 0.032 0.030
CPT30C −0.275 −0.256 −0.275
CPTF30 −0.086 −0.087 −0.087
CPTAVRV 0.008 0.008 0.007
CBURDEN – −0.001 −0.001
BANKSAV – −0.473 −0.508
BANKCH – – –
BANKBOTH – 0.483 0.488
CREDMAJR 0.295 0.285 0.295
ACBINQ −0.180 −0.179 −0.180
ρ 0.530 0.536 0.519

Note: ρ: Correlation between disturbances.

The comparison across Table 5 of BPSSM and PROBIT methods show that IN-
COME, MINORDRG, AEMPMOS, CBURDEN, CPTOPNB, CPTOPNG, CPT30C
and CPTF30 are important predictors of PD. The lower the income the more likely
for an applicant to default while the higher the credit burden the more likely for the
applicant to default. A striking observation is the setting of MAJORDRG to zero
in BPSSM P-value model whereas the variable is retained in other models across
Table 5. However, all the methods (both under BPSSM and PROBIT) show that
MINORDRG is associated with PD.

Table 6 shows the results of variable selection in the selection equation of BPSSM
models. The performance of BPSSM Lasso and BPSSM ALasso are again similar in
terms of the variables that are set to zero except for two variables–AGE and INCPER.
Variables OWNRENT and BANKCH are not predictive of selection into the sample.

We also fitted the copula model (CBSSM) to the data. Table 7 shows the com-
parison of the models with BPMSS for the default model. The performance of Lasso
methods is similar but coefficients from BPMSS Lasso are shrunk more towards zero
than CBSSM Lasso. CBSSM ALasso set 10 variables to zero whereas BPSSM ALasso

Statistical Modelling 2024; 24(2): 115–138



Penalized non-random sample 133Penalized non-random sample 133

Table 7 Variable selection for the American Express credit card data comparing CBSSM
and BPSSM (Default Models)

Sample selection (CBSSM) Sample selection (BPSSM)
Lasso Adaptive Lasso Lasso Adaptive Lasso

(Intercept) −1.084 −1.162 −1.076 −1.070
AGE −0.006 – –0.006 −0.005
ACADMOS 0.000 – 0.000 0.000
ADEPCNT 0.038 0.024 0.038 0.043
AEMPMOS 0.001 0.000 0.001 0.001
MAJORDRG −0.026 – −0.019 −0.008
MINORDRG 0.074 0.056 0.073 0.074
OWNRENT – – – –
APADMOS 0.000 – 0.000 −0.000
AMAMIND −0.083 – −0.081 −0.107
INCOME −0.000 −0.000 −0.000 −0.000
SELFEMPL – – – –
TRADACCT 0.006 – 0.006 0.005
INCPER −0.000 – −0.000 –
EXP INC −0.204 −0.151 −0.164 −0.352
CPTOPNB 0.013 0.007 0.012 0.012
CPTOPNG −0.112 −0.095 −0.112 −0.111
CPT30C 0.227 0.222 0.217 0.244
CPTF30 0.066 0.059 0.065 0.065
CPTAVRV 0.002 – 0.003 0.002
CBURDEN 0.004 0.004 0.003 0.004

set only three variables to zero. Again, Lasso models for the cardholder equation are
similar (Table 8).

Tables 9 and 10 show the predictive performance of the methods. There are
still some amounts of optimism in the regularized methods. Interestingly, sample
selection models are generally superior to complete case analyses in terms of discrim-
ination (except for BPSSM P-value)- a result that is not definitive from the simulation
study.

7 Discussion

In this article, we introduced a variable selection technique based on lasso-type
penalty for bivariate binary sample selection model. We also proposed a bootstrap
internal validation method for this model. The sample selection models are analysed
alongside complete case analyses (accept-only models). The simulation setting was
structured to mimic typical rate of event and degree of missing data in practical
data (10% event rate and 22% missing information). The results indicated that the
proposed regularized sample selection model is suitable for variable selection in credit
scoring research. We also concluded that the regularized results based on adaptive
Lasso have better combined effects on sensitivity and specificity than the use of p-
value, which is threshold dependent. This was the case in both the sample selection
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Table 8 Variable selection for the American Express credit card data comparing CBSSM and
BPSSM (Cardholder Models)

Sample selection (CBSSM) Sample selection (BPSSM)
Lasso Adaptive Lasso Lasso Adaptive Lasso

(Intercept) 0.023 0.499 0.006 −0.009
AGE −0.001 – −0.001 –
ACADMOS 0.001 0.001 0.001 0.001
ADEPCNT −0.071 −0.083 −0.070 −0.075
AEMPMOS −0.000 – −0.000 −0.000
MAJORDRG −0.771 −0.773 −0.771 −0.776
MINORDRG −0.038 – −0.037 −0.033
OWNRENT – – – –
APADMOS 0.000 – 0.000 0.000
AMAMIND 0.153 0.107 0.148 0.176
INCOME 0.000 0.000 0.000 0.000
SELFEMPL −0.336 −0.318 −0.331 −0.361
TRADACCT 0.109 0.107 0.109 0.109
INCPER 0.000 – 0.000 –
CPTOPNB −0.021 −0.013 −0.021 −0.021
CPTOPNG 0.031 0.013 0.032 0.030
CPT30C −0.255 −0.261 −0.256 −0.275
CPTF30 −0.085 −0.087 −0.087 −0.087
CPTAVRV 0.009 0.005 0.008 0.007
CBURDEN −0.001 −0.000 −0.001 −0.001
BANKSAV −0.478 −0.972 −0.473 −0.508
BANKCH – −0.478 – –
BANKBOTH 0.484 – 0.483 0.488
CREDMAJR 0.285 0.288 0.285 0.295
ACBINQ −0.179 −0.180 −0.179 −0.180
θ� 0.919 0.918 0.536 0.519

Note: θ∗: Association measure between disturbances.

Table 9 Apparent model performance in predicting default probability in American
Express credit card data

AUROC AUPRC Brier ECE MCE

*BPSSM 0743 0.226 0.080 0.014 0.041
BPSSM P-value 0.725 0.216 0.083 0.031 0.109
BPSSM Lasso 0.743 0.226 0.080 0.015 0.040
BPSSM ALasso 0.744 0.227 0.080 0.013 0.036
CBSSM Lasso 0.743 0.226 0.080 0.013 0.042
CBSSM ALasso 0.740 0.223 0.081 0.016 0.049

**Probit 0.734 0.218 0.081 0.012 0.037
Probit P-value 0.733 0.218 0.081 0.013 0.036
Probit Lasso 0.734 0.217 0.081 0.013 0.040
Probit ALasso 0.731 0.215 0.081 0.015 0.055

Notes: ∗Sample selection model without variable selection.
∗∗Probit model without variable selection.
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Table 10 Optimism corrected model performance in predicting default probability in
American Express credit card data

AUROC AUPRC Brier ECE MCE

*BPSSM 0.737 0.218 0.081 0.012 0.035
BPSSM P-value 0.720 0.208 0.083 0.030 0.105
BPSSM Lasso 0.737 0.217 0.081 0.013 0.034
BPSSM ALasso 0.738 0.219 0.081 0.012 0.030
CBSSM Lasso 0.737 0.218 0.081 0.011 0.036
CBSSM ALasso 0.734 0.215 0.081 0.014 0.043

**Probit 0.728 0.211 0.081 0.010 0.030
Probit P-value 0.726 0.211 0.081 0.011 0.029
Probit Lasso 0.728 0.210 0.081 0.011 0.032
Probit ALasso 0.725 0.208 0.082 0.013 0.047

Notes: ∗Sample selection model without variable selection.
∗∗Probit model without variable selection.

and the accept-only models. The simulation results for the internal validation of
the prediction models did not provide definitive advantage of using sample selection
model over the accept-only model. The cases where the metrics for discrimination
are slightly better for the accept-only model were counterbalanced by the sample
selection models doing relatively better on metrics for calibration. Overall, our results
indicated that Lasso methods should be preferred for optimal predictions.

We have used the AMH copula function with Gaussian marginal distributions
in this article. In application, we can incorporate the method of choosing a suitable
copula and link function within the proposed framework. One way to do this is by
optimizing optimism corrected predictive accuracy measure of interest (e.g., AUROC)
over a suitable set of copulas and link functions with relatively small bootstrap
samples (say, 20 to 30). What is needed in the current implementation is to add
appropriate likelihood function for the copula and link function. The methods in
this article are implemented in the R package HeckmanSelect, the package contains
a simulated data (binHeckman) and the American Express credit card data (AmEX).
It can be installed as follows:

devtools::install_github(‘EOgundimu300/HeckmanSelect’).

We have used a simulation study with event rate and degree of selection that
is similar to the American Express credit card dataset. It is unlikely that varying
these factors will change our conclusions significantly. There are limitations of this
study that deserved thorough attention. We have used a single penalty term with one
tuning parameter for both the outcome and the selection equations, which is quite
restrictive. Separate penalties can be used via approximation of the L1 norm. Apart
from Lasso and adaptive Lasso, the use of correlation-based penalty, like the one
proposed in Tutz and Ulbricht (2009), can alleviate the problem of multicollinearity.

There are methods to incorporate more flexible covariate effect structures in
sample selection models (e.g., splines and fractional polynomials). The method that
we proposed can be readily extended to accommodate this flexibility by combining
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LSA framework with group Lasso (Yuan & Lin, 2006). In this case, the flexible
parameterization of covariates implies that the selection of one variable in a group
will results in the selection of all other variables in the same group. Alternatively,
the group bridge estimator (Huang et al., 2009) can be used, where simultaneous
selection at both the group and within-group individual variable levels is possible.

Supplementary materials

Supplementary materials for this article are available at http://www.statmod.org/
smij/archive.html.

Acknowledgements

The author thanks the editor, associate editor and the referees for their helpful
comments which improved the article. The author is grateful to Professor William
Greene for the helpful discussion on the conventional assumption of normality for
the error terms in the classical binary sample selection model.

Declaration of conflicting interests

The author declared no potential conflicts of interest with respect to the research,
authorship and/or publication of this article.

Funding

The author received no financial support for the research, authorship and/or publi-
cation of this article.

References

Banasik J and Crook J (2007). Reject inference,
augmentation, and sample selection. Euro-
pean Journal of Operational Research, 183,
1582–1594.

Banasik J, Crook J, and Thomas L (2003). Sample
selection bias in credit scoring models. Jour-
nal of the Operational Research Society, 54,
822–832.

Chen GG and Astebro T (2012). Bound and col-
lapse Bayesian reject inference for credit

scoring. Journal of the Operational Re-
search Society, 63, 1374–1387.

Crook J and Banasik J (2004). Does reject infer-
ence really improve the performance of ap-
plication scoring models? Journal of Bank-
ing and Finance, 28, 857–874.

Davis J and Goadrich M (2006). The re-
lationship between Precision-Recall
and ROC curves. In Proceedings of
the 23rd International Conference on

Statistical Modelling 2024; 24(2): 115–138



Penalized non-random sample 137Penalized non-random sample 137

Machine Learning, ICML ’06, pages
233–240. New York, NY: ACM. URL
https://dl.acm.org/doi/10.1145/1143844.
1143874 (last accessed 8 April 2022).

Dubin JA and Rivers D (1989). Selection bias in
linear regression, logit and probit models.
Sociological Methods & Research, 18, 360–
390.

Efron B, Hastie T, Johnstone I and Tibshirani R
(2004). Least Angle Regression. Annals of
Statistics, 32, 407–499.

Fan J and Li R (2001). Variable selection via non-
concave penalized likelihood and its oracle
properties. Journal of the American Statisti-
cal Association, 96, 1348–1360.

Friedman J, Hastie T and Tibshirani RJ (2010).
Regularization paths for generalized linear
models via coordinate descent. Journal of
Statistical Software, 33, 1–22.

Friedman J, Hastie T, Höfling H and Tibshirani R
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