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1 Faculté des sciences, University Abdelmalek Essaadi, Tetouan, Morocco

2 Institute of Applied Physics, University Mohammed VI Polytechnic, Benguerir, Mo-

rocco

3 Department of Engineering, University of Durham, South Road, DH1 3LE, United

Kingdom

4 College of Agriculture and Environmental Sciences, University Mohammed VI Poly-

technic, Benguerir, Morocco

∗ Correspondence to: Nabil El Moçayd (nabil.elmocayd@um6p.ma)
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Abstract1

This study develops a class of robust models for flood risk mapping in highly2

vulnerable regions by focusing on accurately depicting extreme precipitation pat-3

terns aligned with regional climates. By implementing sophisticated hydrody-4

namics modeling and advanced probabilistic approaches, the present work under-5

scores the efficacy of physical-based methodologies in the flood risk assessment.6

We propose a machine learning based ExGAN to address the challenge of synthe-7

sizing extreme precipitation scenarios which faithfully capture the nuances of local8

climatology. It is expected that through refined temporal disaggregation, the Ex-9

GAN approach exhibits exceptional proficiency in replicating a diverse spectrum10

of extreme precipitation patterns specific to the vulnerable region under scrutiny.11

Therefore, using these synthesized scenarios as inputs in a meticulously calibrated12

hydrological model would enable a comprehensive and detailed flood risk map-13

ping exercise. To demonstrate the robustness of the developed mode, we perform14

a rigorous testing and validation within the highly susceptible Martil river basin,15

situated in the northern Mediterranean region of Morocco. The obtained results16

confirm that extending return periods would provide invaluable insights into the17

expanding geographical expanse of at-risk areas, clarifying the evolving landscape18

of vulnerability rather than merely amplifying inherent risk levels. Comparisons19

against the conventional Monte-Carlo sampling are also carried out in this study20

and the obtained results highlight significant overestimations within the latter,21

emphasizing the imperative need to account for diverse uncertainties beyond the22

basic sampling strategies within the realm of hydrodynamic modeling.23

Keywords: Flood risk mapping, Climate-informed modeling, Hydrody-24

namics simulation, ExGAN, Extreme precipitation25
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1 Introduction26

Climate-driven natural hazards are increasingly affecting populations worldwide and27

this situation is expected to exacerbate with the impacts of climate change (Mora et al.,28

2018). Among various natural disasters, flooding stands out as a recurrent and major29

concern in many regions even in water-stressed countries (Radwan et al., 2019; Satour30

et al., 2021). Therefore, developing reliable and realistic flood risk maps is of paramount31

importance. In practice, accurate flood risk mapping serves multiple purposes in en-32

gineering applications. Firstly, it empowers stakeholders to construct effective flood33

defenses, enact appropriate land use regulations, and establish early warning systems.34

In addition, by identifying high-risk areas, it facilitates strategic infrastructure plan-35

ning, minimizing potential flood-related damages. Lastly, pinpointing flood-prone zones36

and natural floodplains enables policymakers to prioritize the conservation and restora-37

tion of ecosystems that offer crucial flood regulation services. Considerable efforts have38

been dedicated to this purpose, with the literature providing several tools for flood risk39

mapping. These tools encompass historical disaster assessment (Li et al., 2023), index40

system assessment (Satour et al., 2023), remote sensing impact assessment (Dash and41

Sar, 2020), and scenario simulation assessment (Neal et al., 2013). On the other hand,42

while each method has its own advantages and drawbacks, scenario simulation assess-43

ments are particularly appealing due to their ability to generate realistic flood maps.44

In fact these procedures rely on physically based hydrodynamics modeling, enabling45

the translation of entire hydrograph dynamics over watersheds. However, these meth-46

ods face major challenges in the modeling stage such as generating multiple flooding47

scenarios that represent a major hurdle within this context. Although multiple factors48

contribute to flooding, extreme precipitation remains a key trigger (Ballesteros-Cánovas49

et al., 2015; Gai et al., 2018). Understanding and modeling these events have been a50

long-standing and significant challenge over the past decade. Numerical tools designed51

for flood risk mapping require a substantial amount of extreme precipitation scenarios52
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to be reliable and yet, historical precipitation time series for specific stations usually53

provide only a limited number of extreme past events. From a statistical perspective, an54

extreme event is one with a close-to-zero probability of occurrence, often defined as the55

inverse of a defined return period (as long as possible). To address data scarcity, many56

Weather Generators (WGs) have been introduced to generate synthetic precipitation57

series enabling more accurate flood risk mappings.58

The literature offers a comprehensive set of methods to build WGs, see for exam-59

ple (Ullrich et al., 2021) for an approach considering precipitation as a realization of60

the stochastic time process. This methodology involves simulating the occurrence of61

wet/dry days first, followed by assuming the intensity of precipitation follows a specific62

probability distribution. These statistics are inferred from observations from a single63

gauge. For instance, Richardson (1981) utilizes a Markov chain-based model to simu-64

late wet/dry days whereas the precipitation intensity is simulated using an exponential65

distribution. The study demonstrates that this model reproduces precipitation season-66

ality with high confidence. This concept was further generalized by employing empirical67

distribution functions instead of the Markov chain model, as reported in Racsko et al.68

(1991). According to Semenov et al. (1998), this approach enhanced the accuracy of69

certain characteristics of the precipitation pattern, although spatial patterns were not70

considered. To overcome these limitations, statistics were inferred from multiple rain71

stations, employing different classes of statistical models. This included the use of hid-72

den Markov Chain models (Hughes et al., 1999) or copula-based approaches (Bárdossy73

and Pegram, 2009), among others. Moreover, while these approaches improved the rep-74

resentation of spatial patterns, their application for high-temporal-resolution-dependent75

purposes is limited. The theory of point processes presents a framework to address this76

limitation, modeling both spatial and temporal representations using probabilistic dis-77

tributions. For example, Cowpertwait et al. (2002) used a Poisson process to represent78

precipitation cells and the occurrence of rain. However, these models struggle to rep-79
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resent precipitation with complex patterns and consequently, precipitation fields are80

represented as random fields with parameterized covariance functions. For instance,81

(Koutsoyiannis et al., 2011) employed a Hurst-Kolmogorov process to represent rainfall82

fields, specifying values for the spatial covariance function. The literature also reports83

another class of methods employing the scale invariance theory, simulating rainfall84

through multifractal processes (Schertzer and Lovejoy, 1987). It should be stressed85

that while this approach yields satisfactory results, its application faces challenges,86

particularly in transitioning to practical use. Additionally, these methods require a87

significant amount of data and specific measurements, such as radar data. As reported88

by Ramanathan et al. (2022), many of the aforementioned methods are based on non-89

physical assumptions (e.g., spatial independence of rainfall amounts in a single site and90

some multivariate WGs) which makes the lack of physical reality in the generation of91

precipitation a major hurdle in many hydrological applications. This has led to the92

introduction of new generators that respect the complexity of the physics involved in93

rainfall scenarios, see for example (Paschalis et al., 2013; Ramanathan et al., 2022). In94

the present work, we leverage on the ability of generative machine learning tools, espe-95

cially Generative Adversarial Networks (GANs), to generate realistic climate scenarios96

(Besombes et al., 2021). These models have undergone significant improvement over97

time, tailoring them to specific data generation tasks across various domains (Aggarwal98

et al., 2021). In the context of generation of extreme samples, the main challenge limit-99

ing the adoption of GANs is the tendency of generated samples to follow a bounded or100

light-tailed distribution when the input noise, fed to the generator, follows a uniform or101

Gaussian distribution, respectively. Several studies have tried to solve this issue. For102

instance, Huster et al. (2021) proposed the use of heavy-tailed input to address this103

challenge whereas, Bhatia et al. (2021) and Boulaguiem et al. (2022) suggested a hybrid104

approach that combines advantages of the conditional GANs with the Extreme Value105

Theory (EVT) to overcome these limitations.106
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In the present study, we propose the implementation of the ExGAN model introduced107

by Bhatia et al. (2021), for the generation of synthetic Extreme Precipitation Events108

(EPEs) data. The attractiveness of this method can be summarized by two major109

advantages. Firstly, it has the capability to generate realistic extreme precipitation110

patterns even in areas with limited data overcoming many of the limitations identified111

in previous methods. Secondly, the proposed ExGAN is able to respect the probabil-112

ity as defined by the concept of a return period. This concept is often overlooked in113

physically-based methods for generating extreme precipitation patterns.The generated114

events will be then transformed into hydrological responses through the well-established115

SCS-CN model, see (Soulis and Valiantzas, 2012). In the current work, we employ this116

model due to its demonstrated capability to transform rainfall into runoff, particularly117

in situations involving flash floods and areas with limited data coverage, notably in the118

Mediterranean region. It should be noted that the effectiveness of this model in such119

contexts has been illustrated in previous studies (e.g., (Singh et al., 2015; Shadeed,120

2023)). Hence, implementing this model will enable us to expand the scope of findings121

of our study, even in regions with limited data availability. Risk mapping will be then122

carried out by forcing a hydrodynamic model that is well-calibrated in the region. In123

general, one-dimensional models are capable of accurately simulating river channels;124

however, river overflows can cause overland flows that spread extensively across flood-125

plains. Moreover, as Oued Martil extends to the Mediterranean Sea, the downstream126

hydrodynamics exhibit a complex pattern and therefore, two-dimensional modeling is127

required which can be mathematically represented by the well-established shallow water128

equations in two space dimensions. In our case, these equations are numerically solved129

using the TELEMAC software which is an open-source hydrodynamics software based130

on the finite element analysis, see for example (Nguyen et al., 2018) and (Tung et al.,131

2015).132

The suggested methods in the present work are applied over the very vulnerable area133
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of Oued Martil valley. The Martil river (referred to as the Oued Martil) has a long134

history of flooding (Rian, 2021) and therefore, it is the primary focus of the current135

study. This river travels through the city of Tetouan and its surrounding provinces in136

northern Morocco before flushing into the Mediterranean Sea. The climate of this area137

is characterized by considerable variability at all time scales (El Moçayd et al., 2020).138

It has two distinct seasons: a rainy and humid season from October to April, and a139

generally dry season from May to September. The region is also highly vulnerable140

to extreme precipitation, which is known as the primary cause of flooding (Chaqdid141

et al., 2023). During these weather events, the upper atmosphere above the region is142

characterized by strong geopotential and wind speed anomalies associated with moisture143

flow and cyclonic activity, originating mainly from the North Atlantic. This situation144

occurs in particular during the negative phase of the North Atlantic Oscillation, see145

Region 1 in Chaqdid et al. (2023). The high variability of precipitation patterns in146

the region significantly impacts the local hydrology with the influence of the irregular147

topography characterizing the region and the impermeable nature of its soil as all148

contribute to the generation of significant runoff in the narrow Martil valley, as well as149

torrential and severe floods, see for instance (Karrouchi et al., 2016) and (Prokos et al.,150

2016). These events have caused enormous economical, ecological, and infrastructure151

devastations. Notice that although such events occur over a short period of time and152

their frequency is irregular, still their effects are tremendous, see for example (Rian,153

2021).154

The present paper provides background information on the study area, specifically ad-155

dressing the flood event that occurred on March 1, 2021 in Oued Martil. Subsequently,156

it details the models employed for generating synthetic EPEs data, transforming them157

into discharge, and using the discharge for mapping flood risk in the Martil valley. To158

validate the models, a comprehensive comparison was conducted between the simulated159

outcomes and observed data as well as the results obtained through conventional meth-160
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Figure 1: Flow chart of data and methodology used in the present study.

ods. This comparative analysis illustrates the reliability of our approach. A summary161

of the methods and data employed is depicted in Figure 1. The current work focuses162

on developing reliable flood risk mapping using the ExGAN approach. It discusses the163

generation of extreme precipitation through two methods of training the ExGAN: using164

either a gridded dataset or a single point dataset. A comparison between results ob-165

tained using our proposed model and those obtained using the standard WGs method166
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is also conducted. The research outline is as follows: The second section presents the167

techniques and methods, including the study area, data sources, and modeling ap-168

proaches. The third section covering the results and discussion is divided into three169

subsections. The first subsection presents various results regarding model calibration.170

The second subsection discusses the generation of synthetic precipitation data with171

ExGans. Finally, the third subsection presents the mapping of flood risk. The fourth172

section concludes the paper and outlines future perspectives.173

2 Materials and methods174

In this section we present the techniques and methodology used in the present study for175

developing a climate-informed flood risk mapping using a GAN-based approach. This176

includes the study area, data acquisition along with the methods used for the model.177

2.1 Study area178

The Oued Martil watershed is located in the northwest of the Riffian chain and it is179

surrounded by the Mediterranean Sea to the east, the high Rif to the south, the plains of180

Gharb to the west, and the mountains overlooking the Strait of Gibraltar to the north181

(Rian, 2021; Karrouchi et al., 2016). The watershed is characterized by a vast area182

spanning 1170 km2 and rapidly varying topography ranging from 0 m in the coast to183

a maximum elevation of 1800 m in the south (Karrouchi et al., 2016). This area covers184

the cities of Tetouan and Martil, as well as 14 small communities counting for a total185

population of 445, 000 persons (Rian, 2021). At the upstream of the watershed, three186

principal tributaries (Khemis, Chekkour, and Mhajrate) contribute to the formation187

of the lower course of Oued Martil (Martil river). The river crosses the southern side188

of the city of Tetouan through the ”Torreta” region (shown by zone B in Figure 2),189

before flowing into the Mediterranean Sea on the eastern side of the basin (shown by190

zone D in Figure 2) (Khattabi, 2021). The downstream of the river, in the southern191
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part of Martil forms a delta, although nowadays the majority of its arms no longer192

communicate with the sea, see for example (Khattabi, 2021). The basic layout of this193

delta has experienced various hydrological changes throughout the years; a large part194

of the alluvial plain has been converted to agricultural land; an island of the delta195

has been developed into a residential area (Hay Diza); a channel at the south-eastern196

end of the delta, once isolated from the sea, is now almost dry except during rainy197

periods (Khattabi, 2021). Notice that the river channel includes many meanders. For198

instance, near its downstream (shown by zone D in Figure 2), there is an abandoned199

U-shaped meander (an oxbow lake) that is currently inactive except during seasons of200

heavy rainfall.201

It should be stressed that the focal point of the present study is to simulate inunda-202

tions of Oued Martil and therefore, the area considered was chosen such that the studied203

river channel drained from the Torreta bridge where a measuring station is located, and204

traveled downstream until it reaches the river outlet. The channel was approximately205

10 kilometers long, and its width varied from 50 to 260 meters. For the floodplain, as206

depicted in Figure 2, we relied on two domains such that in the first stage of this study,207

the model was tested and validated on a narrow floodplain whose width ranges from208

25 to 300 meters. Subsequently, to track flood progression and geographically locate209

areas with high risks of flooding, the floodplain was enlarged, in order to cover most of210

the cities of Tetouan and Martil. Here, on the left bank of the river, the width reaches211

8.2 kilometers while on the right side, it reaches 4.6 kilometers. The narrow domain,212

delimited in blue in Figure 2, spanned an area of around 4.3 km2 whereas, the large213

domain in yellow covered an area of 109.4 km2.214

2.2 Data processing215

To generate synthetic EPEs, we utilize the ECMWF ERA5 reanalysis data (Hersbach216

et al., 2020) featuring a spatial resolution of 0.25◦ × 0.25◦ and covering the period217
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Figure 2: Geographical location of the study area in Oued Martil valley (source: ESRI
Satellite Imagery).

from 1979 to 2021. This choice is supported by the investigation conducted by (Tuel218

and El Moçayd, 2023), wherein they assessed nine gridded satellite-based and reanal-219

ysis precipitation datasets using 120 time series of precipitation data collected across220

the country. The findings in (Tuel and El Moçayd, 2023) suggest that ERA5 exhibits221

superior performance in capturing extreme precipitation dynamics compared to other222

analyzed datasets except for MSWEP, which shows comparable skill. Despite the higher223

spatial resolution of MSWEP (0.11◦ × 0.11◦), its unavailability at the hourly time step224

required for temporal disaggregation of generated events precluded its use. Conse-225

quently, to maintain methodological consistency in our study, we relied on ERA5 esti-226

mates both daily and hourly. Prior to conducting simulations on TELEMAC software,227

various input parameters must also be specified. This comprises data of the domain228
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geometry which includes the bathymetry, configuration and computational mesh along229

with the hydraulics data that account for the initial and boundary conditions. The230

majority of these parameters have been made available thanks to extensive fieldwork231

conducted by the local watershed agency in Morocco known as the Agence du Bassin232

Hydraulique du Loukkos (ABHL). The latter has frequently proceeded with the eval-233

uation of bathymetry at different points and the most updated data were used in this234

study.235

As a starting point, the bathymetry of the computational domain was addressed236

through a special treatment of the provided raw data. Numerical data for 99 cross-237

sections of the river was extracted, covering the area between the Tamouda Bridge238

(zone A in Figure 2) and the river downstream at Martil (zone D in Figure 2). Each239

cross-section was defined based on cartesian coordinates, with several data points pro-240

vided at each of these sections. However, these data are sparsely distributed across241

each cross-section and therefore, further data preparation and homogenization were242

performed following a two-stage methodology: The first stage involves refining the243

original ground data by removing erroneous information and unreliable cross-sections244

such as those representing the bridges. The second stage aims to homogenize the data245

collected along the river cross-sections. To achieve this step, spatial interpolation meth-246

ods were used to select 17 points within each cross-section. Thus, each point identifies247

a characteristic property of the river shape such as the center of the riverbed, the de-248

limiters of the riverbed, or the top of the banks, see Figure 3. For each cross-section, an249

interpolation method is chosen to adequately fit the properties of the considered section.250

We primarily used two types of interpolation: makima (Modified Akima piecewise cubic251

Hermite interpolation) and pchip (Piecewise Cubic Hermite interpolating polynomial).252

This approach ensures that the main structure of the river is accurately identified and253

robustly represented, while also separating the floodplain from the river channel. Con-254

sidering that the hydraulic data were measured at the Torreta station, marked as zone255
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B in Figure 2, a new cross-section was subsequently created at the same location, as256

depicted in Figure 4, to represent the upstream boundary of the domain. Employing a257

methodology similar to the aforementioned one and using linear interpolation, we esti-258

mated the elevation values of the newly defined cross-sectional points. Accordingly, the259

computational domain, delineated in blue in Figure 2, was limited to the area between260

the Torreta station and the river mouth which served as the upstream and downstream261

boundaries for the hydraulic problem. To enhance flood risk assessment, a broader262

domain was established and this larger area includes additional data points, expanding263

the floodplain across the entire region delimited in yellow in Figure 2.

Figure 3: Comparison of bathymetric data from the Tamouda bridge to the river mouth,
before and after the treatment.
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Torreta station

New cross section

River cross sections

Figure 4: Construction of the new cross-section through the software QGIS.

264

To finalize the setup of the computational domains associated with the model, both265

domains were discretized to perform the necessary calculations. To achieve this, an un-266

structured mesh for the river channel was first created, which was used as a sub-mesh to267

generate a wider mesh enclosing the floodplain for both computational domains. This268

procedure was carried out using the software BlueKenue, developed by the Canadian269

Hydraulics Center (CHC) of the National Research Council to provide a framework270

for pre-processing, post-processing and data visualization of the hydrodynamics model271

(Barton, 2019). In Figure 5 and Figure 6 we display the resulting unstructured meshes272

used in our simulations. Here, the narrow domain contained 8977 nodes and 16751 tri-273

angular elements whereas, the second one enclosed 100857 nodes and 200346 elements.274

275

Once the geometry of the domain is generated, hydraulics data are required to perform276

the numerical simulations. Our primary focus is on the flooding event that occurred277

on March 1, 2021. On that day, a rainy event occurred in Tetouan and its surrounding278

areas resulting in dramatic and severe flash floods. The city experienced an unusual279
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Figure 5: Computational mesh of the narrow domain (2D view).

rainy episode with 120 mm of local high-intensity rainfall recorded in 24 hours and a280

maximum of 79 mm recorded in two hours. The measurements of the flow rate were281

collected at Torreta station from 12:00 p.m. to 9:30 a.m. as shown in Figure 7. The282

river discharge attained a maximum peak of 516.41 m3/s at 11:30 p.m. The provided283

time-dependent hydrograph was used as input to specify the river discharge at the284

upstream open boundary of the domain.285

To determine the initial conditions, we conducted an independent simulation of the286

initial state of the river, a method commonly known as ’hotstart’. Note that this287

approach accelerates the calculations and it provides a stable baseline for unsteady288

simulations. The initial simulation involves a dry domain, allowing water to flow nat-289

urally from the inlet and follow the river channel. To prevent supercritical flow at the290

entrance, we have carefully defined the required upstream open boundary conditions for291

water depth and flow rate, setting minimum values for both of them. We then simulate292

a sufficiently long duration to reach an almost steady-state regime throughout the river293

which enhances numerical stability. Subsequently, to hotstart the main simulations,294

the result file of this initial simulation is used as the previous computation file in the295

main model.296
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Figure 6: Computational mesh of the large domain (3D view).

2.3 Methods297

We present the proposed methodologies for modeling of extreme precipitation events298

and rainfall-runoff along with the governing equations used for the hydraulics.299

2.3.1 Modeling of extreme precipitation events300

We propose a two-step approach for generating synthetic precipitation data. In the301

first step, we employ ExGAN, a conditional adversarial neural network developed by302

Bhatia et al. (2021) to generate daily extreme precipitation. The ExGAN utilizes a303

conditional Deep Convolutional Generative Adversarial Network (DCGAN) within an304

Extreme Value Theory (EVT) framework, focusing on learning from the tail of the305

distribution rather than its bulk and this distinctive feature is achieved through a306

distribution-shifting procedure. Using a shift parameter (c), this procedure iteratively307

’shifts’ the distribution by filtering out the less extreme (1− c) proportion of the data308

and generates additional data to restore the dataset to its original size. By repeating309

this process (k) times, the distribution is shifted by a factor of (k× c) toward the upper310

tail. (Bhatia et al., 2021) tested and validated their model on US precipitation data and311
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Figure 7: Rainfall and discharge at the Torreta station for March 01/02, 2021.

demonstrated its strong performance. Given the fact that we are also utilizing precipi-312

tation data, we adopted the same architecture proposed in their work to facilitate direct313

comparison of performance between our dataset and the one reported in (Bhatia et al.,314

2021). The generator is formed of four repeated sequences of a ConvTranspose layer315

with a 4 × 4 kernel size, followed by InstanceNorm and LeakyReLU activations. The316

final ConvTranspose layer outputs tensors normalized by a Tanh activation function.317

Conversely, the discriminator utilizes four repeated sequences of convolutional layers318

with a 4× 4 kernel size alongside InstanceNorm and LeakyReLU activation. Addition-319

ally, it incorporates a single Conv4 × 4 layer followed by reshaping and concatenation320

processes, culminating in a linear layer that outputs probability scores through sigmoid321

activation. Further details on the architecture and implementation of ExGAN can be322

found in appendices included in Bhatia et al. (2021).323

The discriminator and generator models are conditioned to incorporate extra inputs:324

a user-defined extremeness measure for the discriminator, and samples drawn from a325

Generalized Pareto Distribution (GPD) fitted to the extremeness measure computed326

over the shifted data for the generator. In the present study, we consider two measures327

of extremeness. The first measure, as proposed in (Bhatia et al., 2021), computes the328

total rainfall in the region (16W, 0E, 24N, 40N), referred to herein as the Regional329
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Extremeness Measure. The second measure considers precipitation only in the pixel330

where the Torreta station is located (5.372W, 35.558N), referred to herein as the Local331

Extremeness Measure. Furthermore, while Bhatia et al. (2021) resized their input332

data, we opted against this approach to avoid potential loss of information about local333

extremes that may result from the averaging procedure.334

Unfortunately, ExGAN does not allow for the generation of a sequence of events and335

instead, it can only produce individual hourly or daily EPEs as independent random336

variables. However, TELEMAC requires discharge data with at least an hourly time337

step for a 24-hour EPE to accurately assess the flood risk. To circumvent this limitation,338

we implement a temporal disaggregation procedure as the second step of our approach.339

This disaggregation process uses ERA5 hourly total precipitation data, following the340

steps outlined in Algorithm 1. In the first step, the algorithm identifies a real EPE from341

ERA5 that is most similar to the generated event, first in terms of spatial pattern, and342

then in terms of precipitation value. More precisely, we define extreme precipitation343

events as days with precipitation greater than or equal to the 99th percentile of wet344

days (> 1 mm) and from these events, we identify the five EPEs that spatially overlap345

the most with the generated event. Then, we choose the one that minimizes the mean346

square error between the generated event and real event precipitation. In the second347

step, we use the chosen event and its corresponding hourly precipitation distribution348

from ERA5 to disaggregate the generated event, using the following equation:349

Pgi,t =
Pri,t
Pri,24h

Pgi,24h, 1 ≤ t ≤ 24, (1)

where Pgi,t is the precipitation at gridpoint i and at t hour of the generated event,350

Pgi,24 is the 24-hour total precipitation of the generated event at gridpoint i, Pri,t is351

the precipitation at gridpoint i and at t hour of the real event, and Pri,24 is the 24-hour352

total precipitation of the real event at gridpoint i. Overall, the convolutional architec-353
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ture of ExGAN enables it to learn complex dependence structures within images. In354

contrast to the conventional WGs, the ExGAN facilitates the modeling of patterns and355

spatial dependence in rainfall events across a wide geographical area. This capability356

allows the generation of local EPEs that maintain consistency with large-scale patterns357

of the precipitation. Additionally, the use of the normalized 24-hour distribution of pre-358

cipitation from ERA5 (
Pri,t

Pri,24h
in equation (1)) enables us to preserve sub-daily rainfall359

variability.360

To evaluate ExGAN and validate its performance, we employ the Frechet Inception361

Distance (FID) to quantify the ability of the generator to replicate the tail of the pre-362

cipitation distribution. We utilize the Reconstruction Loss to assess its capability in363

reconstructing unseen extreme samples. Additionally, we conduct visual inspections by364

comparing animations of generated events with real events. It should be stressed that365

the FID does not directly compare real and generated images; instead, it compares366

the distributions of their features which are assumed to be approximated by Gaus-367

sian distributions. Both real and generated images undergo feature extraction by a368

pre-trained model and their feature distributions are then compared by computing a369

distance metric based on their means and variances. Due to the specific nature of the370

precipitation dataset, Bhatia et al. (2021) proposes an alternative to the conventional371

use of an ImageNet-pretrained Inception network for FID calculation. Bhatia et al.372

(2021) suggested employing an autoencoder constructed and trained on the test data373

which they argue is more suitable for effectively evaluating the generator, particularly374

in the context of precipitation data. Inception-v3 (Szegedy et al., 2016), trained on375

ImageNet dataset, is commonly used to compute FID, enabling comparison between376

generative models with the one achieving a lower FID considered to perform better.377

Typically, the obtained FID values are compared with a baseline or a previous state-of-378

the-art model. However, since Bhatia et al. (2021) did not use an ImageNet-pretrained379

Inception network, they compared the FID of the ExGAN with a baseline model (DC-380
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GAN) and found that ExGAN performs better. In the current study, we use the same381

autoencoder model as Bhatia et al. (2021) to calculate the FID, enabling a comparison382

of the performance of ExGAN on our dataset with that of Bhatia et al. (2021). The383

FID is computed using the statistics derived from the bottleneck activations of the384

autoencoder as expressed by the following formula:385

FID = ∥µr − µg∥2 + Tr
(
Σr + Σg − 2 (ΣrΣg)

1/2
)
.

Here, Tr represents the trace of a matrix, (µr, Σr) and (µg,Σg) are the mean and386

covariance of the bottleneck activations for real and generated samples, respectively.387

For an extremeness-conditioned generator G, the reconstruction loss is given by388

Lrec ext =
1

m

m∑
i=1

min
zi

∥∥∥G(zi, E(x̃i))− x̃i

∥∥∥2

2
,

where (x̃1, . . . , x̃m) represent the test images, zi denotes the latent space vectors, and389

E is the extremeness measure.390

2.3.2 Rainfall-runoff modeling391

The SCS-NC model (SCS, 1972) is one of the simplest and most widely used models392

for rainfall-runoff modeling. This model was first introduced by the Natural Resources393

Conservation Service, or NRCS (previously known as the Soil Conservation Service,394

SCS) and is formulated by395

Q =


(P − 0.2S)2

P + 0.8S
, if P > 0.2S

0, if P ≤ 0.2S,

(2)

where Q is the direct runoff or rainfall excess, P is the total precipitation during a396

rainfall event, and S is the potential maximum retention after runoff begins, which is397
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related to the land use, soil, and antecedent moisture conditions. It is often expressed398

as the curve number (CN). This model was revisited by Hawkins et al. (2002) and the399

revision indicates that the model is less sensitive to lower precipitation and lower curve400

numbers (CNs). Thus, Hawkins et al. (2002) proposed reducing the initial abstraction401

(I/S) from 20% to 5% and the changes to the SCS-CN model that follow this choice402

are as follows:403

Q =


(P − 0.05S0.05)

2

P + 0.95S0.05

if P > 0.05S

0, if P ≤ 0.05S,

(3)

where the relationship between S0.05 and S0.02 is given by404

S0.05 = 1.33S0.20
1.15.

It should be noted that since our study relies on gridded data, it is important to note405

that the precipitation values are not specific to a single location but rather represent406

grid-averaged values. Consequently, the precipitation values during EPEs are lower407

than the locally observed values. As a result, the modified approach proposed by408

Hawkins et al. (2002) is particularly well-suited for our study.409

2.3.3 Hydraulic modeling410

In the present study, the TELEMAC-2D is considered one of the most useful tools411

for modeling complex hydrodynamics. It effectively simulates free-surface flows in two412

dimensions of horizontal space in different water bodies including rivers, estuaries, and413

coastal areas (Tung et al., 2015). At each node of the computational mesh, the compu-414

tational model estimates the water height and the two velocity components, following415

the resolution of the two-dimensional shallow water equations (Nguyen et al., 2018).416

Note that TELEMAC-2D has been widely used in modeling hydraulis including a va-417

riety of applications including flooding. In general, the governing equations of shallow418
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water flows are derived by balancing the net inflow of mass and momentum through419

the boundaries of a control volume whilst accounting for shallow water assumptions.420

This class of equations uses the assumption that the vertical scale is much smaller than421

any typical horizontal scale and can be derived from the depth-averaged incompressible422

Navier–Stokes equations subject to a hydrostatic pressure. Thus, the shallow water423

equations considered in this study read424

∂h

∂t
+ U · ∇(h) + h div(u) = Sh,

∂u

∂t
+ U · ∇(u)− 1

h
div (hνt∇u) = −g

∂Z

∂x
+ Sx, (4)

∂v

∂t
+ U · ∇(v)− 1

h
div (hνt∇v) = −g

∂Z

∂y
+ Sy,

where h (m) is the water depth, u and v (m/s) are depth-averaged velocities in the x-425

and y-direction, respectively. In (4), g (m/s2) is the gravity acceleration, νt (m
2/s) is426

the diffusion coefficient, Z (m) is the free-surface elevation (Z = h+z, with z represents427

the bathymetry), t (s) is time, x are y (m) are space coordinates, Sh (m/s) are source428

or sink of fluid, h, u, v are the unknowns. Here, Sx and Sy (m/s2) are source terms429

representing the wind, Coriolis force and bottom friction among others. For a detailed430

description of these equations and the implementation of the numerical solver used in431

our TELEMAC simulations, we refer to Hervouet (2007).432

3 Results and discussion433

This section delineates and examines the outcomes of our study in line with the previ-434

ously outlined methodology. Initially, sequential calibration of the rainfall-runoff model435

and the hydraulic model are conducted. This calibration involves fitting both models to436

diverse observations of precipitation, runoff, and water levels obtained from a historical437

flooding incident (March 1, 2021). Subsequently, the generation of EPEs is deliberated438

upon and various events are generated under distinct scenarios aligning with different439
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Figure 8: Variation of RMSE with curve number. Here, the RMSE is computed between
hourly discharge and runoff which is estimated using ERA5 precipitation and the SCS-
NC model for March 1, 2021 flood event.

thresholds corresponding to varied return periods. Finally, these scenarios will serve as440

inputs for the models facilitating the evaluation of risk mapping within a vulnerable441

region.442

3.1 Simulation of a past flood event443

To simulate runoff using the SCS-NC model, it is essential to compute the curve num-444

ber for the watershed, considering factors like land use, soil type, and hydrological445

conditions. However, relying on grid-averaged data often yields lower precipitation val-446

ues compared to local observations. Consequently, it becomes imperative to calibrate447

the curve number based on ERA5 precipitation for our watershed. Note that without448

proper calibration, there is a risk of complete precipitation absorption, leading to min-449

imal or no runoff. The calibration process involves minimizing the Root Mean Square450

Error (RMSE) between observed hourly discharge values and runoff estimated from451

ERA5 precipitation data during the EPE that occurred in Torreta on March 1, 2021.452

The optimized curve number value obtained through this calibration process is 90 (refer453

to Figure 8). This specific curve number will subsequently be applied in the SCS-CN454

model to convert the generated EPEs into runoff.455
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Next, the calibration and validation of the TELEMAC-2D hydraulic model are con-456

ducted and due to limited access to data, both processes are performed simultaneously457

using the March 1, 2021, event as a reference. Since data were collected at the Torreta458

station, we verified the accuracy of the computed flow rates and water depths upstream459

of the river. For this purpose, we suggested extracting from the stage-discharge curve460

the estimated water depth values corresponding to the provided hydrograph and com-461

paring them against the computed values. Moreover, for the flow rate, we compared the462

discharge values described in the hydrograph with the ones calculated by the model.463

For an adequate comparison of the computed and measured values, we calculated the464

root mean square error and we determined the optimal parameters for simulations of465

Oued Martil based on the trial-and-error method. In making our choices, we considered466

the RMSEs for the water depth and the discharge as well as the simulation time cost.467

For instance, we have successfully reduced the time lapse from more than 10 hours to468

approximately 1 hour. The majority of the parameters were identified using the first469

narrow study zone, where simulation execution time is substantially shorter (2 minutes470

compared to 1 hour for the other vast domain). The coefficient of friction was the only471

parameter that differed between the two domains. The other parameters had nearly472

the same impact on the findings of the model in both areas.473

To model the friction on the bed, the Manning equation is used and the friction474

coefficient is assumed to be constant in time and space. The value of the coefficient was475

determined based on several simulations with different values of the Manning coefficient.476

We varied the friction coefficient in both domains and Table 1 summarizes the root mean477

square errors of the computed water depths and discharges for the tested simulations.478

For the narrow domain, we ranged the friction coefficients between 0.01 and 0.013, while479

for the large study area, we varied the coefficients between 0.038 and 0.041. Figure 9a480

and Figure 9b illustrate how the results obtained shifted in each case. The values481

that generate results in close agreement with the observations are 0.012 for the narrow482
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Figure 9: Different simulations of the water level during the flooding events using
different values for the Manning coeffficient in the Narrow domain (a) and in the larger
Domain (b).

Table 1: Comparison of friction coefficients based on RMSEs in the water depth in
meters and in the discharge in cubic meters per second.

Narrow domain

Manning coefficient RMSE in the discharge RMSE in the water depth

0.01 1.6312 0.0230

0.011 1.6313 0.0210

0.012 1.6316 0.0199

0.013 1.6316 0.0211

Large domain

Manning coefficient RMSE in the discharge RMSE in the water depth

0.038 1.6311 0.0327

0.039 1.6343 0.0254

0.04 1.6333 0.0220

0.041 1.6325 0.0263

domain and 0.04 for the large domain. The adopted model following the calibration and483

validation procedures produces minimal errors in both domains in computing the water484

depths upstream of Oued Martil. The error was around 2 cm in the first computational485

domain and about 5 cm in the second. As depicted in Figure 9a and Figure 9b, the486
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Figure 10: Comparison of the modeled and measured flow rates.

computed water depths with the TELEMAC-2D model are remarkably close to the487

estimated measured values. As for the flow rate, Figure 10a and Figure 10b show the488

near-perfect agreement between the computed and measured inflows which indicate489

that the flow has been properly adapted.490

In the narrow study area, the calculated error was around 1.64 m3/s. The first491

peak inflow was 465.93 m3/s whereas, the first peak outflow was only 125.50 m3/s. It492

required approximately 6250 seconds (1 hour, 44 minutes and 10 seconds) to traverse the493

modeled section of the river from Torreta to the sea. In the second area, the error was494

likewise close to 1.64 m3/s but less outflow occurred than in the narrow one. Here, the495

estimated maximum value was 71.41 m3/s whereas, the maximum in the other domain496

was 147.42 m3/s. It further shows that the first domain constrained the movement of497

the water, whereas the second one allowed significant water dispersion across the entire498

domain. This allows a sufficient degree of reliability on the ability of the hydrodynamics499

model to simulate flood events.500

3.2 Generation of synthetic precipitation data with ExGAN501

The ExGAN was trained on 80% of daily precipitation data from ERA5 spanning the502

years 1979 to 2021, exclusively using days for which precipitation exceeded 1 mm at503
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the Torretta station pixel (comprising 2730 days). For validation, a 20% subset of the504

dataset, covering the years 2013 to 2021, was set aside. The complete test dataset was505

employed for training the autoencoder for Fréchet Inception Distance (FID) calculation,506

while only days exceeding the 95th percentile of precipitation at the Torretta station507

pixel (totaling 149 events) were utilized to test the EPEs generated by ExGAN. The508

EPEs were identified by exceeding a predefined threshold on wet days (precipitation509

> mm). To condition both the generator and discriminator, two distinct extreme-510

ness measures were employed namely, a local measure, conditioning ExGAN directly511

on precipitation at the Torretta station pixel, and a regional extremeness measure,512

conditioning ExGAN on total precipitation across the entire region. Default settings513

recommended by Bhatia et al. (2021) were employed for noise distribution, activation514

functions, learning rates, noisy labels, and gradient clipping, we refer to Bhatia et al.515

(2021) for further details. However, fine-tuning of the distribution-shifting parameters516

(c and k) was conducted. Multiple iterations of ExGAN were trained with varying c517

and k values for both extremeness measures and the model performance was evaluated518

using the reconstruction loss function and FID as defined in section 2.3.1. It should519

also be stressed that the lower values of these metrics indicate superior performance.520

Overall, the values of FID and Reconstruction Loss for ExGAN trained on our dataset,521

utilizing both extremeness measures, are lower than those reported by Bhatia et al.522

(2021), see Figure 2. This suggests superior performance of ExGAN on our dataset and523

this improvement can be attributed to several factors: firstly, we have not resized our524

input data and secondly, the model was exclusively trained on wet days in the Torreta525

station. These factors collectively reduced the spatial and temporal variability present526

in the dataset, thereby enabling ExGAN to achieve better performance. Regarding the527

selection of the optimal combination of c and k for our dataset: for the regional measure,528

we selected the pair (c = 0.75, k = 10), as this combination minimizes both the FID529

and Reconstruction Loss function without significantly altering a large proportion of the530
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Table 2: Comparison between results obtained using the proposed model and the model
reported in Bhatia et al. (2021) for the reconstruction loss and FID values obtained by
training ExGAN on Morocco precipitation for different values of c and k, and two
extremeness measures.

Extremeness measure c k Rec.Loss FID
Training dataset
size (>1mm)

test dataset
size (>P95)

Our dataset

Regional
Extremeness Measure

0.24 2 0.0053 0.0354 ± 0.0002

2730 events 149 events
0.49 4 0.0078 0.0243 ± 0.0003

0.75 10 0.0075 0.0221 ± 0.0003

0.9 27 0.0108 0.0182 ± 0.0002

Bhatia et al. (2021)

0.24 2 0.0173 0.0367 ± 0.0096

2557 events
0.49 4 0.0173 0.0304 ± 0.0109

0.75 10 0.0172 0.0236 ± 0.0037

0.9 27 0.0169 0.0223 ± 0.0121

Our dataset
Local

Extremeness Measure

0.1 2 0.0021 0.0356 ± 0.0002

2730 events 149 events

0.24 2 0.002 0.0240 ± 0.0003

0.49 4 0.0028 0.0368 ± 0.0001

0.75 10 0.0027 0.0306 ± 0.0003

0.9 27 0.0024 0.0262 ± 0.0004

original dataset. On the other hand, for the local measure, we chose the pair (c = 0.25,531

k = 2).532

The entire generation process, for different thresholds, encompassing the generation533

of daily totals and hourly disaggregation, underwent visual inspection through the an-534

imated evolution of hourly totals for events generated at different return periods. An535

illustration of the generated events can be found in Figure 12. Spatially, the results536

demonstrate a high degree of coherence and similarity to real events, suggesting that the537

models effectively learned the spatial patterns of EPEs in the region, compare Figure538

12. Indeed, the model was able to reproduce similar patterns of precipitation to those539

observed in northern Morocco. Notice that such patterns are known to be generated540

by a westerly flow of moist air masses transported from the North Atlantic which then541

encounter the Rif mountains in northern Morocco and the Betic and Sierra Morena542

mountain chains in southern Spain resulting in this distinctive pattern of precipita-543

tion. Temporally, the implemented disaggregation procedure enabled us to preserve544

the mean 24-hour distribution of rainfall in Oued Martil valley (see Figure 11) while545
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Figure 11: Hyetographs of 100 generated EPEs at Oued Martil valley using ExGAN
conditioned in (a)-(b) the Regional Extremeness Measure, in (c)-(d) the Local Extreme-
ness Measure. Here, (a) and (c) 50-year EPEs, and (b) and (d) 100-year EPEs. The
generated EPEs are depicted in grey colors, their mean is represented by a solid black
line, and the mean of ERA5 EPEs (> 99th percentile) used for disaggregation is shown
by a dashed black line.

generating a sufficient number of random events consistent with the large-scale patterns546

of precipitation in the region.547

Using the calibrated SCS-CN model, the generated EPEs were transformed into runoff548

signals as illustrated in Figure 13. This figure also depicts the runoff generated by the549

event with maximum daily precipitation in Torreta. It is also evident that the runoff550

produced by the EPEs generated using the Local Extremeness Measure exceeds the551

maximum observed runoff whereas, all runoffs produced using the Regional Extremeness552

Measure respect the climatology of precipitation in Torreta. Note that this runoff data553

will serve as upstream discharge forcing for the hydrodynamics model used in the flood554

risk mapping.555
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Figure 12: Example of the generation of an EPE using the Regional Extremeness
Measure. At the top, is the daily total precipitation of the generated event (10-year
return period) and the real event used to disaggregate it followed by the result of the
disaggregation (see Algorithm 1).

3.3 Results and discussion for flood risk mapping556

Implementing synthetically generated EPEs via ExGAN and their conversion into dis-557

charge time series, the calibrated model was tasked with forecasting ensuing hydro-558

dynamics. This comprehensive methodology encompassed the assessment of diverse559

scenarios reflecting extreme precipitation incidents, each linked to probability values560

established by well-defined return periods. This approach facilitated an insightful ex-561

amination and mapping of potential flood risks. In this section, the focus is on the562

resultant risk mapping. As a starting point, a return period of 50 years is examined.563

Employing the hydrodynamics model (TELEMAC), water depth calculations were per-564
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Figure 13: Runoff generated at Oued Martil valley by the EPEs depicted by grey lines in
Figure 11. These EPEs are generated using ExGAN conditioned on (a-b) the Regional
Extremeness Measure and (c-d) the Local Extremeness Measure. Panels (a-c) show
50-year EPEs, and panels (b-d) show 100-year EPEs. The runoff resulting from the
event with maximum daily precipitation in Toretta is represented by a black line.

formed for each of the 100 scenarios outlined by the ExGAN. These depth values were565

subsequently transformed into discharge time series, serving as inputs for the model.566

Moreover, the expected values of the anticipated water depth and standard deviation567

were estimated based on the corresponding 100 simulations. In addition, the results568

are presented for both generation methods: the Local Extremeness Measure and the569

Regional Extremeness Measure. The outcomes of these simulations are presented in570

Figure 14 and as anticipated, areas near the river exhibit higher values for expected571

water levels, potentially surpassing 1.5 m in some instances, compare Figure 14a. No-572

tably, a distinct depression is observable south of the Martil river, underscoring the573

necessity for preventative measures in this region to alleviate potential flood-related574

repercussions. The robustness of these results is bolstered by the standard deviation575

values (compare Figure 14b), all below 25 cm. Furthermore, the results exhibit an576
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excessive risk when the Local Extremeness is used for the generation of extreme pre-577

cipitation. This is observed in Figure 14c, where the wet region is notably greater578

than those presented in Figure 14a. However, as it is seen in Figure 14d, the standard579

deviation is not much affected by the kind of generation.

Water Depth [m]

0,0 - 0,5

0,5 - 1,0

1,0 - 1,5

> 1,5

(a)

Water Depth [m]

< 0,25

0,25 - 0,5

0,5 - 1

> 1

(b)

Water Depth [m]

0,0 - 0,5

0,5 - 1,0

1,0 - 1,5

> 1,5

(c)

Water Depth [m]

< 0,25

0,25 - 0,5

0,5 - 1

> 1

(d)

Figure 14: Expected water depth (a) and (c) along with the standard deviation (b)
and (d) calculated for the multiple simulations of the hydrodynamics in the considered
region corresponding to a return period of 50 years. Here, EPEs are generated using
ExGAN conditioned on (a)-(b) the Regional Extremeness Measure, and (c)-(d) the
Local Extremeness Measure. The extension of the flood is plotted over the natural
domain of the region using a map derived from ESRI Satellite Imagery.

580

To facilitate risk mapping, the region has been categorized into four distinct segments,581

predicated upon the temporal average of the expected water depth values serving as a582

valuable indicator of potential flood occurrences. This methodological approach, widely583

prevalent in the literature, demonstrates its efficacy and adaptability in the realm of584

water management. The flexibility of this approach allows for the incorporation of585
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Figure 15: Flood risk map corresponding to 50 years return periods generated for
Oued Martil valley. EPEs are generated using ExGAN conditioned on (a) the Regional
Extremeness Measure, and (b) the Local Extremeness Measure. The extension of the
flood is plotted over the natural domain of the region using a map derived from ESRI
Satellite Imagery.

diverse metrics to derive comprehensive flood risk maps, as documented in studies such586

as (Aronica et al., 2012). In the context of this study, the same approach is applied here587

in order to facilitate assessing the level of risk. The results are presented in Figure 15588

using the two methods for the generation of extreme precipitation. The presence of a589

localized depression in the southern region of the Martil river unequivocally indicates a590

region of significantly high risk. In addition, certain areas in the northern part exhibit591

a comparatively minor susceptibility to flooding. These classifications elucidate the592

varying degrees of risk across the studied region, providing a nuanced understanding of593

potential flood hazards. The overestimation of the risk discussed before is translate in594

the maps, as the one produced using Local Extremeness Measure exhibit a high level595

of risk.596

Given the susceptibility of the region to flooding, as highlighted in previous studies597

(refer to (Satour et al., 2021, 2023)), our investigation extends to flood mapping using598

a 100-year return period threshold and the outcomes are visualized in Figure 16 and599

Figure 17. These findings reveal an expansion of risk exposure towards the northern600

and eastern sectors of the studied region. Notably, there is no discernible escalation601
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Figure 16: Same as Figure 14 but for a return period of 100 years.
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Figure 17: Same as Figure 15 but for a 100 years return period.

in risk levels within the areas previously covered by the assessment of 50-year return602

period. The robustness of these outcomes is underscored by consistently low standard603

deviation values, reflecting a high level of confidence in the results obtained. It is604

important to emphasize that the uncertainty presented in this analysis aligns with the605

local climatological patterns of extreme precipitation within the region. As for the com-606
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parison between the result using the generation with Local Extremeness Measure and607

Regional Extremeness Measure, the same overestimation expressed by the hydrographs608

is translated on the risk. Figure 17b displays a level of risk wider and higher than609

the one translated in Figure 15a. It should be noted that while this study primarily610

focuses on flood mapping through EPEs, other hydrodynamic parameters could poten-611

tially be addressed. However, such considerations lie beyond the scope of this specific612

study but interested readers seeking a comprehensive discourse on various expected613

uncertainties in flood modeling are referred to (Apel et al., 2004). Furthermore, it is614

crucial to note that epistemic uncertainty, as highlighted in the aforementioned refer-615

ence, stands as a significant factor that can significantly influence overall results. This616

particular uncertainty encompasses the sampling strategy for river discharge, which617

directly originates from the variability in precipitation patterns. Indeed, both hydro-618

logical and hydrodynamic models are prone to uncertainty arising from various factors.619

Numerous studies have emphasized the importance of quantifying uncertainty in this620

context, as it allows for the assignment of a confidence level to each model simulation.621

Previous research has shown that uncertainties in discharge and friction coefficients622

can significantly affect the estimation of water levels, which are crucial for determining623

flood risk (as demonstrated by Roy et al. (2018)). Similar findings have been observed624

regarding bathymetry uncertainties, as discussed in Al-Ghosoun et al. (2021)). How-625

ever, when extreme precipitation scenarios are present, the uncertainty associated with626

the corresponding hydrodynamic simulations remains unclear, necessitating a thorough627

understanding of its impact on flood risk mapping.628

Finally, a comparative analysis between the risk mapping derived from ExGAN and629

the conventional sampling methodology referred hereafter by Monte-Carlo simulations630

is undertaken. To accomplish this, 100 hyetograph realizations are generated using a631

specific protocol such as initially, a daily precipitation event with a 100-year return632

period is selected. Subsequently, temporal disaggregation is executed by applying a633
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(a) (b)

Figure 18: Hyetographs (a) of generated EPEs (100-year) at Oued Martil valley and
their corresponding hydrographs (b). The daily precipitation is temporally disaggre-
gated using the extreme weather event from September 26, 2009, which produced the
maximum precipitation in Oued Martil valley, represented by a dashed line.

Figure 19: Same as Figure 17 but using classical Monte Carlo simulations.

(a) (b)

Figure 20: Distribution of maximum daily precipitation calculated for 1000 EPEs gener-
ated by (a) conventional Monte Carlo simulations and (b) ExGAN simulations obtained
by conditioning the model using the Regional Extremeness Measure.
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rainfall-duration-frequency relationship, as investigated in (Bell, 1969). These features634

are widely adopted in methods prominently in various flood risk mapping analyses,635

as evidenced by studies such as (Aronica et al., 2012; Neal et al., 2013; Jang and636

Chang, 2022). Following the established protocol, a flood risk map is formulated us-637

ing this classical methodology as depicted in Figure 19. It is evident that a notable638

disparity emerges between the risk estimates derived through this classical methodol-639

ogy and the approach developed herein. The hydrodynamic response, contingent upon640

different forcings, transitions between distinct precipitation patterns, thereby poten-641

tially impacting the overall risk assessment. However, the classical methodology which642

is anchored in the rainfall-duration-frequency approach, fails to consider all modes of643

temporal variability in EPEs (see Figure 20.a), leading to an exaggerated estimation644

of flood risk across significant regions. This discrepancy underscores the importance645

of accounting for temporal dynamics in extreme precipitation when delineating flood646

risk, a consideration effectively addressed in the methodology developed through Ex-647

GAN. By integrating temporal changes in extreme precipitation (see Figure 20.b), the648

ExGAN-based approach offers a more nuanced and accurate portrayal of flood risk649

across the studied region. This emphasizes the suitability of the proposed method650

for flood risk mapping in regions with limited data availability. In such areas, only a651

few historical extreme precipitation records are accessible. Note that when standard652

weather generators (WG) are applied to this data, the generated scenarios often fail653

to capture the potential complexity of precipitation processes. In contrast, the sug-654

gested methodology incorporates all complex patterns. As illustrated in Figure 20,655

the probability distribution of maximum hourly rainfall demonstrates the ability of the656

proposed methodology to capture the complexity of extreme precipitation events. Un-657

like the classical Monte-Carlo simulation, which produces a unimodal distribution, the658

suggested approach reveals a multimodal distribution, highlighting its effectiveness in659

representing diverse precipitation patterns. This explains also why the standard WGs660

overestimate the flood risk compared to the proposed methodology.661
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4 Conclusions662

There exist diverse methodologies for producing flood risk maps, yet those grounded in663

hydrodynamics modeling hold significant appeal owing to their physical-based nature,664

particularly when adopting probabilistic approaches. However, the creation of flood665

maps is inherently challenged by a spectrum of uncertainties, spanning from epistemic666

to aleatoric sources. Notably, generating synthetic precipitation scenarios that accu-667

rately capture extreme statistics while reflecting the regional climate has historically668

presented a significant hurdle within this domain. In our current study, we leverage669

generative machine learning techniques, specifically an ExGAN model, to address this670

challenge by generating highly reliable synthetic extreme precipitation scenarios. Sub-671

sequently, through temporal disaggregation, these patterns of the synthetic extreme672

precipitation are propagated across the domain. Our results underscore the capabil-673

ity of the proposed model to replicate diverse forms of extreme precipitation patterns674

accurately. Additionally, these models can be tailored to specific probability thresh-675

olds, thereby defining distinct return periods for each generated precipitation scenario.676

Employing these synthetic precipitation scenarios as a driving parameter within a sim-677

plified hydrological model, we estimate runoff for each scenario. This runoff data serves678

as foundational input for a meticulously calibrated hydrodynamics model. Our method-679

ology underwent rigorous testing in a highly vulnerable Mediterranean area in northern680

Morocco, specifically focusing on the Martil river. Validation and calibration of both681

the hydrological and hydrodynamical models were conducted using historical flooding682

data from March 2021. Subsequent to model calibration, we generated various extreme683

precipitation scenarios aligned with the local climatology. For each scenario, the cor-684

responding hydrodynamics were evaluated, facilitating the creation of flood risk maps685

for two distinct return periods (50 and 100 years). Our findings indicate that increas-686

ing the return period extends the areas at risk more than intensifying the risk itself.687

Moreover, two different methods of training ExGAN were adopted here, namely Lo-688
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cal Extremeness Measure and Regional Extremeness Measure. We demonstrate that689

training the models with regional information improve the accuracy of the risk esti-690

mation. Comparison with classical Monte Carlo sampling strategies for probabilistic691

flood mapping revealed a substantial overestimation of risk in the latter methodology.692

It is crucial to note that while uncertainties stemming from the sampling strategy con-693

tribute significantly to hydrodynamic models, other pertinent parameters must also694

be carefully considered, a focus of our forthcoming studies. In fact, a significant por-695

tion of flood risk maps relies on hydrological and hydrodynamical models which are696

susceptible to uncertainty stemming from various sources. Therefore, it is crucial to697

address these uncertainties effectively to establish a level of confidence associated with698

the risk maps. Furthermore, the ability of ExGAN to train extreme precipitation pat-699

terns from observed data presents a promising avenue, particularly in addressing climate700

change impacts. Needless to mention that by capturing shifts in extreme precipitation701

patterns, this strategy mitigates potential discrepancies between historical and future702

climatic patterns, thereby offering a solution to a longstanding challenge in statistical703

methods employed for assessing climate change impacts on flood risk mapping.704

The results presented in this study offer several advantages for flood risk mapping.705

Firstly, the use of ExGAN allows for the consideration of various modes of extreme706

precipitation variability, unlike standard methods that rely on single events, which can707

lead to overestimation of risk. Secondly, the utilization of carefully selected gridded708

data, in contrast to rain gauge data, enables the incorporation of spatial variability in709

extreme precipitation, thereby improving the reliability of flood risk mapping. Another710

compelling advantage of using open gridded data is the ability to conduct such analyses711

even in vulnerable regions with limited data availability. Furthermore, following effec-712

tive training of ExGAN, as demonstrated in the results, multiple scenarios of realistic713

extreme precipitation patterns can be generated, overcoming the limitations of classi-714

cal methodologies. From a practical standpoint, accurate flood risk mapping, such as715
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that presented in this study, facilitates informed decision-making, enhances the effec-716

tiveness of response measures, and contributes to improved public safety and reduced717

loss of life and property during flood events. Moreover, accurate flood risk mapping718

aids insurers in determining appropriate premiums and coverage limits, thereby reduc-719

ing financial losses associated with flood-related claims. Additionally, homeowners and720

businesses can make informed decisions regarding property investment and risk man-721

agement based on flood risk maps. Furthermore, flood risk mapping has implications722

for environmental conservation efforts. By identifying flood-prone areas and natural723

floodplains, policymakers can prioritize the conservation and restoration of ecosystems724

that provide valuable flood regulation services. Protecting these natural features can725

help mitigate flood risks, enhance biodiversity, and safeguard ecosystem services.726
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Appendix A: Algorithm used in the present study.750

Algorithm A. 1 : 24-hour event generation

Input: let

RR.days = ERA5 daily precipitation

RR.hours = ERA5 hourly precipitation

threshold = 99th percentile of wet days (RR.days > 1mm/day)

N = Number of events to generate

Algorithm:

1: Set genEV s as empty list

2: for i in 1 : N do ▷ Generate N daily rainfall events using ExGAN

3: genEV s = concatenate(genEV s,ExGAN(RR.days))

4: end for

5: realEV s = days for RR.days with total precipitation > threshold

6: Set genEV s.hours as empty list

7: for genEV in genEV s do ▷ Identify the closest event among realEV s to genEV

8: realEV = closest(genEV, realEV s)

9: realEV.hours = hourly distribution of realEV (from RR.hours)

▷ Compute the hourly distribution of genEV
10: genEV.hours = (realEV.hours/realEV ) ∗ genEV

11: genEV s.hours = concatenate(genEV s.hours, genEV.hours)

12: end for

Output:

13: genEV s.hours = hourly total precipitation for the N generated events

Related function:

closest(genEV, realEVs):

1: Identify the 5 first events that maximize the total number of common

pixels (pixels with precipitation >1mm) between genEV and each of

realEV s

2: From the 5 events chose the one that minimizes the total difference

between genEV and each of the 5 events

751
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Satour, N., O. Raji, N. El Moçayd, I. Kacimi, and N. Kassou, 2021: Spatialized flood re-870

silience measurement in rapidly urbanized coastal areas with a complex semi-arid en-871

vironment in northern morocco. Natural Hazards and Earth System Sciences, 21 (3),872

1101–1118, URL https://nhess.copernicus.org/articles/21/1101/2021/.873

Schertzer, D., and S. Lovejoy, 1987: Physical modeling and analysis of rain and clouds874

46

https://nhess.copernicus.org/articles/21/1101/2021/


Confidential manuscript submitted to Journal of Hydrology

by anisotropic scaling multiplicative processes. Journal of Geophysical Research: At-875

mospheres, 92 (D8), 9693–9714.876

SCS, 1972: National engineering handbook, Vol. Supplement A, Section 4, Chapter 10.877

Soil Conservation Service, USDA, Washington.878

Semenov, M. A., R. J. Brooks, E. M. Barrow, and C. W. Richardson, 1998: Comparison879

of the wgen and lars-wg stochastic weather generators for diverse climates. Climate880

research, 10 (2), 95–107.881

Shadeed, S., 2023: The potential use of the scs-cn method to estimate extreme floods882

in the west bank data-scarce catchments. An-Najah University Journal for Research,883

A: Natural Sciences, 37 (2).884

Singh, P., S. K. Mishra, R. Berndtsson, M. K. Jain, and R. Pandey, 2015: Develop-885

ment of a modified sma based mscs-cn model for runoff estimation. Water resources886

management, 29, 4111–4127.887

Soulis, K. X., and J. Valiantzas, 2012: Scs-cn parameter determination using rainfall-888

runoff data in heterogeneous watersheds–the two-cn system approach. Hydrology and889

Earth System Sciences, 16 (3), 1001–1015.890

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 2016: Rethinking the891

inception architecture for computer vision. Proceedings of the IEEE conference on892

computer vision and pattern recognition, 2818–2826.893
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