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Abstract

This paper presents a novel numerical method for simulating the transport and dispersion of pollutants
in the Mediterranean sea. The governing mathematical equations consist of a barotropic ocean model with
friction terms, bathymetric forces, Coriolis and wind stresses coupled to an advection-diffusion equation with
anisotropic dispersion tensor and source terms. The proposed numerical solver uses a multilevel adaptive
semi-Lagrangian finite element method that combines various techniques, including the modified method
of characteristics, finite element discretization, coupled projection scheme based on a rotational pressure
correction algorithm, and an adaptive L2-projection. The approach employs the gradient of the concentration
as an error indicator for enrichment adaptations and increasing the number of quadrature points where
needed without refining the mesh. The method is shown to provide accurate and efficient simulations for
pollution transport in the Mediterranean sea. The proposed approach distinguishes itself from the well-
established adaptive finite element methods for incompressible viscous flows by retaining the same structure
and dimension of linear systems during the adaptation process.

Keywords. Mediterranean Sea, Incompressible Navier-Stokes equations, Enriched finite elements, Semi-
Lagrangian method, L2 projection, Adaptive algorithm

1 Introduction

The Mediterranean Sea is a semi-enclosed basin covering a volume of 3.75 million km3 and surrounded by 22
countries. It has a length of approximately 4000 km, an average depth of about 1538 m, and a maximum
depth of around 5120 m, see for example [21]. The Mediterranean sea is a relatively isolated water system that
is renewed from the large Atlantic Ocean every 89 to 90 years through the Gibraltar strait [21]. This natural
connection allows for dynamic exchanges of water, salt, heat, and other properties between the Mediterranean
and North Atlantic basins, while also limiting them. Despite only occupying 0.82% of the ocean’s surface, the
Mediterranean sea harbors more than 18% of the known marine species, 21% of which are endangered, see
[29] among others. In addition, the Mediterranean climate is characterized by warm temperatures, winter-
dominated rainfall, and dry summers, compare [28, 42] and further references are therein. On the other hand,
the construction of dams has led to a reduction in the seasonal high flows of major rivers resulting in a
decrease in the continental shelf’s ability to clear up pollutant deposits. Moreover, it has been demonstrated
in [4] that evaporation exceeds rainfall and river flow which negatively impact the marine trophic chain. The
Mediterranean Sea connects three continents namely, Africa, Asia, and Europe, and it is a vital shipping route
accounting for 15% of worldwide marine trade stopovers. Consequently, maritime operations contribute to
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marine pollution as stated in [27] among others. Water flow exchange through the strait, wind stress, and
buoyant pressures at the surface owing to freshwater and heat fluxes, lead to the transport and dispersion
of contaminants throughout the sea [36]. Although, there have been several recent investigations into the
environmental elements of the Mediterranean sea, including water quality, currents, vegetation, wildlife, fishing,
and aquaculture, no studies have yet been conducted on the numerical modeling of pollution transport in the
sea. Numerical simulations are essential for maintaining a safe environment, as they provide the possibility
to explore various scenarios and predict the interaction between water flow and pollution transport without
risking the real world. Therefore, numerical tools can be developed to investigate the physical environment of
the Mediterranean sea and evaluate development plans to decrease pollution risks in the seawater.

In the current study, the governing equations are based on the well-known barotropic ocean model which
includes friction effects, bathymetric forces, Coriolis effects, and wind stresses, as well as eddy diffusion. To
model pollution transport in the Mediterranean sea, we consider an advection-diffusion equation with an
anisotropic dispersion tensor and a source term for the pollution release. The coupled flow and transport
model yields a system in which convective terms dominate diffusive terms, particularly when the Reynolds
number is large. In this work, we aim to develop a stable, accurate, and efficient numerical algorithm capable
of approximating the transport and dispersion of pollutants in the Mediterranean sea. The Eulerian-based
finite element methods for incompressible viscous flows have been widely investigated in the literature, see
for example [46, 45, 25, 26, 11, 35, 7, 40, 10]. These methods typically use weighting techniques to stabilize
the spatial discretization of convection-dominated flows, but truncation errors can increase drastically and
impose significant constraints on the time steps employed in the numerical calculations. This is mainly due
to the standard Courant-Friedrichs-Lewy (CFL) stability requirements. Moreover, the convective terms can
cause computing challenges and nonphysical oscillations at high Reynolds numbers, making the Eulerian finite
element methods vulnerable to sharp fronts, boundary layers, vertex shading, and shocks. To address these
challenges, we investigate the use of semi-Lagrangian finite element methods which have been widely used in
the literature to solve several problems in physical and engineering applications, see for instance [18, 17, 15, 16].
These methods avoid some of the limitations in the Eulerian-based finite element methods by following the
trajectories of fluid particles rather than using a fixed grid. The present study aims to implement a robust semi-
Lagrangian finite element method for the convection-dominated equation with anisotropic dispersion modelling
pollution transport problems in the Mediterranean sea. Notice that the semi-Lagrangian approximations are a
popular choice in computational fluid dynamics due to their ability to efficiently handle advection terms. These
techniques utilize the Lagrangian coordinates defined by the characteristic curves to reformulate the governing
equations. By doing so, the semi-Lagrangian approach combines the advection term and time derivative into
a directional derivative along the characteristic curves resulting in a characteristic time-stepping method. One
key advantage of the semi-Lagrangian schemes is their strong stability with no need for CFL conditions. This
means that large time steps can be used in the simulations, which reduce the time truncation errors and save
execution time compared to Eulerian-based methods.

Adaptive enriched semi-Lagrangian finite element methods have shown a good balance in accurately and
efficiently solving convection-diffusion problems, incompressible Navier-Stokes equations and coupled flow-
transport problems as evidenced in previous studies [31, 13, 32]. This class of methods introduces the concept
of incorporating enrichment points into the L2-projection procedure to capture the local features of the problem
such as singularities, discontinuities, or high gradients which cannot be accurately captured by the conventional
semi-Lagrangian finite element methods. Furthermore, incorporating quadrature points as enrichment points
lead to well-conditioned linear systems which is crucial in ensuring accurate and efficient simulations. It should
also be stressed that, the well-known partition of unity enriched finite element methods which incorporates
enrichment functions into the approximation space have also shown to increase the accuracy of the results and
reduce the computational costs, see for example [20, 39]. However, the major drawback of these approaches is
that they result in dense and ill-conditioned systems that must be solved at each time step since they inject
additional degrees of freedom to those previously constructed in the discretization.

The objective of the current study is to propose a novel approach to numerically simulate the transport
and dispersion of pollutants in the Mediterranean sea. More precisely, we are investigating a semi-Lagrangian
finite element method with multilevel adaptive enrichments. Here, the semi-Lagrangian method tracks the
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Figure 1: Location and schematic description of the Mediterranean sea.

characteristics backwards at a time step to the departure points of a discrete set of virtual Lagrangian particles
that arrive at a regular set of gridpoints. Note that previous works in [13, 31, 32] have used a second-order
extrapolation based on the midpoint rule to evaluate these departure points. However, these solvers are
not suitable for computing departure points in barotropic flows due to the rapid expansion of invariants in
long time computations. This sensitivity to the evaluation of departure points can significantly impact the
overall accuracy of the semi-Lagrangian schemes. To address this issue, we propose in this study the use
of symplectic integrators proposed in [5] which are based on the Hamilton variational principle to evaluate
departure points. These methods are considered to be structure-preserving and can handle the rapid growth
of Hamiltonian even in long time simulations, ensuring correct streamline tracking. This approach improves
the overall accuracy and efficiency of the semi-Lagrangian approximations for the considered flow problems as
it offers an additional benefit in comparison to the methods studied in [13, 31, 32]. Another advantage of the
proposed method is related to the efficiency of the search-locate algorithm utilized to locate the mesh elements
containing the departure points within the computational domain. In this study, the search-locate algorithm has
been enhanced to handle the large number of points that require identification within the discretized domain in
an efficient manner. Furthermore, the proposed method uses a coupled projection scheme based on a rotational
pressure correction presented in [19] to solve the Stokes problem along with a second-order backward difference
formula for the time integration. The main advantage of this algorithm over the direct gradient conjugate
approach used in [13, 32] is the improved stability and accuracy of the numerical solution. Indeed, the rotational
pressure correction method utilizes a projection step that enforces the solenoidal condition on the velocity field
and a correction step that removes any non-zero divergence from the pressure field. This approach ensures
that the velocity and pressure fields are consistent with each other, leading to more accurate and physically
meaningful results. In contrast, the direct gradient conjugate approach relies on an iterative procedure that
can lead to numerical instabilities and suboptimal convergence. In addition, the rotational pressure correction
scheme is computationally efficient and can handle complex geometries and unstructured meshes with ease,
making it a preferred method for a wide range of flow simulations. Adaptive enrichment improves the accuracy
of the numerical solution in regions where the solution exhibits sharp gradients or singularities. By adding more
quadrature points in these regions, adaptive enrichment can capture the features of the solution more accurately
leading to more precise results. Moreover, adaptive enrichments can reduce the computational cost by allowing
the proposed method to use a coarser mesh then increase the number of quadrature points where it is needed.
It should be noted that these methods use a class of gradient-based error indicators to identify domain areas

3



that need to be enriched. A gradient-based error indicator can provide a more accurate estimate of errors in
the solution compared to other error estimators, see for instance [8, 34, 30, 33, 1, 9, 38, 44]. This is mainly
because the gradient measures how rapidly the solution is changing, and regions where the gradient is large are
likely to be the regions where the numerical error is also large. As a result, the number of enrichment points is
refined only in regions where the solution is changing rapidly or where the error is largest. Two numerical test
examples for transport and dispersion problems, including the transport and dispersion of pollutants in the
Mediterranean sea, are used to test the performance of the proposed techniques. These enriched approaches
are examined for various levels of enrichment and mesh refinements whereas the obtained results are compared
to those obtained using the conventional method and against each other.

The paper is organized as follows. In section 2, we present the mathematical equations considered for
modelling transport and dispersion of pollutants in the Mediterranean sea. The proposed enriched semi-
Lagrangian finite element method is formulated in section 3. This section also includes the formulation of both
the conventional and enriched semi-Lagrangian finite element methods, as well as the coupled projection scheme
based on a rotational pressure correction used to solve the generalized Stokes stage. Section 4 introduces the
multilevel adaptive enrichment procedure and the criteria used for mesh adaptation. In Section 5, we evaluate
the numerical performance of the proposed method using two examples of transport and dispersion problems
including a problem of pollutant transport in the Mediterranean sea. The results show that our novel technique
provides the required efficiency, accuracy, and stability. Finally, section 6 presents the concluding remarks and
summarizes the main contributions of the paper.

2 Mathematical models

The focus in this study is on transport of pollutants in the Mediterranean sea using a barotropic model and
an advection-dispersion equation. Here, the barotropic model allows studying the water flow without the
complexity of the vertical mixing of water masses, see for example [43]. The advection-dispersion equation,
on the other hand, is a fundamental equation that describes the transport of a concentration in a fluid. This
equation takes into account the effects of both advection which is the transport of the concentration due to
the flow field, and dispersion which is the random movement of particles in the fluid. Thus, the governing
equations consist of coupling a barotropic ocean model for flow along with an advection-dispersion equation
for the concentration transport as

∇ ·U = 0,

∂U

∂t
+U · ∇U +∇p− ν∆U = fU⊥ − γU +

τ

H
+ β (C − C∞) e, (1)

∂C

∂t
+U · ∇C −∇ · (D∇C) = S,

where U = (U, V )⊤ is the depth-averaged horizontal velocity field defined by

U(t,x) =
1

H

∫ 0

−H
u(t, x, y, z); dz,

with U is the velocity field, and H denotes the depth of the water measured from the undisturbed water
surface. In (1), p is the pressure, f the Coriolis parameter, γ the the bottom friction coefficient, ν the kinematic
viscosity, τ the wind stress acting on the upper surface, C the pollutant concentration, S(t,x) the source term,
U⊥ = (V,−U)⊤, and D is the diffusion tensor defined as

D =

(
D11 D12

D21 D22

)
, (2)
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where the coefficients D11, D12, D21, and D22 are defined by

D11 = Dm +
αLU

2 + αTV
2

√
U2 + V 2

,

D12 = D21 = (αL − αT )
UV√
U2 + V 2

, (3)

D22 = Dm +
αLV

2 + αTU
2

√
U2 + V 2

,

where Dm is the molecular dispersion coefficient, αL and αT are the longitudinal and transverse dispersion
coefficients, respectively. It should be noted that equations (1) are solved in a bounded domain Ω ⊂ R2 with
boundary Γ and equipped with appropriate boundary and initial conditions to define a well-posed mathematical
problem.

To numerically solve the equations (1), we first discretize the space domain Ω = Ω∪Γ into a quasi-uniform
partition Ωh ⊂ Ω consisting of triangular elements Tk such that Ω = ∪Ne

k=1Tk, where Ne is the number of
elements in Ωh and h is a space discretization parameter. For the conforming finite element spaces for the
velocity/concentration and pressure, we use the mixed Taylor-Hood finite elements P2-P1, which means that
we use quadratic elements for the velocity/concentration solutions and linear elements for the pressure solution.
It is well known that for the mixed finite element formulation, the discrete velocity and pressure fields satisfy
the inf-sup condition, see for example [14]. The finite element spaces associated with the mixed formulation
are defined as

Vh =
{
Uh ∈ C0(Ω) : Uh

∣∣
Tk

∈ P2(Tk), ∀Tk ∈ Ωh

}
, Ph =

{
ph ∈ C0(Ω) : ph

∣∣
Tk

∈ P1(Tk), ∀Tk ∈ Ωh

}
,

where P1(Tk) and P2(Tk) are polynomial spaces of degree 1 and 2, respectively, defined in the element Tk. Note
that since the velocity field is a vector of two dimensions, the associated finite element space is defined as
Vh = Vh × Vh.

Next, for the time discretization, we divide the time interval [0, T ] into sub-intervals [tn, tn+1] of length
∆t = tn+1 − tn for n ≥ 0. We use the notation wn

h := w(tn,xh) to denote the value of an arbitrary function
w at time tn in the position xh. The approximate values Un

h(x) ∈ Vh, p
n
h(x) ∈ Ph, and C

n
h (x) ∈ Vh are then

formulated as

Un
h(x) =

Mv∑
j=1

Un
j ϕj(x), pnh(x) =

Mp∑
l=1

Pn
l Ψl(x), Cn

h (x) =

Mv∑
j=1

Cn
j ϕj(x), (4)

where Mv and Mp are respectively, the number of velocity/concentration and pressure gridpoints in Ωh. The

quantities Un
j =

(
Un
j , V

n
j

)⊤
, Pn

l and Cn
j are the corresponding nodal values of Un

h(x), p
n
h(x) and Cn

h (x),

respectively. These values are evaluated as Un
j = Un

h(xj), P
n
l = pnh(yl) and Cn

j = Cn
h (xj), where {xj}Mv

j=1 and

{yl}
Mp

l=1 are the sets of velocity/concentration and pressure mesh points in Ωh. It should be noted thatMp < Mv

and {yl}l ⊂ {xj}j . In (4), {ϕj}Mv
j=1 and {Ψl}

Mp

l=1 are respectively, the sets of global nodal basis functions of the
velocity and pressure spaces characterized by the property ϕi(xj) = δij and Ψi(yl) = δil, with δ denotes the
Kronecker delta.

3 Enriched semi-Lagrangian finite element method

The semi-Lagrangian finite element method is a fractional-step technique that separates the advective part
from the Stokes and dispersion parts during the time integration of (1). Thus, during each time step, the
velocity, pressure and concentration are updated by solving first the advection equations

DU

Dt
:=

∂U

∂t
+U · ∇U = 0,

(5)
DC

Dt
:=

∂C

∂t
+U · ∇C = 0,
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followed next by these equations

∇ ·U = 0,

∂U

∂t
+∇p− ν∆U = fU⊥ − γU +

τ

H
+ β (C − C∞) e, (6)

∂C

∂t
−∇ · (D∇C) = S,

where D
Dt =: ∂

∂t + U · ∇ is the material (total) derivative in the direction of flow field U which measures the
rate of change following the trajectories of the flow particles. The finite element discretization is used for both
steps (5) and (6). In the subsequent section, we formulate the techniques involved in the numerical solution of
these problems.

3.1 Symplectic scheme for evaluation of departure points

The semi-Lagrangian method is used to transport fields in equations (5), with the property that the transported
values remain constant along the trajectory of a fluid particle which travels from a departure point at time tn
to an arrival point at xj at time tn+1. Here, the characteristic curve is the path taken by the fluid particle,
and the departure point at time tn is denoted by χj(tn). Accordingly, the value that we require at the arrival
point is equal to the value of the field at the departure point. Thus, the velocity field U is associated with the
characteristic curve χj(t) and satisfies the first-order ordinary differential equation

dχj(t)

dt
= Uh

(
t,χj(t)

)
, t ∈ [tn, tn+1],

(7)
χj(tn+1) = xj ,

where the departure point χj(tn) =
(
Xj(tn), Yj(tn)

)
corresponds to the initial position of the particle that will

reach the mesh point xj = (xj , yj)
⊤ at time tn+1, as illustrated in Figure 2. For simplicity in the presentation,

we will refer to the departure point by χn
j . The conventional semi-Lagrangian method requires in a first step

a numerical solution of (7). This solution can be formulated as

χn
j = xj −

∫ tn+1

tn

Uh

(
t,χj(t)

)
dt. (8)

The integral in the right-hand side of (8) is typically computed using numerical integration techniques such
as Runge-Kutta methods. However, although these methods are versatile, they are not structure-preserving and
they cause rapid system energy growth which render them not suitable for long-term simulations and particle
tracking, see for instance [41]. This issue has also been highlighted in previous research [5] in which authors
demonstrated that non-geometric integrators such as the well-established explicit Runge-Kutta integrators
produce less accurate results with excessive numerical dissipation. In the present study, to address these
concerns, a symplectic integrator is proposed as solver of (7) to handle the rapid energy growth in long-
term simulations while accurately tracking the corresponding streamlines. It should be noted that symplectic
integrators are only applicable to Hamiltonian systems. In two-dimensional incompressible flow, a stream-
function ψ can be used to express equation (7) in a Hamiltonian form for the characteristics trajectories
χ = (X,Y )⊤ as

dX

dt
=
dψ

dY
,

(9)
dY

dt
= − dψ

dX
,

where the stream-function ψ is considered as the Hamiltonian and the pair (X,Y ) is considered as the canonical
pair. Hence, the equations (9) are a Hamiltonian system for which it is possible to use symplectic integrators

6



Figure 2: An illustration of the key parameters used for calculating the departure points in the L2-projection
method (coloured in blue) and in the conventional method (coloured in black).

to evaluate the integral in (8). It should be pointed out that a general method for creating volume-preserving
difference schemes in three-dimensional divergence-free systems has also been investigated in [23]. This method
involves decomposing a vector as a finite sum of two-dimensional Hamiltonian fields and composing the corre-
sponding essentially symplectic schemes into a volume-preserving one. In this study, we consider the one-step
method presented in [5] to evaluate the solution of (7) as

χ(r+1) = Φ∆t

(
χ(r)

)
, (10)

where the method Φ∆t is assumed to be a second-order method and time symmetric i.e. Φ∆t ◦Φ−∆t = I, with
◦ and I represent the function composition symbol and the identity operator, respectively. Note that these
requirements are satisfied using the implicit midpoint scheme and the Verlet method. As example of composite
symplectic method we consider the Yoshida technique given by

χ(r+1) = Ψ∆t

(
χ(r)

)
, Ψ∆t

(
χ(r)

)
= Φα∆t ◦Φ(1−2α)∆t ◦Φα∆t(χ(r)), (11)

where α = 1
3

(
2 + 2

1
3 + 2−

1
3

)
is chosen to guarantee a fourth-order method, see for instance [6]. In our

simulations, we choose Φ∆t to be the following implicit midpoint scheme

χ(r+1) = χ(r) −∆tUh

(
∆t

2
,
χ(r) + χ(r+1)

2

)
,

which can be solved using the Newton method or Picard iterations and this later are used in our simulations.
Here, the solution of the symplectic integrator is the departure point χn

j at time tn of the trajectory of a
particle located at the gridpoint xj at time tn+1. Hence, the advected solutions U and C are invariant along
the characteristic curves associated with the flow fields and are mainly transported by the particle’s motion.
Therefore, the semi-Lagrangian solution of (5) can be expressed as

Un+1
h (xj) = Un

h(χ
n
j ), Cn+1

h (xj) = Cn
h (χ

n
j ). (12)

It should be stressed that the computed departure points χn
j do not always coincide with a gridpoint in Ωh.

Therefore, a search-locate method is needed to find the host element T̂j where χn
j belongs. In current work, we
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Algorithm 1: Conventional search-locate algorithm

1 Given χj ;

2 Chose an arbitrary point p0 = (p0, q0) in the reference element T ∗ ;
3 Select an initial guess for the host element Ts;
4 Define the mapping F s from T ∗ to Ts;
5 Compute p∗ = (p∗, q∗) the solution of equation (3.1);
6 Test if p∗ = (p∗, q∗) in T ∗ then

7 The host element T̂j of χj is Ts. (i.e. T̂j ≡ Ts);
8 Stop;

9 else
10 Apply the selection criteria to select a neighboring elements;
11 Go to step 4;

12 end

adopt the method developed in [18, 15, 2] for solving transport problems. Thus, to determine the host element
T̂j of the departure point χn

j , we chose an initial guess Ts, then we check if the departure point belongs to this
element, else, we select one of its neighboring elements according to a selection criterion, and we repeat the
process till a convergence is reached. To achieve this step, we consider the one-to-one mapping F s from an
element of reference T ∗ to the element Ts, where the reference element T ∗ for triangular mesh is defined as

T ∗ = {(p, q) | 0 ≤ p, q ≤ 1, 0 ≤ 1− p− q ≤ 1} , (13)

or

T ∗ =

{
(p, q) | min

i
(Ni(p, q)) ≥ 0 and max

i
(Ni(p, q)) ≤ 1

}
, (14)

where Ni(i = 1, 2, 3) are the linear shape functions defined on the reference element T ∗ by N1(p, q) = p,
N2(p, q) = q and N3(p, q) = 1−p− q. Therefore, for any xp = (xp, yp) ∈ Ts, there exists a point p∗ = (p∗, q∗) ∈
T ∗ such that

xp − Fs(p
∗) = 0. (15)

Hence, if there is p∗ = (p∗, q∗) in T ∗ satisfying (15), then xp belongs to the element Ts. Here, we search
for a solution p∗ = (p∗, q∗) of (15) in T ∗ using the Newton method as follows: Let xp = (xp, yp) ∈ Ts and
p0 = (p0, q0) ∈ T ∗, then for k ≥ 0

pk+1 = pk − J−1
−F s

(
xp − F s(p

k)
)
= pk + J−1

F s

(
xp − F s(p

k)
)
,

where J−1
F s

= −J−1
−F s

is the inverse of the Jacobian matrix JF s of the mapping F s. If xp ∈ Ts, the Newton
method (3.1) will converge to the unique solution p∗ = (p∗, q∗) ∈ T ∗ independently of the initial guess p0 =
(p0, q0) ∈ T ∗. Furthermore, since Ts is an arbitrary element, then we need to test whether pk+1 belongs to T ∗

or not. Thus, using (14) we have pk+1 ∈ T ∗ if

min
i
(Ni(p

k+1)) ≥ 0, and max
i

(Ni(p
k+1)) ≤ 1. (16)

If the iterate pk+1 ̸∈ T ∗, then xp ̸∈ Ts, and as a consequence, there is no p∗ = (p∗, q∗) ∈ T ∗ such that (15)
holds. Thus, a neighboring element of Ts must be selected and reconsider the equation (3.1) for the new guess.
The selection criteria used in this work can be expressed as follows:

• Let l = index
(
mini(Ni(p

k+1))
)
.

• Select the element Tr such that Γsr = Ts ∩ Tr is the side of Ts opposite to the vertex xl.
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In summary, the search-locate algorithm for departure points is carried out using Algorithm 1. Notice that,
since linear triangles are used for the search-locate algorithm in our simulations, the one-to-one mapping F s

is a linear form defined by F s(p, q) = xp =
3∑

i=1
xi,sNi(p, q), with (x1,s,x2,s,x3,s) are the three vertices of the

triangle Ts. In this case, the equation (15) can be rewritten as xp

yp

 =

 x1 − x3 x2 − x3

y1 − y3 y2 − y3

 p∗

q∗

+

 x3

y3

 , (17)

and therefore the calculation of the solution p∗ = (p∗, q∗) is straightforward. Once the departure point χn
j and

its host element T̂j are determined, solutions in the departure point at time tn can be approximated from the

known values at the vertices of T̂j as

Un
h

(
χn
j

)
=

N∑
i=1

Un
h(x̂i)φi

(
χn
j

)
, Cn

h

(
χn
j

)
=

N∑
i=1

Cn
h (x̂i)φi

(
χn
j

)
, (18)

where {φi}Ni=1 are the local shape functions in the element T̂j , N is the number of nodes which define the

velocity/concentration mesh type, and {x̂i}Ni=1 are the vertices of the element T̂j . Thus, for all mesh nodes
{xj}j the solutions (12) can be reformulated as

Un+1
j = Un+1

h (xj) = Un
h

(
χn
j

)
:= Û

n

j , Cn+1
j = Cn+1

h (xj) = Cn
h

(
χn
j

)
:= Ĉn

j , (19)

where Û
n

j and Ĉn
j are a short notations of Un

h

(
χn
j

)
and Cn

h

(
χn
j

)
, respectively. Consequently, the conventional

semi-Lagrangian finite element solutions of (5) can be expressed as

Un+1
h (x) =

Mv∑
j=1

Û
n

j ϕj(x), Cn+1
h (x) =

Mv∑
j=1

Ĉn
j ϕj(x). (20)

Note that the performance of the conventional semi-Lagrangian finite element approach depends on the size
of the computational mesh utilized in the numerical simulations. Furthermore, it has been demonstrated in
[18] that the conventional semi-Lagrangian finite element approach fails to properly handle steep gradients
exhibited by the convective components if the computational mesh is not fine enough. In order to overcome
such problems, the suggested methodology in the present work is to incorporate local enrichments using the L2-
projection. This would enhance the accuracy of the semi-Lagrangian finite element solution of the considered
coupled flow-transport problems.

3.2 L2-projection for local enrichments

In this section, we introduce a novel enrichment approach for the semi-Lagrangian finite element solution of
convection-dominated flow problems based on the L2-projection investigated in [17, 18]. For brevity in the
presentation, we formulate the proposed approach only for the concentration solution and the velocity solution
can be obtained using the same implementation. Therefore, the concentration solution in (19) can be written
as

Cn+1
h (xj) = Cn

h

(
χn
j

)
. (21)

Multiplying both sides of equation (21) by the finite element basis functions ϕi and integrating over Ω yields∫
Ω
Cn+1
h (x)ϕi(x)dx =

∫
Ω
Cn
h (χn)ϕi(x) dx, i = 1, . . . ,Mv. (22)

Thus, the equation (22) can be assembled in a global matrix-vector structure as

[M]
{
Cn+1

}
= {rn} , (23)

9



where [M] is the finite element mass matrix with entries mij =
∫
Ω ϕjϕidx, C

n+1 is the vector formed of the

unknown nodal solutions Cn+1
j and rn is the right-hand side vector with entries rni and defined as

rni =

∫
Ω
Cn
h (χn)ϕi(x) dx. (24)

To evaluate the integrals {rni } in equation (24), a quadrature rule is used as

rni =

Ne∑
k=1

∫
Tk
Cn
h (χn)ϕi(x) dx ≈

Ne∑
k=1

Nk,Q∑
q=1

ωq,kCh
n(χn

q,k)ϕi(xq,k), (25)

where xq,k = (xq,k, yq,k)
⊤ are the quadrature points associated with the element Tk, ωq,k its corresponding

weights, Ne is the total number of elements in computational mesh, Nk,Q is the total number of quadrature
points in the element Tk, and χn

q,k is the departure point reaching the point xq,k at time tn+1. Here, C
n
h (χ

n
q,k)

is the concentration solution evaluated at the departure point χn
q,k using the equation (18) as

Ĉn
q,k := Cn

h (χ
n
q,k) =

N∑
i=1

Cn
h (x̂i)φi(χ

n
q,k), q = 1, · · · , Nk,Q, (26)

where {x̂i}Ni=1 are the vertices of the element T̂q,k hosting χn
q,k, and {φi}Ni=1 are their corresponding local basis

functions. Therefore, the entries mij and rni in (23) are evaluated as

mij ≈
Ne∑
k=1

Nk,Q∑
q=1

ωq,kϕj(xq,k)ϕi(xq,k), rni ≈
Ne∑
k=1

Nk,Q∑
q=1

ωq,kĈ
n
q,kϕi(xq,k), i, j = 1, . . . ,M. (27)

Similarly, the approximation of the velocity field can be reformulated as

[M]
{
Un+1

}
= {zn} , (28)

where Un+1 is the vector of the unknown nodal solutions with entries Un+1
j =

(
Un+1
j , V n+1

j

)
and zn is the

right-hand side with inputs zni assembled in same manner as in (25) by

zni ≈
Ne∑
k=1

Nk,Q∑
q=1

ωq,kÛ
n

q,kϕi(xq,k), j = 1, . . . ,M, (29)

where Û
n

q,k = Un
h(χ

n
q,k) is the velocity solution calculated using (26) at the departure point χn

q,k as

Û
n

q,k := Un
h(χ

n
q,k) =

N∑
i=1

Un
h(x̂i)φi(χ

n
q,k), q = 1, · · · , Nk,Q, (30)

Note that the conventional search-locate algorithm proposed in [2] is considered to be accurate and suitable
for the standard semi-Lagrangian finite element methods. However, in the proposed enriched methods, we
compute the corresponding departure points for each quadrature point in each element. Although this algorithm
converges in a few iterations, using a high number of enrichments makes this search-locate algorithm very
demanding. This is mainly because all departure points must be back-traced starting from an initial guess
for the host element, as illustrated in the left plot of Figure 3. In this plot, we show the paths followed by
the conventional search-locate algorithm back-trace the six quadrature points of an element starting from an
arbitrary initial guess Ts. It is clear from this figure that for each point, there is a considerable number of
elements that must be tested before allocating the right element. Moreover, when high numbers of enrichments
are used, back-tracking departure points using the considered algorithm requires more computational time,

10



Figure 3: Particle tracking using the conventional search-locate algorithm (left plot) and the modified search-
locate algorithm (right plot).

Figure 4: Distribution of Dunavant quadrature points employed for global and local enrichments.

which would affect the efficiency of the developed approach. In the current work, we have increased the
efficiency of our method by improving the search-locate steps in Algorithm 1. Since in our enriched method,
we search for the departure points of a set of quadrature points of a considered element, these departure
points must fall in the same element or in elements that are neighbors. Thus, we can back-trace one of the
points using the conventional search-locate algorithm, then use its host element as an initial guess to search
for the remaining departure points, as shown in the right plot of Figure 3. For example, for a given number
of enrichments Nk,Q = 70, the modified search-locate algorithm finds the first point after a few iterations, and
the other 69 points after one or a maximum of two iterations. The modified search-locate algorithm is detailed
in Algorithm 2.

In the current work, the well-established quadrature rules [12] are employed, see Figure 4 for distributions
of these quadrature points with Nk,Q = 6, 12, 25, 52, and 70. Notice that we interpret equations (27) as
an enrichment approach based on the distribution of quadrature points in the computational mesh. Hence,
as stated in the previous section, the number of quadrature points Nk,Q can be adjusted globally using the
entire computational mesh or locally at each element. It should be also noted that in the conventional semi-
Lagrangian finite element method, no linear systems of algebraic equations are solved, and the numerical
solution is interpolated using the quadratic shape functions of the element where the departure points χn

i

reside. However, in the proposed semi-Lagrangian finite element method, in contrast to the conventional
approach, the departure points χn

q,k for all quadrature points belonging to each element Tk in the considered
mesh are evaluated, and a linear system solution is solved to update the numerical solution. Note that other
quadrature rules can also be straightforwardly applied in our approach.

3.3 Coupled projection method for solution of the Stokes problem

To solve the Stokes problem (6) we employ the coupled projection method based on rotational pressure correc-
tion along with a second-order implicit backward differentiation formula (BDF2) also known as Gear scheme.
This enables us to update the velocity field and pressure at each step and complete the implementation of

11



Algorithm 2: Modified search-locate algorithm

1 for each element Te do
2 Chose an arbitrary point p0 = (p0, q0) in the reference element T ∗ ;
3 Select an initial guess for the host element Ts;
4 for each departure point χq,k do

5 Find the mapping F s from T ∗ to Ts;
6 Compute p∗ = (p∗, q∗) the solution of equation (3.1);
7 Test if p∗ = (p∗, q∗) in T ∗ then

8 The host element T̂q,k of χq,k is Ts. (i.e. T̂j ≡ Ts);
9 Stop;

10 else
11 Apply the selection criteria to select a neighbor elements;
12 Go to step 5;

13 end

14 Select T̂q,k as initial guess;
15 Go to step 4;

16 end

17 end

the semi-Lagrangian finite element method for solving the incompressible Navier-Stokes equations (1). Note
that by incorporating the previous gradient step in the velocity prediction problem, the order of the method is
improved compared to the standard projection methods. In addition, the use of rotational pressure correction
helps to avoid artificial boundary conditions on the pressure and enhances the convergence rate of the method,
see [19, 22] among others. Applied to the Stokes equations (6), the proposed method is carried out using the
following steps:

1. Assume that Û
n
, Û

n−1
, Ĉn, Ĉn−1 and pn are known.

2. Solve for Cn+1 ∈ Vh

3

2∆t
Cn+1 −∇ ·

(
D∇Cn+1

)
=

(
−4Ĉn + Ĉn−1

2∆t

)
+ Sn. (31)

3. Solve for Ũ
n+1

∈ Vh

3

2∆t
Ũ

n+1
−ν∆Ũ

n+1
+γŨ

n+1
−f

(
Ũ

n+1
)⊤

−β(Cn+1−C∞)e = −

(
−4Û

n
+ Û

n−1

2∆t

)
−∇pn+ τ

H
. (32)

4. Compute the solution φ of the Poisson problem using the projection step

∆φ =
3

2∆t
∇ · Ũ

n+1
, with ∂nφ = 0 on ∂Ω. (33)

5. Update the velocity Un+1 using the correction step

Un+1 = Ũ
n+1

− 2∆t

3
∇φ. (34)

6. Update the pressure pn+1 using the correction step

pn+1 = pn + φ− ν∇ · Ũ
n+1

. (35)
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It should be stressed that in equations (31)-(32), the solutions Ĉn−1, Ĉn, Ũ
n
and Ũ

n−1
are required to advance

the solution Cn+1
h and the iterate velocity U

(k)
h in time. In this case, only one initial condition is given at time

t = 0, and the implicit Euler scheme is used to get the second condition. In addition, boundary conditions

for Cn+1, Ũ
n+1

and Un+1 are those given by the problem under study. Here, Û
n
, Û

n−1
, Ĉn and Ĉn−1 are

evaluated at the departure points using values of the solutions Un, Un−1, Cn and Cn−1, respectively.

4 Multilevel adaptive enrichments

In many applications involving coupled flow-transport problems, steep solution gradients, localized eddies,
and boundary shear layers occur in numerical solutions. The enriched semi-Lagrangian finite element method
formulated in the previous section accurately captures these features but it requires very fine meshes and a large
number of quadrature points, particularly in regions where the solution gradients are extremely high. To avoid
uniform enrichments in the entire computational domain, we propose a multilevel adaptive algorithm for local
enrichments to increase the accuracy and efficiency of the method. The key idea in this multilevel adaptive
technique is to refine the number of quadrature points Nk,Q in mesh elements where the solution gradient
generates high values and de-refine otherwise according to a given adaptation criterion. In practice, an error
indicator and a specified tolerance are needed to adjust the quadrature at each time step. The well-known
gradient-based error estimators have been widely used in the literature for h-adaptive finite element methods for
solving incompressible Navier-Stokes equations, see [8, 34, 30, 33, 1, 9, 38, 44] among others. However, most
of these gradient-based h-adaptive techniques use an initial coarse mesh to compute a primary solution for
estimating the gradient errors. Consequently, error accumulation in time is expected due to the coarse mesh
used in the approximation, and the computational cost becomes prohibitive due to multiple interpolations
between adaptive meshes. In the current work, we consider the normalized gradient of the concentration as an
adaptive criterion for the local enrichments of each element in the computational domain as

ηn+1 (Tk) =

∥∥∥∇Cn+1
Tk

∥∥∥
Ne
max
j=1

∥∥∥∇Cn+1
Tj

∥∥∥ , (36)

where Cn+1
Tk is the concentration on the element Tk at time tn+1 and

∥∥∥∇Cn+1
Tk

∥∥∥ is the L2-norm of the solution

gradient on Tk defined by

∥∥∥∇Cn+1
Tk

∥∥∥ =

√∫
Tk

∇Cn+1
Tk · ∇Cn+1

Tk dΩ. (37)

Note that the considered error indicator (36) can benefit from the semi-Lagrangian method to approximate the

gradient
∥∥∥∇Cn+1

Tk

∥∥∥ backwards in time from the known solution at time tn. Thus, applying the gradient to the

concentration solution in (20) on the element Tk we obtain

∇Cn+1
Tk =

N∑
i=1

Ĉn
i ∇φi. (38)
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Therefore, the integral in (37) can be evaluated as

∥∥∥∇Cn+1
Tk

∥∥∥ =

√∫
Tk

∇Cn+1
Tk · ∇Cn+1

Tk dΩ,

=

√√√√√∫
Tk

(
N∑
i=1

Ĉn
i ∇φi

)
·

 N∑
j=1

Ĉn
j ∇φj

 dΩ,

=

√√√√√ N∑
i=1

Ĉn
i

 N∑
j=1

Ĉn
j

∫
Tk

∇φi · ∇φj dΩ

,
=

√(
Ĉn
Tk

)⊤
STk Ĉn

Tk . (39)

where Ĉn
Tk = (Ĉn

1 , . . . , Ĉn
N )⊤ are the solution values computed at the departure points of vertices of the element

Tk at time tn, and STk denotes the elementary stiffness matrix associated with the element Tk. It should be
mentioned that normalizing the error indicator ensures that the criteria (36) takes values between 0 and 1. As
a result, the multilevel adaptation method we suggest in this study is carried out as follows:

Assuming the tolerances {εm} such that 0 = ε0 < ε1 < ε2 < ε3 < ε4 = 1 are given. If an element of the
computational mesh Tk meets the following criteria

εm ≤ ηn+1 (Tk) ≤ εm+1, 0 ≤ m ≤ 3,

then the element Tk is enriched using the quadrature pairs (xq,k, wq,k) with q = 1, 2 . . . , Nk,qm . It should be
noted that the values of tolerances {εm} and the number of levels vary depending on the problem under study.
In summary, the proposed adaptive enriched semi-Lagrangian finite element method for solving the advection
problem is described in Algorithm 3. It should be pointed out that a local refinement on triangular elements is
also possible but with an additional cost of re-meshing and interpolating solutions between the meshes. Unlike
the well-established h-adaptive methods, that require initial coarse meshes to evaluate a primary solution for
error estimations, the error indicator used in the proposed algorithm is based on the semi-Lagrangian method
which evaluates the error estimation using solutions at the previous time. Thus, if the primary mesh is fine,
additional costs are added to the simulation cost in the h-adaptive methods whereas a coarse mesh leads to
an incorrect error estimation in these methods. On the other hand, the enrichment points in the proposed
algorithm are adjusted as needed without refining the mesh throughout the time integration process. Therefore,
the resulting linear systems maintain the same size and structure during the simulations. Needless to mention
that in the h-adaptive methods, the mesh keeps changing causing error accumulations and the computation
cost becomes prohibitive due to the multiple interpolations between the adaptive meshes.

5 Numerical results

In this section, two examples of transport-dispersion problems are considered to evaluate the performance of the
proposed enriched semi-Lagrangian finite element method. To quantify the method accuarcy, the first example
is equipped with a known analytical solution such that the relative L1-error and L2-error can be evaluated at
time tn as

L1-error =

∫
Ω

∣∣Un
h −Un

exact

∣∣ dΩ∫
Ω

∣∣Un
exact

∣∣ dΩ , L2-error =

(∫
Ω

∣∣Un
h −Un

exact

∣∣2 dΩ) 1
2

(∫
Ω

∣∣Un
exact

∣∣2 dΩ) 1
2

, (40)

where Un
h and Un

exact denote respectively, the numerical and analytical solutions at time tn. In our simulations,
the conjugate gradient solver with incomplete Cholesky decomposition is used to solve the associated linear
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Algorithm 3: Adaptive enriched semi-Lagrangian finite element algorithm

1 Require: {εm}m=0,1,...,4;
2 while tn+1 ≤ T do
3 Assuming that the previous solution Cn

h is known;
4 foreach element Tk do
5 Evaluate the error indicator ηn+1 (Tk) according to (36);
6 foreach m ∈ {0, 1, 2, 3} do
7 if εm ≤ ηn+1 (Tk) ≤ εm+1 then
8 Nk,Q = Nk,qm ;
9 end

10 end
11 Produce the quadrature pair (xq,k, ωq,k), q = 1, . . . , Nk,Q;

12 end
13 Calculate the L2-projection mass matrix [M] applying (27);
14 foreach element Tk do
15 foreach quadrature point xq,k, q = 1, . . . , Nk,Q do
16 Compute the departure point χn

q,k;

17 Identify the element T̂q,k hosting χn
q,k using Algorithm 2;

18 Evaluate Ĉn
q,k using (26);

19 end

20 end
21 Evaluate the right-hand side entry rni using (27);
22 Assemble the right-hand side vector rn;
23 Solve the generated linear system (23);

24 Update the concentration Cn+1
h at time tn+1;

25 end

systems with a stopping criteria set to 10−6, which is small enough to ensure that the total numerical error

is dominated by algorithm truncation error. All the computations are performed on an Intel® Core(TM)
i7-7500U @ 2.70GHz with 16 GB of RAM.

5.1 Transport problem with anisotropic dispersion

The main objective of this example is to illustrate the performance of the proposed adaptive enriched semi-
Lagrangian finite element method for solving advection-diffusion problems with anisotropic dispersion. Thus,
we consider the advection-diffusion equation

∂C

∂t
+U · ∇C −∇ · (D∇C) = 0, (41)

to be solved in a squared domain Ω = [−1, 1] × [−1, 1] with the dispersion tensor D defined by (2)-(3). The
boundary and initial conditions are obtained from the analytical solution

C(t, x, y) =
C0

2π
√

|det(σ)|
e
−(x−Ut)⊤ σ−1 (x−Ut)

2 , (42)

where σ = σ20I + 2Dt, σ−1 is the inverse matrix of σ, and det(σ) is the determinant of σ. In our simulations,
we set C0 = 1, σ0 = 0.1, x0 = −0.7, y0 = −0.7, Dm = 10−6, ∆t = 0.05 and the velocity field U = (0.3, 0.3)⊤.
The goal of this test is to demonstrate the ability of the proposed local enrichment approach to accurately
capture sharp gradients in the numerical solution. To achieve this, we employ a multilevel adaptive technique
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Table 1: Results obtained for the transport problem with anisotropic dispersion using the adaptive and fixed
enrichment semi-Lagrangian methods at time t = 4.24 on different structured meshes. CPU times are given in
seconds.

αL = 10−2 and αT = 10−4

Fixed enrichments Adaptive enrichments

h NQ L1-error L2-error Mass Max C Min C CPU L1-error L2-error Mass Max C Min C CPU

1

32

12 6.5371E-03 1.2359E-02 0.9889 0.7629 -0.0027 0.93 6.5664E-03 1.2360E-02 0.9890 0.7629 -0.0027 0.76

25 2.9787E-03 5.3997E-03 0.9925 0.7561 -0.0016 1.55 3.0253E-03 5.4004E-03 0.9925 0.7561 -0.0016 0.99

52 1.9295E-03 2.8780E-03 0.9949 0.7424 -0.0012 2.39 2.0176E-03 2.8781E-03 0.9950 0.7424 -0.0012 1.32

70 1.3853E-03 2.0924E-03 0.9952 0.7406 -0.0007 3.30 1.4018E-03 2.0932E-03 0.9952 0.7406 -0.0007 1.45

1

64

12 9.2647E-04 1.4526E-03 0.9943 0.7367 -0.0000 3.98 9.5422E-04 1.4538E-03 0.9945 0.7367 -0.0000 1.94

25 6.9040E-04 9.8587E-04 0.9960 0.7364 -0.0000 5.35 6.9741E-04 9.8590E-04 0.9961 0.7364 -0.0000 2.21

52 4.7452E-04 7.1342E-04 0.9971 0.7326 -0.0000 8.45 4.7668E-04 7.1338E-04 0.9971 0.7326 -0.0000 2.78

70 3.2390E-04 4.9577E-04 0.9974 0.7314 -0.0000 12.36 3.3345E-04 4.9676E-04 0.9975 0.7314 -0.0000 3.61

1

128

12 2.2370E-04 3.5527E-04 0.9981 0.7318 -0.0000 13.54 2.2370E-04 3.5521E-04 0.9981 0.7318 -0.0000 6.59

25 1.3285E-04 2.4077E-04 0.9986 0.7313 -0.0000 23.04 1.3320E-04 2.4062E-04 0.9986 0.7313 -0.0000 7.38

52 8.8335E-05 1.2622E-04 0.9991 0.7310 -0.0000 37.30 8.8347E-05 1.2622E-04 0.9991 0.7310 -0.0000 11.77

70 7.5142E-05 1.0391E-04 0.9994 0.7308 -0.0000 48.81 7.5177E-05 1.0391E-04 0.9994 0.7308 -0.0000 14.16

αL = 10−4 and αT = 10−2

Fixed enrichments Adaptive enrichments

h NQ L1-error L2-error Mass Max C Min C CPU L1-error L2-error Mass Max C Min C CPU

1

32

12 1.9673E-02 2.9218E-02 0.9920 0.8208 -0.0174 0.92 1.9696E-02 2.9220E-02 0.9921 0.8207 -0.0173 0.74

25 9.7965E-03 1.5743E-02 0.9934 0.6659 -0.0145 1.53 9.9069E-03 1.5742E-02 0.9934 0.6659 -0.0145 0.98

52 7.0162E-03 1.1752E-02 0.9939 0.6844 -0.0025 2.39 7.0260E-03 1.1751E-02 0.9940 0.6844 -0.0025 1.33

70 4.1301E-03 7.4532E-03 0.9948 0.6873 -0.0012 3.27 4.1492E-03 7.4467E-03 0.9947 0.6874 -0.0012 1.40

1

64

12 2.5157E-03 4.4763E-03 0.9954 0.7158 -0.0012 3.95 2.5189E-03 4.4754E-03 0.9957 0.7158 -0.0012 1.90

25 1.0127E-03 1.8298E-03 0.9959 0.7277 -0.0000 5.35 1.0188E-03 1.8297E-03 0.9960 0.7277 -0.0000 2.19

52 8.2256E-04 1.4897E-03 0.9962 0.7304 -0.0000 8.44 8.5257E-04 1.4903E-03 0.9964 0.7304 -0.0000 2.75

70 6.3141E-04 1.0690E-03 0.9967 0.7309 -0.0000 12.35 6.4221E-04 1.0693E-03 0.9968 0.7309 -0.0000 3.61

1

128

12 4.0424E-04 6.2247E-04 0.9959 0.7333 -0.0000 13.52 4.0481E-04 6.2248E-04 0.9959 0.7333 -0.0000 6.60

25 2.4152E-04 3.9869E-04 0.9961 0.7321 -0.0000 23.34 2.4286E-04 3.9890E-04 0.9962 0.7321 -0.0000 7.36

52 1.6115E-04 2.9422E-04 0.9964 0.7318 -0.0000 37.00 1.6923E-04 2.9436E-04 0.9964 0.7318 -0.0000 11.16

70 9.0224E-05 1.4515E-04 0.9986 0.7310 -0.0000 49.09 9.1035E-05 1.4516E-04 0.9986 0.7310 -0.0000 14.29

αL = 10−2 and αT = 10−2

Fixed enrichments Adaptive enrichments

h NQ L1-error L2-error Mass Max C Min C CPU L1-error L2-error Mass Max C Min C CPU

1

32

12 2.2325E-03 3.0739E-03 0.9597 0.3559 -0.0000 1.10 2.2483E-03 3.0753E-03 0.9599 0.3559 -0.0000 0.82

25 7.9610E-04 1.2513E-03 0.9564 0.3500 -0.0000 1.64 8.0697E-04 1.2502E-03 0.9568 0.3500 -0.0000 0.99

52 5.9721E-04 7.3471E-04 0.9598 0.3495 -0.0000 2.59 6.0286E-04 7.3478E-04 0.9600 0.3495 -0.0000 1.36

70 5.1832E-04 6.1566E-04 0.9649 0.3490 -0.0000 3.53 5.1945E-04 6.1478E-04 0.9652 0.3490 -0.0000 1.42

1

64

12 3.5394E-04 5.1631E-04 0.9631 0.3521 -0.0000 4.14 3.5763E-04 5.1702E-04 0.9632 0.3521 -0.0000 1.92

25 1.7910E-04 2.4655E-04 0.9645 0.3500 -0.0000 5.49 1.7752E-04 2.4640E-04 0.9645 0.3500 -0.0000 2.21

52 9.4326E-05 1.4447E-04 0.9719 0.3488 -0.0000 9.05 9.4394E-05 1.4446E-04 0.9720 0.3488 -0.0000 2.78

70 8.8904E-05 1.0820E-04 0.9735 0.3486 -0.0000 12.90 8.9554E-05 1.0828E-04 0.9735 0.3486 -0.0000 3.64

1

128

12 6.9783E-05 1.0080E-04 0.9677 0.3518 0.0000 14.36 6.9793E-05 1.0080E-04 0.9677 0.3518 -0.0000 6.62

25 5.4835E-05 7.6791E-05 0.9759 0.3492 0.0000 24.43 5.4733E-05 7.6786E-05 0.9759 0.3492 -0.0000 7.47

52 2.9456E-05 4.4734E-05 0.9794 0.3483 0.0000 37.82 2.9439E-05 4.4733E-05 0.9794 0.3483 -0.0000 11.20

70 1.9836E-05 2.8831E-05 0.9813 0.3484 -0.0000 49.97 1.9757E-05 2.8834E-05 0.9813 0.3484 -0.0000 14.35
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Table 2: Results obtained for the transport problem with anisotropic dispersion using the conventional semi-
Lagrangian method at time t = 4.24 on different structured meshes. CPU times are given in seconds.

αL = 10−2 and αT = 10−4

h L1-error L2-error Mass Max exact Max C Min C CPU

1

32
1.81006E-02 3.31305E-02 1.0297 0.7307 0.5986 -0.0015 0.49

1

65
3.50488E-03 6.59988E-03 0.9887 0.7307 0.6990 -0.0001 1.78

1

128
6.13681E-04 1.13976E-03 0.9928 0.7307 0.7274 -0.0000 8.13

αL = 10−4 and αT = 10−2

h L1-error L2-error Mass Max exact Max C Min C CPU

1

32
5.81798E-02 8.67067E-02 1.0258 0.7305 0.4381 -0.0223 0.58

1

65
2.18551E-02 3.68212E-02 0.9926 0.7305 0.6117 -0.0228 1.79

1

128
5.55469E-03 9.70051E-03 0.9901 0.7305 0.7061 -0.0019 7.44

αL = 10−2 and αT = 10−2

h L1-error L2-error Mass Max exact Max C Min C CPU

1

32
1.24522E-02 1.67340E-02 0.9727 0.3477 0.3075 -0.0014 0.60

1

65
2.53555E-03 3.38925E-03 0.9552 0.3477 0.3404 -0.0000 1.74

1

128
5.46042E-04 7.25754E-04 0.9599 0.3477 0.3478 0.0000 7.22

using ε1 = 0.07, ε2 = 0.2, and ε3 = 0.3. The multilevel enrichments are performed using Nk,Q = 70, (Nk,Q =
52, Nk,Q = 70), and (Nk,Q = 12, Nk,Q = 52, Nk,Q = 70) for single, two, and three-level enrichments, respectively.
Notice that the number of quadrature points in elements without enrichment is fixed at Nk,Q = 6.

For comparison purposes, the relative L1-error, L2-error, maximum (Max), minimum (Min), relative mass
(Mass), and computational cost (CPU) are calaculated for the considered methods using diffeent meshes,
numbers of enrichments and values of longitudinal and transverse dispersion coefficients. Table 1 presents the
results obtained by the proposed enriched semi-Lagrangian finite element method using both fixed and adaptive
enrichments on different structured meshes and numbers of quadrature points with (αL, αT ) = (10−2, 10−4),
(αL, αT ) = (10−4, 10−2), and (αL, αT ) = (10−2, 10−2). Results obtained by the conventional semi-Lagrangian
finite element method using the same parameters are presented in Table 2. Note that the selected values
of longitudinal and transverse dispersion coefficients cover a wide spectrum of anisotropy in the considered
advection-diffusion problem. It should also be noted that the minimum of the analytical solution is 0 while
the exact maximum values are included in Table 1 and Table 2. Considering the values of L1-error and
L2-error in Table 1, it can be observed that the fixed and adaptive approaches yield similar results with
insignificant differences for all used meshes and numbers of quadrature points. However, results presented in
Table 2 demonstrate that the conventional semi-Lagrangian finite element method is far less accurate than the
proposed enriched methods. For example, the conventional semi-Lagrangian method shows negative minimum
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Nk,Q = 12 Nk,Q = 25 Nk,Q = 70

Figure 5: Cross-sections at the main diagonal x = y obtained for the transport problem with anisotropic
dispersion at time t = 4.24 on a mesh with h = 1

32 using (αL = 10−4, αT = 10−2) (first row), (αL = 10−2, αT =
10−4) (second row) and (αL = 10−2, αT = 10−2) (third row) using Nk,Q = 12 (first column), Nk,Q = 25 (second
column) and Nk,Q = 70 (third column).

values which are avoided by increasing the number of enrichments in the enriched results. Note that a clear
improvement in the results obtained using all the considered approaches can be seen in Table 2 and Table
1 when refining the computational mesh or increasing the number of quadrature points in the simulations.
For instance, refining the mesh or the quadrature improves the accuracy of the relative mass in Table 1. In
terms of the computational costs, it is evident that the fixed enrichment method is more demanding than its
adaptive counterpart when comparing CPU time requirements. For the considered dispersion conditions, using
the adaptive enriched method, the CPU time required is 63% less than when using the fixed enriched method.
Moreover, for a fine mesh with h = 1

128 and Nk,Q = 70, the local enrichments reduce the computational costs
by 71% compared to the fixed enriched method. It is worth mentioning that, although the computational costs
of the conventional semi-Lagrangian method in Table 2 are much lower than those of the proposed enriched
method, this reduction in cost is achieved at the expense of the accuracy and stability of the results obtained.
To highlight these properties, Figure 5 depicts cross-sections at the main diagonal x = y of the results computed
using the considered methods. These results are evaluated on a structured mesh with h = 1

32 using various
numbers of enrichments Nk,Q = 12, 25, and 70, for (αL, αT ) = (10−2, 10−4), (αL, αT ) = (10−4, 10−2), and
(αL, αT ) = (10−2, 10−2). Figure 5 also shows that when the number of enrichments Nk,Q is either globally or
locally increased in the computational domain, the accuracy of numerical results obtained using the enriched
semi-Lagrangian finite element method with both fixed and adaptive enrichments highly improves. On the other

18



Conventional Fixed enrichment Adaptive enrichment Analytical

Figure 6: Contour lines obtained for the transport problem with anisotropic dispersion at time t = 4.24 using
(αL = 10−4, αT = 10−2) (first row), (αL = 10−2, αT = 10−4) (second row) and (αL = 10−2, αT = 10−2) (third
row).

hand, the results computed using the conventional semi-Lagrangian finite element method exhibit excessive
numerical diffusion as shown in the same figure.

Next, to compare the results obtained using the adaptive and fixed enriched semi-Lagrangian methods to
those computed using the conventional semi-Lagrangian method, we display in Figure 6 15 equi-distributed
contour lines of the computed solutions at time t = 4.24 for the considered dispersion cases (αL = 10−4, αT =
10−2), (αL = 10−2, αT = 10−4), and (αL = 10−2, αT = 10−2). For comparison, contour lines of the analytical
solutions are also included in Figure 6. Recall that in the fixed enriched semi-Lagrangian method, each
element of the computational mesh is enriched with 70 enrichment points. As expected, the conventional semi-
Lagrangian finite element method fails to resolve this transport problem with anisotropic dispersion, while the
fixed and adaptive enriched method produce similar results with relatively small differences compared to the
analytical solutions. It should be pointed out that the performance of the proposed enriched finite element
semi-Lagrangian method is very attractive since the computed solutions remain stable and accurate even when
coarse meshes are used without requiring small time steps in the simulations or nonlinear solvers of algebraic
equations.

Our final concern with this example is to examine the multilevel adaptive criterion used in the simulations.
To this end, Figure 7 exhibits the distribution of quadrature points using single-, two- and three-level adaptive
enrichments at four distinct instants namely, t = 0.46, 1.74, 2.96 and 4.24 for the considered longitudinal and
transverse dispersion coefficients. The aim is to evaluate the effectiveness of the adaptive enriched technique
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t = 0.46 t = 1.74 t = 2.96 t = 4.24

Figure 7: Contour-lines of solution computed using three-level adaptive enrichments (first row), distribution
of quadrature points in single-level adaptive enrichments (second row), two-level adaptive enrichments (third
row) and three-level adaptive enrichments (fourth row) obtained for the transport problem with anisotropic
dispersion at time t = 0.46 (first column), t = 1.74 (second column), t = 2.96 (third column) and t = 4.24
(fourth column).

in capturing the transport and dispersion of the Gaussian pulse on a structured mesh with h = 1
32 . Note that

different colors are used in Figure 7 to illustrate the levels of enrichment for each element in the computational
mesh. This figure also includes contour lines of the numerical solution computed using the three-level enrichment
technique. However, contour lines of the numerical solution obtained by the single- and two-level enrichment
approaches are not shown because they are identical. Figure 7 demonstrates that the location of quadrature
points for all enrichment levels follows the gradients of the solution correctly, and no distortion is recorded in the
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Mesh I Mesh II

Mesh III Reference Mesh

Figure 8: Computational meshes used for the transport and dispersion in the Mediterranean sea.

distribution of these enrichment points. Thus, the proposed adaptive enrichments efficiently resolve transport
problems with anisotropic dispersion due to the local refinement of the enrichment points where needed, while
the mesh is held fixed during the time integration procedure. This is not the case for the well-established
h-adaptive finite element methods as in these methods the computational mesh is not fixed and it needs to be
adapted at each time step.

5.2 Transport and dispersion in the Mediterranean sea

This case study solves the equations (1) in the computational domain displayed in Figure 9 using four different
unstructured meshes shown in Figure 8. In our simulations, while all coastlines are subjected to non-slip
boundary conditions, a well-developed velocity profile with a maximum of u∞ = 0.54;m/s is imposed at the
Gibraltar entrance of the sea. This profile corresponds to the annual mean of the Atlantic input flux and
it is comparable to the main semidiurnal component M2, see for instance [3, 36, 24]. On the other hand,
the advection-dispersion equation in (1) is equipped with a pollution release rate of S = 1 tones/hour at the
Gibraltar entrance. On the remaining boundaries, free-boundary conditions are used for the concentration
solution. In our simulations for this problem, we consider the enriched semi-Lagrangian finite element methods
with fixed and three-level adaptive enrichments. In the adaptive enrichments, we use the tolerances ε1 = 0.08,
ε2 = 0.15, and ε3 = 0.32, and the initial number of quadrature points is set to Nk,Q = 6 in each element without
enrichments. This number is refined according to Algorithm 3 using (Nk,Q = 12, Nk,Q = 25, Nk,Q = 52). For
all results reported in this section, the Coriolis parameter f = 8.55 × 10−5 /s, the bottom friction coefficient
γ = 0.012 s/m1/3, the kinematic viscosity ν = 1.18 m2/s, and the wind stress τ = 1.5 N/m2. We consider both
continuous and instantaneous releases of pollutants for this problem, using a fixed time step ∆t = 45 min.
We also compare the results obtained using the proposed multilevel adaptive enriched semi-Lagrangian finite
element method to those obtained using the conventional semi-Lagrangian finite element method. The main
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Figure 9: Location of the considered four Gauges G1, G2, G3, and G4 located in the Mediterranean sea and
used for monitoring the concentration.

objective of this example is to validate the capability of the proposed numerical algorithm to accurately handle
complex geometries and to develop a robust method for studying transport and dispersion of pollutants in the
Mediterranean sea.

Table 3: Mesh statistics, values of the kinetic energy and the total averaged concentration computed using the
adaptive enrichment method at time t = 13 days, and computational times for the considered meshes for the
transport and dispersion in the Mediterranean sea using continuous and instantaneous releases. CPU times
are given in seconds.

Continuous release Instantaneous release

# ele # P2 nodes # P1 nodes Energy Averg C CPU Energy Averg C CPU

Mesh I 14217 33759 9757 3.8725E+04 1.38841 200 3.7667E+04 1.17725E-01 198

Mesh II 18827 42979 12062 4.4322E+04 1.52454 559 4.1579E+04 1.47203E-01 547

Mesh III 27376 60078 16337 4.4877E+04 1.55016 797 4.1879E+04 1.51944E-01 785

Reference 47325 100015 26330 4.5303E+04 1.57056 2941 4.2089E+04 1.54988E-01 2804

We first perform a mesh convergence study for this problem using four different unstructured meshes of
triangular finite elements as displayed in Figure 8. The corresponding statistics of these meshes in terms of
numbers of elements, P2 nodes and P1 nodes are listed in Table 3. We also monitor the concentration at four
gauges G1, G2, G3, and G4 located in the Mediterranean sea at (611.6; km, 816.2; km), (1628.8; km, 805.1; km),
(1494; km, 1251.8; km), and (1936.7; km, 545.2; km), respectively, see Figure 9 for an illustration. The time
evolution of the concentration at the considered gauges computed using the adaptive enriched semi-Lagrangian
finite element method on the considered meshes at time t = 13 days is presented in Figure 10. It should be
noted that a reference solution calculated using the fixed enriched semi-Lagrangian method on the Reference
mesh using Nk,Q = 70 is also included in this comparaison. It is clear that results obtained for both continuous
and instantaneous releases using the coarse Mesh I are less accurate than those calculated using the Reference
mesh. By refining the density of elements in the computational domain, results obtained on Mesh III and
Reference mesh are nearly similar. This confirms the mesh convergence in the proposed multilevel adaptive
enriched semi-Lagrangian finite element method for this example. To quantify this mesh convergence study, we
also summarize in Table 3 the computational times, the averaged concentration volume and the total kinetic
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Gauge G1 Gauge G2 Gauge G3 Gauge G4

Figure 10: Time evolution of the concentration obtained using the adaptive enrichment method at the gauges
G1, G2, G3 and G4 using different meshes for the transport and dispersion in the Mediterranean sea using
continuous release (first row) and instantaneous release (second row).

energy obtained at time t = 13 days using the considered meshes for both continuous and instantaneous releases.
Here, the total kinetic energy and the averaged concentration volume are defined as

1

2

∫
Ω

(
U2(t,x) + V 2(t,x)

)
dx and

1

|Ω|

∫
Ω
C(t,x) dx,

respectively. It can be seen from Table 3 that there are slight differences between the results obtained for the
total kinetic energy and the averaged concentration volume on Mesh II, Mesh III, and the Reference mesh. For
example, the discrepancies in values of the total kinetic energy and the averaged concentration volume using
continuous release on Mesh II and the Reference mesh are less than 2.16% and 1.30%, respectively. These values
become less than 0.94% and 1.93% on Mesh III and Reference mesh. On the other hand, the computational
times needed in the proposed multilevel adaptive enriched semi-Lagrangian finite element method on Mesh III
are 73% less than the one required on Reference mesh whereas, the use of Mesh II reduces this value to 81%.
Therefore, Mesh III is believed to be appropriate to obtain numerical results free of grid effects. Hence, the
results presented hereafter are based on Mesh III.

Next we display in Figure 11 the velocity fields, concentration snapshots and distribution of quadrature
points using three-level adaptive enrichments for the continuous release at time t = 1, 2, 4, 6, 8, 11 and
13 days. Those results obtained for the case of instantaneous release are displayed in Figure 12. It is clear
that the proposed multilevel adaptive enriched semi-Lagrangian finite element method successfully captures
the complex concentration and flow structures, comparing the decrease and increase of the strengths of flow
vortices with time in these results. Inside these vortices, there is a more complex vortex pattern which has
been accurately resolved. Moreover, these vortices and the high gradients in transported concentration are
well captured by the proposed adaptive approach and the quadrature points are distributed in regions with the
specified tolerances according to the desired three-level enrichment algorithm in the computational domain.
Note that three distinct colors are used to represent the three-level adaptive distribution of quadrature points
namely green, blue, and red for the first-, second-, and third-level enrichments, respectively. A gray color is
used for elements with smooth solutions and low concentration gradients. As expected, denser quadrature
points are generated for the three-level adaptive enrichments. It can be shown from the same figures that
under the considered flow and dispersion conditions, the pollution is mainly transported towards the African
coast. Obviously, the concentration follows the stream induced by the mean flow entering the Mediterranean
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Figure 11: Velocity fields (first column), solution snapshots (second column) and distributions of quadrature
points (third column) for the transport and dispersion in the Mediterranean sea at time t = 1 day (first row),
t = 2 days (second row), t = 4 days (third row), t = 6 days (fourth row), t = 8 days (fifth row), t = 11 days
(sixth row) and t = 13 days (seventh row) using continuous release.
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Figure 12: Same as Figure 11 but using instantaneous release.
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Table 4: Results for the kinetic energy, the total averaged concentration and computational times obtained
using the considered methods at time t = 13 days for the transport and dispersion in the Mediterranean sea
using continuous and instantaneous releases. CPU times are given in seconds.

Continuous release Instantaneous release

Energy Averg C CPU Energy Averg C CPU

Conventional 3.26888E+04 1.06962 223 3.02316E+04 1.03272E-01 211

Fixed 4.48921E+04 1.56411 2043 4.189712+04 1.53236E-01 1963

Adaptive 4.48771E+04 1.55016 797 4.18790E+04 1.51944E-01 785

Reference 4.53032E+04 1.57059 2941 4.20897E+04 1.54988E-01 2804

Gauge G1 Gauge G2 Gauge G3 Gauge G4

Figure 13: Time evolution of the concentration computed using the considered methods at the gauges G1, G2,
G3 and G4 for the transport and dispersion in the Mediterranean sea using continuous release (first row) and
instantaneous release (second row)

sea through the Gibraltar strait. During its dispersion, the concentration alerts the flow structure developing
recirculation zones with different frequencies and magnitudes in many areas in the Mediterranean sea. In
summary, the incompressible flow field is resolved relatively well, the concentration transported is captured
accurately. All these properties have been obtained using time steps bigger than those necessary for Eulerian-
based finite element approach in incompressible convection-dominated flows.

Comparisons between results obtained using the conventional method, fixed enrichments, and adaptive en-
richments have also been carried out for this test example. The averaged concentration volume, computational
times, and total kinetic energy obtained at time t = 13 days using Mesh III for both continuous and instanta-
neous release are presented in Table 4. Reference solutions computed using fixed enrichments with Nk,Q = 70
on the Reference mesh are also included in this table. It can be seen that both fixed and adaptive enrichment
methods produce similar results which are closer to the reference solutions than those computed using the
conventional method. In terms of computational cost, it is evident that the adaptive enriched method is less
expensive compared to the fixed enriched method which requires high CPU times. For the considered flow and
transport conditions, the CPU time needed by the adaptive enriched method is roughly 60% less than the CPU
time required by the fixed enriched method. Needless to mention that, when compared to the enriched tech-
niques on the same mesh, the conventional approach has a lower computational cost, but its overall accuracy
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and stability are much inferior to those achieved by the enrichment methods.

Finally, Figure 13 illustrates the time evolution of the monitored concentration at the gauges G1, G2, G3,
and G4 shown in Figure 9 using fixed enrichments with Nk,Q = 52, three-level adaptive enrichments, and the
conventional method. Reference solutions obtained using fixed enrichments with Nk,Q = 52 on Reference mesh
are also included in these plots. For both types of release, the concentration exhibits fluctuations in its time
evolution at the considered gauges but remains bounded between 0 and 1 as expected. From the same plots,
it can be seen that the results obtained using the conventional approach suffer from numerical diffusion. As in
the previous results, there are negligible differences between the results obtained using the fixed and adaptive
enriched methods. For the considered flow, transport and dispersion conditions, it can be clearly demonstrated
that the proposed multilevel adaptive enriched semi-Lagrangian finite element method successfully captures the
complicated concentration and flow structures in the Mediterranean sea. It should be stressed that the obtained
computational results should be compared to observational data of real sea-surface pollution dispersion in the
Mediterranean sea. However, there is currently no data available to make this comparison and as a result for
the time being, we can simply run simulations and verify that the findings are credible and consistent.

6 Concluding remarks

In the present study, a novel adaptive enriched semi-Lagrangian finite element method is proposed for the
modelling and simulation and modeling of transport and dispersion of pollutants in the Mediterranean sea.
The mathematical model consists of a class of barotropic ocean equations with friction terms, bathymetric
forces, Coriolis and wind stresses coupled to an advection-diffusion equation with anisotropic dispersion tensor
and source terms. The proposed method combines the modified method of characteristics, finite element
discretization, a coupled projection scheme based on a rotational pressure correction, and an adaptive L2-
projection using quadrature rules. The implementation of multilevel adaptive enrichments further improves
the accuracy and efficiency of the numerical solution without the need for mesh refinement throughout the time
integration process. Computational results obtained for verification examples supported the conclusion that
the proposed method can effectively be used to resolve flow and transport features for transport and dispersion
of pollutants in the Mediterranean sea. In particular, an example with known analytical solutions for transport
problems with anisotropic dispersion have been used to demonstrate the good performance of the developed
method. In the considered numerical simulations, the proposed methodology successfully recovered the flow
and dispersion characteristics with significantly fewer degrees of freedom compared to the conventional finite
element method. This results in a considerable decrease in computing requirements without compromising
the accuracy of the solution. Future work will focus on developing highly accurate error estimates such as a
posteriori error estimates, to further improve the adaptive enrichments. In addition, following the arguments
used for analysis of convergence and stability of the conventional semi-Lagrangian finite element method for
the incompressible Navier-Stokes equations in [14] and for the coupled Darcy-transport problems in [37], it
is also possible to establish theoretical analysis of convergence and stability for the adaptive enriched semi-
Lagrangian finite element method proposed in this study. Results on this analysis will be reported in the near
future. Overall, the proposed adaptive enriched semi-Lagrangian finite element method provides an effective
and efficient approach for modeling and simulating pollution transport in the Mediterranean sea.
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