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Abstract

Anisotropic mesh adaptation is an efficient procedure for controlling the output error of finite element
simulations, particularly when used for three-dimensional problems. In this paper, we present an enhanced
computational algorithm based on an anisotropic mesh adaptation for nonlinear SPN approximations of
radiative heat transfer in both two- and three-dimensional enclosures. Using an asymptotic analysis for
the optical scale in the radiative transfer, the integro-differential equation is replaced by a series of partial
differential equations of elliptic type. The nonlinear coupling between the heat transfer and radiation in the
SPN equations does not depend on the direction ordinates. In an anisotropic participating media, internal
boundary layers with different magnitudes occur for each direction and developing an efficient numerical
algorithm to accurately resolve them is a challenging task. In the present study, we propose an adaptive
finite element method using an efficient hierarchical error estimator. A second-order scheme is used for
the time integration and a Newton-type solver is implemented for the fully coupled nonlinear system. The
proposed method has the potential to use large timesteps in the simulations for radiative heat transfer in
anisotropic media at high temperatures. To demonstrate the viability of the method, several examples are
presented for two- and three-dimensional problems. The numerical results confirm the capability of the
proposed method to efficiently solve the nonlinear SPN approximations of radiative transfer in anisotropic
media.

Keywords: Radiative heat transfer; SPN approximations; Anisotropic mesh adaptation; Finite element
method; Three-dimensional nonlinear heat conduction

1 Introduction

Radiative heat transfer occurs in almost all industrial applications that involve high temperatures, such as
glass manufacturing, industrial furnaces, gas turbine combustion chambers among others. In this type of
applications, the radiation cannot be neglected and may even greatly influence the thermal features. From
a mathematical point of view, the full radiative heat transfer model consists of a set of integro-differential
equations that are spatially, spectrally, and directionally dependent. These equations are therefore extremely
difficult to solve, especially when coupled with the energy transport equation. This complexity makes the
numerical simulation complicated and computationally expensive. Therefore, the development of fast and
accurate numerical algorithms for radiative heat transfer equations is critical and is needed in order to produce
large scale numerical simulations. The physical and mathematical descriptions of full radiative heat transfer
equations can be found for instance in [1, 2, 3]. To overcome some of the difficulties in solving these equations,
several methods have been developed in the literature. The zonal and Monte-Carlo methods [1] are considered
among the most accurate procedures developed for the radiative equation. However, these methods require large
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computational and storage requirements and they are limited when coupled with tools from the computational
fluid dynamics. Similarly, the discrete ordinates method [4] is a suitable method for analysis of radiative heat
transfer in practical engineering systems. However, this method still requires solving large systems of algebraic
equations. Several other approaches have been developed to reduce the full radiative heat transfer model to a
simpler form. These approaches include the Rosseland diffusion approximation [5, 6], the spherical harmonics
method (PN) [7, 8, 9] and the simplified spherical harmonics method (SPN ) [10, 11, 12, 13]. Although the SPN

models perform very well, especially when the medium is isotropic and optically thick, numerical simulations
of these models are still challenging. In the literature, several numerical techniques have been developed to
overcome some of these challenges. For instance, enriched partition of unity finite element methods have been
implemented to solve the SPN models in [14, 15]. Compared to the conventional finite element methods, these
techniques have shown a significant gain in the computational time. However, they still require further study
and enrichment adjustments for more advanced problems.

Adaptive methods were also developed to improve the accuracy of the numerical simulation and to capture
the main radiative features in many contributions in the literature. In [13], a fully adaptive approach based
on local refinements was presented to solve the SPN approximation. In [16], a goal-oriented mesh adaptivity
was proposed for the numerical solution of the multi-group SPN equations. Although the approach required
the solution of a dual problem, results presented have shown the benefits of this class of adaptive methods
for solving the SPN models. In [17], applications of h-, p-, and hp-mesh adaptation techniques have also been
investigated for solving the SP3 equations. In [18], a class of hp-adaptive discontinuous Galerkin methods
for solving the SPN model in non-gray semi-transparent media was studied. It should also be stressed that
adaptive methods have been widely investigated, not only for the SPN models, but also for the full radiative
model. For instance, a posteriori error estimates for a radiative transfer model have been analyzed in [19].
The approach is based on a suitable duality argument that guarantees a reliable error control. In [20], an
Adaptive Mesh Refinement (AMR) algorithm has been implemented for the radiative transport equation.
Furthermore, a cell-based AMR computations has been presented in [21] for solutions of the two-dimensional
radiation transport problems, where both the goal-oriented AMR and the standard AMR techniques have
been implemented. Recently, in [?] low-memory numerical methods based on hp-adaptive mesh refinements
have been presented for the time-independent radiative transfer equation. However, in all above mentioned
references, only structured computational meshes were employed accounting only for refinement, coarsening,
and isotropic cells, which still limit the performance in the computational time and memory requirements.
One way to overcome the difficulties of the above mentioned adaptive methods is to consider an anisotropic
mesh adaptation. This adaptivity method increases the accuracy of simulations by considering spatial elements
elongated along appropriate directions and it further minimizes the computational resources by reducing the
total number of elements in the simulations. This technique has been successfully applied in many applications
such as electrocardiology [22, 23, 24], computational fluid dynamics [25, 26, 27], phase change [28, 29], among
others. To the best of our knowledge, the two- and three-dimensional anisotropic mesh adaptation techniques
are not yet introduced for the radiative heat transfer problems, which is one of the objectives of this work.

In this work, we consider the nonlinear simplified approximations of radiative heat transfer in an anisotropic
participating media for both two- and three-dimensional enclosures. Unlike the models investigated in [10, 11,
12, 13] for which the thermal properties are assumed to be constant, the SPN models considered here account for
nonlinear coefficient depending on the temperature of the medium. This assumption occurs in many physical
applications since at high temperature, the thermal conductivity becomes nonlinear and it depends on the
temperature. In addition, anisotropy of the medium is also accounted for in the present work allowing for the
diffusion coefficient in the SPN equations to be a full tensor depending on a rotation matrix for the directions.
Another novelty in the current work consists of a fully coupled finite element formulation for the SPN models
where the equations are solved monolithically. This was not the case for most numerical methods developed
in the literature for solving simplified approximations of radiative heat transfer, see [14, 13, 15]. A second-
order accuracy in space using quadratic triangular and tetrahedral elements is implemented along with a fully
implicit second-order Gear-based scheme in time. To deal with the non-linearity in the resulting system of
equations, Newton’s method is implemented which provides an additional advantage related to the selection of
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time-steps. To enhance the accuracy of the numerical solutions, a time-dependent mesh adaptation algorithm
is developed as well. The technique is based on an hierarchical error estimator appropriate for second or higher
order numerical solutions. Two- and three-dimensional problems are considered to show the effectiveness of
the overall methodology. Comparison of the obtained results to those obtained using the full radiative heat
transfer equations is also presented. The presented numerical results clearly show the capability of the proposed
method to efficiently solve the nonlinear SPN models in anisotropic media.

The present paper is organized as follows. The nonlinear SPN approximations considered in this study
are presented in section 2. Section 3 is devoted to the formulation of the finite element method for the
SPN models. This section includes the discretization and the anisotropic mesh adaptation. In section 4, we
present numerical examples and results for the SPN approximations of two- and three-dimensional radiative
heat transfer at different optical regimes. Finally the conclusion is presented in section 5.

2 Nonlinear SPN approximations of radiative heat transfer

In general, modelling radiative heat transfer requires integro-differential equations that depend on the space
and direction due to the transport by photons, see for instance [1, 12, 13]. The model consists of a heat
conduction equation for the temperature Θ(x, t) and a transport equation for the radiative intensity I(x, s).
These equations are reformulated in a dimensionless form as

ε2
∂Θ

∂t
− ε2∇ ·

(
K∇Θ

)
= −κ

(
4πB(Θ)−

∫
S2
I(x, s)ds

)
, (x, t) ∈ D × [0, T ],

εs · ∇I + (κ+ σ)I =
σ

4π

∫
S2
I(x, s)ds+ κB(Θ), (x, s) ∈ D × S2,

εn(x̂) ·K∇Θ+ hc(Θ−Θb) = απ
(
B(Θb)−B(Θ)

)
, (x̂, t) ∈ ∂D × [0, T ],

I(x̂, s) = B(Θb), (x̂, s) ∈ ∂D− × S2,

Θ(x, 0) = Θ0(x), x ∈ D,

(2.1)

where D ⊂ Rd (d = 2 or 3) is a geometrical domain with a boundary ∂D of an absorbing and emitting semi-
transparent material, [0, T ] is the time interval, I(x, s) is the spectral intensity at the point x and with the
propagation direction s. Here, K is the thermal conductivity, κ the absorption coefficient, hc the convective
heat transfer coefficient, σ the scattering coefficient, Θb a given ambient temperature of the surrounding, Θ0

a given initial temperature of the media, S2 denotes the unit sphere, n(x̂) the outward normal at x̂ to the
boundary ∂D, α the mean hemispheric surface emissivity, ε ∈ (0, 1] is a diffusion scale. In (2.1), the spectral
intensity of the black-body radiation, B(Θ), is defined as

B(Θ) = aRΘ
4, (2.2)

where aR is the Stefan-Boltzmann constant, see for instance [1]. Note that on the boundary we consider the
transmitting and specular reflecting conditions where the boundary region ∂D− in (2.1) is defined as

∂D− =
{
x̂ ∈ ∂D : n(x̂) · s < 0

}
.

More details on modelling radiative heat transfer in semitransparent media can be found in [1, 30] among
others. In addition, details on the passage from dimensional equations to the dimensionless system (2.1) can
be found in [13, 12] and for brevity in the presentation are not repeated here. Obviously, when the absorption
coefficient κ = 0, the heat conduction and the radiative transfer equations in (2.1) become decoupled and
physically no radiation is accounted for in the temperature distribution. Therefore, only positive absorption
coefficients (κ ̸= 0) are considered in the present study.
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In this section, we briefly show how to reformulate the radiative heat transfer equations (2.1) using the SPN

approximations. For more details, the reader is referred to [12] and the references therein. Thus, we rewrite
the radiative transfer equation in (2.1) as (

1 +
ε

κ+ σ
s · ∇

)
I = Q, (2.3)

where the source term Q is defined by

Q =
σ

4π (κ+ σ)
φ+

κ

κ+ σ
B(Θ), with φ =

∫
S2
I(x, s)ds.

Next, we formally invert the transport operator in (2.3) using the Neumann series as follows

I =

(
1 +

ε

κ+ σ
s · ∇

)−1

Q,

≈

(
1− ε

κ+ σ
s · ∇+

ε2

(κ+ σ)2
(s · ∇)2 − ε3

(κ+ σ)3
(s · ∇)3 +

ε4

(κ+ σ)4
(s · ∇)4 + . . .

)
Q. (2.4)

The expansion (2.4) is then integrated with respect to s over all directions in the unit sphere S2 and by using
the well-established relation∫

S2

(
s · ∇

)n
ds =

(
1 + (−1)n

) 2π

n+ 1
∇n, n = 1, 2, . . . .

the formal asymptotic equation for the mean intensity φ is hence given by

4πQ =

(
1− ε2

3 (κ+ σ)2
∇2 − 4ε4

45 (κ+ σ)4
∇4 − 44ε6

94 (κ+ σ)6
∇6

)
φ+O(ε8).

Now the SP0, SP1 , SP2 or SP3 approximations are obtained by neglecting the terms of order O(ε2), O(ε4),
O(ε6) or O(ε8), respectively. In the present study, we consider only the SP1 and SP3 approximations but
our anisotropic mesh adaptation can easily be extended to other SPN approximations. The SP1 and SP3

approximations can now be briefly presented but for more details the reader is referred to [12].

For the SP1 approximation:

4πQ = φ− ε2

3 (κ+ σ)2
∇2φ+O(ε4),

and the SP1 model reads

−∇ ·
( ε2

3 (κ+ σ)
∇φ
)
+ κφ = 4πκB(Θ), x ∈ D,

(2.5)

φ+

(
2ε

3 (κ+ σ)

)
n(x̂) · ∇φ = 4πB(Θb), x̂ ∈ ∂D.

For the SP3 approximation:

4πQ =

(
1− ε2

3 (κ+ σ)2
∇2 − 4ε4

45 (κ+ σ)4
∇4 − 44ε6

94 (κ+ σ)6
∇6

)
φ+O(ε8),

and the SP3 model is defined as

−∇ ·
( ε2µ21
3 (κ+ σ)

∇φ1

)
+ κφ1 = 4πκB(Θ), x ∈ D,

−∇ ·
( ε2µ22
3 (κ+ σ)

∇φ2

)
+ κφ2 = 4πκB(Θ), x ∈ D,

(2.6)

α1φ1 +
ε

κ+ σ
n(x̂) · ∇φ1 = −β2φ2 + η1B(Θb), , x̂ ∈ ∂D,

α2φ2 +
ε

κ+ σ
n(x̂) · ∇φ2 = −β1φ1 + η2B(Θb), x̂ ∈ ∂D.
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The mean radiative intensity φ is calculated from the variables φ1 and φ2 as

φ =
γ2φ1 − γ1φ2

γ2 − γ1
.

and the other constants are as follow:

µ21 =
3

7

(
3− 2

√
6

5

)
, µ22 =

3

7

(
3 + 2

√
6

5

)
, γ1 =

5

7

(
1− 3

√
6

5

)
, γ2 =

5

7

(
1 + 3

√
6

5

)
,

α1 =
C1D4 − C4D1

C3D4 −D3C4
, η1 =

D4ρ1 − C4ρ3
C3D4 −D3C4

, β1 =
C3D1 − C1D3

C3D4 −D3C4
,

α2 =
C3D2 − C2D3

C3D4 −D3C4
, η2 =

C3ρ3 −D3ρ1
C3D4 −D3C4

, β2 =
C2D4 − C4D2

C3D4 −D3C4
,

where

A1 =
1

4
, B1 = − 1

16
, C1 = w0(γ2A1 −A2), D1 = w0(γ2B1 −B2),

A2 =
5

16
, B2 =

5

16
, C2 = w0(−γ1A1 +A2), D2 = w0(−γ1B1 +B2),

A3 =
1

6
, B3 =

3r4
6
, C3 = w0(γ2A3 −A4), D3 = w0(γ2B3 −B4),

A4 =
2

9
, B4 =

3

14
, C4 = w0(−γ1A3 −A4), D4 = w0(−γ1B3 +B4),

with

w0 =
7

36

√
6

5
, ρ1 = π, ρ3 = −π

4
.

Note that these parameters do not depend on the space dimensions of the problem under study and their
existence has been derived from the asymptotic analysis reported in [12]. In our simulations presented in this
study, these parameters are assumed to be constant, calculated in advance and stored to be used whenever a
simulation of solution has to be repeated in the time loop.

3 Anisotropic mesh adaptation finite element method

In the current study, we are interested in radiative heat transfer in heterogeneous anisotropic media for which
the conductivity, absorption and scattering processes depend on the direction and the spatial location. We also
assume that the thermal conductivity depends on the temperature in a nonlinear manner. In these cases, the
SP1 model for the heterogeneous and anisotropic media becomes

ε2
∂Θ

∂t
− ε2∇ ·

(
K∇Θ

)
= −κ

(
4πB(Θ)− φ

)
, (x, t) ∈ D × [0, T ],

−ε2∇ ·
(
E∇φ

)
+ κφ = 4πκB(Θ), (x, t) ∈ D × [0, T ],

εK∇Θ · n(x̂) + hc(Θ−Θb) = απ
(
B(Θb)−B(Θ)

)
, (x̂, t) ∈ ∂D × [0, T ],

ε2E∇φ · n(x̂) + ε

2
φ =

ε

2
4πB(Θb), (x̂, t) ∈ ∂D × [0, T ],

Θ(x, 0) = Θ0(x), x ∈ D,

(3.1)
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where for the two-dimensional problems,

K = R(θ)

 K11(Θ) 0

0 K22(Θ)

R−1(θ), E =


1

3 (κ+ σ)
0

0
1

3 (κ+ σ)

 ,

with R(θ) is the rotation matrix given by

R(θ) =

 cos θ − sin θ

sin θ cos θ

 . (3.2)

It should be stressed that the anisotropy in (3.1) comes from the fact that the conductivity coefficient does
not depend on the location only but it also depends on the direction defined by the angle θ in (3.2), see for
example [31, 32]. For the three-dimensional case, these tensors are defined as

K = R(θ)


K11(Θ) 0 0

0 K22(Θ) 0

0 0 K11(Θ)

R−1(θ), E =



1

3 (κ+ σ)
0 0

0
1

3 (κ+ σ)
0

0 0
1

3 (κ+ σ)


,

where R(θ) is the three-dimensional rotation matrix given by

R(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 . (3.3)

Similarly, the SP3 equations for the heterogeneous and anisotropic media are defined as

ε2
∂Θ

∂t
− ε2∇ ·

(
K∇Θ

)
= −κ

(
4πB(Θ)− γ2φ1 − γ1φ2

γ2 − γ1

)
, (x, t) ∈ D × [0, T ],

−ε2µ21∇ ·
(
E∇φ1

)
+ κφ1 = 4πκB(Θ), (x, t) ∈ D × [0, T ],

−ε2µ22∇ ·
(
E∇φ2

)
+ κφ2 = 4πκB(Θ), (x, t) ∈ D × [0, T ],

εK∇Θ · n(x̂) + hc(Θ−Θb) = απ
(
B(Θb)−B(Θ)

)
, (x̂, t) ∈ ∂D × [0, T ],

ε2µ21E∇φ1 · n(x̂) +
εµ21α1

3
φ1 = −εµ

2
1β2
3

φ2 +
εµ21η1
3

B(Θb), (x̂, t) ∈ ∂D × [0, T ],

ε2µ22E∇φ2 · n(x̂) +
εµ22α2

3
φ2 = −εµ

2
2β1
3

φ1 +
εµ22η2
3

B(Θb), (x̂, t) ∈ ∂D × [0, T ],

Θ(x, 0) = Θ0(x), x ∈ D.

(3.4)

Note that by setting θ = 0 in the above equations, the systems (3.1) and (3.4) reduce to the conventional
SP1 and SP3 approximations (2.5) and (2.6), respectively. In this paper, we formulate our anisotropic mesh
adaptation finite element method for solving both SP1 (3.1) and SP3 (3.4) approximations. Few words on the
coercivity of the matrices .....
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3.1 Finite element discretization

Unlike many numerical methods developed in the literature such as [33, 12, 34, 35, 36, 13], the SP3 equations
(3.4) are solved monolithically instead of solving them separately, where the equations are decoupled. In the
present study, to integrate the equations (3.1) and (3.4) in time we consider a second-order implicit scheme of
Gear type also known in the literature by backward differentiation formula (BDF2). For the space discretization,
we implement a finite element method using quadratic triangular and tetrahedral elements on unstructured
meshes. Here, the time interval is also divided into sub-intervals [tn, tn+1] with uniform length ∆t = tn+1 − tn
for n = 0, 1, . . . . We use the notation wn := w(x, tn) to denote the value of a generic function w at time
tn. Hence, using ψ as the test functions, the discrete weak form of the SP1 system (3.1) reads as: Find(
Θn+1, φn+1

)
∈ V 0

h × V 0
h , such that∫

D

3Θn+1 − 4Θn +Θn−1

2∆t
ψ dD +

∫
D
K∇Θn+1 · ∇ψ dD =

∫
D

κ

ε2

(
φn+1 − 4πB

(
Θ(n+1)

))
ψ dD+

(3.5)∫
∂D

(
hc
ε

(
Θb −Θn+1

)
+
απ

ε

(
B(Θb)−B

(
Θn+1

)))
ψ dD,

ε2
∫
D
E∇φn+1 · ∇ψ dD +

∫
D
κφn+1ψ dD =

∫
D
4πκB

(
Θn+1

)
ψ dD +

∫
∂D

ε

2

(
4πB(Θb)− φn+1

)
ψ dD.

Similarly, the discrete weak form of the SP3 system (3.4) reads as: Find
(
Θn+1, φn+1

1 , φn+1
2

)
∈ V 0

h × V 0
h × V 0

h ,
such that∫

D

3Θn+1 − 4Θn +Θn−1

2∆t
ψ dD +

∫
D
K∇Θn+1 · ∇ψ dD =

∫
D

κ

ε2

(
γ2φ

n+1
1 − γ1φ

n+1
2

γ2 − γ1
− 4πB

(
Θn+1

))
ψ dD+∫

∂D

(
hc
ε

(
Θb −Θn+1

)
+
απ

ε

(
B(Θb)−B

(
Θn+1

)))
ψ dD,

ε2µ21

∫
D
E∇φn+1

1 · ∇ψ dD +

∫
D
κφn+1

1 ψ dD =

∫
D
4πκB

(
Θn+1

)
ψ dD+

(3.6)∫
∂D

εµ21
3

(
η1B(Θb)− β2φ

n+1
2 − α1φ

n+1
1

)
ψ dD,

ε2µ22

∫
D
E∇φn+1

2 · ∇ψ dD +

∫
D
κφn+1

2 ψ dD =

∫
D
4πκB

(
Θn+1

)
ψ dD+

+

∫
∂D

εµ22
3

(
η2B(Θb)− β1φ

n+1
1 − α2φ

n+1
2

)
ψ dD,

where V 0
h = Vh ∩H1

0 (D) and Vh is defined by

Vh =
{
wh ∈ C0(D) : wh

∣∣∣
T
∈ Pp(T ), ∀ T ∈ Th

}
. (3.7)

In general, other time stepping schemes can also be used for the SPN models. However, we consider the BDF2
method in this study as this scheme provided better numerical solutions compared to other first- and second-
order schemes in our previous work [37] and highly accurate solutions in different other type of applications,
see for example [38, 39]. Notice that, when using the BDF2 scheme, a simple backward Euler scheme or
Crank-Nicolson method can be used to compute the solution at the first time step.

In the current study, the Newton’s method is used at each timestep to solve the nonlinear systems (3.5)
and (3.6). For the SP3 model, we start with the triplet

(
Θn+1

0 , φ1
n+1
0 , φ2

n+1
0

)
= (Θn, φ1

n, φ2
n) and we impose

Θn+1
k+1 = Θn+1

k + δΘ, φ1
n+1
k+1 = φ1

n+1
k + δφ1 , and φ2

n+1
k+1 = φ2

n+1
k + δφ2 . We linearize the nonlinear terms using

the Taylor expansion as

B(Θn+1
k+1) = B(Θn+1

k + δΘ) ≈ B(Θn+1
k ) +B′(Θn+1

k )δΘ,
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where B′(Θ) =
dB(Θ)

dΘ
. Then, the new linearized monolithic system of equations in terms of δΘ, δφ1 , and δφ2

for the SP3 equations is given by∫
D

3δΘ
2∆t

ψ dD +

∫
D
K∇δΘ · ∇ψ dD −

∫
D

κ

ε2

(
γ2δφ1 − γ1δφ2

γ2 − γ1
− 4πB′ (Θn+1

k

)
δΘ

)
ψ dD+∫

∂D

(hc
ε

+
απ

ε
B′(Θn+1

k )
)
δΘψ dD = −

∫
D

3Θn+1
k − 4Θn +Θn−1

2∆t
ψ dD −

∫
D
K∇Θn+1

k · ∇ψ dD+∫
D

κ

ε2

(
γ2φ1

n+1
k − γ1φ2

n+1
k

γ2 − γ1
− 4πB

(
Θn+1
k

))
ψ dD +

∫
∂D

(
hc
ε

(
Θb −Θn+1

k

)
+
απ

ε

(
B(Θb)−B(Θn+1

k )
))

ψ dD,

ε2µ21

∫
D
E∇δφ1 · ∇ψ dD +

∫
D
κδφ1ψ dD −

∫
D
4πκB′(Θn+1

k )δΘψ dD +

∫
∂D

εµ21
3

(
β2δφ2 + α1δφ1

)
ψ dD =

−ε2µ21
∫
D
E∇φ1

n+1
k · ∇ψ dD −

∫
D
κφ1

n+1
k ψ dD +

∫
D
4πκB(Θn+1

k )ψ dD+

(3.8)∫
∂D

εµ21
3

(
η1B(Θb)− β2φ2

n+1
k − α1φ1

n+1
k

)
ψ dD,

ε2µ22

∫
D
E∇δφ2 · ∇ψ dD +

∫
D
κδφ2ψ dD −

∫
D
4πκB′(Θn+1

k )δΘψ dD +

∫
∂D

εµ22
3

(
β1δφ1 + α2δφ2

)
ψ dD =

−ε2µ22
∫
D
E∇φ2

n+1
k · ∇ψ dD −

∫
D
κφ2

n+1
k ψ dD +

∫
D
4πκB(Θn+1

k )ψ dD+∫
∂D

εµ22
3

(
η2B(Θb)− β1φ1

n+1
k − α2φ2

n+1
k

)
ψ dD.

Similar idea can be used for the SP1 model but it is not presented to avoid repetitions. Notice that following
similar arguments as those reported in [40], the finite element matrices involved in (3.8) are positive semi-
definite. It should also be noted that linear systems resulting from the Newton’s method are solved by iterative
methods. An incomplete LU decomposition (ILU) GMRES solver from the PETSc1 library is used, see for
example [41, 42]. The convergence of the Newton’s iterations was achieved when the residual norm is less than
10−6. Obviously, this convergence depends on the value taken by the time-step ∆t but in all our calculations,
three to five iterations were sufficient to achieve the required convergence.

3.2 Mesh adaptation procedure

In the current work, an adaptive method is implemented to improve the accuracy of the finite element solutions
of the SPN models. The main goal of the adaptive method is to reduce the spatial mesh size as well as the
computational cost while maintaining and even improving the accuracy of the computed solutions. Here, the
adaptive technique is based on an error estimator applicable to second or higher order variables for both two-
and three-dimensional cases. Details on this procedure are provided in [28, 29, 43, 44, 45] and the method is
fairly general and can be employed in various applications. The error estimator is based on the construction of

an enriched numerical solution. In fact, if we consider Θ as the unknown exact solution and Θ
(k)
h is its numerical

approximation of degree k, the error can be bounded in some appropriate functional norms as follows

∥Θ−Θ
(k)
h ∥ ≤ 1

1− β
∥Θ̂(k+1)

h −Θ
(k)
h ∥, (3.9)

where β < 1 and Θ̂
(k+1)
h is the enriched solution of degree k + 1 defined as

Θ̂
(k+1)
h = Θ

(k)
h + c

(k+1)
h .

1http://www.mcs.anl.gov/petsc/

8



Algorithm 1: Steps used for solving the SP3 model.

1: Assuming Θn−1, Θn, φn−1
1 , φn1 , φ

n−1
2 and φn2 are known in the mesh Mn at time tn.

2: for n = 1, . . . , do

3: Compute the approximations Θ̃n+1, φ̃1
n+1 and φ̃2

n+1 at time tn+1 by solving the system (3.8) on the
mesh Mn.

4: Adapt the mesh to obtain a new mesh M(n+1) starting from the mesh M(n) and the approximations

Θ(n−1) +Θ(n) + Θ̃(n+1)

3
,

φ
(n)
1 + φ̃1

(n+1)

2
and

φ
(n)
2 + φ̃2

(n+1)

2
.

5: Reinterpolate Θn−1, Θn, φn−1
1 , φn1 , φ

n−1
2 and φn2 on the mesh Mn+1.

6: Compute Θn+1, φ1
n+1 and φ2

n+1 by solving the system (3.8) on the mesh M(n+1).

7: end for

Therefore, the error ∥Θ − Θ
(k)
h ∥ is clearly controlled by the correction c

(k+1)
h . The reconstruction of c

(k+1)
h is

based on an accurate evaluation of the gradient of Θ
(k)
h at the nodes. More details about the reconstruction of

the enriched solution can be found in [45].

The anisotropic mesh adaptation procedure is then obtained by local operations on the mesh (edge refine-
ment, edge swapping, vertex suppression and vertex displacement). More details about the local operations
on the mesh can be found in [43]. Since the radiative heat transfer is a time-dependent problem, an algorithm
that includes the above mentioned adaptive method needs to be presented to get an adapted mesh at each
time-step. To avoid repetitions, we present in Algorithm 1 the main steps used for solving the SP3 model only
and the application to the SP1 system can be carried out using similar steps.

4 Numerical results

To assess the accuracy and the reliability of the method proposed in this study, examples of radiative heat
transfer in two- and three-dimensional enclosures are presented. In both two- and three-dimensional problems,
comparisons between results obtained using the full radiative model and those obtained using the SPn models
are presented for a test problem of radiative heat transfer in isotropic media along with other examples of
radiative heat transfer in anisotropic media. Qualitative and quantitative results are presented showing the
performance of our proposed methodology. In all our simulations presented in this section, the Planck function
B(Θ) is defined by (2.2) with the Stefan-Boltzmann radiation constant aR = 5.67×10−8. All the computations
are performed on a Dell Precision 7920 Tower with 20C Dual Intel Xeon Gold 6148 2.4GHz processor and
64GB 2666MHz DDR4 Memory.

4.1 Radiative heat transfer in two-dimensional enclosures

To demonstrate the performance of the proposed method, we first solve the the SP1 model (2.5) and SP3 model
(2.6) and compare the numerical results with those obtained with the full radiative heat transfer equations (2.1)
at two different asymptotic limits corresponding to ε = 1 and ε = 0.1. Here, we consider the isotropic case with
K = I, in unit square D = [0, 1]× [0, 1] with the absorption coefficient κ = 1, the scattering coefficient σ = 0,
the convective heat transfer coefficient hc = 1 and the surface emissivity α = 0. The initial and boundary
temperatures are given as Θ0 = 1500 and Θb = 300, respectively. The numerical results are performed using a
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Figure 4.1: Temperature distribution (left), temperature snapshot (middle) and adapted mesh (right) obtained
for the SP1 approximation (first row) and the SP3 approximation (second row) using ε = 1.

fixed time-step ∆t = 10−6 and the computed results are presented at the final time T = 10−4. For solving the
full radiative transfer equations in (2.1), we have implemented the well-established direct solver of Diffusion
Synthetic Acceleration (DSA) method. This method has been widely used in computational radiative transfer
as it accelerates the source iteration by using a diffusion approach. The reader is referred to [46, 36] for more
details about the implementation of the DSA method. In our computations, the angle variable is discretized
using the S8 discrete-ordinate algorithm and we consider a structured uniform mesh of 100 × 100 grid-points
resulting in linear systems of algebraic equations with 8×105 unknowns, which has to be solved at each timestep
to calculate the mean radiative intensity.

In Figure 4.1 we present the plots of the temperature using two- and three-dimensional views along with
the corresponding adapted meshes obtained for the SP1 and SP3 models using ε = 1. Those results obtained
using ε = 0.1 are shown in Figure 4.2. A simple comparison of the temperature profiles in these figures reveals
that a fast cooling is shown for the larger value of the diffusion scale ε = 1 while steeper thermal boundary
layers are shown for the smaller value of ε = 0.1. These features are also reflected in the plots of the obtained
adapted meshes for both SP1 and SP3 models at the considered asymptotic limits. A wider boundary band is
detected at ε = 1 compared to the case using ε = 0.1 which is confined with the expected boundary layers for
each optical regime in this radiative heat transfer problem. It is also clear that the anisotropic mesh adaptation
performs well for this problem and captures the large thermal gradients in the considered raditive scales.

Next, we compare the results obtained using the SP1 and SP3 approximations with those obtained using the
full radiative transfer. Figure 4.3 shows the 1D cross-sections at the main diagonal (y = x) of the temperature
obtained with both values ε = 1 and ε = 0.1. It is evident that the proposed method for solving SP1 and SP3

models accurately capture the thermal boundary layers in this cooling problem. It is clearly presented that our
adaptive method correctly solve the SP3 model using both ε = 1 and ε = 0.1 and the results compare well with
those obtained with the full radiative transfer equations using the DSA solver. In term of computational time,
our adaptive method shows fast convergence compared to the DSA method. In fact, to solve the full radiative
heat transfer problem, the direct DSA solver requires 793 and 1275 iterations to converge for ε = 1 and ε = 0.1,

10



Figure 4.2: Same as Figure 4.1 but using ε = 0.1.

Figure 4.3: Comparison between the results obtained using the two-dimensional SP1, SP3 and full radiative
heat transfer (RHT) models using ε = 1 (left) and ε = 0.1 (right).
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t = 5× 10−7 t = 50× 10−7 t = 100× 10−7 t = 200× 10−7

Figure 4.4: Adapted meshes (first row) and the corresponding temperature snapshots (second row) obtained

with the SP3 model using θ =
π

6
and ε = 0.05 at four different instants t = 5 × 10−7, 50 × 10−7, 100 × 10−7

and 200× 10−7.

respectively. However, to solve the SP3 model using the adaptive method with an average 3500 triangular
elements shows fast convergence with a CPU time about 153 times lower compared to the full radiative model
for a similar accuracy.

Our second example consists of a two-dimensional conduction-radiation problem in anisotropic media for
which the governing equations are given by the SP3 model (3.4). Note that based on the results obtained
for the previous example, the SP3 results are more accurate than the SP1 results when compared to the full
radiative heat transfer model results. Therefore, only results obtained using the SP3 model are discussed for
this example. The computational domain is the unit square [0, 1] × [0, 1] and the nonlinear conductivity is
defined as

K11(Θ) = 0.1 + 0.02Θ + 0.0005Θ2 and K22(Θ) = 0.1 + 0.02Θ.

We also consider discontinuous absorption and scattering coefficients as

σ =

 0, if Θ < 400,

1, otherwise.
κ =

 10, if Θ < 400,

1, otherwise.

The initial temperature is given by

Θ0(x, y) =

 1500, if (x, y) ∈ [0.35, 0.65]× [0.35, 0.65],

300, otherwise.

The numerical simulations for this example are performed using a fixed time-step ∆t = 10−7 and the
obtained results are presented in Figure 4.4. Here, we show time evolution of the temperature and the cor-

responding meshes for the asymptotic limit with ε = 0.05 and anisotropy with θ =
π

6
. As it can be clearly
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θ = 0 θ =
π

4
θ =

3π

4
θ =

π

2

Figure 4.5: Adapted meshes (first row) and the corresponding temperature snapshots (second row) obtained

with the SP3 model at time t = 2× 10−5 using ε = 0.05 and four different anisotropic angles θ = 0,
π

4
,
3π

4
and

π

2
.

Figure 4.6: Cross-sections of the temperature along the horizontal centre line y = 0.5 for the two-dimensional
anisotropic conduction-radiation problem at time t = 2 × 10−5 using ε = 0.05 and four different anisotropic

angles θ = 0,
π

4
,
3π

4
and

π

2
.
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Table 4.1: Mesh statistics, relative errors, and computational times for the SP3 model on fixed uniform meshes

using θ =
π

6
and ε = 0.05 at two different instants t = 5 × 10−6 and t = 2 × 10−5. The CPU times are per

time-step and given in seconds.

t = 5× 10−6 t = 2× 10−5

Mesh # Elem EΘ Eϕ Eψ CPU EΘ Eϕ Eψ CPU

1 5 000 3.75% 6.77% 6.67% 2.79 s 2.92% 7.39% 7.40% 2.79 s

2 20 000 0.86% 1.54% 1.51% 12.44 s 0.67% 1.63% 1.63% 12.44 s

3 80 000 0.36% 0.64% 0.64% 57.6 s 0.28% 0.69% 0.69% 57.6 s

Table 4.2: Same as Table 4.1 but on adaptive meshes.

t = 5× 10−6 t = 2× 10−5

Mesh # Elem EΘ Eϕ Eψ CPU EΘ Eϕ Eψ CPU

1 3200 0.28% 0.59% 0.58% 28.17 s 0.20% 0.54% 0.55% 28.17 s

3 6300 0.10% 0.19% 0.18% 46.05 s 0.06% 0.14% 0.14% 46.05 s

seen, the meshes are refined in the vicinity of the front corresponding to Θ = 400 where the absorption and
scattering change the values providing highly accurate numerical solutions. This thermal front changes when
the angle θ in (3.2) changes. This effect is clearly illustrated in Figure 4.5 where the temperature profile and
the corresponding adapted mesh are depicted. To further demonstrate these features Figure 4.6 exhibits cross-
section profiles of the temperature at y = 0.5 for different values of the angle θ. Decreasing the anisotropy
angle θ results in a wider heat diffusion in these profiles of the temperature.

To demonstrate the performance of anisotropic mesh adaptation in comparison with fixed uniform meshes,
quantitative results are also presented for this test example. Thus, the following discrete L2-norm

Eu(n) =

∥∥uh(tn)− uref (tn)
∥∥
2

∥uref (tn)∥2
× 100%,

is used to compare the solutions obtained with uniform and adapted meshes, uh, with a reference solution uref

obtained on a fixed uniform fine mesh of 1280000 triangles. The results are presented in Table 4.1 and Table
4.2, where the computed Eu with the adapted and uniform meshes at time tn = 5 × 10−6 and tn = 2 × 10−5

are illustrated. These errors are computed using 5000, 20000 and 80000 for the fixed uniform meshes and
using approximately 3100 and 5040 triangles for the adaptive meshes. These results in Table 4.1 and Table
4.2 clearly show the high accuracy of the adaptive meshes compared to the fixed uniform meshes. Here, the
accuracy is clearly shown in terms of the L2-norm, the CPU time and the significant gain in memory due the
great reduction in the total number of triangles.

4.2 Radiative heat transfer in three-dimensional enclosures

To further examine the performance of the proposed method we consider two examples for radiative heat
transfer in three-dimensional enclosures. In the first example we solve the the SP1 model (2.5) and SP3 model
(2.6) in the unit cube D = [0, 1] × [0, 1] × [0, 1] of an isotropic medium with the heat conduction K = I, the
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Figure 4.7: Comparison between the results obtained using the three-dimensional SP1, SP3 and RHT models
using ε = 1 (left) and ε = 0.1 (right).

absorption coefficient κ = 1, the scattering coefficient σ = 0, the convective heat transfer coefficient hc = 1
and the surface emissivity α = 0. The initial and boundary temperatures are given as Θ0 = 1500 K and
Θb = 300 K, respectively. As in the two-dimensional case, the numerical results obtained using the SP1, SP3,
and RHT models are compared using two different optical regimes ε = 1 and ε = 0.1. The DSA method
is also implemented to solve the three-dimensional RHT equations using 100 × 100 × 100 grid-points for the
discretization of the space variables and the S8 discrete-ordinate algorithm for the discretization of the angle
variable. In this case, linear systems of algebraic equations with 8 × 107 unknowns have to be solved at each
time-step to calculate the mean radiative intensity. In Figure 4.7 we present cross-sections of the temperature
profiles at the main diagonal obtained using SP1, SP3 and RHT models at time t = 10−6. It is clear that
for the considered asymptotic limits, the SP1 and SP3 models accurately capture the radiative features of the
temperature.

It is also clear that our adaptive method correctly solves the SP3 model using both ε = 1 and ε = 0.1 and
the results compare very well with those obtained with the RHT model. Here as well, our adaptive method
shows fast convergence compared to the DSA method. In fact, in our simulations for this example, to solve
the RHT model with the DSA solver requires 587 and 1104 iterations to converge for ε = 1 and ε = 0.1,
respectively. However, to solve the SP3 model using the adaptive method demonstrates rapid convergence with
a CPU time about 325 times lower compared to the RHT model for a similar accuracy.

Figure 4.8 shows the adapted meshes and temperature distributions obtained at time t = 10−4 using the
SP3 model with ε = 1 for this example. As expected, steep boundary layers are present in the results which
are automatically detected by our proposed adaptive method and thus finer elements were generated in the
appropriate region. Similar results have been observed using ε = 0.1 for this test example but were not reported
here to avoid repetition. As can be observed, the finite elements are concentrated only in the region where
there is a stiff variation of the temperature allowing a great reduction in the total number of mesh tetrahedral
elements and therefore reducing the computational resources. In the case with ε = 1 at time t = 10−4, the
total number of elements for the SP3 model is 34500 resulting in linear systems of algebraic equations with
only 149316 unknowns to be solved at each time-step. Thus, using the SP3 model one can obtain numerical
approximations as good as those obtained using the full radiation model, as shown in Figure 4.7, in only
8.5 min per time-step. This is due to both the use of the SP3 model and the reduction of the total number
of elements with the proposed adaptive mesh technique approximately 34500 tetrahedral elements. Therefore,
one may conclude that using the proposed adaptive finite element method solving the SP3 model performs well
for this three-dimensional radiative heat transfer problem and resolves all the thermal features without the
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Figure 4.8: Adapted mesh and the temperature distribution obtained using the SP3 model with ε = 1 for the
radiative heat transfer problem in an cuboid enclosure.

Figure 4.9: Adapted mesh and temperature distribution obtained using the SP3 model with ε = 0.05 for the
radiative heat transfer problem in an cylindrical. enclosure.
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need for the full radiative heat transfer model (2.1) and extensive refined meshes. In addition, the results in
this test example confirm our previous conclusions drawn for the two-dimensional about the efficiency of the
proposed adaptive finite element method and show its ability in dealing with three-dimensional heat patterns
on unstructured meshes.

Our final example consists of solving a three-dimensional problem of radiative heat transfer in anisotropic
media. We consider a cylinder of 2 length and radius 0.5 with boundary temperature Θb = 300 and initially

Θ0(x, y, z) =

 1300, on D1 = [0.35, 0.65]× [0.35, 0.65],

300, otherwise.

The absorption coefficient κ = 1, the scattering coefficient σ = 0, the convective heat transfer coefficient hc = 1,
the surface emissivity α = 0 and the heat conduction K is assumed nonlinear with

K11(Θ) = 0.1 + 0.02Θ + 0.0005Θ2, K22(Θ) = 0.1 + 0.02Θ, K33(Θ) = K11(Θ).

The angle of anisotropy is set to θ =
π

3
and results are presented at time t = 2×10−5. In Figure 4.9 we display

the obtained adaptive meshes along with the thermal front of Θ = 400 K where the absorption and scattering
coefficients change the values presented as a red surface in this figure. Note that it is expected to see localized
internal and external boundary layers in the solution of this radiative heat transfer problem in anisotropic
media due to the discontinuities in the initial temperature. As thinner thermal layers are considered, the
present test example becomes more challenging to solve by the conventional finite element methods without
mesh adaptivity. As it can be seen from the presented results, the meshes are refined in the vicinity of the
front where the absorption and scattering change the values providing accurate numerical solutions with a
total number of 32000 tetrahedral elements. It is worth remarking that the mesh orientation in Figure 4.9 is
consistent with the anisotropy in the heat conduction tensor.

In summary, the adaptation procedure presented in this study gives encouraging results. Based on the
results obtained for both two- and three-dimensional examples considered in the present work, it is clear that
the error estimator accounting for the temperature distribution in the problem under study is suited for mesh
adaptation in the finite element solution of radiative heat transfer equations.

5 Conclusions

We have presented an anisotropic mesh adaptation for nonlinear SPN approximations of radiative heat transfer
in both two- and three-dimensional enclosures. The thermal radiation has been approximated by the SP1 and
SP3 models which are easy to be integrated in the finite element tools. We used a nonlinear coupling between
the heat transfer and radiation for the SPN equations in an anisotropic participating media. The proposed
adaptive finite element method uses an efficient hierarchical error estimator appropriate for second- or high-
order solutions. The performance of the proposed algorithms has been examined with several test problems
including anisotropic radiative heat transfer in both two- and three-dimensional enclosures with discontinuous
coefficients for different optical regimes. The obtained numerical results using SP1 and SP3 models showed
a significant reduction in the computational cost compared to the results using the full radiative heat transfer
model. The approach presented efficiently estimates the anisotropic temperature fields in radiative heat transfer
problem. The proposed method can be applied to real world applications where there is a severe demand for
efficiency in predicting the thermal radiation. Future work will focus on extending the proposed methodology
to solve the coupled radiation and convection in non-gray participating anisotropic media. Parallel anisotropic
mesh adaptation technique [47, 39] might also be suitable for this coupling, which will be subject of a future
work. It will be also interesting to study the the coercivity, the existence and uniqueness of the presented
model in this paper.
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