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Abstract

In this paper we propose a high-order spline finite element method for solving a class of time-dependent
electromagnetic waves and its associated frequency-domain approach. A Fourier transform and its inverse
are used for the time integration of the wave problem. The spatial discretization is performed using a
partitioned mesh with tensorial spline functions to form bases of the discrete solution in the variational
finite element space. Quadrature methods such as the Gauss-Hermite quadrature are implemented in the
inverse Fourier transform to compute numerical solutions of the time-dependent electromagnetic waves. In
the present study we carry out a rigorous convergence analysis and establish error estimates for the wave
solution in the relevant norms. We also provide a full algorithmic description of the method and assess its
performance by solving several test examples of time-dependent electromagnetic waves with known analytical
solutions. The method is shown to verify the theoretical estimates and to provide highly accurate and efficient
simulations. We also evaluate the computational performance of the proposed method for solving a problem
of wave transmission through non-homogeneous materials. The obtained computational results confirm the
excellent convergence, high accuracy and applicability of the proposed spline finite element method.

Keywords: Electromagnetic waves; Frequency-domain approach; B-splines; Finite element method;
Quadrature methods; Error and convergence analysis.

1. Introduction

Electromagnetic wave problems have been investigated by several researchers in engineering and scientific
computing communities for many years regarding their fundamental importance in various applications
including mobile communications, medical imaging devices and electrical power generation among others,
see for example [1, 2, 3]. Other applications related to wave propagations include mechanical waves in
solids and fluids, seismic waves, geophysics waves, acoustic waves and the Maxwell problems describing the
propagation of electromagnetic waves, see [4, 5, 6] among others. In these later problems, the electromagnetic
signal is recovered by solving the linear Maxwell equations for which the induced electric and magnetic fields
are also solutions of these equations, see for instance [7, 8, 9, 10]. Time-harmonic wave problems governed by
the Helmholtz equation have also been largely studied in the literature, see [3, 11, 12, 13, 14, 6, 5, 2, 15, 10]
among others. Solving time-dependent wave problems using the conventional finite element methods is
challenging due to the hyperbolic nature of the governing equations and the presence of high wavenumbers
making the standard Galerkin techniques inaccurate and inefficient. Therefore, numerous computational
techniques have been designed to deal with this class of problems such as finite difference methods [16, 17],
finite element methods [18, 19, 20, 21, 22, 23], finite volume methods [24, 25] and boundary element methods
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[7, 8]. It is also well known that these methods do not perform very satisfactory in the case of wave problems
with high wavelengths unless highly refined meshes are adopted in the spatial discretization or high-order
basis functions are used in the solution approximation. Nevertheless, these methods are also known to suffer
from dispersion errors when applied to wave problems, see for example [26]. In this reference, a failure
to resolve the precise wavelength does not only reflect on the fine details of the numerical solution, but
it also contaminates its global features in the time domain. This property widely known by the pollution
error in computational acoustics [27] and it cannot be fully eliminated in wave problems but, it can be
reduced by either refining the mesh or increasing the polynomial degree used in the approximation [28].
However, as the problem involves time dependency, employing high-order time integration schemes is vital
in these methods to achieve consistent convergence rates in both spatial and temporal discretizations, see
[29] and further discussions are therein. Needless to mention that using explicit time stepping in these
methods on fine meshes would require extremely small time steps to maintain stability of the computed
solutions. Combining high-order methods for the spatial discretization with low-order time integration
schemes might turn out inefficient for numerically addressing transient wave problems. To overcome these
drawbacks without compromising the accuracy, a frequency-domain approach using the Fourier transform
and its inverse for the time integration is adopted in the current study.

Spline functions are well recognized as effective tools in approximation theory, computer design, diagnos-
tic imaging among other engineering applications, see for instance [30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39].
The conceptual theory of polynomial spline functions is also well established in the literature and widely
used in vast areas of engineering, see [40, 33, 31, 32, 41, 34, 35] among others. The spline functions are also
well known in the field of computer aided geometric design and computer graphics however, their applica-
tions in finite element analysis have not been widely implemented for solving partial differential equations
governing electromagnetic waves. For example, detailed formulation of the Bernstein-Bézier representation
of basis polynomials can be found in [30], and polynomial splines have also been used as basis functions for
the finite element methods, see for example [42, 43]. The polynomial spline functions have also been used by
researchers in geoscience as new tools for approximation and data fitting on the sphere [31]. Implementing
Non-Uniform Rational B-Splines (NURBS) to replace the standard polynomials in finite element methods
has also been widely used in the framework of isogeometric analysis, see for example [44]. This enables the
description of the geometry using the NURBS and their use in computing the numerical solution, even with
relatively coarse elements that can accurately depict complex geometries. On the other hand, Normalized
Uniform Polynomial Spline (NUPS) functions are of high importance in approximation theory, and ideal
for computer-aided geometric design or finite element methods, see for example [41]. It should be stressed
that these hierarchical basis functions are often chosen in the design of high-order finite elements for their
suitability in p-adaptivity. Recently, attention has been paid to the favorable properties of tensioned splines
instead of NURBS or B-splines.

In the present study we are interested in solving time-dependent electromagnetic waves using a novel
high-order spline finite element method. This class of problems occurs in many engineering applications
for which the hyperbolic equation has been used as a standard model for describing the propagation of
waves. Therefore, accurate and reliable numerical approximations of these hyperbolic wave equations are
of a fundamental importance to the simulations. In the current work, the two-dimensional wave problems
are solved to recover the non-stationary electromagnetic signal also known by the magnitude density of
the transverse-electric field or by simply the transverse-magnetic field. The proposed method employs
the frequency-domain approach based on the Fourier transform which leads to an intermediate differential
equation depending on the frequency variable. This class of techniques avoid finite difference approximations
in time by using the Fourier transform and its inverse for the time integration, see [45, 46] for similar
techniques. Notice that when solving time-dependent problems using finite element methods, significant
consideration should be given to the choice of time integration schemes, especially when using high-order
spatial discretization. The selection of time integration for time-dependent electromagnetic waves strongly
depends on values of the wave number and the mesh refinement. If the wave number and mesh refinements
are very high, spurious oscillations due to numerical dispersion can occur in the solution with explicit
solvers, whereas the computational cost in the implicit solvers can be overwhelming. Needless to mention
that for this class of time-dependent problems, employing high-order time integration schemes becomes
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imperative to achieve consistent convergence rates in both spatial and temporal dimensions [29]. In the
present study, to eliminate these drawbacks associated with time integration for wave problems, we consider
the frequency-domain approach using Fourier transform and its inverse. It should also be stressed that
the Fourier transform and its inverse are considered as isometric isomorphisms between the Hilbert spaces
such as those considered here for solving wave problems. This isomorphism is also known as Fourier-
Plancherel and it allows a robust approximation using quadrature methods to calculate the solution of the
inverse Fourier transform. Therefore, this results in a stable, simple and efficient algorithm for solving time-
dependent electromagnetic waves using high-order spline finite element discretizations for the space. Note
that, although the considered frequency-domain formulation requires the use of the Fourier transform and
the associated inverse, its implementation is generally simpler than for the time-domain formulation. Our
main objective in the current work consists in developing a class of high-order finite element methods to
numerically solve time-dependent electromagnetic wave problems. This is achieved by solving the resulting
frequency-domain problem by a finite element method employing the high-order Bγ-splines as basis functions
with the arbitrary order γ. By their regularities in Cγ−1, the proposed Bγ-spline functions are ideal in the
field of approximation and computer-aided geometric design. In the framework of finite element methods, the
high-order Bγ-spline functions would provide smooth macro-element spaces which are required for accurate
solutions of time-dependent electromagnetic waves particularly at high wavelengths. In addition, using
the Bγ-spline functions, we can generate the mass and stiffness matrices globally on all the nodes of the
mesh instead of working on a reference element which requires transformation mappings. Therefore, unlike
other high-order spline functions, when used within the finite element approximations, the proposed high-
order Bγ-splines yield sparse matrices with the added tridiagonal structure. Once, the magnitude density
is obtained in the frequency-domain problem, quadrature methods including the Gauss-Hermite quadrature
are used to compute the time-domain magnitude density as an inverse Fourier transform with respect to
the time variable. To the best of our knowledge, solving the time-dependent electromagnetic wave problems
using these techniques is reported for the first time. It should be stressed that the model considered in this
work represents the principal reference basis of many linear electromagnetic and acoustic problems. For
instance, applied to separate components of the linear electromagnetic field, it can represent an accurate
and efficient solution for a short pulse propagating over long distances. We also develop a rigorous analysis
of convergence for this method and provide error estimates for the wave solution in the relevant norms. To
examine the accuracy of the proposed high-order spline finite element method, we present numerical results
for several wave problems with known exact solutions and also for a problem of wave transmission through
non-homogeneous materials. The obtained results for different wavenumbers are in good agreement with the
theoretical error estimates and illustrate good numerical features in terms of stability and high accuracy.

The paper is organized as follows: In section 2, governing equations for time-dependent electromagnetic
waves are presented. This section also includes the notations along with functional spaces and assumptions
used in the present study. The proposed high-order spline finite element method is formulated in section 3.
In this section, we present the frequency-domain variational formulation, introduce the high-order tensor-
product splines, and reconstruct the solution of the inverse Fourier transform. Section 4 presents the
convergence analysis for the proposed spline finite element method and establishes the error estimates
for the wave solution in the relevant norms. Numerical results obtained for several examples of time-
dependent electromagnetic waves are illustrated in section 5. Finally, we conclude with some remarks and
recommendations for future work in section 6.

2. Governing equations for time-dependent electromagnetic waves

Let Ω ⊂ R2 be an open bounded domain with Lipschitz continuous boundary ∂Ω and let [0, T ] be the time
interval for the wave propagation with T is the final time. We also denote by x = (x, y)⊤ ∈ Ω the cartesian
coordinates and by ϕ(x, t) the magnitude density of the transverse electromagnetic field at the position
x ∈ Ω and at the time t ∈ [0, T ]. In the present study, we are interested in the dynamics of transverse
electromagnetic waves for the magnitude density of the transverse electric field or the reconstruction of
transverse magnetic fields. Thus, the hyperbolic deterministic transverse electromagnetic wave equation

3



satisfied by the magnitude density ϕ(x, t) in the direction perpendicular to the domain plane is given by

1

v2(x)

∂2ϕ

∂t2
(x, t)−∇2ϕ(x, t) = f(x, t), (x, t) ∈ Ω× [0, T ], (1)

equipped with the initial conditions

ϕ(x, 0) = ϕ0(x), and
∂ϕ

∂t
(x, 0) = ϕ1(x), x ∈ Ω, (2)

where ϕ0 and ϕ1 are given initial functions. In (1), v(x) = v0
ν(x) is the speed function of sound with v0 is

the speed of sound in the vacuum, ν is the reflective index of the domain, and f(x, t) presents the internal
source term. On the boundary ∂Ω, we assume absorbing boundary conditions as

ρ(x̂)

v(x̂)

∂ϕ

∂t
(x̂, t) + β(x̂)ϕ(x̂, t) +

∂ϕ

∂n
(x̂, t) = g(x̂, t), (x̂, t) ∈ ∂Ω× [0, T ], (3)

where β is a bounded function on the boundary ∂Ω, ρ is a non-negative bounded weight function on ∂Ω,
n(x̂) is the outward unit normal at x̂ on ∂Ω and g(x̂, t) is a given boundary function, see for example [47]
for more details on these parameters. Throughout this study, we assume that the real-valued function β is
a positive bounded function belonging to the canonical space L∞(∂Ω). In addition, v, ρ and β are assumed
to be positive bounded functions belonging to the space L∞(Ω) i.e. , there exist positive constants vmax,
vmin, ρmax and βmax such that

0 < vmin ≤ v(x) ≤ vmax, 0 ≤ ρ(x) ≤ ρmax, and 0 ≤ β(x) ≤ βmax, ∀ x ∈ Ω, (4)

with Ω = Ω ∪ ∂Ω. In the sequel, we use the following notations: the classical space of square integrable
complex-valued functions on the domain Ω is denoted by L̂2 := L2(Ω,C) and it is endowed by its natural
topology defined by the following inner product and its associated norm

(u|v)2 =

∫
Ω

u(x)v(x)dx, ∥u∥2 =
√
(u|u)2, ∀ u, v ∈ L̂2.

For every k ∈ N, we also denote by Ĥk := Wk,2(Ω,C) the usual Sobolev space equipped with the classical
norm ∥ · ∥Ĥk

given by

∥u∥Ĥk
=

∑
|ℓ|≤k

∥∥∂ℓu∥∥2
2

 1
2

, ∀ u ∈ Ĥk, (5)

where ∂ℓu := ∂ℓ1 . . . ∂ℓdu stands for the derivative (in the distribution sense) of the function u of order

|ℓ| =
∑d

i=1 ℓi and ∂
ℓi = ∂ℓi

∂xℓi
, for i = 1, . . . , d. The classical space of square integrable real-valued functions

on the domain Ω is denoted by L2 := L2(Ω,R) and Hk denotes the canonical Sobolev space of real-valued
functions defined by Hk := Wk,2(Ω,R) and equipped with the classical norm ∥·∥Hk

given in (5). The classical

space L2(Ω,R) of square integrable real-valued functions in the domain Ω is denoted by L2 := L2(Ω,R) and
Hm denotes the Sobolev space of real-valued functions defined by Hm = Hm(Ω,R) := Wm,2(Ω,R) and
equipped with the classical norm ∥·∥Hm

defined in (5). Let m be an integer, we consider the Schwartz space
S(R; Hm) and the space S ′(R; Hm) of the tempered distributions, namely the linear and continuous forms
from S(R; Hm) into R is the topological dual of the space S(R; Hm). Similarly, for every s ∈ R, we consider
the space Hs(R;R) and the non-homogeneous Sobolev spaces Hs(R; Hm), for more detail on these spaces we
refer to [45, 46].

We assume that the magnitude density t 7−→ ϕ(x, t) and its gradient t 7−→ ∇ϕ(x, t) have extensions in R
which belong respectively, to the spaces L1(R,R) and

(
L1(R,R)

)2
almost everywhere in Ω. We also assume
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that the source terms f and g have extensions, still denoted by f and g, such that f ∈ L∞(
Ω;L1(R,R)

)
and

g ∈ L∞(
∂Ω;L1(R,R)

)
. Recall that the Fourier transform ψ̂ of a function ψ in L1(R,R) is given by

ψ̂(ω) =
1√
2π

∫ +∞

−∞
ψ(t)e−iωtdt, i =

√
−1. (6)

By using the Lebesgue theorem of derivation under the integral sign [48], we obtain

∇̂ϕ(x, ω) = ∇ϕ̂(x, ω), ∀(x, ω) ∈ Ω× R. (7)

Hence, we apply the Fourier transform to the equation (1) along with the non-homogeneous Robin-type

boundary conditions (3), we use the classical relation
∂̂ψ

∂t
= iωψ̂ and the relation (7) to obtain an elliptic

wave equation satisfied by the transverse electromagnetic wave in the frequency-domain as

−
(
∇2 +

ω2

v2(x)

)
u(x, ω) = F (x, ω), (x, ω) ∈ Ω× R, (8)

subject to the following absorbing boundary condition

iω

v(x̂)
ρ(x̂)u(x̂, ω) + β(x̂)u(x̂, ω) +

∂u

∂n
(x̂, ω) = G(x̂, ω), (x̂, ω) ∈ ∂Ω× R, (9)

where u(·, ω) = ϕ̂(·, ω), F (·, ω) = f̂(·, ω) and G(·, ω) = ĝ(·, ω) are the Fourier transforms with respect to the
time variable t of ϕ(x, ·), f(x, ·) and g(x̂, ·), respectively.

3. High-order spline finite element method

In this section we formulate the proposed high-order spline finite element method for solving the wave
problem (8)-(9). We first present the variational formulation of the problem and then we introduce the
high-order tensor-product splines. We also present the inverse Fourier transform to reconstruct the time-
dependent solution of the transverse electromagnetic wave problem.

3.1. Frequency-domain variational formulation

Let u∗(·, ω) be a sufficiently smooth function (for instance u∗(·, ω) ∈ Ĥ1) solving the problem (8)-(9).

Hence, multiplying the wave equation (8) by an arbitrary function v ∈ Ĥ1, integrating over Ω and using the
Green-Gauss theorem with the non-homogeneous Robin-type boundary conditions (9), the weak variational
formulation associated with the transverse electromagnetic wave problem in the frequency-domain reads

Aω(u(·, ω), v) = Lω(v), ∀ v ∈ Ĥ1, (10)

where the sesquilinear form Aω : Ĥ1 × Ĥ1 −→ C and the semi-linear form Lω : Ĥ1 −→ C are defined for all
u, v ∈ Ĥ1 by

Aω(u, v) = −ω2

∫
Ω

1

v2(x)
u(x)v(x) dx+

∫
Ω

∇u(x)∇v(x) dx+

∮
∂Ω

(
β(x̂) +

iω

v(x̂)
ρ(x̂)

)
u(x)v(x̂) dx̂, (11)

and

Lω(v) =

∫
Ω

F (x, ω)v(x) dx+

∮
∂Ω

G(x̂, ω)v(x̂) dx̂, (12)

respectively. Conversely, let u∗(·, ω) ∈ Ĥ1 satisfying the weak variational formulation (10), then it follows
from the Green-Gauss theorem that∫

Ω

(
−
(
∇2 +

ω2

v2(x)

)
u(x, ω)− F (x, ω)

)
v(x) dx =∮

∂Ω

(
iω

v(x̂)
ρ(x̂)u(x̂, ω) + β(x̂)u(x̂, ω) +

∂u

∂n
(x̂, ω)−G(x̂, ω)

)
v(x̂) dx̂,

5



for all v ∈ Ĥ1. Particularly, for every C∞-function φ with compact support in Ω, it yields∫
Ω

(
−
(
∇2 +

ω2

v2(x)

)
u(x, ω)− F (x, ω)

)
φ(x) dx = 0.

Thus, in the distribution sense, we have

−
(
∇2 +

ω2

v2(x)

)
u(x, ω) = F (x, ω), ∀ x ∈ Ω.

Since the function f is assumed to be in L∞(Ω; L1(R,R)), it follows that F (·, ω) belongs to the space
L∞(Ω,C). Hence, the previous equality holds almost everywhere in Ω and therefore, for every C∞-function
φ compactly supported in ∂Ω, we have∮

∂Ω

(
iω

v(x̂)
ρ(x̂)u(x̂, ω) + β(x̂)u(x̂, ω) +

∂u

∂n
(x̂, ω)−G(x̂, ω)

)
φ(x̂) dx̂ = 0.

Next, let K ⊂ ∂Ω be a compact set and K be a neighborhood of K such that K ⊂ K ⊂ ∂Ω. According to the
Urysohn Lemma [49, 50], there exists a compactly supported C∞-function φc in ∂Ω satisfying φc(x̂) = 1 on
K and φc(x̂) = 0 outside of K. Hence, taking φ = φc in the above equation, we obtain for every compact
subset K in ∂Ω ∮

K

(
iω

v(x̂)
ρ(x̂)u(x̂, ω) + β(x̂)u(x̂, ω) +

∂u

∂n
(x̂, ω)−G(x̂, ω)

)
dx̂ = 0.

It follows that

iω
ρ(·)
v(·)

u(·, ω) + β(·)u(·, ω) + ∂u

∂n
(·, ω) = G(·, ω), a.e. on ∂Ω.

It is evident that, the problem (8)-(9) is equivalent to the weak variational formulation (10) and, from the
trace theorem, there exists a constant M1 > 0 (depending only on Ω) such that

∥u∥L2(∂Ω,C) ≤M1 ∥u∥Ĥ1
, ∀ u ∈ Ĥ1. (13)

Using the Schwarz inequality and the Sobolev continuous embedding theorem, it follows that there exists a
constant M2 > 0 (depending only on ∂Ω) such that

|Lω(v)| ≤ R(ω) ∥v∥Ĥ1
, ∀ v ∈ Ĥ1, (14)

where R(ω) = M2

(
∥F (·, ω)∥L̂2

+ ∥G(·, ω)∥L2(∂Ω,C)

)
. Therefore, the operator Lω : Ĥ1 → C is a continuous

semi-linear form in Ĥ1. Again, using the Sobolev continuous embedding theorem, it yields that there exists
a non-negative constant M3 > 0 not depending on the frequency ω such that

|Aω (u, v)| ≤M3(1 + ω2)∥u∥Ĥ1
∥v∥Ĥ1

, ∀ u, v ∈ Ĥ1. (15)

Hence, the coercivity of the sesquilinear form Aω given in (11) is also ensured by the following Lemma:

Lemma 1. Let ω be a fixed real frequency, the sesquilinear form Aω given in (11) is coercive on a subspace

H ⊆ Ĥ1. Furthermore, there exists a constant α ∈]0, 1[ such that

|Aω (u, u)| ≥ α∥u∥2
Ĥ1
, (16)

for all u ∈ H ⊆ Ĥ1. □
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Proof. For every u ∈ Ĥ1, we have

Re (Aω (u, u)) = −ω2

∫
Ω

1

v2(x)
|u(x)|2 dx+

∫
Ω

|∇u(x)|2dx+

∮
∂Ω

β(x̂)|u(x̂)|2 dx̂.

Hence,

|Aω (u, v)| ≥ Re (Aω (u, u)) ≥ −ω2

∫
Ω

1

v2(x)
|u(x)|2 dx+

∫
Ω

|∇u(x)|2dx,

≥ − ω2

v2max

∫
Ω

|u(x)|2 dx+

∫
Ω

|∇u(x)|2 dx.

It is clear that the coercivity bound is satisfied if there is a constant α > 0 such that

− ω2

v2max

∫
Ω

|u(x)|2 dx+

∫
Ω

|∇u(x)|2 dx ≥ α∥u∥2
Ĥ1
, (17)

which is true here since the following inequality

(1− α)∥∇u∥2
L̂2

= (1− α)

∫
Ω

|∇u(x)|2 dx ≥
(
α+

ω2

v2max

)∫
Ω

|u(x)|2 dx =

(
α+

ω2

v2max

)
∥u∥2

L̂2
≥ 0,

is satisfied. Hence, there exists a constant α ∈]0, 1[ such that

(1− α) ∥∇u(·, ω)∥2
L̂2

≥
(
α+

ω2

v2max

)
∥u(·, ω)∥2

L̂2
≥ 0. (18)

Let H be a subspace of functions u ∈ Ĥ1 satisfying the inequality (18), then it is obvious to obtain the
following coercivity bound

|Aω (u, u) | ≥ Re (Aω (u, u)) ≥ α∥u∥2
Ĥ1
. (19)

for all u ∈ H .

Let ω be a real fixed frequency, and denote by H the subspace of functions u(·, ω) ∈ Ĥ1 that satisfy the
inequality (18). Hence, from (15) and (16), the sesquilinear form Aω : H × H → C is continuous and
coercive, and from (14) the semi-linear form Lω : H → C is also continuous. Next, we state the following
result:

Theorem 1. For a fixed frequency ω in R, the problem (8)-(9) has a unique solution u∗(·, ω) in H satisfying

∥u∗(·, ω)∥Ĥ1
≤ R(w)

α
, (20)

where the positive constants α and R(ω) are given in (18) and (14), respectively. Furthermore, for m ≥ 2,
if F (·, ω) is in Cm−2(Ω), then u∗(·, ω) ∈ Cm(Ω) is the unique solution of the problem (8)-(9) in the usual
sense.

□

Proof. To establish the results of this theorem, we use the complex version of Lax-Milgram theorem [46]
to prove that the problem (8)-(9) has a unique bounded solution. Note that since β is a positive bounded

function, the continuity of the semi-linear form Lω : Ĥ1 → C, the continuity and the coercivity of the
sesquilinear form Aω : Ĥ1 × Ĥ1 → C, by using the complex version of Lax-Milgram theorem [51, 52], imply

that there exists a unique solution u∗(·, ω) of the variational problem (10) in Ĥ1. Since the problem (8)-(9)
is equivalent to the variational formulation problem (10), then u∗(·, ω) is also the unique weak solution of
the problem (8)-(9). From the continuity of the operator Lω and the coercivity of the operator Aω, we have

α∥u∗(·, ω)∥2Ĥ1
≤ |Aω (u∗(·, ω), u∗(·, ω)) | ≤ R(ω)∥u∗(·, ω)∥Ĥ1

,
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which yields the inequality (20). Since u∗(·, ω) ∈ Ĥ1, then ∇u∗(·, ω) ∈ (L̂2)
d. We have v ∈ L∞(Ω) and

F (·, ω) ∈ L̂2, hence

∇2u∗(·, ω) = −F (·, ω)− ω2

v2(·)
u∗(·, ω) ∈ L̂2. (21)

It follows that ∇u∗(·, ω) belongs to (Ĥ1)
d and therefore, the function u∗(·, ω) belongs to Ĥ2. For m ≥ 2, if

F (·, ω) ∈ Cm−2(Ω) and v ∈ Cm−2(Ω), we obtain

∇2u∗(x, ω) = −F (x, ω)− ω2

v2(x)
u∗(x, ω), ∀ x ∈ Ω, (22)

in the distribution sense. Using the Sobolev injection, the function u∗(·, ω) is in Cm−2(Ω) and by using the
assumption that v and F (·, ω) are in Cm−2(Ω). Thus, from (22) the weak solution u∗(·, ω) of the problem
(8)-(9) belongs to Cm(Ω) and as a consequence, the unique solution of the problem (8)-(9) in the usual sense,
see also [53, 52] among others.

3.2. High-order tensor-product splines

For simplicity in the presentation, we consider two-dimensional problems (d = 2) such that Ω = [a, b]×
[c, d] is a rectangular domain. We discretize the interval [a, b] using equally-spaced knot points xi = a+ ih1
for i = 0, 1, 2 . . . , n1 with h1 = (b−a)/n1, and the interval [c, d] using equally-spaced knot points yj = c+jh2
for j = 0, 1, 2 . . . , n2 with h2 = (d− c)/n2. Note that in general, we can consider one mother spline of degree
γ and reconstruct a non-uniform discretization of the spatial domain by defining a non-uniform basis for
the spatial approximation of the numerical solution. In the present study, for simplicity in the presentation
of the proposed algorithm, we consider a uniform partition but the method can also be applied using non-
uniform meshes without major conceptual modifications. Let γ be the degree of the considered normalized
splines functions, and let us consider the following gridpoints

(xi, yj) = (a+ ih1, c+ jh2), −γ ≤ i ≤ n1 − 1, −γ ≤ j ≤ n2 − 1. (23)

We also assume that the domain Ω is covered by an uniform mesh defined by

Ωh =
{
xij = (xi, yj)

⊤, xi = a+ ih1, yj = c+ jh2, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2

}
, (24)

where h = max(h1, h2) is the spatial size of the mesh element Cij = [xi, xi+1]×[yj , yj+1] in Ω for 0 ≤ i ≤ n1−1

and 0 ≤ j ≤ n2 − 1. For a fixed frequency ω in R, let us denote by V̂(γ,m)
h the finite dimensional subspace

of Ĥm, given by

V̂(γ,m)
h =

{
uh(·, ω) ∈ Ĥm : uh(·, ω)

∣∣∣Cij ∈ Pγ ⊗ Pγ(Ω), for 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1

}
,

where Pγ⊗Pγ(Ω) is the space of polynomials on Ω of degree ≤ 2γ and γ ∈ N. It is evident that the dimension

of the subspace V̂(γ,m)
h is Nγ = Nγ,1Nγ,2 where Nγ,1 = n1 + γ + 2 and Nγ,2 = n2 + γ + 2. To generate a

set of basis functions (Bij) for the subspace V̂(γ,m)
h , we use the normalized uniform spline functions Bγ of

degree γ. It should be noted that normalized uniform spline functions are used here only for an algorithmic
implementation of the method but spline functions with no normalization property can still be applied. In
practice, normalized spline functions would generate matrices with compact and easy structures. Here, the
family (Bij = Bi ⊗Bj) 1≤i≤Nγ,1

1≤j≤Nγ,2

is the tensorial spline basis functions associated with the given mesh Ωh.

For i = 1, . . . , Nγ,1 and j = 1, . . . , Nγ,2, we have

Bij(x) = Bi ⊗Bj(x, y), for x = (x, y)⊤ ∈ Ω,
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and the functions Bi and Bj are defined as

Bi(x) = Bγ

(
x− xi−γ−1

h1

)
, and Bj(y) = Bγ

(
y − yj−γ−1

h2

)
, (25)

where Bγ is the normalized uniform polynomial spline with the support embedding in the interval [0, γ+1],
we refer [46, 33, 31, 32, 41, 34, 35] for more details. It should be stressed that there is no relation between
normalized uniform polynomial splines and the spatial discretization of the computational using a uniform
mesh. For simplicity in the present work, we construct the splines using an uniform manner based on an
algorithm which uses uniform elementary functions. These parent spline functions have bounded supports
[0, γ + 1] where γ is the degree of the considered spline function. However, non-uniform meshes can still be
used in the proposed method for the spatial discretization. Hence, we define a Bγ-spline basis function for
γ = 0 using the following elementary basis functions Ni,γ as

Ni,0(ξ) =


1, if i ≤ ξ < i+ 1,

0, otherwise.

For γ ≥ 1, the Bγ-splines are defined recursively by

Ni,γ(ξ) =
γ − i + ξ

γ
Ni−1,γ−1(ξ) +

i + 1− ξ

γ
Ni,γ−1(ξ), (26)

for i = 0, . . . , γ − 1, γ ≥ 1 and ξ ∈ [0, 1]. Note that the fraction of the form 0
0 in (26) is considered to be

zero. It is evident that the elementary functions Nk,γ are the reference basis of Bγ-splines and Nk,γ are
normalized such that ∑

k∈Z
Nk,γ(ξ) = 1, for all ξ ∈ [0, 1].

Thus, the normalized uniform polynomial spline Bγ of degree γ ∈ N with the support embedding in [0, γ+1]
is defined by

Bγ(ζ) =


Nγ−i,γ(ζ − k), for k ≤ ζ ≤ k + 1, k = 0, 1, . . . , γ,

0, for ζ ≤ 0, γ + 1 ≤ ζ.

It should also be stressed that the normalized uniform polynomial spline Bγ of degree γ is a piecewise
polynomial with integer knot points and it belongs to Cγ−1 class of functions. For an illustration, we display
in Figure 1 the first Bγ-spline basis functions for different orders γ = 1, 2, . . . , 10.

Hence, using the Bγ-spline basis functions, the subspace V̂(γ,m)
h is spanned by the tensorial splines

functions (Bij = Bi ⊗Bj) 1≤i≤Nγ,1
1≤j≤Nγ,2

. For m = 1, the classical Galerkin approximation consists on finding an

approximation uh(·, ω) of u∗(·, ω) as a solution in V̂(γ,1)
h of the following discrete variational problem

Aω(uh(·, ω), vh) = Lω(vh), ∀ vh ∈ V̂(γ,1)
h , (27)

where Aω and Lω are given in (11) and (12), respectively. Note that the solution uh(·, ω) of the variational
problem (27) can be written in the following form

uh(x, ω) =

Nγ,1∑
i=1

Nγ,2∑
j=1

Zh,ij(ω)Bij(x), ∀ x ∈ Ω, (28)

where Zh,ij(ω) are complex coefficients with 1 ≤ i ≤ Nγ,1 and 1 ≤ j ≤ Nγ,2. By using the test function
vh(x, y) = Bkℓ(x, y) on the weak variational formulation (27), we obtain the Galerkin approximation

Nγ,1∑
i=1

Nγ,2∑
j=1

Zh,ij(ω)Aijkℓ(ω) = Lω(Bkℓ), (29)

9
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Figure 1: Illustration of Bγ -spline basis functions with different orders.

for 1 ≤ k ≤ Nγ,1 and 1 ≤ ℓ ≤ Nγ,2, where

Aijkℓ(ω) =

∫ d

c

∫ b

a

(∇Bij) (x, y) (∇Bkℓ) (x, y) dxdy +

∮
∂Ω

β(x̂, ŷ)Bij(x̂, ŷ)Bkℓ(x̂, ŷ) dx̂dŷ+

iω

∮
∂Ω

ρ(x̂, ŷ)

v(x̂, ŷ)
Bij(x̂, ŷ)Bkℓ(x̂, ŷ) dx̂dŷ − ω2

∫ d

c

∫ b

a

1

v2(x, y)
Bij(x, y)Bkℓ(x, y) dxdy,

and

Lω(Bkℓ) =

∮
∂Ω

G(x̂, ŷ;ω)Bkℓ(x̂, ŷ) dx̂dŷ +

∫
Ω

F (x, y;ω)Bkℓ(x, y)dxdy,

for i, k = 1, 2, . . . , Nγ,1 and j, ℓ = 1, 2, . . . , Nγ,2. We define A(ω) the Nγ,1Nγ,2 × Nγ,1Nγ,2-valued matrix
whose entries are the complex coefficients Aijkℓ(ω) = Aω (Bij , Bkℓ), Bh(ω) the Nγ,1 × Nγ,2-valued matrix
whose coefficients are Bh,kℓ(ω) = Lω(Bkℓ) and Zh(ω) the Nγ,1×Nγ,2-valued matrix of the unknown complex
coefficients Zh,ij(ω). We also define bh(ω) and zh(ω) as vectors in CNγ,1Nγ,2 the entries of which are the
complex coefficients Bh(ω) and Zh(ω), respectively. Hence, the equations (29) can be reformulated in the
following Nγ,1Nγ,2 ×Nγ,1Nγ,2 linear system

A(ω)zh(ω) = bh(ω), (30)

where for all frequency values ω, the coefficients Zh,ij(ω) appearing in the the approximate solution uh of
(28) are obtained by solving the linear system (30). The coefficients of the matrix A(ω) are evaluated as

Aijkℓ(ω) = Dijkℓ +Qijkℓ + iωQ̃ijkℓ − ω2Uijkℓ, i, k = 1, . . . , Nγ,1 j, ℓ = 1, . . . , Nγ,2,
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where the coefficients Dijkℓ, Uijkℓ, Qijkℓ and Q̃ijkℓ are given by

Dijkℓ =
1

h21

∫ d

c

∫ b

a

B′
i(x)Bj(y)B

′
k(x)Bℓ(y)dxdy +

1

h22

∫ d

c

∫ b

a

Bi(x)B
′
j(y)Bk(x)B

′
ℓ(y)dxdy,

Uijkℓ =

∫ d

c

∫ b

a

1

v2(x, y)
Bi(x)Bj(y)Bk(x)Bℓ(y)dxdy,

Qijkℓ =

∮
∂Ω

β(x̂, ŷ)Bi (x̂)Bj (ŷ)Bk (x̂)Bℓ (ŷ) dx̂dŷ,

Q̃ijkℓ =

∮
∂Ω

ρ(x̂, ŷ)

v(x̂, ŷ)
Bi (x̂)Bj (ŷ)Bk (x̂)Bℓ (ŷ) dx̂dŷ.

By using the expressions of Bi and Bj given in (25) and by introducing the variables s ∈ [0, n1] and τ ∈ [0, n2]
such that x = a+ sh1 and y = c+ τh2, we obtain

Dijkℓ =
h2
h1

D1
1(i, k)D

0
2(j, ℓ) +

h1
h2

D0
1(i, k)D

1
2(j, ℓ),

where the partial coefficients of the matrices Dl
1 and Dl

2 (l = 0, 1) are given by

Dl
1(i, k) =

∫ n1

0

B(l)
γ (s− i+ γ + 1)B(l)

γ (s− k + γ + 1)ds,

Dl
2(j, ℓ) =

∫ n2

0

B(l)
γ (τ − j + γ + 1)B(l)

γ (τ − ℓ+ γ + 1)dτ,

with B(l)
γ is the derivative of the normalized uniform spline function of order l, and

Uijkℓ = h1h2U1(i, k)U2(j, ℓ),

where the partial coefficients of U1 and U2 are given by

U1(i, k) =

∫ n1

0

1

v21(a+ sh1)
Bγ(s− i+ γ + 1)Bγ(s− k + γ + 1)ds,

U2(j, ℓ) =

∫ n2

0

1

v22(c+ τh2)
Bγ(τ − j + γ + 1)Bγ(τ − ℓ+ γ + 1)dτ,

where we have assumed that v(a+ sh1, τh2) = v1(a+ sh1)v2(c+ τh2). Similarly,

Qijkℓ = h2Γ
(a)(i, k)Λa(j, ℓ) + h2Γ

(b)(i, k)Λb(j, ℓ) + h1Λc(i, k)Γ
(c)(j, ℓ) + h1Λd(i, k)Γ

(d)(j, ℓ) +

β(a, c)Γ(a)(i, k)Γ(c)(j, ℓ) + β(a, d)Γ(a)(i, k)Γ(d)(j, ℓ) +

β(b, c)Γ(b)(i, k)Γ(c)(j, ℓ) + β(b, d)Γ(b)(i, k)Γ(d)(j, ℓ),

and

Q̃ijkℓ = h2Γ
(a)(i, k)Υa(j, ℓ) + h2Γ

(b)(i, k)Υb(j, ℓ) + h1Υc(i, k)Γ
(c)(j, ℓ) + h1Υd(i, k)Γ

(d)(j, ℓ) +

ρ(a, c)

v(a, c)
Γ(a)(i, k)Γ(c)(j, ℓ) +

ρ(a, d)

v(a, d)
Γ(a)(i, k)Γ(d)(j, ℓ) +

ρ(a, d)

v(a, d)
Γ(b)(i, k)Γ(c)(j, ℓ) +

ρ(b, d)

v(b, d)
Γ(b)(i, k)Γ(d)(j, ℓ),

11



where the partial coefficients of Qijkℓ and Q̃ijkℓ are given by

Λc(i, k) =

∫ n1

0

β(a+ sh1, c)Bγ(s− i+ γ + 1)Bγ(s− k + γ + 1)ds,

Λa(j, ℓ) =

∫ n2

0

β(a, c+ τh2)Bγ(τ − j + γ + 1)Bγ(τ − ℓ+ γ + 1)dτ,

Λd(i, k) =

∫ n1

0

β(a+ sh1, d)Bγ(s− i+ γ + 1)Bγ(s− k + γ + 1)ds,

Λb(j, ℓ) =

∫ n2

0

β(b, c+ τh2)Bγ(τ − j + γ + 1)Bγ(τ − ℓ+ γ + 1)dτ,

Υc(i, k) =

∫ n1

0

ρ(a+ sh1, c)

v(a+ sh1, c)
Bγ(s− i+ γ + 1)Bγ(s− k + γ + 1)ds,

Υa(j, ℓ) =

∫ n2

0

ρ(a, c+ τh2)

v(a, c+ τh2)
)Bγ(τ − j + γ + 1)Bγ(τ − ℓ+ γ + 1)dτ,

Υd(i, k) =

∫ n1

0

ρ(a+ sh1, d)

v(a+ sh1, d)
Bγ(s− i+ γ + 1)Bγ(s− k + γ + 1)ds,

Υb(j, ℓ) =

∫ n2

0

ρ(b, c+ τh2)

v(b, c+ τh2)
Bγ(τ − j + γ + 1)Bγ(τ − ℓ+ γ + 1)dτ,

and

Γ(a)(i, k) = Bγ(−i+ γ + 1)Bγ(−k + γ + 1), Γ(b)(i, k) = Bγ(n1 − i+ γ + 1)Bγ(n1 − k + γ + 1),

Γ(c)(j, ℓ) = Bγ(−j + γ + 1)Bγ(−ℓ+ γ + 1), Γ(d)(j, ℓ) = Bγ(n2 − j + γ + 1)Bγ(n2 − ℓ+ γ + 1),

for all γ ∈ N. Hence, the weight matrix A(ω) is given by

A(ω) = MD +Q∂Ω + iωQ̃∂Ω − ω2MU,

where the matrices MD, MU, Q∂Ω, and Q̃∂Ω can be decomposed as a sum of Kronecker products as follows

MD =
h2
h1

[
D0

2 ⊗D1
1

]⊤
+
h1
h2

[
D1

2 ⊗D0
1

]⊤
,

MU = h1h2 [U2 ⊗U1]
⊤
,

Q∂Ω = h1

[
Γ(c) ⊗ Λc + Γ(d) ⊗ Λd

]⊤
+ h2

(
Λa ⊗ Γ(a) + Λb ⊗ Γ(b)

)⊤
+[

β(a, d)Γ(d) ⊗ Γ(a) + β(b, d)Γ(d) ⊗ Γ(b)
]⊤

+
[
β(a, c)Γ(c) ⊗ Γ(a) + β(b, c)Γ(c) ⊗ Γ(b)

]⊤
,

Q̃∂Ω = h1

[
Γ(c) ⊗Υc + Γ(d) ⊗Υd

]⊤
+ h2

[
Υa ⊗ Γ(a) +Υb ⊗ Γ(b)

]⊤
+[

ρ(a, d)

v(a, d)
Γ(d) ⊗ Γ(a) +

ρ(b, d)

v(b, d)
Γ(d) ⊗ Γ(b)

]⊤
+

[
ρ(a, c)

v(a, c)
Γ(c) ⊗ Γ(a) +

ρ(b, c)

v(b, c)
Γ(c) ⊗ Γ(b)

]⊤
.

Finally, the coefficients Jh,kl(ω) = Lω(Bkℓ) of the source term matrix are given by

Jh,kℓ(ω) =

∮
∂Ω

G(x̂, ŷ, ω)Bkℓ(x̂, ŷ) dx̂dŷ +

∫ d

c

∫ b

a

F (x, y, ω)Bkℓ(x, y)dxdy.

We also use similar techniques as above to obtain

Fh,kℓ(ω) =

∫ d

c

∫ b

a

F (x, y, ω)Bkℓ(x, y)dxdy,

= h1h2

∫ n2

0

∫ n1

0

F (a+ sh1, c+ τh2, ω)Bγ(s− k + γ + 1)Bγ(τ − ℓ+ γ + 1)dsdτ,
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and

Gh,kℓ(ω) =

∮
∂Ω

G(x̂, ŷ, ω)Bkℓ(x̂, ŷ) dx̂, ŷ,

= h2Bγ(−k + γ + 1)

∫ n2

0

G(a, c+ h2τ, ω)Bγ(τ − ℓ+ γ + 1)dτ +

h2Bγ(n1 − k + γ + 1)

∫ n2

0

G(b, c+ h2τ, ω)Bγ(τ − ℓ+ γ + 1)dτ +

h1Bγ(−ℓ+ γ + 1)

∫ n1

0

G(a+ h1s, c, ω)Bγ(s− k + γ + 1)ds+

h1Bγ(n2 − ℓ+ γ + 1)

∫ n1

0

G(a+ h1s, d, ω)Bγ(s− k + γ + 1)ds+

Bγ(−ℓ+ γ + 1)
(
G(a, c, ω)Bγ(−k + γ + 1) +G(b, c, ω)Bγ(n1 − k + γ + 1)

)
+

Bγ(n2 − ℓ+ γ + 1)
(
G(a, d, ω)Bγ(−k + γ + 1) +G(b, d, ω)Bγ(n1 − k + γ + 1)

)
.

Hence, for 1 ≤ k ≤ Nγ,1 and 1 ≤ ℓ ≤ Nγ,2, the coefficients Jh,kℓ(ω) are given by

Jh,kℓ(ω) = Gh,kℓ(ω) + Fh,kℓ(ω).

Thus, by solving the linear system (30) we obtain the vector zh(ω) depending on the frequency variable ω,
then we evaluate the matrix-valued function Zh(ω) with the coefficients appearing in (28) of the approximate
solution uh(·, ·, ω).

3.3. Solution of the inverse Fourier transform

To reconstruct the time-dependent solution of the transverse electromagnetic wave problem, we proceed
by the inverse Fourier transform. Here, an approximation ϕh of the solution ϕ∗ is obtained as the inverse
Fourier transform of uh. It should be stressed that the Fourier transform and its inverse are considered as
Fourier-Plancherel isomorphism between L2(R, dt) and L2(R, dω) and therefore, we have the following result
the proof of which can be found in [48]:

Theorem 2. For every fixed time t, the problem (1)-(3) has a unique solution ϕ∗(·, t) belonging to the space
H1(Ω), which is obtained as the inverse Fourier transform of the unique solution u∗(·, ω) of the problem
(8)-(9) and it is given by

ϕ∗(x, y, t) =
1√
2π

∫ +∞

−∞
u∗(x, y, ω)e

itωdω, ∀ (x, y) ∈ Ω. (31)

Furthermore, if u∗(·, ω) ∈ Ĥm(Ω) then, the unique solution ϕ∗(·, t) of the wave problem (1)-(3) belongs to
the space Hm(Ω).

Hence, an approximate solution ϕh(x, y, t) of the problem (1)-(3) is obtained by using the inverse Fourier
transform in (31) as

ϕh(x, y, t) =
1√
2π

∫ +∞

−∞
uh(x, y, ω)e

itωdω. (32)

Consider the finite-dimensional vector space V(γ,m)
h with the dimension Nγ = Nγ,1Nγ,2 defined as

V(γ,m)
h =

{
ϕh(·, t) ∈ Hm(Ω) : ϕh(·, t)

∣∣Cij ∈ Pγ ⊗ Pγ(Ω); for 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1
}
.
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Note that for m = 1, the approximate solution ϕh(·, ·, t) is an element of the space V(γ,1)
h and it is given by

ϕh(x, y, t) =

Nγ,1∑
i=1

Nγ,2∑
j=1

Vh,ij(t)Bij(x, y), (x, y, t) ∈ Ω× [0, T ], (33)

where the functions

Vh,ij(t) =
1√
2π

∫ +∞

−∞
Zh,ij(ω)e

itωdω, (34)

are the inverse Fourier transforms of the functions Zh,ij given in (28). It should also be noted that when
the signal ϕ(x, ·) is a fast decay function or it belongs to the Schwartz space S(R) with respect to the time
variable, we use the Gauss-Hermite quadrature to compute the approximate solution ϕh of the analytical
solution ϕ∗, compare [45, 46]. For every 1 ≤ i ≤ Nγ,1 and 1 ≤ j ≤ Nγ,2, using the definition

φij(ω, t) =
1√
2π
e(ω

2+itω) Zh,ij(ω),

we obtain

Vh,ij(t) =

∫ +∞

−∞
φij(ω, t)e

−ω2

dω, 1 ≤ i ≤ Nγ,1, 1 ≤ j ≤ Nγ,2. (35)

Here, to compute the integral in (35), we use the Gauss-Hermite quadrature formula as∫ +∞

−∞
φij(ω, t)e

−ω2

dω ≃
m̃∑
ℓ=0

αℓφij(ωℓ, t),

where the nodes (ωℓ)0≤ℓ≤m̃ are the zeros of the Hermite polynomial Hm̃+1 of degree m̃+ 1, and the weight
coefficients (αℓ)0≤ℓ≤m̃ are given by the Christoffel-Darboux formula, see [46] for more details. Thus, the
coefficients Vh,ij(t) given in (34) are approximated by

Vh,ij(t) ≃
m̃∑
ℓ=0

αℓφij(ωℓ, t), for 1 ≤ i ≤ Nγ,1, 1 ≤ j ≤ Nγ,2. (36)

Finally, using (33) and (36), we obtain

ϕh(x, y, t) ≃
Nγ,1∑
i=1

Nγ,2∑
j=1

( m̃∑
ℓ=0

αℓφij(ωℓ, t)
)
Bij(x, y) =

m̃∑
ℓ=0

αℓ

Nγ,1∑
i=1

Nγ,2∑
j=1

φij(ωℓ, t)Bij(x, y)

 .

It should be stressed that for functions which are not in the Schwartz space S(R) with respect to the
time variable, we compute the coefficients Vh,ij(t) using other quadrature methods such as Left-rectangle,
Right-rectangle , Gauss-Legendre, Trapezoidal, Simpson, and Newton-Cotes quadratures among others. For
instance, assuming that fc = ωmax

2 is the Nyquist critical frequency where ωmax = m
T , we discretize the

interval [−fc, fc] using equally spaced knots ωk = −fc + k∆ω, k = 0, 1, 2 . . . ,m, with ω0 = −fc, ωm = fc and
∆ω = 1

T . To compute numerically the function Vh,ij(t), we use the following approach

Vh,ij(t) =
1√
2π

∫ +∞

−∞
Zh,ij(ω)e

itωdω ≃ 1√
2π

∫ fc

−fc

Zh,ij(ω)e
itωdω. (37)

Needless to mention that to solve the problem of functions which have a very oscillating structure and to
obtain a sufficiently precise approximate value of the inverse Fourier transform integral, it is essential to
provide a very large number m of the quadrature points. In our simulations carried out in the present study,
the number of the quadrature points does not exceed m = 40 for all considered wave regimes.
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4. Convergence analysis and error estimates

In this section we establish relevant results on the error estimates for the proposed spline finite element
method. Again, the domain is assumed Ω = [a, b]× [c, d] covered with the mesh Ωh defined in (24) and we

consider the subspace Ŝ(γ,m)
h (Ω) of V̂(γ,m)

h defined as

Ŝ(γ,m)
h (Ω) =

{
uh ∈ Cm(Ω) : uh

∣∣∣Cij ∈ Pγ ⊗ Pγ(Ω), for 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1

}
.

We consider the B-spline spaces Ŝ(γ,m)
h1

([a, b]) and Ŝ(γ,m)
h2

([c, d]) defined as in [45, 46]. For each spatial step

h, we consider the interpolating operator I(γ,m)
h : Ĥm −→ Ŝ(γ,m)

h (Ω) such that for all u ∈ Ĥm, the function

I(γ,m)
h u is the unique spline in the tensorial space Ŝ(γ,m)

h (Ω) = Ŝ(γ,m)
h1

([a, b])⊗ Ŝ(γ,m)
h2

([c, d]) given by

I(γ,m)
h u(x, y) =

Nγ,1∑
j=1

Nγ,2∑
i=1

δ
(m)
ij Bij(x, y), ∀ (x, y) ∈ Ω, (38)

and satisfying the following interpolating conditions

I(γ,m)
h u(xi, yj) = u(xi, yj), (39a)

∂ℓ(I(γ,m)
h u)

∂xℓ
(x̂, yj) =

∂ℓu

∂xℓ
(x̂, yj), and

∂ℓ(I(γ,m)
h u)

∂yℓ
(xi, ŷ) =

∂ℓu

∂yℓ
(xi, ŷ), (39b)

∂ℓ1+ℓ2(I(γ,γ,m)
h u)

∂xℓ1∂yℓ2
(x̂, ŷ) =

∂ℓ1+ℓ2u

∂yℓ2∂xℓ1
(x̂, ŷ), ℓ1 + ℓ2 = 1, 2, . . . ,m− 1. (39c)

for i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, ℓ = 1, 2, . . . ,m− 1 and (x̂, ŷ) ∈ {a, b}×{c, d}. Note that the coefficients

δ
(m)
ij in (38) are computed using the interpolating conditions given by (39). By setting δ the vector with

entries δ
(m)
ij and u the vector with entries given in the right-hand sides of (39), the conditions (39) lead to

the following linear system

(P2 ⊗P1) δ = u, (40)

where P1 and P2 are the matrices obtained by using the conditions (39), see [45] for more details. Next, we
state the following error estimates:

Lemma 2. Let u be a generic function in Ĥ2. Then, there exist constants c1 > 0 and c2 > 0 such that

a)
∥∥∥∆u−∆(I(γ,2)

h u)
∥∥∥
L̂2

≤ ∥u∥Ĥ2
,

b)
∥∥∥∇u−∇(I(γ,2)

h u)
∥∥∥
L̂2

≤ c1h ∥u∥Ĥ2
,

c)
∥∥∥u− I(γ,2)

h u
∥∥∥
L̂2

≤ c2h
2 ∥u∥Ĥ2

.
□

Proof. From the results reported in [54, 46, 55, 56] for the one-dimensional case, it is easy to realize that,
for u ∈ C2(Ω), we have ∥∥∥∥∥∂2u∂x2

(·, y)−
∂2(I(γ,2)

h u)

∂x2
(·, y)

∥∥∥∥∥
L̂2

≤
∥∥∥∥∂2u∂x2

(·, y)
∥∥∥∥
L̂2

,∥∥∥∥∥∂u∂x (·, y)− ∂(I(γ,2)
h u)

∂x
(·, y)

∥∥∥∥∥
L̂2

≤ 2h1
π

∥∥∥∥∂2u∂x2
(·, y)

∥∥∥∥
L̂2

,

∥∥∥u(·, y)− I(γ,2)
h u(·, y)

∥∥∥
L̂2

≤ 2h21
π2

∥∥∥∥∂2u∂x2
(·, y)

∥∥∥∥
L̂2

,
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and similarly, ∥∥∥∥∥∂2u∂y2
(x, ·)−

∂2(I(γ,2)
h u)

∂y2
(x, ·)

∥∥∥∥∥
L̂2

≤
∥∥∥∥∂2u∂y2

(x, ·)
∥∥∥∥
L̂2

,∥∥∥∥∥∂u∂y (x, ·)− ∂(I(γ,2)
h u)

∂y
(x, ·)

∥∥∥∥∥
L̂2

≤ 2h2
π

∥∥∥∥∂2u∂y2
(x, ·)

∥∥∥∥
L̂2

,

∥∥∥u(x, ·)− I(γ,2)
h u(x, ·)

∥∥∥
L̂2

≤ 2h22
π2

∥∥∥∥∂2u∂y2
(x, ·)

∥∥∥∥
L̂2

.

Hence, the estimates in a), b) and c) are obtained from the triangular inequality.

We also recall the following result which is a direct consequence of the Céa lemma in [57]:

Lemma 3. For a fixed frequency ω ∈ R, if u(·, ω) (resp. uh(·, ω)) is a solution of the variational problem
(10) (resp. (27)), then

∥u(·, ω)− uh(·, ω)∥Ĥm
≤ M3

α
(1 + ω2) inf

vh∈V̂(γ,m)
h

∥u(·, ω)− vh(·, ω)∥Ĥm
,

where M3 and α are respectively, the constants related to the continuity and the coercivity of Aω and are
given in (15) and (16), respectively.

Next, we establish the following error estimates for the numerical solutions in the appropriate norms:

Theorem 3. Assume that the functions v ∈ C(Ω), f ∈ H2(R; L2) and g ∈ H2(R,L2(∂Ω)). Then, we have
the following results:

(1) The function ∇2ϕ∗ ∈ L2(R; L2) or ϕ∗ ∈ L2(R; H2).

(2) There exists a constant C̃ > 0 such that

∥u∗ − u∗h∥L2(R;L̂2)
≤ C̃ h2(1 + h2)1/2 ∥ϕ∗∥H2(R;H2),

and
∥u∗ − u∗h∥L2(R;Ĥ1)

≤ C̃ h(1 + h2)1/2 ∥ϕ∗∥H2(R;H2).

(3) The convergence order is

∥ϕ∗ − ϕh∥L2(R;L2) = O
(
h2

)
, and ∥ϕ∗ − ϕh∥L2(R;H1) = O (h) .

□

Proof.

(1) Here, we have u∗ = ϕ̂∗. Since F (·, ω) ∈ L̂2 and u∗(·, ω) ∈ Ĥ1, we deduce from the following relation

∇2u∗(x, ω) = −F (x, ω)− ω2

v2(x)
u∗(x, ω),

that ∇2u∗(·, ω) belongs to L̂2. Next, using the inequality (|a| + |b|)2 ≤ 4(|a|2 + |b|2) it follows that
there exists a constant M4 > 0 such that∣∣∣∇2ϕ̂∗(x, ω)

∣∣∣2 ≤ M4(1 + ω2)2

α2

(
|F (x, ω)|2 + |u∗(x, ω)|2

)
,
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for all x ∈ Ω. The Lebesgue theorem for derivatives under the integral sign allows us to write

∇2ϕ̂∗(·, ω) = ∇̂2ϕ∗(·, ω). By integrating over Ω in the last inequality, we obtain∥∥∥∇̂2ϕ∗(·, ω)
∥∥∥2
L̂2

≤ M4(1 + ω2)2

α2

(
∥F (·, ω)∥2

L̂2
+ ∥u∗(·, ω)∥2Ĥ1

)
.

From Theorem 1, we have ∥u∗(·, ω)∥Ĥ1
≤ R(ω)

α
where R(ω) is given in (14). It follows that, there

exists a constant M5 > 0 such that∥∥∥∇2ϕ̂∗(·, ω)
∥∥∥2
L̂2

≤ M5(1 + ω2)2

α4

(
∥f̂(·, ω)∥2

L̂2
+ ∥ĝ(·, ω)∥2

L̂2(∂Ω)

)
.

Integrating over R with respect to ω taking into account the considered assumptions on f and g, we
obtain ∥∥∇2ϕ∗

∥∥2
L2(R;L2)

≤ M5

α4

(
∥f∥2H2(R;L2)

+ ∥g∥2H2(R;L2(∂Ω))

)
<∞.

(2) The following error bound is obtained by using Lemma 3. Thus, we have

∥u∗(·, ω)− u∗h(·, ω)∥L̂2
≤ M3

α
(1 + ω2) inf

vh∈V̂(γ,2)
h

∥u∗(·, ω)− vh(·, ω)∥L̂2
, (41)

where M3 and α are the continuity and the coercivity constants given in (15) and (16), respectively.

Since I(γ,2)
h u∗(·, ω) belongs to Ŝ(γ,2)h ⊂ V̂(γ,2)

h , it follows that

inf
vh∈V̂(γ,2)

h

∥u∗(·, ω)− vh(·, ω)∥L̂2
≤

∥∥∥u∗(·, ω)− I(γ,2)
h u∗(·, ω)

∥∥∥
L̂2

. (42)

Since the solution u∗(·, ω) belongs to Ĥ2 according to Lemma 2, we obtain∥∥u∗(·, ω)− I(γ,2)
h u∗(·, ω)

∥∥
L̂2

≤ c1h
2 ∥u∗(·, ω)∥Ĥ2

, (43)

and ∥∥∥∇u∗(·, ω)−∇(I(γ,2)
h u∗)(·, ω)

∥∥∥
L̂2

≤ c2h ∥u∗(·, ω)∥Ĥ2
. (44)

Therefore,

∥u∗(·, ω)− I(γ,2)
h u∗(·, ω)∥Ĥ1

≤ sup(c1, c2)h
(
1 + h2

) 1
2 ∥u∗(·, ω)∥Ĥ2

. (45)

Using the inequalities (41), (42), (44) and (45) along with
∂2u∗
∂x2

(·, ω) = ∂̂2ϕ∗
∂x2

(·, ω) and
∂2u∗
∂y2

(·, ω) =

∂̂2ϕ∗
∂y2

(·, ω), we obtain the error estimate

∥u∗(·, ω)− uh(·, ω)∥2Ĥ1
≤

(
M3

α

)2

h2(1 + h2) (1 + ω2)2
∥∥∥ϕ̂∗(·, ω)∥∥∥2

Ĥ2

.

Again, integrating over R with respect to the frequency variable ω, we obtain

∥u∗ − uh∥L2(R;Ĥ1)
≤ C̃ h

√
1 + h2

∥∥∥ϕ∗∥∥∥
H2(R;H2)

,

with C̃ =
M3

α
.
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(3) Now, using the Parseval identity it yields∫ +∞

−∞
|ϕ∗(x, t)− ϕh(x, t)|2dt =

1

2π

∫ +∞

−∞
|u∗(x, ω)− uh(x, ω)|2dω, (46)

and ∫ +∞

−∞
|∇(ϕ∗ − ϕh)(x, t)|2 dt =

1

2π

∫ +∞

−∞

∣∣∣∇̂ϕ∗(x, ω)− ∇̂ϕh(x, ω)
∣∣∣2 dω.

Therefore, using the Lebesgue theorem of derivation under the integral sign, we obtain∫ +∞

−∞
|∇(ϕ∗ − ϕh)(x, t)|2 dt =

1

2π

∫ +∞

−∞

∣∣∣∇ϕ̂∗(x, ω)−∇ϕ̂h(x, ω)
∣∣∣2 dω,

=
1

2π

∫ +∞

−∞
|∇u∗(x, ω)−∇uh(x, ω)|2 dω. (47)

Integrating (46) and (47) over Ω with respect to the variable x and using the well-established Fubini’s
theorem, we obtain∫ +∞

−∞
∥ϕ∗(·, t)− ϕh(·, t)∥2H1

dt =
1

2π

∫ +∞

−∞
∥u∗(·, ω)− uh(·, ω)∥2Ĥ1

dω.

Then,

∥ϕ∗ − ϕh∥L2(R;L2) =
1√
2π

∥u∗ − uh∥L2(R;L̂2)
or ∥ϕ∗ − ϕh∥L2(R;H1) =

1√
2π

∥u∗ − uh∥L2(R;Ĥ1)
.

Hence, using the result (2) in Theorem 3, we obtain the following error estimates

∥ϕ∗ − ϕh∥L2(R;L2) ≤
C̃√
2π

h2
√

1 + h2 ∥ϕ∗∥H2(R;H2)
,

or

∥ϕ∗ − ϕ∗h∥L2(R;H1) ≤
C̃√
2π

h
√
1 + h2 ∥ϕ∗∥H2(R;H2)

,

which concludes the proof.

The following result is a direct consequence of Theorem 3 and therefore the proof is omitted:

Theorem 4. Assume that the functions v ∈ C(Ω), f ∈ L2(R; L2) and g ∈ L2(R,L2(∂Ω)). Then, the solution
ϕ∗ of the problem (1)-(3) satisfies

• ∇2ϕ∗ ∈ H−2(R; L2).

• There exists a constant C̃ > 0 such that

∥ϕ∗ − ϕ∗h∥H−2(R;Ĥ1)
≤ C̃ h(1 + h2)1/2 ∥ϕ∗∥L2(R;H2).

In the following results, a general estimation of the error and convergence order is stated and the proof is
reported in [54]:

Lemma 4. Let u ∈ Ĥm and denote by ∂ℓu =
∂ℓu

∂xℓ1∂yℓ2
the weak derivatives of u with order 0 ≤ ℓ =

ℓ1 + ℓ2 ≤ m, then ∂ℓu ∈ Ĥm−ℓ and there exists a positive constant c independent of h such that∥∥∥u− (I(γ,m)
h u)(l)

∥∥∥
L̂2

≤ c ∥h∥m−ℓ
∞

∥∥∥u(m)
∥∥∥
L̂2

, (48)

and ∥∥∥u− (I(γ,m)
h u)

∥∥∥
Ĥℓ

≤ c ∥h∥m−ℓ
∞ ∥u∥Ĥm

, 0 ≤ ℓ ≤ m. (49)
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Finally, using the arguments in Lemma 4 and the results of Theorem 3, we obtain the following results for
the convergence order:

Theorem 5. Assume that the solution ϕ∗(·, t) is in Hγ+1, then

• ϕ∗ ∈ L2(R; Hγ+1).

• The convergence order is
∥ϕ∗ − ϕh∥L2(R;L2×L2) = O(hγ+1). (50)

For completeness, the high-order spline finite element method proposed in the present study for the electro-
magnetic wave problem (1)-(3) is carried out in the steps described in Algorithm 1. In all our computations
carried out in this section, the resulting linear system of algebraic equations (30) is decomposed into an
LUL⊤ factorization, then the solution is reduced to backward/forward substitutions after updating the
global matrix A(ω) and the right-hand side vector bh(ω) for every frequency ω.

5. Numerical results and examples

In this section we assess the performance of the proposed spline finite element method for solving several
examples of time-dependent electromagnetic waves. In all our simulations, unless stated otherwise, we solve
the equations (1)-(3) in a squared domain Ω = [a, b] × [a, b] uniformly discretized using hk = b−a

nk
with

different mesh densities nk and spline orders γ. For problems with known exact solutions, we compute the
L2-error between the numerical and analytical solutions as

E(hk) =
∥ϕe − ϕhk

∥L2

∥ϕe∥L2

,

where ϕe and ϕhk
are respectively the exact and numerical solutions of the wave problem (1)-(3). Hence,

we calculate the rate of convergence between two consecutive discretizations with hk+1 and hk by

Rate =

log

(
E(hk+1)

E(hk)

)
log

(
hk+1

hk

) .

The above L2-error and convergence rates are used to assess the accuracy of the proposed method whereas
CPU times are used to evaluate its efficiency for the problems considered in the present study. All the
computations are performed on an Intel(R) Core (TM) i7 PC with processor of 12288MB of RAM and 2.6
GHz. The algorithm is implemented in MATLAB and it takes the default optimization of the machine, i.e.
it is not a parallel code.

5.1. A Gaussian time-dependent wave problem

In this example, we consider the transverse electromagnetic wave problem (1)-(3) with constant wave
speed v = 3000, ρ = 5 and β = 9. The source term f , the boundary function g, and the initial data ϕ0 and
ϕ1 are calculated such that the analytical solution of the problem (1)-(3) is given by

ϕe(x, y, t) = A0e
i(κx cos(α) + κy sin(α) + φ)− σ t2 .

Here, we evaluate the accuracy of the frequency-domain method for this example by quantifying the L2-error
in the real and imaginary parts of the obtained solutions at time t = 1 using different mesh densities and

Bγ-spline orders. In all our computations σ =
1

2
, α =

π

4
, φ =

π

3
, κ = 2π and A0 = 1.
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Algorithm 1 High-order spline finite element method for frequency-domain problems.

1: Forward stage: Generate the Fourier transforms u(·, ω) = ϕ̂(·, ω), F (x, y, ω) = f̂(x, y, ω), G(x̂, ŷ, ω) =
ĝ(x̂, ŷ, ω) of ϕ(x, y, ·), f(x, y, ·) and g(x̂, ŷ, ·) according to (6).

2: for each frequency ω do
3: • Sample the basis functions Bij using the Bγ-spline as

Bij(x, y) = Bγ

(
x− xi−γ−1

h1

)
Bγ

(
y − yj−γ−1

h2

)
.

4: • Construct the approximate solution by

uh(x, y, ω) =

Nγ,1∑
i=1

Nγ,2∑
j=1

Zh,ij(ω)Bij(x, y).

5: • Assemble the weak variational formulation into

Nγ,1∑
i=1

Nγ,2∑
j=1

Zh,ij(ω)Aω(Bij , Bkℓ) = Jω(Bkℓ), k = 1, . . . , Nγ,1, ℓ = 1, . . . , Nγ,2.

6: • Solve the linear system
A(ω)zh(ω) = bh(ω).

7: end for
8: Backward stage: Using the inverse Fourier transform (32) and the quadrature methods (3.3)-(37),

calculate the coefficients vh,ij(t) (i = 1, . . . , Nγ,1, j = 1, . . . , Nγ,2) of the vector vh(t) and reconstruct
its corresponding matrix Vh(t).

9: • Form the Bγ-spline basis Bij(x, y) such that

uh(x, y, ω) =

Nγ,1∑
i=1

Nγ,2∑
j=1

Zh,ij(ω)Bij(x, y).

10: • For a fixed time t ∈ [0, T ], compute the solution as

ϕh(x, y, t) =

Nγ,1∑
i=1

Nγ,2∑
j=1

Vh,ij(t)Bij(x, y).

The purpose of this example is to compare the performance of the frequency-domain method combined
with three different quadrature methods namely, the Right-rectangle quadrature, the Gauss-Hermite quadra-
ture and the Gauss-Legendre quadrature. To this end we summarize in Table 1 values of the L2-error and
CPU time obtained using each quadrature using meshes with different densities and different Bγ-spline or-
ders. It is clear that increasing the number of gridpoints for a fixed Bγ-spline order results in a decrease of
the L2-error for all considered quadratures. This behavior is also achieved by increasing the Bγ-spline order
for a fixed mesh. The expected order of convergence is also attained for each value of γ in the considered
quadratures which confirms the theoretical error estimates for the proposed method. For this example, al-
though there is no significant difference between the errors obtained using the three considered quadratures,
there are differences in the computational cost referred to by the CPU time in Table 1. It is evident that
increasing the Bγ-spline order in each method results in a rise in the computational cost. However, on a fixed
mesh and for a fixed Bγ-spline order, the CPU time remains comparable across all considered quadrature
schemes. Here, the Right-rectangle quadrature proves to be superior to the other quadrature methods in
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Table 1: Convergence results for the example of Gaussian time-dependent wave problem using the considered quadratures with
different Bγ -spline orders and mesh densities. The CPU times are given in seconds.

Ω = [0, 1]× [0, 1] and γ = 3

Right-rectangle quadrature Gauss-Legendre quadrature Gauss-Hermite quadrature

nk L2-error Rate CPU L2-error Rate CPU L2-error Rate CPU

n1 = 8 9.3544E-05 — 1.19 9.2913E-05 — 1.47 9.3563E-05 — 1.44

n2 = 16 5.4251E-06 4.1079 2.97 5.3498E-06 4.1183 4.09 5.4253E-06 4.1082 3.39

n3 = 32 3.3294E-07 4.0263 9.38 3.4636E-07 4.0062 25.7 3.3300E-07 4.0261 24.8

n4 = 64 2.0138E-08 4.0473 85.5 2.0131E-08 4.0484 766 2.0126E-08 4.0473 754

Ω = [0, 2]× [0, 2] and γ = 6

Right-rectangle quadrature Gauss-Legendre quadrature Gauss-Hermite quadrature

nk L2-error Rate CPU L2-error Rate CPU L2-error Rate CPU

n1 = 4 2.4673E-03 — 4.49 2.4673E-03 — 8.45 2.4673E-03 — 5.1

n2 = 8 1.8484E-05 7.0605 6.55 1.8484E-05 7.0605 13.5 1.8484E-05 7.0605 9.06

n3 = 16 7.9395E-08 7.8630 12.8 7.9400E-08 7.8629 31 7.9395E-08 7.8630 22.9

n4 = 32 4.7750E-10 7.3774 58.4 4.7747E-10 7.3776 188 4.7753E-10 7.3773 136

Ω = [0, 5]× [0, 5] and γ = 9

Right-rectangle quadrature Gauss-Legendre quadrature Gauss-Hermite quadrature

nk L2-error Rate CPU L2-error Rate CPU L2-error Rate CPU

n1 = 4 1.9931E-01 — 4.12 2.0250E-01 — 24.7 2.0123E-01 — 5.32

n2 = 8 1.1849E-02 4.0722 8.31 1.1849E-02 4.0951 66.5 1.1849E-02 4.0860 11.2

n3 = 16 2.9414E-06 10.7960 17.8 2.9413E-06 10.0735 200 2.9417E-06 9.8592 29.6

n4 = 32 6.4739E-09 10.0070 132 7.6469E-09 10.4899 2100 8.9097E-09 10.4837 1235

terms of computational efficiency, owing to its simplicity and cost. These findings suggest proceeding for
the remaining examples using the Right-rectangle quadrature for investigating the convergence rates of the
proposed spline finite element method.

5.2. A time-Reicker wavelet problem

For this example, we consider the well-established time-dependent Reicker wavelet defined by

Sℓ(t) =

(
1− 2π2

(
t− t(ℓ)s

)2

f2s,ℓ

)
e−π

2(t− t(ℓ)s )2f2s,ℓ , ℓ = 1, 2,

where fs,ℓ is the peak frequency and t
(ℓ)
s is the temporal delay to ensure zero initial conditions, see for

example [15]. Thus, for this example we solve the transverse electromagnetic wave problem (1)-(3) in a
squared domain Ω for which the source term f , the boundary function g and the initial data ϕ0 and ϕ1 are
calculated such that the exact solution of the problem is given by

ϕe(t, x, y) = A0 (S1(t) + iS2(t)) e
i (k · r+ φ),
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Table 2: Convergence results for the example of time-Reicker wavelet problem using different Bγ -spline orders and mesh
densities.

Ω = [−1, 1]× [−1, 1]

γ = 1 γ = 2 γ = 3

nk L2-error Rate L2-error Rate L2-error Rate

n1 = 8 4.804988E-02 — 2.494675E-03 — 2.654044E-04 —

n2 = 16 1.204180E-02 1.99 2.729276E-04 3.19 1.456931E-05 4.18

n3 = 32 3.010910E-03 1.99 3.249863E-05 3.07 8.802186E-07 4.04

n4 = 64 7.521427E-04 2.00 3.984538E-06 3.02 5.644790E-08 4.00

Ω = [−2, 2]× [−2, 2]

γ = 4 γ = 5 γ = 6

nk L2-error Rate L2-error Rate L2-error Rate

n1 = 4 1.00310535E-01 — 4.08010428E-02 — 1.49414712E-02 —

n2 = 8 1.90669413E-03 5.71 5.31512521E-04 6.26 1.47776131E-04 6.65

n3 = 16 3.35308819E-05 5.82 4.14442807E-06 7.00 5.08842758E-07 8.18

n4 = 32 8.83301305E-07 5.24 6.40533626E-08 6.01 2.90775698E-09 7.45

Ω = [−4.5, 4.5]× [−4.5, 4.5]

γ = 7 γ = 8 γ = 9

nk L2-error Rate L2-error Rate L2-error Rate

n1 = 8 1.64122226E-01 — 9.67347080E-02 — 4.99224187E-02 —

n2 = 16 1.58621941E-04 10.01 5.29572095E-05 10.83 1.64385368E-05 11.56

n3 = 32 6.10377451E-07 8.02 9.77151478E-08 9.08 1.50147647E-08 10.09

where the phase angle φ ∈ [0, π], the wavelength vector k = (κ cos(θ), κ sin(θ))⊤ with κ is the wavenumber,
r = (x, y)⊤ and θ ∈ [0, 2π]. Hence, the real and imaginary parts of the exact solution are defined as

Re (ϕe(t, x, y)) = A0

(
cos(k · r+ φ)S1(t)− sin(k · r+ φ)S2(t)

)
,

Im (ϕe(t, x, y)) = A0

(
cos(k · r+ φ)S2(t) + sin(k · r+ φ)S1(t)

)
.

In all our simulations for this example, we use v = 3000, ρ = 1, β = 5, fs,ℓ = 20, T = 1, t
(ℓ)
s = T/2, θ = π/4,

φ = π/3, κ = 6π and A0 = 1. The main aim of this test example is to determine the numerical convergence
rates associated with the real part of the exact and approximate solutions at time t = 1 using our method for
varying degrees of the Bγ-spline functions. The second objective of this example is to evaluate the accuracy
of the proposed method in terms of the L2-error with respect to the values of the wavenumber κ. In this
example we also explore the benefits of using Bγ-spline functions with higher degrees as the wavenumber κ
increases.

In Table 2 we present the L2-error and the corresponding convergence rates obtained using meshes with
different densities and different Bγ-spline orders. It is clear that refining the mesh results in a decrease in
the L2-error for all considered values of the Bγ-spline orders. These results also confirm the theoretical con-
vergence of the proposed method for this test example. Indeed, the numerical results in Table 2 demonstrate
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Table 3: L2-errors for the example of time-Reicker wavelet problem using different wavenumbers and different Bγ -spline orders.

γ κ = 2π κ = 4π κ = 8π κ = 16π κ = 32π κ = 64π

1 2.9564937E-04 1.1724170E-03 4.6757846E-03 1.8665095E-02 7.4393914E-02 2.9555217E-01

2 9.6817625E-07 7.8094823E-06 6.3811428E-05 5.4269613E-04 5.2435545E-03 7.3517379E-02

3 8.6953517E-09 1.3973869E-07 2.2747967E-06 3.8907725E-05 7.8989910E-04 2.6474106E-02

4 7.5714996E-11 2.4395289E-09 8.0124333E-08 2.8206487E-06 1.2314172E-04 9.5093460E-03

5 7.4535331E-13 4.3833320E-11 2.9040089E-09 2.1148820E-07 2.0348078E-05 3.7783809E-03

6 4.3744986E-12 1.0292256E-10 1.5617220E-08 3.2850967E-06 1.4767031E-03

7 7.2024826E-11 1.1746477E-09 5.4309610E-07 5.7011500E-04

8 8.8949212E-08 2.3078440E-04

9 8.8594761E-05

10 4.2882233E-05

that the calculated convergence orders for the considered values of γ = 1, 2, . . . , 9 remain consistent with
the theoretical order O(hγ+1) established in Theorem 5. Next, we examine the accuracy of the proposed
spline finite element method for this problem using different values of the wavenumber κ. To this end we
set the computational domain Ω = [0, 1]× [0, 1] discretized into a fixed mesh with n1 = n2 = 80 and we vary
the values of the wavenumber κ and Bγ-spline order γ. The obtained results for the L2-error are summa-
rized in Table 3 for the selected values of κ and γ. It is clear that the L2-error decreases as the Bγ-spline
order γ increases for all selected values of the wavenumber κ. However, a rapid decrease is detected for low
wavenumbers and the L2-error exhibits larger values for high wavenumbers. For instance, a Bγ-spline order
of γ = 5 is sufficient to obtain the lowest error for κ = 2π however, this order needs to reach γ = 10 for the
L2-error to attend the lowest value at the high wavenumber κ = 64π. Note that once the lowest value of
the L2-error is reached for each value of the wavenumber κ no further improvement has been observed when
increasing the Bγ-spline order γ and the error remains stagnated around this lowest value. This behavior
is expected as for the L2-error to decrease further at those orders, one needs to refine the mesh as well.
Overall, the results consistently demonstrate a convergence order of O(hγ+1) for the proposed spline finite
element method solving this problem.

5.3. Time-progressive wave problem

Our next example solves the problem of recovering a time-progressive plane wave in a squared domain.
Here, we solve the wave equations (1)-(3) in the domain Ω = [0, 2]×[0, 2] with constant wave speed v = 3000,
ρ = 2, β = 3 and subject to the initial conditions

ϕ0(x, y) = A0 e
i
(
κr2 + φ

)
, and ϕ1(x, y) = 0,

where r =
√

(x− 1)2 + (y − 1)2. The source term f , the boundary function g are calculated such that the
analytical solution of the problem (1)-(3) is given by

ϕe(x, y, t) = A0e
i
(
κr2 + φ

)
− δ t2 .

Hence, the real and imaginary parts of the exact solution are defined as

Re (ϕe(t, x, y)) = A0 cos(κr
2 + φ)e−δt2 ,

Im (ϕe(t, x, y)) = A0 sin(κr
2 + φ)e−δt2 .
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Figure 2: Convergence results for the example of time-progressive wave problem using κ = 2π (left plot) and κ = 32π (right
plot).

As in the previous examples, we assess the accuracy of the frequency-domain method in this problem by
calculating the L2-error in the real and imaginary parts of the obtained solutions at the final time t = 1
using different mesh densities and Bγ-spline orders. In all our simulations for this example, A0 = 1, φ = π/3
and δ = π. We also examine the accuracy of the proposed method in terms of the L2-error with respect to
values of the wavenumber κ varying from κ = 2π to κ = 80π. Note that at high values of the wavenumber
κ, the wave is expected to illustrate complex wave features and the problem becomes computationally very
challenging and most conventional finite element methods would fail to resolve these wave patterns. This
test example aims to evaluate the potential advantages of adopting higher degrees of the Bγ-spline for solving
wave problems at high wavenumbers.

In Figure 2 we illustrate the obtained results for the L2-error using different meshes and different Bγ-
spline orders at two different wavenumbers namely, κ = 2π and κ = 32π. In this figure, we also include the
convergence rates referred to by slopes of each error plot. It is clear that setting the Bγ-spline order γ at
a given value and refining the mesh step h yields a substantial decrease in the computed L2-error for this
example. Comparing the convergence rates in Figure 2, it can be clearly seen that the expected theoretical
order of convergence is attended for each Bγ-spline order γ used in our simulations. It should also be stressed
that these convergence rates have not been affected by the increase in the values of the wavenumber, and the
same convergence order of the proposed method is preserved almost for the selected wavenumbers κ = 2π
and κ = 32π. It should be mentioned that other numerical simulations, which are not presented here for
brevity, were also performed using other wavenumbers outside this range, and the obtained results show the
same convergence features.

Next, to evaluate the performance of the proposed method for solving this test problem at high wavenum-
bers, we summarize in Table 4 the results for the L2-error obtained on a fixed mesh with n1 = n2 = 40 and
varying the values of the wavenumber κ and Bγ-spline order γ. As in the previous example, the L2-error
clearly decreases as the Bγ-spline order γ increases for all selected values of the wavenumber κ with a rapid
decrease for low wavenumbers compared to high wavenumbers. For the considered wave conditions, it is
clear that a Bγ-spline order of γ = 7 is sufficient to obtain the lowest L2-error for κ = 2.5π whereas, this
order needs to reach γ = 10 for the L2-error to attend the lowest value at the high wavenumber κ = 80π.
Again, no further improvement is expected in the L2-error once the lowest value of this error is attended
for the considered wavenumber and the L2-error remains stagnated around this lowest value. In these cases,
finer meshes are required in the simulations to allow further improvements in the L2-error for increased Bγ-
spline order γ. It is evident from the obtained results that for the considered values of the wavenumber κ,

24



Table 4: L2-errors for the example of time-progressive wave problem using different wavenumbers and different Bγ -spline orders.

γ κ = 2.5π κ = 5π κ = 10π κ = 20π κ = 40π κ = 80π

1 2.3331396E-04 8.2748826E-04 2.9703155E-03 1.1240098E-02 4.4314381E-02 1.7557416E-01

2 2.7934498E-07 2.4621633E-06 3.0901882E-05 4.5468310E-04 7.6397201E-03 1.6035738E-01

3 6.2017082E-08 5.9768221E-07 7.5370048E-06 1.1590639E-04 2.1384581E-03 5.3024348E-02

4 2.3709940E-10 3.2672205E-09 1.0417749E-07 4.9320487E-06 3.3093832E-04 4.0979917E-02

5 2.2955488E-10 5.1512329E-10 1.7363996E-08 9.5679000E-07 8.5936601E-05 1.7076387E-02

6 5.5444037E-10 1.0213423E-09 2.1284767E-09 6.3392394E-08 1.6846715E-05 1.1096723E-02

7 1.0211682E-09 1.9705522E-09 3.9485556E-09 1.0545714E-08 4.4451688E-06 5.5065807E-03

8 4.0667873E-09 6.9168717E-09 1.3323539E-08 8.4416772E-07 3.1576824E-03

9 2.2009373E-07 1.5374259E-03

10 7.6682316E-04

the expected convergence rates of O(hγ+1) are also preserved for the proposed spline finite element method
solving this wave problem.

5.4. A time-Hankel wave problem

For this wave problem we first define the Bessel functions of the first kind J0 and the second kind Y0 in
their integral forms by

J0(ζ) =
1

2

∫ 1

−1

cos
(
ζ sin

(π
2
θ
))

dθ, and Y0(ζ) = − 1

π

∫ +∞

−∞
cos (ζ cosh (t)) dt, for ζ > 0.

Then, we reconstruct the zeroth-order Hankel function of first kind H
(1)
0 as

H
(1)
0 (ζ) = J0(ζ) + iY0(ζ).

The problem statement for this wave problem consists of solving the equations (1)-(3) in the spatial domain
Ω = [0, 1] × [0, 1] with a constant wave speed v = 3000, ρ = 2, β = 3 and subject to the following initial
conditions

ϕ0(x, y) = H
(1)
0 (κr), and ϕ1(x, y) = H

(1)
0 (κr)(−iδ),

where κ is the wavenumber and r =
√
(x− xs)2 + (y − ys)2 is the radial distance to the source position.

The source term f and the boundary function g are calculated such that the analytical solution of this test
problem is a progressive plane wave given by

ϕe(x, y, t) = H
(1)
0 (κr)e−iδt,

and its real and imaginary parts are defined as

Re (ϕe(x, y, t)) = J0(κr) cos(δt) + Y0(κr) sin(δt),

Im (ϕe(x, y, t)) = Y0(κr) cos(δt)− J0(κr) sin(δt).

In all our computations for this example, A0 = 1, δ = π
3 , xs = 1.25, ys = 0.5 and the obtained results are

presented at the final time t = 1.5. In Figure 3 we illustrate snapshots of the real and imaginary parts of
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Re (ϕ) Im (ϕ)

Figure 3: Results for the real and imaginary parts of the analytical solution (first row) and the numerical solution (second row)
obtained for the time-Hankel wave problem at time t = 1.5 using γ = 9 and κ = 8π.

the analytical and numerical solutions obtained on a mesh with n1 = n2 = 16 at time t = 1.5 using γ = 9
and κ = 8π. As expected for this time-dependent wave problem, the Hankel source generates plane waves
propagating in the computational domain exhibiting complex patterns once released. These wave patterns
are very well captured by the proposed spline finite element method as the small wave features are also
well resolved using our method. For the considered wave conditions, it has been observed that the L2-error
is of orders O(1.785109 × 10−8) and O(5.407296 × 10−8) in the real and imaginary parts of the solution,
respectively. It should be noted that despite using a relatively coarse mesh in our simulations, the proposed
spline finite element method accurately captures these wavefronts and their changes in time. Notice that
results obtained using other Bγ-spline orders reveal the same wave structures and therefore are not included
in Figure 3. Again the high accuracy of the proposed approach can be clearly seen from the presented
results.

For comparison reasons, we also display in Figure 4 the horizontal cross-sections at x = 0.5 of real parts
of the analytical and numerical solutions obtained for the time-Hankel wave problem at time t = 1.5 using
κ = 8π and different Bγ-spline orders with two meshes with n1 = n2 = 16 and n1 = n2 = 20. It is clear
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Figure 4: Horizontal cross-sections at x = 0.5 of real parts of the analytical and numerical solutions obtained for the time-
Hankel wave problem with n1 = n2 = 16 (left plot) and n1 = n2 = 20 (right plot) at time t = 1.5 using κ = 8π and five
different Bγ -spline orders.
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Figure 5: Configuration of the computational domain for the problem of transmission of waves through non-homogeneous
materials. Here,values of the wave speed v and source term f are also given according to the specific color used in each area.

that increasing the Bγ-spline order γ results in an increase of accuracy in both real and imaginary parts of
the computed solutions. The results also reveal a consistent behaviour of the error which, up to a certain
value of the Bγ-spline order, remains similar to the errors obtained using the highest value γ = 10 with some
advantage in the computational efficiency for the low values of the Bγ-spline order. It should be stressed that
the accuracy in standard finite element methods for this case is mainly dependent on the element size where
only refining the mesh improves the errors. Furthermore, as the wave width becomes smaller at κ = 8π the
error in these methods becomes larger. This is expected as finer meshes are needed in the simulations to
capture the narrower wave pulses using the conventional finite element methods. For our approach, using the
same coarse mesh and only changing the Bγ-spline order for different wavenumbers is a particularly useful
feature of the proposed spline finite element method, compare the good convergence shown in Figure 4.
Otherwise using the standard finite element methods, increasing values of the wavenumber κ would require
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γ = 3 γ = 9

Figure 6: Results for the density magnitude (first row) and the electrical field (second row) obtained for the problem of
transmission of waves through non-homogeneous materials at time t = 1 using γ = 3 (first column) and γ = 9 (second column).

refining the mesh which results in a substantial increase in the computational cost.

5.5. Transmission of waves through non-homogeneous materials

In this final example we examine the performance of the proposed high-order spline finite element method
to solve wave problems in non-homogeneous materials. In such problems, numerical modeling plays a crucial
role in understanding and analyzing natural phenomena or industrial processes that encompass various scales
of interest. This class of applications holds both fundamental and practical significance. Challenges involving
heterogeneous media, such as transport processes in porous or disordered media [58], biomedicine [59], and
remote sensing [60], frequently exhibit these diverse scales. For instance, the analytical expression of a
seismic moment source is generally given by a function that describes the variation of seismic moment
depending on both time and space. This function can be adapted depending on the specific characteristics
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Figure 7: Horizontal cross-sections at x = 4 (left plot) and vertical cross-sections at y = 4 (right plot) of real parts of the
analytical and numerical solutions obtained for the problem of transmission of waves through non-homogeneous materials at
time t = 1 using four different Bγ -spline orders.

of the seismic source. In this case, the total seismic moment M0(x, y) released during the earthquake is
defined as the product of the seismic moment magnitude Mω and a geophysical constant µ that depends
on the material properties and the fault geometry. Thus, the analytical expression of the time-dependent
seismic moment source f(x, y, t) is often written as

f(x, y, t) =M0(x, y) N(ts,σ2)(t),

where N(ts,σ2)(t) is the source function that describes variation of the seismic moment as a time-dependent
function. In general, the source function N(ts,σ2)(t) depends on the chosen model to represent release of the
seismic energy over time. In addition, one of the most commonly used source function is the Gaussian pulse
which is a probability density of the normal law for random variables and it can be defined by

N(ts,σ2)(t) =
1√
2π σ

e−
(t−ts)2

2σ2 ,

where σ is the dispersion coefficient which determines the width of the pulse and ts is the time center. Note
that the above expression represents an idealized seismic source in the form of a Gaussian pulse. In practice,
seismic sources can be much more complex and often require more detailed models to account for fault
geometry, rupture, and wave propagation. In our simulations for this example, we solve the wave equations
(1)-(3) in the spatial domain Ω = [0, 8]× [0, 8] subject to homogeneous initial and boundary conditions with
ρ = 2 and β = 3. The medium is assumed to be non-homogeneous divided into discontinuous areas as
depicted in Figure 5 with the source function

f(x, y, t) =


f1 =

1

2πν1ν2
e

(
− (x−xs)2

ν2
1

− (y−ys)2

ν2
2

)
N(ts,σ2)(t), if (x, y) ∈ Ω0, t ≤ T,

f2 = 0, if (x, y) ∈ Ω\Ω0, t > T,

where Ω0 = [3.75, 4.25] × [3.75, 4.25], xs = ys = 4, ν1 = 1/6, ν2 = 1/6, σ = 0.2, ts = T/2 and T = 2. In
this example we also assume variable wave speed depending on the spatial location and defined as shown in
Figure 5 with v1 = 3000 and v2 = 5.

Figure 6 depicts results for the density magnitude ϕ(x, y, t) and the electrical field ∇ϕ(x, y, t) obtained
at time t = 1 using the Bγ-spline orders γ = 3 and γ = 9 on a mesh with n1 = n2 = 20. As can be seen
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Table 5: L2-errors for the problem of transmission of waves through non-homogeneous materials using different Bγ -spline
orders.

n γ = 3 γ = 4 γ = 6 γ = 8

10 2.71370402E-01 1.06573164E-01 9.87961916E-02 8.60385258E-02

20 3.01976926E-02 2.84318795E-02 2.14476503E-02 1.65761341E-02

40 1.16654976E-02 6.59581582E-03 2.81202966E-03 4.01807898E-04

from these results, wavefronts generated from the source at the speed v1 hit the heterogeneous materials
(colored in gray color in Figure 5) and reflect back at the speed v2 to merge into a single wave propagating
towards the domain boundary. The wavefronts pass each other moving in opposite directions to reach
the domain ends and reflected again to meet at the initial pulse location. This pattern is then repeated
at the four heterogeneous regions in the computational domain and all reflected waves are focused at the
domain center. It is clear that the density magnitude and electrical field are correctly recovered using the
proposed high-order spline finite element method with γ = 9. It is also evident that using γ = 3, the
obtained solutions of both density magnitude and electrical field exhibit excessive numerical diffusion which
is hugely reduced by increasing the Bγ-spline order to γ = 9 but keeping the computational mesh fixed
with n1 = n2 = 20. A perfect symmetry along the horizontal and vertical centerlines can also be noticed in
the obtained results for the considered low and high Bγ-spline orders. It should also be stressed that this
resolution is captured on a relatively coarse mesh and without any mesh refinements implemented at the
interfaces between the heterogeneous regions. The proposed spline finite element method performs well for
this wave problem in non-homogeneous materials as the generated waves are accurately resolved without
requiring highly demanding computational resources.

To compare the numerical results obtained for this example using different Bγ-spline orders, we present in
Figure 7 the horizontal and vertical cross-sections at x = 4 and y = 4 of real parts of the numerical solutions
at time t = 1 using four different Bγ-spline orders namely, γ = 3, 4, 6 and 8. For comparison reasons, we
also include reference results obtained using a fine mesh with n1 = n2 = 100 and a Bγ-spline order of γ = 10.
An increase in the accuracy is clearly obtained when increasing the Bγ-spline order γ in both cross-sections.
This can be clearly seen in the L2-errors presented in Table 5 for the considered Bγ-spline orders. Again, the
results and concluding remarks are consistent with those of the previous wave example. As expected, the
heterogeneity in the computational domain generates sharp wavefronts in the wave solutions once reaching
the four non-homogeneous areas. These wave patterns are very well captured by the proposed high-order
spline finite element method and the full symmetry between the horizontal and vertical cross-sections is
also well preserved using our method. It should be mentioned that using time integration methods in the
conventional finite element methods solving this wave problem would require very fine meshes specially at
the internal discontinuous edges in the computational domain. However, once the error in the numerical
solution becomes dominated by the temporal errors, refining the mesh would not further reduce the overall
errors. Therefore, the convergence in time needs to be checked first in the standard finite element methods
by considering smaller time steps and rerunning the analysis. Once the error cannot be further reduced
by refining the time step in these methods one may conclude that the solution has converged in time.
This analysis is not needed in our high-order approach as no time integration schemes are required in its
implementation. Finally, we also note that the proposed spline finite element method is highly attractive
for time-dependent electromagnetic waves.

6. Conclusions

In the present study, we have proposed a novel numerical method for solving time-dependent electro-
magnetic waves and its associated frequency-domain approach. The method consists of employing a class
of high-order splines as basis functions in the finite element solution of the wave problem. To deal with the

30



time in these problems, a Fourier transform and its inverse are used for the time integration which eliminate
accumulated errors generated by approximations of time derivatives such as finite difference approximations
or Runge-Kutta schemes among others. Partitioned meshes with tensorial spline functions are used for
the spatial discretization and a Gauss-Hermite quadrature is implemented for the calculation of the inverse
Fourier transform. We have performed a rigorous convergence analysis and established error estimates for
the numerical solution in the relevant norms. Algorithmic details of the proposed method along with its
implementation for solving time-dependent electromagnetic waves have also been discussed in this study.
Several test examples have been presented to examine the performance of these techniques and the obtained
computational results supported the conclusion that the proposed method is highly accurate and it can effec-
tively be used to capture the wave motion of the time-dependent electromagnetic waves. Further validations
through comparison against experimental measurements and applications to time-dependent electromagnetic
waves in complex geometries will also be tackled in the future work. Extension of the proposed method to
similar problems in three-dimensional domains using unstructured meshes will also be subject of a future
work.
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[37] N. M. Yağmurlu, A. S. Karakaş, Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation

method based on Rubin–Graves type linearization, Numerical Methods for Partial Differential Equations 36 (5) (2020)
1170–1183.
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