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Abstract

A fractional-step method is proposed and analyzed for solving the incompressible thermal Navier-Stokes
equations coupled to the convection-conduction equation for heat transfer with a generalized source term for
which the viscosity and thermal conductivity are temperature-dependent under the Boussinesq assumption.
The proposed method consists of four steps all based on a viscosity-splitting algorithm where the convection
and diffusion terms of both velocity and temperature solutions are separated while a viscosity term is
kept in the correction step at all times. This procedure preserves the original boundary conditions on the
corrected velocity and it removes any pressure inconsistencies. As a main feature, our method allows the
temperature to be transported by a non-divergence-free velocity, in which case we show how to handle the
subtle temperature convection term in the error analysis and establish full first-order error estimates for the
velocity and the temperature solutions and 1/2-order estimates for the pressure solution in their appropriate
norms. The theoretical results are examined by an accuracy test example with known analytical solution
and using a benchmark problem of Rayleigh-Benard convection with temperature-dependent viscosity and
thermal conductivity. We also apply the method for solving a problem of unsteady flow over a heated
airfoil. The obtained results demonstrate the convergence, accuracy and applicability of the proposed time
viscosity-splitting method.

Keywords: Navier-Stokes equations, Natural convection, Fractional time-stepping, Viscosity-splitting
method, Error analysis.

1. Introduction

Natural convection is one of the most abundant heat transfer phenomena in many thermal applications
in engineering and industry. It is basically a fluid dynamics process in which the motion of the fluid,
unlike the forced convection, is not driven by an external force such as a heat pump or fan, but by the
buoyancy effects that result from density variations the fluid undergoes due to temperature differences
(temperature gradients). This process receives a great deal of attention as it is involved in a myriad of
physical and industrial problems of interest such as greenhouse drying [1], electronic devices cooling [2], solar
air heaters [3], chemical and food industries in addition to meteorology, geophysics and astrophysics research
projects among others. In general, the motion of a fluid subject to natural convection effects is modeled by
the incompressible Navier-Stokes equations for the flow augmented by the buoyancy force coupled with a
convection-diffusion equation for the temperature. The momentum equation is derived under the Boussinesq
approximation which simply implies that the density variations due to the temperature are ignored except
in the gravitational force (the buoyancy force) which becomes proportional to the temperature difference,
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see for instance [4, 5] for more details. The resulting equations are also known by the Boussinesq equations
in computational fluid dynamics. Often, the fluid viscosity and thermal conductivity coefficients appearing
in the resulting system are set to be constants. However, in order to cover more complex fluid flows and
extend the scope of the current work, these coefficients are allowed to be dependent on the temperature
in a nonlinear form. In addition, general source terms that depend on the temperature solution are also
accounted for in the analysis under some theoretical assumptions. Under these conditions, the mathematical
analysis of the continuous problem is not a trivial task, mainly due to the strong coupling between the
incompressible Navier-Stokes equations and temperature, along with the presence of temperature-dependent
viscosity and thermal conductivity coefficients. For instance, authors in [6] analyzed the asymptotical
stability of the time-dependent problem and derived a uniqueness result for the steady convective flows
in bounded regions under some relation between the Rayleigh and the Reynolds numbers. Authors in [7]
studied the linearized system of the stationary case and analyzed its bifurcation and stability. In [8], authors
studied the bifurcation and stability of several mathematical problems, in a generalized framework, including
the time-dependent Benard problem using group-theoretic methods. Authors in [9] generalized the results
reported in [10] for a two-dimensional rectangular domain under constraints on the physical parameters and
they proved the existence and uniqueness of a local solution for the steady-state problem in two- and three-
dimensional bounded domains. In [11], the existence and uniqueness are studied for the steady problem with
temperature dependent parameters and no-slip boundary conditions, whereas in [12] the well-posedness has
been established in the case of infinite Prandtl number with free-slip boundary conditions. The numerical
solution of natural convection problem, which is the focus of this work, faces major difficulties related to
the nonlinearity and the saddle point structure introduced by the momentum and continuity equations in
the Navier-Stokes system, in addition to the strong coupling between the velocity and temperature which is
known to be a source of destabilization. In three-dimensional problems, any special discretization, following
a monolithic approach, where all the three primal unknowns are calculated simultaneously, would give rise to
very large systems with a prohibitive computational cost, thus requiring sophisticated and problem-tailored
solvers, see for example [13, 14]. Therefore, it would be more efficient to separate the original problem
into subsequent easier-to-solve sub-problems. This is the key idea behind the projection of fractional-step
methods that were originally designed for solving the incompressible Navier-Stokes equations but still efficient
here for the same reasons. This class of methods, initiated by the early works of Chorin [15] and Temam
[16], consists of separating the diffusion term and the incompressibility constraint into two (or more) steps
in the time integration process. However, the original projection method suffered from inconsistent pressure
boundary conditions degrading its accuracy and convergence order, and therefore several techniques of its
variants were developed and analyzed in the subsequent years to overcome this drawback, see for example
[17, 18, 19, 20, 21, 22, 23] and for detailed review we refer to [24].

As far as natural convection problems are concerned, fractional-step methods were applied in various
studies in the literature in conjunction with the finite element method [25, 26, 27, 28, 29] and with the finite
volume method [30, 31, 32, 33] among others. However, the literature devoted to error analysis of time
fractional-step methods in the framework of natural convection problems is rather scarce. Authors in [34]
developed a class of three-step pressure-correction methods and provided first-order error estimates, then in
[35] the same authors modified their scheme and proved higher-order error estimates for the temperature and
velocity solutions. However, in their approach the temperature is advected by an old velocity and it does not
take advantage of the new information of the updated velocity. In [36], first-order and second-order pressure-
correction methods have been proposed for the problem with temperature-independent parameters using a
mixed finite element discretization and proved first-order error estimates for the three primal variables in
the L2 and H1 norms. It should be noted that this approach can be viewed as the basic projection method
introduced in [37] but with inactive fixed-point iteration for which the temperature is transported by the
corrected divergence-free velocity. In a related but different approach, authors in [37] considered the fully
implicit problem and derived a coupled prediction scheme relying on the idea that the predicted velocity
(although not divergence-free) is rich enough to be injected in the temperature equation. They provided
existence and convergence results in [37] has also shown that the proposed method is at least of first-order and
at best of second-order in the H1 norm. Unfortunately, all the previous attempts that are based on standard
projection methods (with or without pressure-correction procedures) are inevitably prone to nonphysical
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pressure boundary conditions. Recently, authors in [38] studied a three-step viscosity-splitting method
for the natural convection equations with temperature-independent parameters and homogeneous Dirichlet
boundary conditions, and established first-order error estimates in both time and space discretizations. In
this method, the velocity is predicted then corrected in the first two steps using an old temperature solution,
whereas the updated temperature is computed until the last step in order to be advected by the corrected
divergence-free velocity. In the framework of discontinuous Galerkin methods, authors in [39] have also
proposed a viscosity-splitting-based scheme and studied its error estimates for the temperature-dependent
problem with homogeneous Dirichlet boundary conditions. In this approach, the temperature is computed
in the second step but using an old velocity that is divergence-free. Moreover, the computed temperature is
not exploited to correct the velocity in the last step and an old temperature is used instead, thus throwing
away valuable up-to-date information. It is stressed that most of the numerical methods analyzed in the
literature do not consider non-divergence-free velocity in the convection term for the temperature.

In the present study, we are interested in the viscosity-splitting approach which differs from the fractional-
step projection methods by the fact that a viscous term is still existing in the incompressibility step allowing
to impose the full original boundary conditions on the end-of-step velocity, thus removing any unwanted
pressure boundary conditions. The idea was originally proposed in [40] (see also [41, 42] for other earlier
viscosity-splitting approaches) and it is analyzed in [43, 44] for the incompressible Navier-Stokes equations
with constant viscosity, in [45] using a pressure-correction strategy, and in [46] for non-Newtonian fluids with
shear-rate dependent viscosity. Here, we extend this approach to account for natural convection systems
with temperature-dependent viscosity and thermal conductivity along with generalized source terms. We
also establish full first-order error estimates for both the velocity and temperature solutions, and study the
pressure error estimates as well. The designed four-step method has the following distinguishing features:

(i) The convection term is separated from the diffusion term for both velocity and temperature during the
time integration process. This is particularly useful in the case of large three-dimensional problems
where iterative solvers are required. In this type of problems, solving the separate sub-problems is
much less demanding than solving the whole convection-diffusion problem.

(ii) The mixed boundary conditions are allowed on the temperature, which occur in many realistic thermal
applications and make more physical sense than the homogeneous Dirichlet boundary conditions. The
considered boundary conditions also include non-homogeneous Dirichlet boundary conditions on a
part of the boundary and non-homogeneous Neumann boundary conditions on the other part of the
computational domain.

(iii) Following [37], the temperature is transported by the predicted velocity, which is not divergence-
free, while maintaining the rate of convergence as shown by the established error estimates. To
the best of our knowledge, this feature differs our method from the vast majority of fractional-step
methods including the very recent ones proposed in [38, 39] for solving natural convection problems,
in which the temperature is often transported by a divergence-free velocity. It is worth noting here
that establishing error estimates in our situation is not straightforward due to the fact that specific
temperature convection terms require careful treatment as it will be clear later.

The remainder of the article is organized as follows: In section 2 the governing equations for incompressible
flows with temperature-dependent viscosity and thermal conductivity along with some notations and prelim-
inaries are introduced. The proposed viscosity-splitting method is formulated in section 3 for the variational
form along with some regularity assumptions on the continuous solution. In section 4 the error estimates are
carried out for all the variables in their relevant norms. Three numerical examples including the problem of
Rayleigh-Benard convection and the problem of unsteady flow over a heated airfoil are presented in section
5 to verify the theoretical results and validate the method. Finally, section 6 contains concluding remarks.

2. Governing equations and preliminaries

Let Ω be a bounded domain in Rd (with d = 2 or 3) which is either a convex polygon or a connected of
class C1,1 with the boundary ∂Ω = ΓD ∪ ΓN , and let Ωt the open set Ω × (0, Tf ), where Tf > 0 is the final
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time. In the present study, we are interested in the numerical solution of the incompressible Navier-Stokes
equations for a Newtonian fluid coupled with a convection-diffusion equation for the temperature subject to
the well-established Boussinesq approximation as

∂u

∂t
+ (u · ∇)u−∇ · (ν(T )∇u) + ∇ p = F (T ), in Ωt,

∇ · u = 0, in Ωt,
∂T

∂t
+ (u · ∇)T −∇ · (λ(T )∇T ) = G, in Ωt,

(1)

where the unknowns u, p and T are the velocity, pressure and temperature variables, respectively. The
function F depends on the temperature T and represents an external volumic force such as gravity while
the function G represents an external heat source which depends only on the position x. Here, the viscosity ν
and the thermal conductivity λ are assumed to be dependent on the temperature T . Moreover, the function
F is no longer restricted to be proportional to the temperature variation (F ∝ (T −T0)) but only dependent
on T with a more general assumption. For the function F : R → Rd is a C1(R), there exists a real T0 such
that F (T0) = 0 and a non-negative real α > 0 such that∥∥F ′∥∥

∞ ≤ α. (2)

In what follows, we introduce the temperature θ̂ = T − T0 and set the function f(θ̂) =
1

α
F (T ). Then, from

the assumption (2), we assume

f(0) = 0 and ∀ℓ ∈ R |f ′(ℓ)| ≤ 1 =⇒ |f(ℓ)| ≤ |ℓ|. (3)

Hence, the system (1) can be rewritten in terms of θ̂ and f as
∂u

∂t
+ (u · ∇)u−∇ · (ν(θ̂)∇u) + ∇ p = αf(θ), in Ωt,

∇ · u = 0, in Ωt,

∂θ̂

∂t
+ (u · ∇) θ̂ +

1

2
θ̂∇ · u−∇ · (λ(θ̂)∇θ̂) = g, in Ωt.

(4)

We also complete the system (4) with the following initial conditions

u(x, 0) = u0(x) ∈ L2(Ω), with ∇ · u0 = 0 and θ(x, 0) = θ0(x) ∈ L2(Ω), (5)

and the following boundary conditions

u = 0 on ∂Ω, θ̂ = θD on ΓD, and λ(θ̂)
∂θ̂

∂n
= θN on ΓN , a.e t ∈ (0, Tf ). (6)

For the sake of simplicity in the presentation, we consider homogeneous Dirichlet boundary conditions for
u and we assume that the intersection ΓD ∩ ΓN is a Lipschitz-continuous submanifold of ∂Ω. Note that

we have slightly modified the temperature equation in system (1) by adding the term
1

2
θ̂∇ · u, which is

obviously vanishing since the velocity is divergence-free. In fact, the additional term allows to restore the
skew-symmetry structure which is essential in the error analysis, see for instance [47, 48] for more details on
this artifice. We also assume that the coefficients ν and λ are bounded functions in W 1,∞(Ω), with 0 < ν0 ≤ ν(r) ≤ ν1, ∥ν′∥∞ = ν2,

0 < λ0 ≤ λ(r) ≤ λ1, ∥λ′∥∞ = λ2,
∀r ∈ R. (7)

In what follows, Lp(Ω) represents the usual set of pth power measurable functions, and Lp(Ω) = (Lp(Ω))
3
.

The scalar product defined on L2(Ω) or L2(Ω) is denoted (without distinction) by (·, ·) and its norm by ∥ · ∥.
The Sobolev spaces denoted by Wm,p(Ω) and Wm,p(Ω), with p ∈ [1,+∞), p integer are defined as

Wm,p(Ω) =
{
u ∈ Lp(Ω) : Dku ∈ Lp(Ω), ∀|k| ≤ m

}
, Wm,p(Ω) = (Wm,p(Ω))

3
,

4



where k is a multi-index in N3. These spaces are equipped with the norm ∥ · ∥m,p and semi-norm | · |m,p.
The spaces W s,2(Ω) and W s,2(Ω), with s ∈ R, are denoted respectively, by Hs(Ω) and Hs(Ω) with the
associated norm denoted by ∥ · ∥s and semi-norm by | · |s. Without distinction for the dimension, we denote
the duality pairing between H1

0 (Ω) and its dual H−1(Ω) (or between H1
0(Ω) and H−1(Ω)) by ⟨·, ·⟩. More

generally, for a space V and its dual V ′, we denote the duality pairing by ⟨·, ·⟩V ′,V . For a fixed positive

real variable Tf and a separable Banach space E equipped with the norm ∥ · ∥E , we denote by C0(0, Tf ;E)
the space of continuous functions from [0, Tf ] with values in E. For a positive integer p, we introduce the
following Bochner spaces

Lp(0, Tf ;E) =

u : (0, Tf ) 7→ E :

(∫ Tf

0

∥u(τ)∥pE dτ

)1/p

<∞

 ,

and for m a non-negative integer, the space Hm(0, Tf ;E) is defined as

Hm(0, Tf ;E) =
{
u ∈ L2(0, Tf ;E) : ∂ltu ∈ L2(0, Tf ;E), 0 ≤ l ≤ m

}
.

For details on these spaces, we refer for example to [49] and [50, Chapter 2]. In order to derive the variational
formulation of the problem (4), (5) and (6), we start by introducing the following spaces

H =
{
v ∈ L2(Ω) : ∇ · v = 0, v · n

∣∣∣
∂Ω

= 0
}
,

V =
{
v ∈ H1

0(Ω) : ∇ · v = 0
}
.

Notice that the set H is the closure of V in L2 with

V ⊂ H ⊂ V ′.

We also define the temperature space as follows

H1
ΓD

(Ω) =
{
φ ∈ H1(Ω) : φ = 0, on ΓD

}
.

The space H1
ΓD

(Ω) can be provided with the H1
0 (Ω)-norm, and based on the Poincaré-Friedrichs inequality

|φ|1,Ω = ∥∇φ∥. The dual of H1
ΓD

(Ω) is denoted by H−1
ΓD

and its norm is also denoted by ∥ · ∥−1 when there

is no confusion and the context is clear. The traces of functions in H1
ΓD

(Ω) on ΓN belong to a special space

H
1
2
00(ΓN ), see [51, Chap.1] for the definition of this space. We also introduce its dual space H

1
2
00(ΓN )′ and

denote by
〈
·, ·
〉
ΓN

the duality pairing between H
1
2
00(ΓN ) and H

1
2
00(ΓN )′. Thus, we assume that the partition

of ∂Ω into ΓN and ΓD is sufficiently smooth for D(Ω ∪ ΓN ) to be dense in H1
ΓD

(Ω) (sufficient conditions
for this are given in [52] among others). Next, let us recall some useful properties that can be found for
example in [53]: For all u ∈ V , v,w ∈ H1(Ω) and φ,ψ ∈ H1(Ω),∫

Ω
(u · ∇)v · v dx = 0,

∫
Ω

(u · ∇)v ·w dx = −
∫
Ω

(u · ∇)w · v dx,∫
Ω

(u · ∇)φ · φ dx = 0,
∫
Ω

(u · ∇)φ · ψ dx = −
∫
Ω

(u · ∇)ψ · φ dx,
(8)

and

∫
Ω

(u · ∇)v ·w dx ≤



C|u|1|v|1|w|1, for all u,v,w ∈ H1
0(Ω),

C∥u∥ ∥v∥2 |w|1, for all v ∈ H2(Ω) ∩H1
0(Ω), u,w ∈ H1

0(Ω),

C∥u∥ |v|1 ∥w∥2, for all w ∈ H2(Ω) ∩H1
0(Ω), u,v ∈ H1

0(Ω),

C∥u∥2 |v|1 ∥w∥, for all u ∈ H2(Ω) ∩H1
0(Ω), v,w ∈ H1

0(Ω),

C|u|1 |v|1 ∥w∥1/2 |w|1/21 , for all u,v,w ∈ H1
0(Ω),

C∥u∥1/2 |u|1/21 |v|1 |w|1, for all u,v,w ∈ H1
0(Ω),

(9)
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where C is a generic constant independent from the time step that may have different expressions at each
occurrence.

For the time integration of equations (4)-(6), we divide the time interval [0, Tf ] into N + 1 sub-intervals
[tn, tn+1] with length ∆t = tn+1−tn, 0 = t0 < t1 < · · · < tN+1 = Tf , and we use the notation wn = w(tn,x)
as the value of a generic function w at time tn. We also announce the following discrete Gronwall lemma
[54] that will be used several times in what follows:

Lemma 1. For n ∈ N, let κ, an, bn, cn and dn be nonnegative numbers such that

aN + ∆t

N∑
n=0

bn ≤ κ+ ∆t

N−1∑
n=0

an dn + ∆t

N−1∑
n=0

cn, ∀ N ≥ 1.

Then, for all N ≥ 1, the following inequality

aN + ∆t

N∑
n=0

bn ≤

(
κ+ ∆t

N−1∑
n=0

cn

)
exp

(
∆t

N−1∑
n=0

dn

)
,

holds.

3. Time viscosity-splitting method for incompressible flows

In this section we formulate the proposed time viscosity-splitting method for solving the incompressible
flows with temperature-dependent viscosity and thermal conductivity governed by the coupled system (4)-
(6). To this end we assume that

g ∈ L2
(
0, Tf ;L2(Ω)

)
, θN ∈ L2

(
0, Tf ;H

1
2
00(ΓN )′

)
,

(10)

θD ∈ L2
(

0, Tf ;H
1
2 (ΓD)

)
, ∂tθD ∈ L2

(
0, Tf ;L2(ΓD)

)
.

Thanks to Lemma 2.8 in [9], for all ε > 0, there exists a lifting Rθ ∈ H1(Ω) of the value of θD on ΓD and
satisfying for a.e t ∈ (0, Tf )

∥Rθ∥L4(Ω) ≤ ε∥θD∥
H

1
2 (ΓD)

and ∥Rθ∥H1(Ω) ≤ cR∥θD∥
H

1
2 (ΓD)

, (11)

where the constant cR depends only on Ω. Since θD belongs to L2
(

0, Tf ;H
1
2 (ΓD)

)
, Rθ belongs to

L2
(
0, Tf ;H1(Ω)

)
and

∥Rθ∥L2(0,Tf ;H1(Ω)) ≤ cR∥θD∥
L2

(
0,Tf ;H

1
2 (ΓD)

),
(12)

∥Rθ∥L2(0,Tf ;L4(Ω)) ≤ ε∥θD∥
L2

(
0,Tf ;H

1
2 (ΓD)

).
Furthermore, from (10), ∂tθD ∈ L2

(
0, Tf ;L2(ΓD)

)
, we have also ∂tRθ ∈ L2

(
0, Tf ;L2(Ω)

)
. Let us introduce

the following notation
θ̂ := θ + Rθ.

Finally, the weak formulation of (4)-(6) can be written as follows: Find u ∈ L2
(
0, Tf ;H1

0(Ω)
)
∩H1

(
0, Tf ;L2(Ω)

)
,

p ∈ L2
(
0, Tf ;L2

0(Ω)
)

and θ ∈ L2
(
0, Tf ;H1

ΓD
(Ω)
)
∩H1

(
0, Tf ;L2(Ω)

)
such that for all (v, q, φ) in H1

0(Ω) ×
L2
0(Ω) ×H1

ΓD
(Ω)∫

Ω

(∂tu + (u · ∇)u) · v dx +

∫
Ω

ν(θR)∇u : ∇v dx−
∫
Ω

∇ · v p dx = α

∫
Ω

f(θR) · v dx,
(13)∫

Ω

∇ · u q dx = 0,
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∫
Ω

(∂tθ + u · ∇θ) φ dx +

∫
Ω

λ(θR)∇θ · ∇φ dx =

∫
Ω

(−∂tRθ − u · ∇Rθ) φ dx−∫
Ω

λ(θR)∇Rθ · ∇φ dx +

∫
Ω

g φ+ ⟨θN , φ⟩ΓN
. (14)

Using a first-order implicit scheme for the time integration of (13)-(14) results in a system of the form∫
Ω

un+1 − un

∆t
· v dx +

∫
Ω

(
un+1 · ∇

)
un+1 · v dx +

∫
Ω

ν(θn+1 + Rn+1
θ )∇un+1 : ∇v dx

−
∫
Ω

(∇ · v) pn+1 dx =

∫
Ω

αf(θn+1 + Rn+1
θ ) · v dx, (15)∫

Ω

(∇ · un+1) q dx = 0,

∫
Ω

θn+1 − θn

∆t
φ dx +

∫
Ω

(
un+1 · ∇

)
θn+1 φ dx +

∫
Ω

(λ(θn+1 + Rn+1
θ )∇θn+1) · ∇φ dx = −

∫
Ω

∂tRn+1
θ φ dx

−
∫
Ω

(
un+1 · ∇

)
Rn+1

θ φ dx−
∫
Ω

λ(θn+1 + Rn+1
θ )∇Rn+1

θ · ∇φ dx +

∫
Ω

gn+1φ dx + ⟨θn+1
N , φ⟩ΓN

. (16)

It should be stressed that to study the stability of the semi-discrete solution (un+1, θn+1), we take v = un+1

and φ = θn+1 and deduce the following result:

Lemma 2. For large enough ν0, the semi-discrete solution (un+1, θn+1) given by the scheme (15)-(16),
satisfies

∥uN+1∥2 + ∥θN+1∥2 +

N∑
n=0

(
∥un+1 − un∥2 + ∥θn+1 − θn∥2

)
+
ν0∆t

2

N∑
n=0

∥∇un+1∥2 +
λ0∆t

4

N∑
n=0

∥∇θn+1∥2

≤ ∥u0∥2 + ∥θ0∥2 +
ν0∆t

2
∥∇u0∥2 +

λ0∆t

4
∥∇θ0∥2 + C∥θD∥2

l2(0,Tf ;H
1
2 (ΓD))

+ C

(
∥∂tθD∥2l2(0,Tf ;L2(ΓD)) + ∥g∥2l2(0,Tf ;L2(Ω)) + ∥θN∥2

l2(0,Tf ;H
1
2
00(ΓN )′)

)
. (17)

The resulting viscosity-splitting method considered in this study to solve the equations (15)-(16) is carried
out using the following two steps:

Step 1: For all v ∈ H1
0(Ω), compute ūn+1 ∈ H1

0(Ω) solution of∫
Ω

ūn+1 − un

∆t
· v dx +

∫
Ω

(un · ∇) ūn+1 · v dx +

∫
Ω

ν
(
θn + Rn+1

θ

)
∇ūn+1 : ∇v dx =

α

∫
Ω

f
(
θn + Rn+1

θ

)
· v dx. (18)

Step 2: For all φ ∈ H1
ΓD

(Ω), compute θ̄n+1 ∈ H1
ΓD

(Ω) solution of∫
Ω

θ̄n+1 − θn

∆t
φ dx +

∫
Ω

ūn+1 · ∇θ̄n+1 φ dx +

∫
Ω

1

2
θ̄n+1 ∇ · ūn+1 φ dx +∫

Ω

λ(θn + Rn+1
θ )∇θ̄n+1 · ∇φ dx = −

∫
Ω

λ(θn + Rn+1
θ )∇Rn+1

θ · ∇φ dx−
∫
Ω

ūn+1 · ∇Rn+1
θ φ dx

−
∫
Ω

1

2
Rn+1

θ ∇ · ūn+1 φ dx +

∫
Ω

gn+1 φ dx + ⟨θn+1
N , φ⟩ −

∫
Ω

∂tRn+1
θ φ dx. (19)
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Step 3: For all (v, q) ∈ V × L2
0(Ω), compute

(
un+1, pn+1

)
∈ V × L2

0(Ω) solution of the following
Stokes problem∫

Ω

un+1 − ūn+1

∆t
· v dx +

∫
Ω

ν(θ̄n+1 + Rn+1
θ )∇un+1 : ∇v dx−

∫
Ω

pn+1 ∇ · v dx =

∫
Ω

ν(θn + Rn+1
θ )∇ūn+1 : ∇v dx, (20)

−
∫
Ω

q∇ · un+1 dx = 0.

Step 4: For all φ ∈ H1
ΓD

(Ω), compute θn+1 ∈ H1
ΓD

(Ω) solution of∫
Ω

θn+1 − θ̄n+1

∆t
φ dx+ intΩλ(θ̄n+1 +Rn+1

θ )∇θn+1 · ∇φ dx =

∫
Ω

λ(θn +Rn+1
θ )∇θ̄n+1 · ∇φ dx. (21)

Notice that in this work, we opt to not include any pressure-correction strategy for the sake of clarity since
we are mainly interested in the error analysis of the considered viscosity-splitting method. It should be noted
though used in our case, a pressure-correction procedure would have no advantage on the error estimates,
see for example [45]. Some remarks are in order:

i. In (19), the Neuman boundary condition on the intermediate temperature is set as

λ(θn + Rn+1
θ )

∂θ̄n+1

∂n
= θn+1

N ,

while in (21), the Neuman boundary condition on the end-of-step temperature is taken to be

λ(θ̄n+1 + Rn+1
θ )

∂θn+1

∂n
= θn+1

N .

ii. Treating the nonlinear term in the momentum equation semi-implicitly removes the nonlinearity, thus
there is no need for a fixed-point iteration. In addition, the temperature-dependent parameters are
treated explicitly which removes the coupling between the velocity and temperature solutions.

iii. Note that in (19), the temperature is advected by the intermediate velocity which is not necessarily
divergence-free. As stated earlier in the introduction, This particular term requires subtle treatment
in order to derive the full order for the error estimates.

4. Error estimates for the viscosity-splitting method

We first provide the error estimates in l∞(0, T ;L2(Ω)) and l2(0, T ;H1(Ω)) norms for the approximation
of u by the semi-discrete velocities ūn+1 and un+1 using (18) in Step 2 and (20) in Step 4, which give
a bound where some terms still appear in the temperature solution. Then, this bound is injected into the
temperature error bound, which will be established later using (19) in Step 1 and (21) in Step 3, to have
1/2-order estimates for the approximation of θ by the semi-discrete temperature solutions θ̄n+1 and θn+1

in l∞(0, T, L2(Ω)) and l2(0, T ;H1(Ω)) norms. Thereafter, injecting these last temperature estimates back
into the velocity error bound will ensures 1/2-order estimates as well for the semi-discrete velocity solutions.
Finally, these bounds will be improved to reach full first-order estimates for both the velocity and the
temperature solutions. We will also give error estimates for the pressure approximation using the considered
viscosity-splitting method. To this end, let set the following assumptions which will be repeatedly used in
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proofs of the error estimates established in this section

sup
t∈(0,Tf )

{
∥θ(t)∥22 + ∥∂ttθ∥2−1 + ∥∂tθ∥2

}
≤ C. (22)

sup
t∈(0,Tf )

{
∥u∥22 + ∥∂ttu∥2−1 + ∥∂tu∥2 + ∥p(t)∥21

}
≤ C. (23)

u ∈ L∞ (0, Tf ;W 2,3+s(Ω)
)
, s > 0, which implies sup

t∈(0,Tf )

∥∇u(t)∥2Rd×d ≤ C. (24)

θ ∈ L∞ (0, Tf ;W 2,3+s(Ω)
)
, s > 0, which implies sup

t∈(0,Tf )

∥∇θ(t)∥2Rd ≤ C. (25)

It should be stressed that all the above assumptions are achievable. For instance:

i. If the initial data satisfy (u0, θ0) ∈
(
H2(Ω) ∩ V

)
×H2(Ω) and (g, ∂tg) ∈ L∞(0, Tf ;L2(Ω))×L2(0, Tf ;L2(Ω)),

then (see for example [50])

(u, θ) ∈ L∞(0, Tf ;H2(Ω)) × L∞(0, Tf ;H2(Ω)) and ∇p ∈ L∞(0, Tf ;L2(Ω)).

ii. Additionally, following for instance [55, 56], if the domain Ω is of class C2 or it is a convex polygon,
then √

t (∂ttu, ∂ttθ) ∈ L2(0, Tf ;L2(Ω)) × L2(0, Tf ;L2(Ω)).

iii. Furthermore, as demonstrated in [57, 58], when certain nonlocal compatibility conditions at t = 0 are
introduced,

(∂ttu, ∂ttθ) ∈ L2(0, Tf ;V ′) × L2(0, Tf ;H−1(Ω)).

iv. The last two regularity assumptions (24) and (25) are satisfied based on the general theory for elliptic
systems by Agmon-Douglis-Nirenberg [59, 60]. This methodology can also be applied to prove the
regularity results for the Navier-Stokes equations, see for example [50]. However, we must assume initial

conditions (u0, θ0) in
(
W 2,3+s(Ω) ∩ V

)
×W 2,3+s(Ω), the boundary condition θD ∈ W 2− 1

3+s ,3+s(ΓD)
and the source term (g, ∂tg) belongs to L∞(0, Tf ;W−1,3+s(Ω)) × L2(0, Tf ;W−1,3+s(Ω)).

v. Finally, it is well-known that if C
α

ν20
< 1 (where C > 0 depends only on Ω) then, the Navier-Stokes

system is well-posed, see for instance [50, 61, 62, 47]. Indeed, while C
α

ν20
< 1 is not a necessary

condition for the uniqueness, it is known that for sufficiently large data (i.e., ν0 small enough), the
uniqueness breaks down [61], and the Navier-Stokes equations would admit multiple solutions. This
means that the value of the viscosity ν0 should not be too small and, for similar reasons, the value of
λ0 must not be very small. For brevity, one can demonstrate this by considering the simple equation

−∇ · (λ(θ)∇θ) = g. (26)

Therefore, the uniqueness of the solution for this equations is obtained by taking the difference between
two solutions θ1 and θ2 and writing

λ0∥∇(θ1 − θ2)∥2 ≤
∫
Ω

|λ(θ1) − λ(θ2)| |∇θ1| ∇(θ1 − θ2) dx ≤ Cλ2 ∥∇θ1∥L∞ ∥∇(θ1 − θ2)∥2,

where λ2 = ∥λ′∥∞, and using the regularity condition (25) to control the integral in the right-hand

side. Hence, it is clear that one must assume C
λ2
λ0

∥θ1∥W 1,3+s < 1 to get θ1 = θ2 except for the

situation with a constant diffusion coefficient (in this case λ2 = 0). Note that the regularity condition
(24) would appear if one adds the transport term u · ∇θ to the equation (26).
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Additionally, let ēn+1
θ , en+1

θ , ēn+1
u and en+1

u be respectively, the semi-discrete errors associated to θ̄n+1,
θn+1, ūn+1 and un+1 defined as

ēn+1
θ = θ(tn+1) − θ̄n+1, en+1

θ = θ(tn+1) − θn+1,

ēn+1
u = u(tn+1) − ūn+1, en+1

u = u(tn+1) − un+1.

The following lemma delivers a first bound for the velocity errors ēn+1
u and en+1

u in  L∞(0, T ;L2(Ω)) and
L2(0, T ;H1(Ω)) norms

Lemma 3. Assuming (7), (3), (22), (23) and (24) in addition to ν1 < 2ν0, then

∥eN+1
u ∥2 +

N∑
n=0

(
∥ēn+1

u − enu∥2 +
1

2
∥en+1

u − ēn+1
u ∥2

)
+
ν0∆t

2

N∑
n=0

|ēn+1
u |21 +

∆t

N∑
n=0

(
(2ν0 − ν1)|en+1

u |21 +
ν0
2
|en+1

u − ēn+1
u |21

)
≤ C∆t+ C∆t

N∑
n=0

(
∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2
)
.
□

Proof. Reformulating the momentum equation (4) at t = tn+1, including the lifting Rθ of the temperature,
and applying the Taylor’s expansion with an integral reminder and taking the inner product with v ∈ H1

0(Ω),
we obtain∫

Ω

(
u(tn+1) − u(tn)

∆t
+ (u(tn+1) · ∇)u(tn+1)

)
· v dx +

∫
Ω

ν(θR(tn+1))∇u(tn+1) : ∇v dx

−
∫
Ω

p(tn+1)∇ · v dx = α

∫
Ω

f(θR(tn+1)) · v dx + ⟨In
u,v⟩, (27)

where In
u is the truncation error associated with the velocity u and defined as

In
u =

1

∆t

∫ tn+1

tn

(t− tn)∂ttu(t)dt.

By subtracting (18) from (27), fixing v = 2∆tēn+1
u and using the standard identity

2(a− b)a = a2 − b2 + (a− b)2, (28)

we obtain

∥ēn+1
u ∥2 − ∥enu∥2 + ∥ēn+1

u − enu∥2 + 2∆t

∫
ω

ν(θn + Rn+1
θ )∇ēn+1

u : ∇ēn+1
u dx

= 2α∆t

∫
Ω

(
f(θR(tn+1)) − f(θn + Rn+1

θ )
)
· ēn+1

u dx− 2∆t

∫
Ω

∇p(tn+1) · ēn+1
u dx

− 2∆t

∫
Ω

(u(tn+1) · ∇)u(tn+1) · ēn+1
u dx + 2∆t

∫
Ω

(un · ∇)ūn+1
u · ēn+1

u dx

− 2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θn + Rn+1

θ )
)
∇u(tn+1) : ∇ēn+1

u dx + 2∆t⟨In
u, ē

n+1
u ⟩. (29)

Taking v = 2∆ten+1
u in (20),

∥en+1
u ∥2 − ∥ēn+1

u ∥2 + ∥en+1
u − ēn+1

u ∥2 + ∆t

∫
Ω

(
2ν(θ̄n+1

R ) − ν(θn + Rn+1
θ )

)
∇en+1

u : ∇en+1
u dx

− ∆t

∫
Ω

ν(θn + Rn+1
θ )∇ēn+1

u : ∇ēn+1
u dx + ∆t

∫
Ω

ν(θn + Rn+1
θ )∇(en+1

u − ēn+1
u ) : ∇(en+1

u − ēn+1
u ) dx

= 2∆t

∫
Ω

(
ν(θ̄n+1

R ) − ν(θn + Rn+1
θ )

)
∇u(tn+1) : ∇en+1

u dx. (30)
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Adding (30) to (29) and using the assumptions on ν in (7), we obtain

∥en+1
u ∥2−∥enu∥2+∥ēn+1

u −enu∥2+∥en+1
u − ēn+1

u ∥2+∆t
(
ν0|ēn+1

u |21 + (2ν0 − ν1)|en+1
u |21 + ν0|en+1

u − ēn+1
u |21

)
≤ 2α∆t

∫
Ω

(
f(θR(tn+1)) − f(θn + Rn+1

θ )
)
· ēn+1

u dx︸ ︷︷ ︸
=B1

−2∆t

∫
Ω

∇p(tn+1) · ēn+1
u dx︸ ︷︷ ︸

=B2

−2∆t

(∫
Ω

(u(tn+1) · ∇)u(tn+1) · ēn+1
u dx−

∫
Ω

(un · ∇)ūn+1 · ēn+1
u dx

)
︸ ︷︷ ︸

=B3

−2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θn + Rn+1

θ )
)
∇u(tn+1) : ∇ēn+1

u dx︸ ︷︷ ︸
=B4

+2∆t

∫
Ω

(
ν(θ̄n+1

R ) − ν(θn + Rn+1
θ )

)
∇u(tn+1) : ∇en+1

u dx︸ ︷︷ ︸
=B5

+2∆t⟨In
u, ē

n+1
u ⟩

Next, we bound each term on the right-hand side separately.

• The integral residual term is bounded as

2∆t⟨In
u, ē

n+1
u ⟩ ≤ C∆t ∥In

u∥
2
−1 +

ν0∆t

10

∣∣ēn+1
u

∣∣2
1
,

≤ C

∆t

∥∥∥∥∫ tn+1

tn

(t− tn)∂ttu(t)dt

∥∥∥∥2
−1

+
ν0∆t

10

∣∣ēn+1
u

∣∣2
1
,

≤ C

∆t

∫ tn+1

tn

(t− tn)2dt

∫ tn+1

tn

∥∂ttu∥2−1 dt+
ν0∆t

10

∣∣ēn+1
u

∣∣2
1
,

≤ C(∆t)2
∫ tn+1

tn

∥∂ttu∥2−1dt+
ν0∆t

10

∣∣ēn+1
u

∣∣2
1
.

• Using the second property in (3) on the function f and the Poincaré inequality on ēn+1
u , we have

B1 = 2α∆t

∫
Ω

(
f(θR(tn+1)) − f(θn + Rn+1

θ )
)
· ēn+1

u dx,

≤ 2α∆t∥θ(tn+1) − θ(tn) + enθ ∥∥ēn+1
u ∥,

≤ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt+ C∆t∥enθ ∥2 +
ν0∆t

10
|ēn+1

u |21.

• Since en+1
u is divergence-free, the pressure term B2 can be treated by

B2 = −2∆t

∫
Ω

∇p(tn+1) · ēn+1
u dx = 2∆t

∫
Ω

∇p(tn+1) ·
(
en+1
u − ēn+1

u

)
dx

≤ 2∆t|p(tn+1)|1 ∥en+1
u − ēn+1

u ∥ ≤ C(∆t)2|p(tn+1)|21 +
1

2

∥∥en+1
u − ēn+1

u

∥∥2 .
• Thanks to the properties (8), the term B3 can be rewritten as

B3 = −2∆t

(∫
Ω

(u(tn+1) · ∇)u(tn+1) · ēn+1
u dx−

∫
Ω

(un · ∇)ūn+1 · ēn+1
u dx

)
,

= −2∆t

(∫
Ω

(u(tn+1) · ∇)u(tn+1) · ēn+1
u dx−

∫
Ω

(un · ∇)u(tn+1) · ēn+1
u dx

)
,

= −2∆t

∫
Ω

((u(tn+1) − u(tn)) · ∇)u(tn+1) · ēn+1
u dx− 2∆t

∫
Ω

(enu · ∇)u(tn+1) · ēn+1
u dx.
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Using (9) and taking into account the assumptions (23), this can be bounded as

B3 ≤ 2∆t ∥u(tn+1) − u(tn)∥ ∥u(tn+1)∥2
∣∣ēn+1

u

∣∣
1

+ 2∆t ∥enu∥ ∥u(tn+1)∥2
∣∣ēn+1

u

∣∣
1
,

≤ C(∆t)2
∫ tn+1

tn

∥∂tu∥2 dt+ C∆t ∥enu∥
2

+
ν0∆t

10

∣∣ēn+1
u

∣∣2
1
.

• By assumptions (7) on the function ν

B4 = −2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θn + Rn+1

θ )
)
∇u(tn+1) : ∇ēn+1

u dx,

≤ 2ν2∆t

∫
Ω

|θ(tn+1) − θn| |∇u(tn+1) : ∇ēn+1
u | dx.

Using the assumption (24), the above inequality is developed as follows

B4 ≤ C∆t∥θ(tn+1) − θn∥ |ēn+1
u |1 ≤ C∆t∥θ(tn+1) − θ(tn)∥2 + C∆t∥enθ ∥2 +

ν0∆t

10
|ēn+1

u |21

≤ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt+ C∆t∥enθ ∥2 +
ν0∆t

10
|ēn+1

u |21.

• Again, thanks to the properties (7) of the function ν and the assumption (24) on the exact velocity u,
we have

B5 = 2∆t

∫
Ω

(
ν(θ̄n+1

R ) − ν(θn + Rn+1
θ )

)
∇u(tn+1) : ∇en+1

u dx ≤ C∆t∥θ̄n+1 − θn∥ |en+1
u |1,

≤ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt+ C∆t∥ēn+1
θ − enθ ∥2 +

ν0∆t

2
|en+1

u − ēn+1
u |21 +

ν0∆t

10
|ēn+1

u |21.

Gathering the above inequalities and taking the sum over n = 0, 1, . . . , N , we obtain

∥eN+1
u ∥2 +

N∑
n=0

(
∥ēn+1

u − enu∥2 +
1

2
∥en+1

u − ēn+1
u ∥2

)
+

∆t

N∑
n=0

(ν0
2
|ēn+1

u |21 + (2ν0 − ν1)|en+1
u |21 +

ν0
2
|en+1

u − ēn+1
u |21

)
,

≤ C∆t

N∑
n=0

(
∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2
)

+ C∆t

N∑
n=0

∥enu∥2+

C(∆t)2
N∑

n=0

|p(tn+1)|21 + C(∆t)2
∫ Tf

0

(
∥∂ttu∥2−1 + ∥∂tu∥2 + ∥∂tθ∥2

)
dt.

Using the assumptions (23) and (22), the above inequality becomes

∥eN+1
u ∥2 +

N∑
n=0

(
∥ēn+1

u − enu∥2 +
1

2
∥en+1

u − ēn+1
u ∥2

)
+

∆t

N∑
n=0

(ν0
2
|ēn+1

u |21 + (2ν0 − ν1)|en+1
u |21 +

ν0
2
|en+1

u − ēn+1
u |21

)
,

≤ C∆t+ C∆t

N∑
n=0

∥enu∥2 + C∆t

N∑
n=0

(
∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2
)
.

12



Applying the discrete Gronwall Lemma 1, we get

∥eN+1
u ∥2 +

N∑
n=0

(
∥ēn+1

u − enu∥2 +
1

2
∥en+1

u − ēn+1
u ∥2

)
+

∆t

N∑
n=0

(ν0
2
|ēn+1

u |21 + (2ν0 − ν1)|en+1
u |21 +

ν0
2
|en+1

u − ēn+1
u |21

)
,

≤ C∆t+ C∆t

N∑
n=0

(
∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2
)
.

The next lemma establishes a 1/2-error estimates for the temperature solution in l∞
(
0, Tf ;L2(Ω)

)
and

l2
(
0, Tf ;H1(Ω)

)
norms. Before announcing the result, let first add this assumption

θD ∈ L∞
(

0, Tf ;W
2+s
3+s ,3+s(ΓD)

)
, s > 0, (31)

which will be required to prove the temperature error estimates in three space dimensions. It is worth noting
that this additional assumption is due only to the non-homogeneous Dirichlet boundary conditions on the
temperature. Thanks to (31), the lifting Rθ belong to L∞ (0, Tf ;W 2,3+s(Ω)

)
which implies that

sup
t∈(0,Tf )

∥∇Rθ(t)∥2Rd ≤ C.

Lemma 4. Under the assumptions in (7), (22), (25), (31), λ1 < 2λ0 and for small enough ∆t, we have

∥eN+1
θ ∥2 +

1

2

N∑
n=0

∥ēn+1
θ − enθ ∥2 +

N∑
n=0

∥en+1
θ − ēn+1

θ ∥2+

∆t

N∑
n=0

(
λ0
2
|ēn+1

θ |21 +
λ0
2
|en+1

θ − ēn+1
θ |21 + (2λ0 − λ1)|en+1

θ |21
)

≤ C∆t.
□

(32)

Proof. Writing the temperature equation in (4) at t = tn+1 after including the lifting Rθ of the tempera-
ture, using the Taylor’s expansion with an integral reminder, and taking the inner product with φ ∈ H1

ΓD
(Ω),

we get∫
Ω

(
θ(tn+1) − θ(tn)

∆t
+ u(tn+1) · ∇ θ(tn+1)

)
φ dx +

∫
Ω

λ(θR(tn+1))∇θ(tn+1) · ∇φ dx

=

∫
Ω

(g(tn+1) − ∂tRθ(tn+1) − u(tn+1) · ∇Rθ(tn+1)) φ dx

−
∫
Ω

λ(θR(tn+1))∇Rθ(tn+1) · ∇φ dx + ⟨θN (tn+1), φ⟩ΓN
+ ⟨Inθ , φ⟩, (33)

where Inθ is the truncation error associated to θ and it is defined by

Inθ =
1

∆t

∫ tn+1

tn

(t− tn)∂ttθ(t)dt.
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By subtracting (19) from (33), taking φ = 2∆t ēn+1
θ and using the identity (28), we obtain

∥ēn+1
θ ∥2 − ∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2 + 2∆t

∫
Ω

λ(θn + Rn+1
θ )∇ēn+1

θ · ∇ēn+1
θ dx

= −2∆t

∫
Ω

(
λ(θR(tn+1)) − λ(θn + Rn+1

θ )
)
∇θ(tn+1) · ∇ēn+1

θ dx

− 2∆t

(∫
Ω

(u(tn+1) · ∇)θ(tn+1)ēn+1
θ dx−

∫
Ω

(ūn+1 · ∇)θ̄n+1 ēn+1
θ dx−

∫
Ω

1

2
θ̄n+1 ∇ · ūn+1 ēn+1

θ dx

)
− 2∆t

∫
Ω

[λ(θR(tn+1)) − λ(θn + Rn+1
θ )]∇Rθ(tn+1) · ∇ēn+1

θ dx

− 2∆t

(∫
Ω

u(tn+1) · ∇Rθ(tn+1) ēn+1
θ −

∫
Ω

ūn+1 · ∇Rn+1
θ ēn+1

θ dx−
∫
Ω

1

2
Rn+1

θ ∇ · ūn+1 ēn+1
θ dx

)
+ 2∆t⟨Inθ , ēn+1

θ ⟩. (34)

By taking φ = 2∆t en+1
θ in (21), we get

∥en+1
θ ∥2 − ∥ēn+1

θ ∥2 + ∥en+1
θ − ēn+1

θ ∥2 + ∆t

∫
Ω

λ(θn + Rn+1
θ )∇en+1

θ · ∇en+1
θ dx−

∆t

∫
Ω

λ(θn + Rn+1
θ )∇ēn+1

θ · ∇ēn+1
θ dx + ∆t

∫
Ω

λ(θn + Rn+1
θ )∇(en+1

θ − ēn+1
θ ) · ∇(en+1

θ − ēn+1
θ ) dx

+ 2∆t

∫
Ω

(
λ(θ̄n+1

R ) − λ(θn + Rn+1
θ )

)
∇en+1

θ · ∇en+1
θ dx

2∆t

∫
Ω

(
λ(θ̄n+1

R ) − λ(θn + Rn+1
θ )

)
∇θ(tn+1) · ∇en+1

θ dx. (35)

By adding (34) to (35) and considering the assumptions (7), we have

∥en+1
θ ∥2−∥enθ ∥2+∥ēn+1

θ −enθ ∥2+∥en+1
θ − ēn+1

θ ∥2+λ0∆t|ēn+1
θ |21+λ0∆t|en+1

θ − ēn+1
θ |21+(2λ0−λ1)∆t|en+1

θ |21

≤ −2∆t

∫
Ω

(
λ(θR(tn+1)) − λ(θn + Rn+1

θ )
)
∇θ(tn+1) · ∇ēn+1

θ dx︸ ︷︷ ︸
=A1

−2∆t

(∫
Ω

(u(tn+1) · ∇)θ(tn+1)ēn+1
θ −

∫
Ω

(ūn+1 · ∇)θ̄n+1 ēn+1
θ −

∫
Ω

1

2
θ̄n+1 ∇ · ūn+1 ēn+1

θ

)
dx︸ ︷︷ ︸

=A2

−2∆t

∫
Ω

(
λ(θR(tn+1)) − λ(θn + Rn+1

θ )
)
∇Rθ(tn+1) · ∇ēn+1

θ dx︸ ︷︷ ︸
=A3

−2∆t

(∫
Ω

u(tn+1) · ∇Rθ(tn+1) ēn+1
θ −

∫
Ω

ūn+1 · ∇Rn+1
θ ēn+1

θ −
∫
Ω

1

2
Rn+1

θ ∇ · ūn+1 ēn+1
θ

)
dx︸ ︷︷ ︸

=A4

+2∆t

∫
Ω

(
λ(θ̄n+1

R ) − λ(θn + Rn+1
θ )

)
∇θ(tn+1) · ∇en+1

θ dx︸ ︷︷ ︸
=A5

+2∆t⟨Inθ , ēn+1
θ ⟩. (36)

Next, we bound the terms in the right-hand side one by one:
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• For the integral residual term associated to the temperature θ

2∆t⟨Inθ , ēn+1
θ ⟩ ≤ C∆t ∥Inθ ∥

2
−1 +

λ0∆t

12

∣∣ēn+1
θ

∣∣2
1

=
C

∆t
∥
∫ tn+1

tn

(t− tn)∂ttθ(t)dt∥2−1 +
λ0∆t

12

∣∣ēn+1
θ

∣∣2
1
,

≤ C(∆t)2
∫ tn+1

tn

∥∂ttθ∥2−1 dt+
λ0∆t

12

∣∣ēn+1
θ

∣∣2
1

(37)

• Considering the assumptions 7 on λ, the assumption (25) on the exact temperature θ, and the embed-
ding of H1(Ω) onto L4(Ω), the term A1 is treated as

A1 = −2∆t

∫
Ω

(
λ(θR(tn+1)) − λ(θn + Rn+1

θ )
)
∇θ(tn+1) · ∇ēn+1

θ dx,

≤ 2λ2∆t

∫
Ω

|θ(tn+1) − θn| |∇θ(tn+1) · ∇ēn+1
θ | dx,

≤ C∆t∥θ(tn+1) − θn∥ |ēn+1
θ |1,

≤ C∆t∥θ(tn+1) − θ(tn)∥2 + C∆t∥enθ ∥2 +
λ0∆t

12
|ēn+1

θ |21,

≤ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt+ C∆t∥enθ ∥2 +
λ0∆t

12
|ēn+1

θ |21.

• In order to upper-bound the term A2, we first observe that∫
Ω

(ūn+1 · ∇)θ̄n+1 ēn+1
θ dx +

∫
Ω

θ̄n+1 ∇ · ūn+1 ēn+1
θ dx = −

∫
Ω

(ūn+1 · ∇)ēn+1
θ θ̄n+1 dx.

Hence, by using the properties (8), we get

A2 = −2∆t

(∫
Ω

(u(tn+1) · ∇)θ(tn+1)ēn+1
θ dx−

∫
Ω

(ūn+1 · ∇)θ̄n+1 ēn+1
θ dx

−
∫
Ω

1

2
θ̄n+1 ∇ · ūn+1 ēn+1

θ dx

)
,

= −∆t

(∫
Ω

(u(tn+1) · ∇)θ(tn+1)ēn+1
θ dx−

∫
Ω

(ūn+1 · ∇)θ̄n+1 ēn+1
θ dx

)
+∆t

(∫
Ω

(u(tn+1) · ∇)ēn+1
θ θ(tn+1) dx−

∫
Ω

(ūn+1 · ∇)ēn+1
θ θ̄n+1 dx

)
,

= −∆t

∫
Ω

(ēn+1
u · ∇)θ(tn+1)ēn+1

θ dx + ∆t

∫
Ω

(ēn+1
u · ∇)ēn+1

θ θ(tn+1) dx,

which can be upper-bounded, using the embedding of H1(Ω) onto L4(Ω) and the assumptions (22) on
the exact temperature θ, as

A2 ≤ C∆t|ēn+1
u |1 |θ(tn+1)|1 |ēn+1

θ |1 + C∆t|ēn+1
u |1 |θ(tn+1)|1 |ēn+1

θ |1,

≤ C∆t|ēn+1
u |21 +

λ0∆t

12
|ēn+1

θ |21. (38)
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• Similarly to A1, the term A3 is bounded as

A3 = −2∆t

∫
Ω

(
λ(θR(tn+1)) − λ(θn + Rn+1

θ )
)
∇Rθ(tn+1) · ∇ēn+1

θ dx,

By (7)

≤ 2λ2∆t

∫
Ω

|θR(tn+1) − θn −Rn+1
θ | |∇Rθ(tn+1) · ∇ēn+1

θ | dx,

Using (31)

≤ C∥θ(tn+1) − θn∥ |ēn+1
θ |1,

≤ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt+ C∆t∥enθ ∥2 +
λ0∆t

12
|ēn+1

θ |21.

• As for the term A2, the term A2 satifies∫
Ω

(ūn+1 · ∇)Rn+1
θ ēn+1

θ dx +

∫
Ω

Rn+1
θ ∇ · ūn+1 ēn+1

θ dx = −
∫
Ω

(ūn+1 · ∇)ēn+1
θ Rn+1

θ dx,

and by using the properties (8) we obtain

A4 = −2∆t

(∫
Ω

u(tn+1) · ∇Rθ(tn+1) ēn+1
θ dx−

∫
Ω

ūn+1 · ∇Rn+1
θ ēn+1

θ dx

−
∫
Ω

1

2
Rn+1

θ ∇ · ūn+1 ēn+1
θ dx

)

= −∆t

∫
Ω

(ēn+1
u · ∇)Rθ(tn+1)ēn+1

θ dx + ∆t

∫
Ω

(ēn+1
u · ∇)ēn+1

θ Rθ(tn+1) dx.

Using the embedding of H1(Ω) onto L4(Ω) and the assumptions (22) on the lifting Rθ,

A4 ≤ C∆t|ēn+1
u |1 |Rθ(tn+1)|1 |ēn+1

θ |1 + C∆t|ēn+1
u |1 |Rθ(tn+1)|1 |ēn+1

θ |1,

≤ C∆t|ēn+1
u |21 +

λ0∆t

12
|ēn+1

θ |21. (39)

• Using the assumptions (7) on λ, and the assumption (25) on the exact temperature θ,

A5 = 2∆t

∫
Ω

(
λ(θ̄n+1

R ) − λ(θn + Rn+1
θ )

)
∇θ(tn+1) · ∇en+1

θ dx,

≤ Cλ2∆t∥θ̄n+1 − θn∥ |en+1
θ |1,

≤ Cλ2∆t
(
∥ēn+1

θ − enθ ∥ + ∥θ(tn+1) − θ(tn)∥
) (

|en+1
θ − ēn+1

θ |1 + |ēn+1
θ |1

)
,

≤ C∆t∥ēn+1
θ − enθ ∥2 + C(∆t)2

∫ tn+1

tn

∥∂tθ∥2dt+
λ0∆t

2
|en+1

θ − ēn+1
θ |21 +

λ0∆t

12
|ēn+1

θ |21.

Combining all the above inequalities and taking the sum over n = 0, 1, . . . , N , we get

∥eN+1
θ ∥2 +

N∑
n=0

(
∥ēn+1

θ − enθ ∥2 + ∥en+1
θ − ēn+1

θ ∥2
)

+

∆t

N∑
n=0

(
λ0
2
|ēn+1

θ |21 +
λ0
2
|en+1

θ − ēn+1
θ |21 + (2λ0 − λ1)|en+1

θ |21
)

≤ C∆t

N∑
n=0

∥enθ ∥2 + C∆t

N∑
n=0

|ēn+1
u |21 + C∆t

N∑
n=0

∥ēn+1
θ − enθ ∥2+

C(∆t)2
∫ Tf

0

(
∥∂tθ∥2 + ∥∂ttθ∥2−1

)
dt. (40)
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From Lemma 3, the second term in the right-hand side of the above inequality is bounded by

∆t

N∑
n=0

|ēn+1
u |21 ≤ C∆t+ C∆t

N∑
n=0

(
∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2
)
.

For small enough ∆t, we can write

C∆t

N∑
n=0

∥ēn+1
θ − enθ ∥2 ≤ 1

2

N∑
n=0

∥ēn+1
θ − enθ ∥2.

Hence, using the assumptions (22), the inequality (40) is developed into

∥eN+1
θ ∥2 +

N∑
n=0

(
1

2
∥ēn+1

θ − enθ ∥2 + ∥en+1
θ − ēn+1

θ ∥2
)

+

∆t

N∑
n=0

(
λ0
2
|ēn+1

θ |21 +
λ0
2
|en+1

θ − ēn+1
θ |21 + (2λ0 − λ1)|en+1

θ |21
)

≤ C∆t+ C∆t

N∑
n=0

∥enθ ∥2.

Finally, applying the discrete Gronwall lemma 1 ends the proof.

It should be stressed that from Lemma 4, we deduce that

∥en+1
θ ∥2 ≤ C∆t, for all n = 0, 1, . . . , N,

and therefore,

∆t

N∑
n=0

∥en+1
θ ∥2 ≤ C∆t. (41)

Now, the error terms associated with the temperature that appear in the right-hand side of the velocity error
estimates (3), can be bounded thanks to Lemma 4 and the above inequality. The new velocity estimates are
announced in the following corollary:

Corollary 1. Under the assumptions of Lemma 3 and Lemma 4, we have

∥eN+1
u ∥2 +

N∑
n=0

(
∥ēn+1

u − enu∥2 +
1

2
∥en+1

u − ēn+1
u ∥2

)
+
ν0∆t

2

N∑
n=0

|ēn+1
u |21+

∆t

N∑
n=0

(
(2ν0 − ν1)|en+1

u |21 +
ν0
2
|en+1

u − ēn+1
u |21

)
≤ C∆t. (42)

As noted before, the established Lemma 4 and Corollary 1 so far, provide only 1/2-order estimates for both
velocity and temperature solutions. These estimates can further be improved to obtain a full first-order
as will be shown below. It should be also noted that, a simple inspection of the proof of temperature

estimates, it can be seen that the term ∆t

N∑
n=0

|ēn+1
u |21 is the only one preventing from having the full-first

order estimates, and it is originated from the treatment of the terms A2 in (38) and A4 in (39). It could be

possible to make the term ∆t

N∑
n=0

∥ēn+1
u ∥2 appears instead of ∆t

N∑
n=0

|ēn+1
u |21, but it would not be helpful at

that stage. However, the 1/2−order estimates being now established, we can get an improved estimate for

the term ∆t

N∑
n=0

∥ēn+1
u ∥2 (see Theorem 1) which will be useful to reach the full first-order estimates for the

temperature (see Theorem 2). The latter will guarantee full-first order estimates for the velocity as well.
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Theorem 1. Under the assumptions of Lemma 4 and Corollary 1, we have

∥eN+1
u ∥2V ′ +

N∑
n=0

∥en+1
u − enu∥2V ′ + ∆t

N∑
n=0

(
∥en+1

u ∥2 + ∥ēn+1
u ∥2

)
≤ C(∆t)2 + C∆t

N∑
n=0

∥enθ ∥2. □

Proof. Let first define the Stokes operator Aw = −PH

(
∇ · (ν(θ̄n+1)∇w)

)
, where PH is the orthogonal

projection onto H. Here, the operator A acts on D(A) = V ∩ H2(Ω) and its inverse, denoted A−1, is
compact on H and defined as follows: For a given φ ∈ H, v = A−1φ is the solution of the Stokes problem

−∇ ·
(
ν(θ̄n+1

R )∇v
)

+ ∇q = φ, in Ω,

∇ · v = 0, in Ω,

v = 0, on ∂Ω (43)

Thanks to the regularity of Stokes problem (see [63]), there exists a constant C1 > 0, independent of n, such
that

for all φ ∈ H, ∥A−1φ∥s = ∥v∥s ≤ C1∥φ∥s−2, for s = 1, 2. (44)

Furthermore, using the notation (·, ·) for the inner product in L2(Ω) and the bounds (7) of ν, we have from
(43)

(A−1φ,φ) = (v,φ) = −(∇ · (ν(θ̄n+1
R )∇v),v) + (∇q,v) = (ν(θ̄n+1

R )∇v,∇v) ≤ ν1|v|21,
and

(A−1φ,φ) = (ν(θ̄n+1
R )∇v,∇v) ≥ ν0|v|21.

On the other hand,

∥φ∥V ′ = sup
w∈V

⟨φ,w⟩V ′,V

|w|1
≤ C|v|1.

Hence, there exists constants C2, C3 > 0 such that

C3(A−1φ,φ) ≤ ∥φ∥2V ′ ≤ C2(A−1φ,φ), ∀ φ ∈ H. (45)

Next, adding (18) to (20) and substracting the sum from (27)and taking v = 2∆t A−1en+1
u , we get∫

Ω

en+1
u ·A−1en+1

u dx−
∫
Ω

enu ·A−1enu dx +

∫
Ω

(en+1
u − enu) ·A−1(en+1

u − enu) dx+

2∆t

∫
Ω

ν(θ̄n+1
R )∇en+1

u : ∇A−1en+1
u dx = 2α∆t

∫
Ω

(f(θR(tn+1)) − f(θnR)) ·A−1en+1
u dx︸ ︷︷ ︸

=D1

−2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θ̄n+1

R )
)
∇u(tn+1) : ∇(A−1en+1

u ) dx︸ ︷︷ ︸
=D2

−2∆t

(∫
Ω

(u(tn+1) · ∇)u(tn+1) ·A−1en+1
u dx−

∫
Ω

(un · ∇)ūn+1 ·A−1en+1
u dx

)
︸ ︷︷ ︸

=D3

+ 2∆t⟨In
u, A

−1en+1
u ⟩. (46)

The viscosity term in the left-hand side is treated by setting u = en+1
u in (43) to get

2∆t

∫
Ω

ν(θ̄n+1
R )∇en+1

u : ∇A−1en+1
u dx = 2∆t

∫
Ω

en+1
u ·

(
−∇ · (ν(θ̄n+1

R )∇(A−1en+1
u ))

)
dx,

= 2∆t

∫
Ω

en+1
u ·

(
en+1
u −∇q

)
dx,

= 2∆t∥en+1
u ∥2. (47)

For bounding the right-hand side terms, we proceed as follows:
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• Using the properties (3) of f the source term D1 is bounded by

D1 = 2α∆t

∫
Ω

(f(θR(tn+1)) − f(θnR)) ·A−1en+1
u dx,

≤ C∆t∥θ(tn+1) − θn∥ |A−1en+1
u |1,

≤ C(∆t)2
∫ tn+1

tn

∥∂tθ(t)∥2dt+ C∆t∥enθ ∥2 + ∆t∥en+1
u ∥2V ′ .

• By the embedding of H1(Ω) onto L4(Ω) in addition to the assumptions (24) on the exact velocity,
and the properties (7) of ν, we have for the term D2

D2 = −2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θ̄n+1

R )
)
∇u(tn+1) : ∇(A−1en+1

u ) dx,

By(7) and (24)

≤ C∆t∥ēn+1
θ ∥ |A−1en+1

u |1
≤ C∆t(∥ēn+1

θ − enθ ∥ + ∥enθ ∥)∥en+1
u ∥V ′ ,

≤ C∆t∥ēn+1
θ − enθ ∥2 + C∆t∥enθ ∥2 + ∆t∥en+1

u ∥2V ′ .

• The nonlinear term D3 is first split as

D3 = −2∆t

(∫
Ω

(u(tn+1) · ∇)u(tn+1) ·A−1en+1
u dx +

∫
Ω

(un · ∇)ūn+1 ·A−1en+1
u dx

)
,

= −2∆t

∫
Ω

(u(tn+1) − u(tn)) · ∇u(tn+1) ·A−1en+1
u dx︸ ︷︷ ︸

=D3,1

− 2∆t

∫
Ω

enu · ∇u(tn+1) ·A−1en+1
u dx︸ ︷︷ ︸

=D3,2

+2∆t

∫
Ω

enu · ∇ēn+1
u ·A−1en+1

u dx︸ ︷︷ ︸
=D3,3

−2∆t

∫
Ω

u(tn) · ∇ēn+1
u ·A−1en+1

u dx︸ ︷︷ ︸
=D3,4

,

then, each term in the right-hand side is bounded using the inequalities (9), as follows:

D3,1 ≤ C∆t∥u(tn+1) − u(tn)∥ |u(tn+1)|1∥A−1en+1
u ∥2,

By (23)

≤ C∆t∥
∫ tn+1

tn

∂tudt∥ ∥en+1
u ∥,

≤ C(∆t)2
∫ tn+1

tn

∥∂tu∥2dt+
∆t

4
∥en+1

u ∥2.

D3,2 ≤ C∆t∥enu∥ ∥u(tn+1)∥2 |A−1en+1
u |1,

By (23)

≤ C∆t∥enu∥ ∥en+1
u ∥V ′ ,

≤ C∆t
(
∥ēn+1

u − enu∥ + ∥en+1
u − ēn+1

u ∥ + ∥en+1
u ∥

)
∥en+1

u ∥V ′ ,

≤ ∆t

4
∥en+1

u ∥2 + C∆t∥en+1
u ∥2V ′ + C∆t

(
∥ēn+1

u − enu∥2 + ∥en+1
u − ēn+1

u ∥2
)
.

D3,3 ≤ C∆t∥enu∥ ∥A−1en+1
u ∥2|ēn+1

u |1,
By (44)

≤ C∆t∥enu∥ ∥en+1
u ∥|ēn+1

u |1,
By Corollary 1

≤ (∆t)
3
2 ∥en+1

u ∥ |ēn+1
u |1 ≤ C(∆t)2|ēn+1

u |21 +
∆t

4
∥en+1

u ∥2.
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D3,4 ≤ C∆t∥u(tn)∥2 |A−1en+1
u |1 ∥ēn+1

u ∥,

≤ C∆t∥en+1
u ∥2V ′ +

∆t

4
∥ēn+1

u ∥2. (48)

From (30), using (24), we have

∥ēn+1
u ∥2 ≤ ∥en+1

u ∥2 + ∥en+1
u − ēn+1

u ∥2 + 3ν1∆t|en+1
u |21 + ν1∆t|en+1

u − ēn+1
u |21 + ν1∆t|ēn+1

u |21
+2ν2C∆t∥θ̄n+1 − θn∥,

≤ ∥en+1
u ∥2 + ∥en+1

u − ēn+1
u ∥2 + 3ν1∆t|en+1

u |21 + ν1∆t|en+1
u − ēn+1

u |21 + ν1∆t|ēn+1
u |21

+C∆t∥ēn+1
θ − enθ ∥2 + C(∆t)2

∫ tn+1

tn

∥∂tθ∥2dt+ ∆t|en+1
u |21.

Hence, the inequality (48) becomes

D3,4 ≤ C∆t∥en+1
u ∥2V ′ +

∆t

4
∥en+1

u ∥2 + C∆t∥en+1
u − ēn+1

u ∥2 + C(∆t)2|en+1
u |21

+C(∆t)2|en+1
u − ēn+1

u |21 + C(∆t)2|ēn+1
u |21 + C(∆t)3

∫ tn+1

tn

∥∂tθ∥2dt+ C(∆t)2∥ēn+1
θ − enθ ∥2.

• The integral residual term

2∆t⟨In
u, A

−1en+1
u ⟩ ≤ C∆t∥In

u∥−1 |A−1en+1
u |1,

≤ C∆t∥In
u∥−1 ∥en+1

u ∥V ′ ,

≤ C∆t∥In
u∥2−1 + ∆t∥en+1

u ∥2V ′

≤ C(∆t)2
∫ tn+1

tn

∥∂ttu∥2−1dt+ ∆t∥en+1
u ∥2V ′ .

Taking the sum of (46) over n = 0, 1, . . . , N , using (45) and (47), and combining all the previous
inequalities, we obtain

∥eN+1
u ∥2V ′ +

N∑
n=0

∥en+1
u − enu∥2V ′ + ∆t

N∑
n=0

∥en+1
u ∥2 ≤ C∆t

N∑
n=0

∥en+1
u ∥2V ′+

C∆t

N∑
n=0

(
∥enθ ∥2 + ∥ēn+1

θ − enθ ∥2
)

+ C∆t

N∑
n=0

(
∥ēn+1

u − enu∥2 + ∥en+1
u − ēn+1

u ∥2
)

+

C(∆t)2
N∑

n=0

(|ēn+1
u |21 + |en+1

u |21 + |en+1
u − ēn+1

u |21)+

C(∆t)2
N∑

n=0

∥ēn+1
θ − enθ ∥2 + C(∆t)2

∫ Tf

0

∥∂tθ∥2dt+

C(∆t)2
∫ Tf

0

∥∂tu∥2dt+ C(∆t)3
∫ Tf

0

∥∂tθ∥2dt+ C(∆t)2
∫ Tf

0

∥∂ttu∥2−1dt.

Using the estimates in Corollary 1 and Lemma 4 along with the assumptions (23) and (22) on the
continuous velocity and temperature solutions, we arrive at

∥eN+1
u ∥2V ′ +

N∑
n=0

∥en+1
u −enu∥2V ′ + ∆t

N∑
n=0

∥en+1
u ∥2 ≤ C(∆t)2 +C∆t

N∑
n=0

∥enθ ∥2 +C∆t

N∑
n=0

∥en+1
u ∥2V ′ .
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Applying the discrete Gronwall lemma 1, we get

∥eN+1
u ∥2V ′ +

N∑
n=0

∥en+1
u − enu∥2V ′ + ∆t

N∑
n=0

∥en+1
u ∥2 ≤ C(∆t)2 + C∆t

N∑
n=0

∥enθ ∥2.

Finally, from the last inequality along with Corollary 1, we also deduce

∆t

N∑
n=0

∥ēn+1
u ∥2 ≤ 2∆t

N∑
n=0

(∥en+1
u − ēn+1

u ∥2 + ∥en+1
u ∥2) ≤ C(∆t)2 + C∆t

N∑
n=0

∥enθ ∥2,

which completes the proof.

Next, with the estimates of Theorem 1 at hand, it is possible to obtain full first-order estimates for the
temperature errors as presented in this theorem:

Theorem 2. Under the assumptions of Theorem 1, we have

∥eN+1
θ ∥2 +

N∑
n=0

(
∥ēn+1

θ − enθ ∥2 + ∥en+1
θ − ēn+1

θ ∥2
)

+

∆t

N∑
n=0

(
λ0
2
|ēn+1

θ |21 +
λ0
2
|en+1

θ − ēn+1
θ |21 + (2λ0 − λ1)|en+1

θ |21
)

≤ C(∆t)2.
□

(49)

Proof. As noted before, the problematic term that was compromising the order in Lemma 4 of the error
estimates for the temperature, was introduced by the terms A2(38) and A4 (39). Hence, the proof here
will literally shadows the proof of Lemma 4 except for the treatment of those problematic terms that will
be handled properly in order to benefit from the improved estimates of Theorem 1. In fact, the terms of
interest, A2 in (38) and A4 in (39) could have been developed as

A2 = −∆t

∫
Ω

(ēn+1
u · ∇)θ(tn+1)ēn+1

θ dx + ∆t

∫
Ω

(ēn+1
u · ∇)ēn+1

θ θ(tn+1) dx,

By (9)

≤ C∆t∥ēn+1
u ∥ ∥θ(tn+1)∥2 |ēn+1

θ |1 + C∆t∥ēn+1
u ∥ |ēn+1

θ |1 ∥θ(tn+1)∥2,
By (22)

≤ C∆t∥ēn+1
u ∥2 +

λ0∆t

12
|ēn+1

θ |21,

and

A4 = −∆t

∫
Ω

(ēn+1
u · ∇)Rθ(tn+1)ēn+1

θ dx + ∆t

∫
Ω

(ēn+1
u · ∇)ēn+1

θ Rθ(tn+1) dx,

By (9)

≤ C∆t∥ēn+1
u ∥ ∥Rθ(tn+1)∥2|ēn+1

θ |1 + C∆t∥ēn+1
u ∥ |ēn+1

θ |1 ∥Rθ(tn+1)∥2,
By (31)

≤ C∆t∥ēn+1
u ∥2 +

λ0∆t

12
|ēn+1

θ |21,

to finally get the inequality

∥eN+1
θ ∥2 +

N∑
n=0

(
∥ēn+1

θ − enθ ∥2 + ∥en+1
θ − ēn+1

θ ∥2
)

+

∆t

N∑
n=0

(
λ0
2
|ēn+1

θ |21 +
λ0
2
|en+1

θ − ēn+1
θ |21 + (2λ0 − λ1)|en+1

θ |21
)

≤ C∆t

N∑
n=0

∥enθ ∥2

+ C∆t

N∑
n=0

∥ēn+1
u ∥2 + C∆t

N∑
n=0

∥ēn+1
θ − enθ ∥2 + C(∆t)2

∫ Tf

0

(
∥∂tθ∥2 + ∥∂ttθ∥2−1

)
dt. (50)
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Thanks to Theorem 1, we have

∆t

N∑
n=0

∥ēn+1
u ∥2 ≤ C(∆t)2 + C∆t

N∑
n=0

∥enθ ∥2,

and by Lemma 4 along with the assumptions (22), we obtain

∥eN+1
θ ∥2 +

N∑
n=0

(
∥ēn+1

θ − enθ ∥2 + ∥en+1
θ − ēn+1

θ ∥2
)

+

∆t

N∑
n=0

(
λ0
2
|ēn+1

θ |21 +
λ0
2
|en+1

θ − ēn+1
θ |21 + (2λ0 − λ1)|en+1

θ |21
)

≤ C(∆t)2 + C∆t

N∑
n=0

∥enθ ∥2. (51)

Applying the discrete Gronwall lemma 1, ends the proof.

It should be noted that thanks to Theorem 2, we have from Theorem 1,

∥eN+1
u ∥2V ′ +

N∑
n=0

∥en+1
u − enu∥2V ′ + ∆t

N∑
n=0

(
∥en+1

u ∥2 + ∥ēn+1
u ∥2

)
≤ C(∆t)2. (52)

At this stage, we are able (thanks to Theorem 2) to obtain the following first-order error estimates for the
end-of-step velocity:

Theorem 3. Under the assumptions of Theorem 1, we have

∥eN+1
u ∥2 +

N∑
n=0

∥en+1
u − enu∥2 +

ν0∆t

2

N∑
n=0

|en+1
u |21 ≤ C(∆t)2.

□
(53)

Proof. By adding (18) to (20) and substructing the sum from (27), we get∫
Ω

en+1
u − enu

∆t
· v dx +

∫
Ω

ν(θR(tn+1))∇u(tn+1) : ∇v dx−
∫
Ω

ν(θ̄n+1
R )∇un+1 : ∇v dx =

α

∫
Ω

(f(θR(tn+1)) − f(θnR)) · v dx +

∫
Ω

p(tn+1)∇ · v −
∫
Ω

pn+1∇ · v dx−∫
Ω

(u(tn+1) · ∇)u(tn+1) · v dx +

∫
Ω

(un · ∇) ūn+1 · v dx + ⟨In
u,v⟩. (54)

Taking v = 2∆ten+1
u and considering the assumptions (7) on ν result in

∥en+1
u ∥2 − ∥enu∥2 + ∥en+1

u − enu∥2 + 2ν0∆t|en+1
u |21 ≤ 2α∆t

∫
Ω

(f(θR(tn+1)) − f(θnR)) · en+1
u dx

− 2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θ̄n+1

R )
)
∇u(tn+1) : ∇en+1

u dx

− 2∆t

∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx +

∫
Ω

(un · ∇) ūn+1 · en+1
u dx + 2∆t⟨In

u, e
n+1
u ⟩.

The right-hand side terms of the above inequality are bounded as follows:

• Thanks to the second property of (3) along with the Poincaré inequality on en+1
u , the source term is

upper-bounded by

2α∆t

∫
Ω

(f(θR(tn+1)) − f(θnR)) · en+1
u dx ≤ C(∆t)2

∫ tn+1

tn

∥∂tθ∥2dt+ C∆t∥enθ ∥2 +
ν0∆t

12
|en+1

u |21.
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• Using the properties 7 of ν, and the assumption (24) on the exacte velocity u,

−2∆t

∫
Ω

(
ν(θR(tn+1)) − ν(θ̄n+1

R )
)
∇u(tn+1) : ∇en+1

u dx ≤ 2ν2∆t

∫
Ω

|ēn+1
θ | |∇u(tn+1) : ∇en+1

u | dx

≤ C∆t∥ēn+1
θ ∥ |en+1

u |

≤ C∆t∥ēn+1
θ ∥2 +

ν0∆t

12
|en+1

u |21.

• The nonlinear term is handled as follow

− 2∆t

∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx +

∫
Ω

(un · ∇) ūn+1 · en+1
u dx

= −2∆t

∫
Ω

((u(tn+1) − u(tn)) · ∇)u(tn+1) · en+1
u dx︸ ︷︷ ︸

=L1

−2∆t

∫
Ω

(enu · ∇)u(tn+1) · en+1
u dx︸ ︷︷ ︸

=L2

+2∆t

∫
Ω

(u(tn) · ∇)en+1
u · ēn+1

u dx︸ ︷︷ ︸
=L3

−2∆t

∫
Ω

(enu · ∇)en+1
u · ēn+1

u dx︸ ︷︷ ︸
=L4

,

where the terms L1, L2, L3 and L3 are are bounded separately as

L1 = −2∆t

∫
Ω

((u(tn+1) − u(tn)) · ∇)u(tn+1) · en+1
u dx,

≤ C∆t∥u(tn+1) − u(tn)∥ ∥u(tn+1)∥2 |en+1
u |1,

(using (23))

≤ C∆t∥u(tn+1) − u(tn)∥ |en+1
u |1,

≤ C(∆t)2
∫ tn+1

tn

∥∂tu∥2dt+
ν0∆t

12
|en+1

u |21.

L2 = −2∆t

∫
Ω

(enu · ∇)u(tn+1) · en+1
u dx,

≤ C∆t∥enu∥ ∥u(tn+1)∥2 |en+1
u |1

(using (23))

≤ C∆t∥enu∥ |en+1
u |1,

≤ C∆t∥enu∥2 +
ν0∆t

12
|en+1

u |21.

L3 = 2∆t

∫
Ω

(u(tn) · ∇)en+1
u · ēn+1

u dx,

≤ C∆t∥u(tn)∥2 |en+1
u |1 ∥ēn+1

u ∥,
using (23)

≤ C∆t∥ēn+1
u ∥2 +

ν0∆t

12
|en+1

u |21.

L4 = −2∆t

∫
Ω

(enu · ∇)en+1
u · ēn+1

u dx,

(using (9))

≤ C∆t|enu|
1
2
1 ∥enu∥

1
2 |en+1

u |1 |ēn+1
u |1,

≤ C∆t|enu|1 ∥enu∥ |ēn+1
u |21 +

ν0∆t

12
|en+1

u |21,

≤ C∆t∥enu∥2 +
ν0∆t

2
|enu|21 +

ν0∆t

12
|en+1

u |21,
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where we have used
|ēn+1

u |1 ≤ C,

that follows from Corollary 1.

• The integral residual term

2∆t⟨In
u, e

n+1
u ⟩ ≤ C(∆t)2

∫ tn+1

tn

∥∂ttu∥2−1dt+
ν0∆t

12
|en+1

u |21.

Gathering the above inequalities, we arrive at

∥en+1
u ∥2 − ∥enu∥2 + ∥en+1

u − enu∥2 + ν0∆t|en+1
u |21 ≤ C∆t∥enu∥2 + C∆t∥enθ ∥2 + C∆t∥ēn+1

θ ∥2

+ C(∆t)2
∫ tn+1

tn

∥∂tu∥2dt+ C∆t∥ēn+1
u ∥2 +

ν0∆t

2
|enu|21

+ C(∆t)2
∫ tn+1

tn

∥∂ttu∥2−1dt+ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt. (55)

Writing
∥ēn+1

u ∥2 ≤ 2∥ēn+1
u − enu∥2 + 2∥enu∥2,

the inequality (55) becomes

∥en+1
u ∥2 − ∥enu∥2 + ∥en+1

u − enu∥2 +
ν0∆t

2

(
|en+1

u |21 − |enu|21
)

+
ν0∆t

2
|en+1

u |21 ≤

C∆t∥enu∥2 + C∆t∥enθ ∥2 + C∆t∥ēn+1
θ ∥2 + C(∆t)2

∫ tn+1

tn

∥∂tu∥2dt+ C∆t∥ēn+1
u − enu∥2+

C(∆t)2
∫ tn+1

tn

∥∂ttu∥2−1dt+ C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt.

Taking the sum over n = 0, 1, . . . , N , considering the bounds of Corollary 1 for the term ∥ēn+1
u − enu∥2, the

conditions (23) and (22) along with the bounds

∆t

N∑
n=0

∥enθ ∥2 ≤ C(∆t)2,

and

C∆t

N∑
n=0

∥ēn+1
θ ∥2 ≤ 2∆t

N∑
n=0

(∥ēn+1
θ − enθ ∥2 + ∥enθ ∥2) ≤ C(∆t)2,

which results from Theorem 2, we get

∥eN+1
u ∥2 +

ν0∆t

2
|eN+1

u |21 +

N∑
n=0

∥en+1
u − enu∥2 +

ν0∆t

2

N∑
n=0

|en+1
u |21 ≤ C(∆t)2 + C∆t

N∑
n=0

∥enu∥2.

The discrete Gronwall Lemma 1 applied to the above inequality, ends the proof.

In the next lemma, we establish 1/2-order estimates for the semi-discrete pressure in the L2
(
0, Tf ;L2(Ω)

)
norm.

Theorem 4. Under the same assumptions as Theorem 1, we have

∆t

N∑
n=0

∥p(tn+1) − pn+1∥2 ≤ C∆t.
□

(56)
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Proof. From (54), we have∫
Ω

(
p(tn+1) − pn+1

)
∇ · v dx =

∫
Ω

en+1
u − enu

∆t
· v dx +

∫
Ω

(
ν(θR(tn+1)) − ν(θ̄n+1

R )
)
∇u(tn+1) : ∇v dx+∫

Ω

ν(θ̄n+1
R )∇en+1

u : ∇v dx− α

∫
Ω

(f(θR(tn+1)) − f(θnR)) · v dx+∫
Ω

(u(tn+1) · ∇)u(tn+1) · v dx−
∫
Ω

(un · ∇) ūn+1 · v dx− ⟨In
u,v⟩. (57)

The Inf-Sup condition [64] leads to

∥p(tn+1) − pn+1∥ ≤ C sup
v∈H1

0(Ω

∫
Ω

(
p(tn+1) − pn+1

)
∇ · v dx

|v|1
.

Furthermore, the right-hand side terms of (57) have the following bounds∫
Ω

en+1
u − enu

∆t
· v dx ≤ C∥e

n+1
u − enu

∆t
∥ |v|1, (By Cauchy-Schwarz and Poincaré inequalities),∫

Ω

(
ν(θR(tn+1)) − ν(θ̄n+1

R )
)
∇u(tn+1) : ∇v dx ≤ ν2

∫
Ω

|θR(tn+1)−θ̄n+1
R | |∇u(tn+1) : ∇v| dx ≤ C∥ēn+1

θ ∥ |v|1,

and ∫
Ω

ν(θ̄n+1
R )∇en+1

u : ∇v dx ≤ ν1|en+1
u |1|v|1,

where we have used the properties (7) of ν and the assumption (24) on the continuous velocity.

−α
∫
Ω

(f(θR(tn+1)) − f(θnR)) · v ≤ ∥θ(tn+1) − θn∥ ∥v∥ dx ≤
(
∥
∫ tn+1

tn

∂tθdt∥ + ∥enθ ∥
)

|v|1,

≤
(

∆t

∫ tn+1

tn

∥∂tθ∥2dt
) 1

2

|v|1 + ∥enθ ∥ |v|1,

thanks to (3) and Poincaré’s inequality.

⟨In
u,v⟩ ≤ ∥In

u∥−1|v|1 ≤
(

∆t

∫ tn+1

tn

∥∂ttu∥2−1dt

) 1
2

|v|1.

The nonlinear term is split into three terms and bounded as follows:∫
Ω

(u(tn+1) · ∇)u(tn+1) · v dx−
∫
Ω

(un · ∇) ūn+1 · v dx =

∫
Ω

(u(tn+1) − u(tn) · ∇)u(tn+1) · v dx

+

∫
Ω

(enu · ∇)u(tn+1) · v dx +

∫
Ω

(un · ∇) ēn+1
u · v dx.

∫
Ω

(u(tn+1) − u(tn) · ∇)u(tn+1) · v dx ≤ C∥u(tn+1) − u(tn)∥ ∥u(tn+1)∥2|v|1

By (23)

≤ C

(
∆t

∫ tn+1

tn

∥∂tu∥2dt
) 1

2

|v|1.

∫
Ω

(enu · ∇)u(tn+1) · v dx ≤ C|enu|1|u(tn+1)|1|v|1,

Using (23)

≤ C|enu|1|v|1.
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∫
Ω

(un · ∇) ēn+1
u · v dx = −

∫
Ω

(enu · ∇)ēn+1
u · v dx−

∫
Ω

(u(tn) · ∇)v · ēn+1
u dx

≤ C|enu|1 |ēn+1
u |1 |v|1 + C∥u(tn)∥2 |v|1 ∥ēn+1

u ∥ ≤ C|enu|1 |v|1 + C|v|1 ∥ēn+1
u ∥,

where we have used ∥u(tn)∥2 ≤ C and |ēn+1
u |1 ≤ C that result from (23) and Corollary 1, respectively.

Combining the above inequalities, we get

∆t∥p(tn+1) − pn+1∥2 ≤ C
1

∆t
∥en+1

u − enu∥2 + C∆t
(
∥ēn+1

θ ∥2 + |en+1
u |21 + |enu|21 + ∥ēn+1

u ∥2 + ∥enθ ∥2
)

+

C(∆t)2
∫ tn+1

tn

∥∂tθ∥2dt+ C(∆t)2
∫ tn+1

tn

∥∂ttu∥2−1dt+ C(∆t)2
∫ tn+1

tn

∥∂tu∥2dt.

Hence, summing up the last inequality for n = 0, 1, . . . , N , and considering the already established estimates
of Corollary 1, Lemma 4, Lemma 3 along with the assumptions (22), (23) on the continuous temperature
and velocity solutions, we obtain (56).

5. Numerical results and examples

In this section we examine the performance of the proposed viscosity-splitting method for solving two
examples of incompressible flows with temperature-dependent viscosity and thermal conductivity governed
by the equations (4). We first solve a three-dimensional problem with manufactured exact solutions to
validate the theoretical error estimates presented in the present study regarding the semi-discrete velocity,
temperature and pressure computed by the proposed method. In the second example, we consider the
two-dimensional benchmark problem of Rayleigh-Bénard flows to demonstrate the ability of the proposed
viscosity-splitting algorithm to resolve complex thermal and flow patterns. We also solve the problem of
unsteady flow over a heated airfoil. In all these examples, the spatial discretization is performed using the
standard Taylor-Hood P2/P1 mixed finite elements such that the quadratic P2 finite elements are used for
the velocity u and temperature θ whereas the linear P1 finite elements are used for the pressure p. Note
that it is well known that this class of mixed finite elements satisfies the inf-sup condition required in Step
3 of the viscosity-splitting algorithm. For completeness, the mixed finite element method for solving the
semi-discrete equations (18)-(21) is formulated in Appendix A. In all the computations reported herein, the
resulting linear systems of algebraic equations are solved using the Generalized Minimal Residual (GMRES)
iterative solver with a tolerance of 10−7 to stop the iterations.

5.1. Accuracy example

To assess the accuracy of the proposed viscosity-splitting method and its theoretical error estimates, we
consider a problem with known analytical solution. Here, we solve the equations (4) in the three-dimensional
domain Ω = [0, 1]3 subject to Dirichlet-type boundary conditions and temperature-dependent viscosity and
thermal conductivity defined as

ν(θ) = λ(θ) =
(
1 + sin2(θ)

)
× 10−4. (58)

The boundary functions are defined such that the analytical solution of the system (4) is given by

u(t, x, y, z) =
(
x2 + xy − z2 + yz, 2xy + 0.5y2 + 2yz − 2xz, z2 + y2 − x2 + 3xy

)⊤
sin(t) exp (−2t) ,

θ(t, x, y, z) = 2 +
(
x2 + y2 + z2 + 1

)
sin(t) exp (−2t) , (59)

p(t, x, y, z) =

(
x− y + 3z − 3

2

)
sin(t) exp (−2t) .
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Figure 1: Convergence results for the velocity u, pressure p, intermediate temperature θ̄ and the end-of-step temperature θ
obtained for the accuracy example.

Using these exact solutions and (58), expressions of the source terms f and g in (4) are calculated as

αf =
∂u

∂t
+ (u · ∇)u−∇ · (ν(θ)∇u) + ∇p− 2 (1 − exp (−θ)) ,

g =
∂θ

∂t
+ (u · ∇) θ −∇ · (λ(θ)∇θ) .

Note that the analytical solution (59) is constructed to be polynomials in space with the same degree as
the finite element polynomial basis, that would drastically eliminate the spacial errors and enable a better
assessment of the behavior of time errors which are the prime interest of the present work. Hence, the
convergence rates are evaluated using errors between the analytical and numerical solutions calculated by
the following discrete norms

∥e∥l2(X) =

(
∆t

N∑
n=0

∥en∥X

)1/2

, ∥e∥l∞(X) = sup
n=0,...,N

∥en∥X ,

where X is assumed to be L2(Ω) or H1(Ω) for the velocity solution, and as L2(Ω) or H1(Ω) for temperature

and pressure solutions. Different timesteps defined by ∆t =
0.1

2n
(n = 1, . . . , 5) are used in our simulations

and the obtained results are presented at the final time t = 0.5 using a structured finite element mesh with
20 × 20 × 20 elements.

Figure 1 presents the time errors for the velocity u, the pressure p, the intermediate temperature θ̄ and the
end-of-step temperature θ, in the selected norms l2

(
0, Tf ;L2(Ω)

)
, l2

(
0, Tf ;H1(Ω)

)
and l∞

(
0, Tf ;L2(Ω)

)
.

For the considered flow conditions, the convergence plots indicate that the L2-error and H1-error for the
velocity solution and the L2-error and H1-error for the temperature solution are of full first-order as predicted
by the established error estimates. However, the l∞(L2)-error for the velocity solution and the l∞(L2)-error
for the temperature solution are higher than the predicted first-order as they reach the second-order. It
should be pointed out that the convergence rates achieved for the pressure solution in this example indicate
a higher order than the theoretical 1/2-order estimated above, which stipulates that the established error
estimates of the pressure are sub-optimal and they can be further improved. In addition, it is clear for this
test example that the obtained error plots maintain the same trend which is also consistent with the error
estimates proved in the present study for the proposed viscosity-splitting method.

5.2. Problem of Rayleigh-Bénard convection

Next, we consider the well-established flow benchmark of Rayleigh-Bénard convection widely used in the
literature to assess numerical methods in computational fluid dynamics and heat transfer, see for instance
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Figure 2: Configuration of the computational domain along with the boundary conditions used for the problem of Rayleigh-
Bénard convection.

[65, 66]. In our computations for this example we used the same thermal flow configuration and the same
boundary conditions as detailed in the previous references. Hence, we solve the equations (4) in a rectangular
domain of length L and height H as shown in Figure 2. This figure also depicts the boundary conditions used
for the temperature and flow velocity. Here, the fluid is confined between two horizontal heat-conducting
plates fixed at hot temperature θH and cold temperature θC , and when the temperature difference between
the two plates is large enough, it triggers a convection flow phenomena in which the high-temperature fluid
rises up and the low-temperature fluid falls down under the effect of the buoyancy force. Thus, using the
Boussinesq approximation, the source terms in (4) are given by

αf(θ) = βg (θ − θC) , g = 0,

where β is the coefficient of thermal expansion and g the gravitational force. In all the simulations reported in
this section ν = 1.54×10−5m2/s, λ = 2.2×10−5m2/s, β = 3×10−3 /K, g = (0, 9.8 m/s2)⊤, θC = 313K and
θH = 323K. Based on a mesh convergence study not reported here for brevity, an unstructured triangular
mesh of 53472 mixed elements with 27287 pressure nodes and 108045 velocity and temperature nodes is
used in the simulations as it offers a compromise between accuracy and efficiency in the proposed viscosity-
splitting method. The timestep ∆t is fixed to 0.01 s and steady-state numerical results are presented for four
different aspect ratios L

H = 6, 7, 8 and 10 with H = 1 m. Here, the time stepping is terminated when the
relative difference in the velocity and temperature solutions in L2-norm between two consecutive timesteps
is less than a tolerance of 10−7.

In Figure 3 we present the streamlines and velocity magnitudes obtained using the selected values of the
aspect ratio L

H . Those results obtained for the isothermal lines and temperature distributions are illustrated
in Figure 4. For the considered natural convection regimes, it can be clearly seen that the complicated
flow and heat features are well captured by the proposed viscosity-splitting method. As it can be seen
from the results shown in these figures, the formation of convection cells is clearly detected for all the
considered domains with more flow recirculation cells in longer domains, and the flow in each of these
cells is rotating in the opposite direction to its neighboring cells. This is mainly due to the important
temperature difference (θH − θC) between the two horizontal plates in the computational domain. In fact,
with a small temperature gradient, the fluid viscosity overcomes the buoyancy force and the fluid remains at
rest while the temperature is transported by the conduction only (no convection effects). As the temperature
difference increases, the buoyancy force dominates the viscous effects and tends to push the heated fluid
from the bottom up to the surface. On the other hand, the colder fluid is pushed down (which explains
the wavy temperature distribution in Figure 4) where it is heated and then pushed upward by the same
mechanism. Consequently, the convection motion occurs and the well-known Rayleigh-Bénard cells appear in
the computational domain. These observations are in good agreement with those reported in the literature,
see for example [65, 66] confirming that the proposed viscosity-splitting method accurately captures the
overall thermal patterns of this class of natural convection problems.
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Figure 3: Snapshots of the velocity magnitude along with streamlines for the problem of Rayleigh-Bénard convection using

different aspect ratios. From top to bottom
L

H
= 6, 7, 8 and 10.

5.3. Problem of flow over a heated airfoil
In this example we consider a two-dimensional flow over an airfoil-like body kept at a hot temperature

θH and placed in a rectangular domain filled with a Newtonian fluid. The fluid enters from the left with a
uniform velocity u = (U∞, 0)⊤ and at a cold temperature θC as it flows past the airfoil. The airfoil is inclined
with an attack angle ω and over which no-slip boundary conditions are imposed. The upper and lower walls
are maintained at the cold temperature θC and are subject to no-penetration boundary conditions for the
velocity while the outlet wall is insulated with no-flux boundary conditions for the velocity, see Figure 5 for
an illustration of the domain and the associated boundary conditions used for this flow problem. The fluid
is assumed to have a temperature-dependent viscosity and thermal conductivity according to the following
laws

ν(θ) = γ0 exp

(
θC
θ

)
, λ(θ) = κ

(
1 + 0.3

θ − θC
θH − θC

)
.

Here, we solve the system (4) subject to the Boussinesq approximation for which the source terms are given
by

αf(θ) = βg (θ − θC) , g = 0,

where g = (0, 9.8 m/s2)T is the gravitational force and β is the coefficient of thermal expansion. Note that
for this class of mixed convection problems, the flow is characterized by the two non-dimensional Reynolds
number Re and the Prandtl number Pr defined as

Re =
ρU∞L

γ0
, P r =

κ

γ0
,

where the density ρ and the chord length L are set to unit in this example. In addition, as in most unsteady
flow simulations, we also define the drag coefficient Cd and the lift coefficient Cl by

Cd =
F1

1

2
ρU∞L

, Cl =
F2

1

2
ρU∞L

,
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Figure 4: Snapshots of the temperature along with isothermal lines for the problem of Rayleigh-Bénard convection using

different aspect ratios. From top to bottom
L

H
= 6, 7, 8 and 10.
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u1 = U∞

θ = θC

u2 = 0 θ = θC

u2 = 0 θ = θC

Figure 5: Domain configuration along with the boundary conditions used in our simulations for the problem of flow over a
heated airfoil.

where F = (F1, F2)⊤ is the force acting on the airfoil and it is computed using

F =

∮
∂A

(−pI + ν(θ)∇u) · n ds,

where ∂A is the airfoil boundary, I the unit 2 × 2-matrix and n the unit outward normal vector on ∂A. In
our computations for this flow problem, L = 1 m, β = 3×10−3 /K, U∞ = 1 m/s, θC = 300 K, θH = 320 K.
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t = 5 s t = 100 s

Figure 6: Snapshots of the velocity magnitude along with streamlines (first row) and temperature distributions along with
isotherms (second row) for the problem of flow over a heated airfoil using ω = 45◦ at two different instants t = 5 s (first
column) and t = 100 s (second column).

t = 5 s t = 100 s

Figure 7: Same as Figure 6 but using ω = 60◦.

An unstructured triangular mesh of 22974 mixed elements with 11487 pressure nodes and 45664 velocity
and temperature nodes is employed in our simulations, whereas the timestep ∆t is fixed to 0.05 s and the
obtained numerical results are presented at two different instants namely, t = 5 s and 100 s for the Prandtl
number Pr = 0.71 and the Reynolds number Re = 100 using five different values of the inclination angle
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t = 5 s t = 100 s

Figure 8: Same as Figure 6 but using ω = 90◦.
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Figure 9: Time evolution of the drag coefficient (left) and the lift coefficient (right) for the problem of flow over a heated airfoil
using different inclination angles.

ω = 0◦, 30◦, 45◦, 60◦ and 90◦.
Figure 6 depicts the temperature distributions along with isotherms and the streamlines along with the

velocity magnitudes obtained at the selected instants t = 5 s and t = 100 s using the inclination angle
ω = 45◦. Those results obtained using the inclination angles ω = 60◦ and ω = 90◦ are presented in Figure 7
and Figure 8, respectively. For the considered mixed convection at Re = 100 and up to the inclination angle
ω = 45◦, the flow is still reaching a steady regime after the transient effects disappear. For ω = 60◦, the
flow already develops a nonstationary state with longer two recirculation zones and moderate oscillations
in the wake behind the airfoil. As the airfoil is further inclined towards the vertical position at ω = 90◦,
the downstream region becomes more agitated with larger recirculation zones and more frequent oscillations
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Table 1: Averaged Nusselt number for the problem of flow over a heated airfoil using different inclination angles.

ω = 0◦ ω = 30◦ ω = 45◦ ω = 60◦ ω = 90◦

Nu 205.422 181.634 177.823 176.295 178.384

in the downstream region where the vortex shedding is clearly recognizable. These unsteady effects can
clearly be seen in Figure 9 where the time evolution of the drag coefficient Cd and the lift coefficient Cl

are depicted for the selected values of the inclination angle. We can observe a transition to the unsteady
behavior in this figure under the influence of the inclination angle ω as the drag and lift coefficients maintain
oscillatory features starting from ω = 60◦. It is also noticeable that the airfoil experiences important drag
when it is more inclined which is expected since in this case more surface of the body is exposed to the main
flow. These results also confirm that the proposed time viscosity-splitting method is very attractive since
the computed flow solutions remain stable and accurate for the thermal convection flows.

From the obtained temperature distributions we observe that the isotherms are more distorted behind
the airfoil which indicates that at the considered Reynolds number, the advection is reasonably strong and it
is the dominant mode of heat transfer over the conduction and natural convection generated by the buoyancy
force such that the heat released from the source is mainly transported downstream by the upcoming flow.
This process is also influenced by the inclination angle of the airfoil since it controls the flow development
at the fixed Re and Pr numbers. This dominance of convective heat transfer is also checked by calculating
the averaged Nusselt number Nu over the airfoil surface defined as a ratio of the heat transfer by convection
to the heat transfer by conduction as

Nu =

∮
∂A

∂θ

∂n
ds,

where ∂A is the airfoil surface and n its associated unit outward normal vector. Table 1 summarizes the
obtained values of the averaged Nusselt number Nu at time t = 100 s using the considered inclination
angles. It is clear from the obtained results that the averaged Nusselt number takes high values (> 100)
for all considered inclination angles which indicates greater convective heat transport ongoing in the main
flow region. Overall we can conclude that the main features of this test case including transient and the
interplay between heat transport and flow properties have been successfully captured by the proposed time
viscosity-splitting method.

6. Conclusions

In this work a viscosity-splitting method is proposed and analyzed for a class of generalized natural
convection problems in which the viscosity and thermal conductivity are temperature-dependent along with
a more general source term. We have conducted a detailed error analysis and managed to prove first-order
error estimates for the velocity and temperature solutions in the L2 and H1 norms, and 1/2-order error for
the pressure solution in the L2 norm. Unlike most of the fractional-step methods appearing in the literature,
the temperature in our time integration scheme is transported by a non-divergence-free velocity field. This
property renders the error analysis of the proposed viscosity-splitting method more subtle as some additional
terms appear in its formulation, due the new convection term in the temperature, which may deteriorate the
order of convergence. Therefore, an involved treatment was elaborated in order to maintain the full first-
order of the viscosity-splitting method. The theoretical error estimates for the velocity and the temperature
as well as the performance of the method were validated using three numerical examples of incompressible
flows with temperature-dependent viscosity and thermal conductivity. In future work, we are interested in
extending the obtained results to more complex thermal flows involving non-Newtonian fluids. Establishing
error estimates for the fully discrete problems using the mixed finite element method will also be considered
for future work.
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Appendix A. Formulation of the mixed finite element method

For the space discretization of the domain Ω = Ω ∪ ∂Ω, we generate a quasi-uniform partition Ωh ⊂ Ω
of elements Tk (triangles or quadrilaterals in two space dimensions) such that Ω = ∪Ne

k=1Tk, where Ne is the
number of elements of Ωh, h a space discretization parameter and Tj the finite elements. For the conforming
finite element spaces for the velocity/temperature and pressure, we use the mixed Taylor-Hood P2-P1 finite
elements i.e., polynomials of second degree for the velocity and temperature and polynomials of first degree
for the pressure. It is well known that for such elements the discrete velocity and pressure solutions satisfy
the inf-sup condition, see for instance [67]. The associated finite element spaces are defined as

Vh =
{
uh ∈ C0(Ω) : uh

∣∣
Tj

∈ P2(Tj), ∀ Tj ∈ Ωh

}
,

Qh =
{
ph ∈ C0(Ω) : ph

∣∣
Tj

∈ P1(Tj), ∀ Tj ∈ Ωh

}
,

where P2(Tj) and P1(Tj) are polynomial spaces defined in the element Tj . Here, since the velocity field is a
vector of two dimensions, the associated finite element space is defined as V h = Vh×Vh. Thus, we formulate
the finite element solutions to un(x) ∈ V h, θn(x) ∈ Vh and pn(x) ∈ Qh as

un
h(x) =

Nu∑
j=1

Un
j φj(x), θnh(x) =

Nu∑
j=1

Θn
j φj(x) pnh(x) =

Np∑
k=1

Pn
k ψk(x), (A.1)

where Nu and Np are respectively, the numbers of velocity/temperature and pressure mesh points in Ωh.

The solutions Un
j =

(
Un
j , V

n
j

)⊤
, Θn

i and Pn
k are the corresponding nodal values of un

h(x), θnh(x) and pnh(x),

respectively. These values are defined as Un
j = un

h(xj), Θn
j = θnh(xj) and Pn

k = pnh(yk) where {xj}Nu
j=1 and

{yk}
Np

k=1 are respectively, the sets of velocity/temperature and pressure mesh points in Ωh, with Np < Nu

and {y1, . . . ,yNp
} ⊂ {x1, . . . ,xNu

}. In (A.1), {φj}Nu
j=1 and {ψk}

Np

k=1 are respectively, the sets of global nodal
basis functions of the velocity/temperature and the pressure characterized by the property φi(xj) = δij and
ψi(yk) = δik with δ denotes the Kronecker symbol. Hence, the fully discrete formulation of the steps
(18)-(21) reads:

Step 1: For all vh ∈ V h, compute ūn+1
h ∈ V h solution of∫

Ωh

ūn+1
h − un

h

∆t
· vh dx +

∫
Ωh

(un
h · ∇) ūn+1

h · vh dx +

∫
Ωh

ν
(
θnh + Rn+1

θ

)
∇ūn+1

h : ∇vh dx =

α

∫
Ωh

f
(
θnh + Rn+1

θ

)
· vh dx. (A.2)

Step 2: For all φh ∈ Vh, compute θ̄n+1
h ∈ Vh solution of∫

Ωh

θ̄n+1
h − θnh

∆t
φh dx +

∫
Ωh

ūn+1
h · ∇θ̄n+1

h φh dx +

∫
Ωh

1

2
θ̄n+1
h ∇ · ūn+1

h φh dx +∫
Ωh

λ(θnh + Rn+1
θ )∇θ̄n+1

h · ∇φh dx = −
∫
Ωh

λ(θnh + Rn+1
θ )∇Rn+1

θ · ∇φh dx−
∫
Ωh

ūn+1
h · ∇Rn+1

θ φh dx

−
∫
Ωh

1

2
Rn+1

θ ∇ · ūn+1
h φh dx +

∫
Ωh

gn+1 φh dx + ⟨θn+1
N , φh⟩ −

∫
Ωh

∂tRn+1
θ φh dx. (A.3)

Step 3: For all (vh, qh) ∈ V h × Qh, compute
(
un+1
h , pn+1

h

)
∈ V h × Qh solution of the following Stokes
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problem∫
Ωh

un+1
h − ūn+1

h

∆t
· vh dx +

∫
Ωh

ν(θ̄n+1
h + Rn+1

θ )∇un+1
h : ∇vh dx−

∫
Ωh

pn+1
h ∇ · vh dx =

∫
Ωh

ν(θnh + Rn+1
θ )∇ūn+1

h : ∇vh dx, (A.4)

−
∫
Ωh

qh ∇ · un+1
h dx = 0.

Step 4: For all φh ∈ Vh, compute θn+1
h ∈ Vh solution of∫

Ωh

θn+1
h − θ̄n+1

h

∆t
φh dx+

∫
Ωh

λ(θ̄n+1
h +Rn+1

θ )∇θn+1
h ·∇φh dx =

∫
Ωh

λ(θnh +Rn+1
θ )∇θ̄n+1

h ·∇φh dx. (A.5)

Injecting the approximations (A.1) in the above discrete steps, results in linear systems of the following
forms (

1

∆t
Mu + Nu + Ku(θn)

)
Ũ

n+1
= F̃u(un, θn), (A.6)(

1

∆t
Mθ + Nθ + Kθ(θn)

)
Θ̃n+1 = F̃θ(ūn+1, θn), (A.7)

1

∆t
Mu + Ku(θ̄n+1) BT

B 0


 Un+1

Pn+1

 =

 Fu(ūn+1, θn)

0

 , (A.8)

and (
1

∆t
Mθ + Kθ(θ̄n+1)

)
Θn+1 = Fθ(un, θn, θ̄n+1), (A.9)

where Un+1 =
(
Un+1, V n+1

)⊤
and Ũ

n+1
=
(
Ũn+1, Ṽ n+1

)⊤
with each component is a vector with unknown

entries Un+1
j =

(
Un+1
j , V n+1

j

)⊤
and Ũ

n+1

j =
(
Ũn+1
j , Ṽ n+1

j

)⊤
(j = 1, . . . , Nu), respectively. Here, Θn+1,

Θ̃n+1 and Pn+1 are respectively, vectors with unknown entries Θn+1
i , Θ̃n+1

i and Pn+1
k (i = 1, . . . , Nu and

k = 1, . . . , Np) as defined in (A.1), Mu, Nu, Ku, Mθ, Nθ, Kθ and B are matrices whose element entries
are given by

(Mu)ij =

∫
Ωh

φj ·φi dx,

(Nu)ij =

∫
Ωh

(un · ∇φj) ·φi dx,

(Ku(θ))ij =

∫
Ωh

ν
(
θ + Rn+1

θ

)
∇φj : ∇φi dx,

(Mθ)ij =

∫
Ωh

φjφi dx,

(N θ)ij =

∫
Ωh

(ūn+1 · ∇φj)φi dx,

(Kθ(θ))ij =

∫
Ωh

λ
(
θ + Rn+1

θ

)
∇φj · ∇φi dx,

Bij = −
∫
Ωh

ψi∇ ·φjdx.

35



and F̃ u, F̃ θ, F u and F θ are the corresponding right-hand side vectors. It should be stressed that the lifting
Rθ in the above equations is obtained by solving the following well-posed problem

−∆Rθ = 0, Rθ = θD on ΓD,
∂Rθ

∂n
= 0 on ΓN .
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