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Abstract

We propose a fractional-step method for the numerical solution of unsteady thermal convection in non-Newtonian flu-
ids with temperature-dependent physical parameters. The proposed method is based on a viscosity-splitting approach,
and it consists of four uncoupled steps where the convection and diffusion terms of both velocity and temperature
solutions are uncoupled while a viscosity term is kept in the correction step at all times. This fractional-step method
maintains the same boundary conditions imposed in the original problem for the corrected velocity solution, and it
eliminates all inconsistencies related to boundary conditions for the treatment of the pressure solution. In addition,
the method is unconditionally stable, and it allows the temperature to be transported by a non-divergence-free velocity
field. In this case, we introduce a methodology to handle the subtle temperature convection term in the error analysis
and establish full first-order error estimates for the velocity and the temperature solutions and 1/2-order estimates
for the pressure solution in their appropriate norms. Three numerical examples are presented to demonstrate the
theoretical results and examine the performance of the proposed method for solving unsteady thermal convection in
non-Newtonian fluids. The computational results obtained for the considered examples confirm the convergence, accu-
racy, and applicability of the proposed time fractional-step method for unsteady thermal convection in non-Newtonian
fluids.

Keywords: Non-Newtonian fluids; Thermal convection; Fractional time-stepping; Viscosity-splitting method; Error
analysis.

1. Introduction

Non-Newtonian fluids are characterized by a nonlinear shear stress-shear rate relationship, allowing a variety of
complex flow behaviors such as blood, shampoos, fruit concentrates, coal, mineral slurries, and polymer melts, among
others. In most existing rheological models including the power-law, Carreau, Carreau-Yasuda, Cross, Casson and
other models, this nonlinearity is exclusively incubated in the viscosity, which becomes a function of the shear rate
magnitude that multiplies the rate of deformation matrix, see for instance [31]. This class of non-Newtonian fluids
maintaining the same tensorial structure as the Newtonian assumption, are also known as generalized Newtonian
fluids. Based on their viscosity response to shear rate, the non-Newtonian fluids can be classified into either shear-
thickening (dilatant) fluids whose viscosity increases with increasing shear rate, or shear-thinning (pseudoplastic)
fluids, which are more widespread in real life and manifesting an opposite response to shear rate increase. In many in-
dustrial processes, non-Newtonian fluids are subject to the natural convection phenomenon in which the fluid is driven
by the buoyancy force resulting from a vertical temperature gradient. This situation is mathematically modeled, under
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the Boussinesq assumption, by a system of Navier-Stokes equations for the flow field coupled with a convection-
diffusion equation for the heat distribution, see [2, 48] for more details. Here, the viscosity and thermal conductivity
appearing in the system are assumed to be temperature-dependent which makes the present work physically more
appealing and also more challenging. In fact, the numerical approximation of such systems presents various compu-
tational challenges. For example, the saddle point structure of the Navier-Stokes equations causes indefiniteness, and
its convective term introduces nonlinearity and causes non-symmetry in the system. On the other hand, the strong
velocity-temperature coupling has destabilizing effects by transporting energy from the heated side up to the cooler
side (see for example [32]), and the extra nonlinearities owing to the shear rate and temperature dependency of the
fluid viscosity in addition to the temperature dependency of its thermal conductivity. These features would make
any three-dimensional monolithic approach very impractical, even with modern machines, since it would run into
a severe algebraic system requiring highly advanced solvers and prohibitive computational resources. Therefore, a
fractional-step approach is presented in the current study to alleviate this complexity in solving unsteady thermal
convection in non-Newtonian fluids. Fractional-step or projection methods, based on the idea of “divide to conquer”,
separate the problem into two (or more) time-marching steps with less difficult sub-problems to solve in each step.
These methods are attributed to the early works by Chorin [13] and Temam [51] where, the velocity and pressure are
computed separately by projecting an intermediate velocity, solved in the first step, onto a solenoidal space. Although
the method was shown to deliver first-order for the velocity and 1/2-order for the pressure approximations [49], it
suffered from a numerical boundary layer due to unphysical Neumann boundary conditions imposed on the pressure
[52]. In the subsequent years, many attempts to overcome this drawback have delivered several relatively improved
variants, such as the pressure-correction methods [24, 55, 49, 50], rotational methods [53, 25], and methods based on
improved pressure boundary conditions [41, 33]. Other interesting projection methods can be found in [34, 3] and for
a detailed review see for instance [26]. Recently, the extension of fractional-step methods to non-Newtonian fluid flow
is gaining more attention with the efforts reported in [16, 17, 43, 42, 20] among others. Regarding natural convection
problems, the fractional-step methods were jointly used with various spatial discretizations, such as finite difference
and finite element methods to provide numerical simulations for the Newtonian fluids [11, 38, 40, 56, 19, 36, 57]
and the non-Newtonian fluids [30, 35, 18, 9] in different computational domains and flow configurations. However,
works devoted to their error analysis are far fewer even in the Newtonian case, see [45, 46, 58] for the problem with
temperature-independent parameters and [15] for the problem with temperature-dependent parameters, but almost
nonexistent for the non-Newtonian case.

In the present study, we are interested in the viscosity-splitting approach, which differs from the projection meth-
ods by maintaining a diffusion term in the incompressibility step, thus allowing the full original boundary conditions
to be imposed and removing any physical inconsistencies related to the pressure solution. The method was introduced
for incompressible flows with constant viscosity in [7] and similar ideas were earlier proposed in [39, 23, 12, 21]
among others. Thereafter, error estimates were established for this method in [6] for which a first-order accuracy
was demonstrated for the velocity solution, and an 1/2-order accuracy was demonstrated for the pressure solution.
Later, these estimates were improved in [27] to reach the first–order for the pressure and also in [59] for the pressure-
correction version of the method. Very recently, authors in [20] extended the method to Navier-Stokes equations
for the shear-thinning fluids and provided error analysis for both velocity and pressure solutions. Regarding natural
convection problems, methods based on the viscosity-splitting approach have been studied only for the Newtonian
fluids; see [60] for the system with temperature-independent parameters, and [29] for the problem with temperature-
dependent parameters. The current work is among the first attempts to extend the viscosity-splitting approach to the
shear-thinning fluids experiencing natural convection. From a physical perspective, our approach is more consistent
since the viscosity coefficient which is a function of the shear rate is mainly controlled by a generic law with adjusted
parameters which accordingly covers a wide range of non-Newtonian fluid regimes. Furthermore, both the viscosity
and heat conductivity are allowed to be temperature-dependent in this study, and natural boundary conditions on the
temperature are activated on a part of the boundary while non-homogeneous Dirichlet boundary conditions are pre-
scribed on the other part. From a numerical perspective, the method is unconditionally stable with no concerns about
numerical boundary layers since the original boundary conditions are fully preserved. Moreover, the temperature
is transported here by a non-divergence-free velocity field which is to our knowledge not addressed in literature for
unsteady thermal convection in non-Newtonian fluids. In the present work, the fractional time-stepping method orig-
inally proposed for solving Newtonian flow problems is extended to generalized fluids with generic rheological laws.
We also perform a rigorous analysis of convergence for the proposed method and establish first-order error estimates
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for both velocity and temperature solutions and 1/2-error estimates for the pressure solution in their relevant norms.
To assess the accuracy of the proposed method, we first present numerical results for a three-dimensional problem with
known analytical solutions to quantify the errors. Then, we present numerical simulations for the two-dimensional
benchmark problem of thermal flows past a circular cylinder with nonlinear fluid viscosity and thermal conductiv-
ity coefficients depending on the velocity and temperature solutions. The method is also applied for solving natural
convection of power-law fluids in a square enclosure with differentially heated side walls. The obtained numerical
results for different flow regimes confirm our theoretical expectations and illustrate good computational accuracy and
stability.

The remainder of this paper is structured as follows: In section 2, we formulate the governing equations for
unsteady thermal convection in non-Newtonian fluids, along with notations and preliminaries to be used in the sequel
of this work. Based on some regularity assumptions on the continuous solution, the proposed fractional time-stepping
method is formulated in section 3 for the variational form. In section 4, the analysis and error estimates are established
for all the solutions in their relevant norms. Three numerical examples, including the problem of thermal flow past a
circular cylinder, are presented in section 5 to verify the theoretical results and validate the method. Finally, section 6
contains concluding remarks.

2. Governing equations and preliminaries

In the present study, given Ω a bounded domain in Rd (with d = 2 or 3) of class C1,1 with the boundary ∂Ω = ΓD∪

ΓN , and Ωt = Ω ×
(
0,T f

)
, with T f > 0 is the final time, we are interested in the numerical solution of incompressible

non-Newtonian fluids undergoing a natural convection phenomenon governed by the well-established Boussinesq
approximation. We assume that the fluid has a velocity u, a pressure p, a temperature T and a stress tensor of the form

σ(u) = 2νDu − pI,

where I is the unit matrix, Du is the shear-rate tensor defined by

Du =
1
2

(
∇u + ∇⊤u

)
,

and ν is the fluid viscosity possibly depending on the temperature and the shear-rate according to a generic law as
defined below. Hence, the problem under study consists of the incompressible Navier-Stokes equations for the flow
coupled with the convection-diffusion equation for the temperature as

∂u
∂t
+ (u · ∇) u − ∇ · (2ν(T, Du)Du) + ∇ p = F(T ), in Ωt,

∇ · u = 0, in Ωt,
∂T
∂t
+ (u · ∇) T − ∇ · (λ(T )∇T ) = G, in Ωt,

(1)

where λ is the thermal conductivity assumed to be dependent on the temperature, F is the external volumic force and
it depends on the temperature T , and the function G represents an external heat source depending only on the position
x ∈ Rd. In many practical applications in heat transfer, the function F is assumed to be proportional to the temperature
difference (i.e. F ∝ (T − T0)). Here, we allow a more general setting by assuming that F : R −→ Rd is a C1(R)
function such that there exists a real T0 and a non-negative real α > 0 such that

F(T0) = 0,
∥∥∥F′

∥∥∥
∞
≤ α. (2)

We also introduce the temperature Θ̂ = T−T0 and set the function f (Θ̂) =
1
α

F(T ). Thus, using the above assumptions,
the function f verifies

f (0) = 0 and ∀ℓ ∈ R | f ′(ℓ)| ≤ 1 =⇒ | f (ℓ)| ≤ |ℓ|. (3)
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Hence, using the above change of variable, the system (1) can be expressed in terms of Θ̂ and f as
∂u
∂t
+ (u · ∇) u − ∇ · (2ν(Θ̂, Du)Du) + ∇ p = α f (Θ̂), in Ωt,

∇ · u = 0, in Ωt,

∂Θ̂

∂t
+ (u · ∇) Θ̂ +

1
2
Θ̂∇ · u − ∇ · (λ(Θ̂)∇Θ̂) = g, in Ωt,

(4)

The system (4) is completed with the following initial conditions

u(x, 0) = u0(x) ∈ L2(Ω), with ∇ · u0 = 0, and Θ̂(x, 0) = Θ̂0(x) ∈ L2(Ω), (5)

and equipped with the following boundary conditions

u = 0, on ∂Ω, Θ̂ = ΘD, on ΓD, and λ(Θ̂)
∂Θ̂

∂n
= ΘN , on ΓN , a.e t ∈ (0,T f ). (6)

Note that the viscosity ν in (4) depends on the temperature Θ̂ and the shear-rate tensor Du. For a non-Newtonian fluid,
there are several rheological laws in the literature describing the relation between the viscosity and the shear-rate, see
for example [31]. Here, we consider a modified version of the Carreau law [10] in which effects of the temperature
on the viscosity are not ignored, making our approach physically appealing. Therefore, the viscosity law adopted in
the present work is defined by

ν
(
Θ̂, Du

)
= ν∞ +

(
γ(Θ̂) − ν∞

) (
1 + β2

0 ∥Du∥2Rd×d

)m − 1
2 , (7)

where ν∞, β0 and m ≤ 1 are nonnegative fixed constants characterizing the non-Newtonian fluid under study. Notice
that the zeroth shear-rate viscosity γ is a function of the temperature Θ̂ and subsequently it incubates the temperature
effects on the viscosity. In the present work, the power index m is assumed to be m ≤ 1 which corresponds to the shear-
thinning behavior in non-Newtonian fluids. For simplicity in the presentation, we consider homogeneous Dirichlet
boundary conditions for u and we assume that the intersection ΓD ∩ΓN is a Lipschitz-continuous sub-manifold of ∂Ω.
We also assume that the coefficients ν and λ in (4) are bounded functions in W1,∞(Ω), with

0 < ν∞ ≤ ν0 ≤ γ(s) ≤ ν1, ∥γ
′∥∞ = ν2,

0 < λ0 ≤ λ(s) ≤ λ1, ∥λ′∥∞ = λ2,
∀s ∈ R. (8)

where ν0, ν2, λ0, λ1 and λ2 are nonnegative constants. Note that, since the power index m ≤ 1, it is easy to verify that
the viscosity law (7) satisfies

ν∞ ≤ ν ≤ ν1. (9)

In what follows, Lp(Ω) represents the usual set of pth power measurable functions, and Lp(Ω) = (Lp(Ω))3. The
scalar product defined on L2(Ω) or L2(Ω) is denoted (without distinction) by (·, ·) or by the integral notation and its
associated norm by ∥ · ∥. The Sobolev spaces denoted by Wm,p(Ω) and Wm,p(Ω), with the integer p ∈ [1,+∞), are
defined as

Wm,p(Ω) =
{
u ∈ Lp(Ω) : Dku ∈ Lp(Ω), ∀|k| ≤ m

}
, Wm,p(Ω) = (Wm,p(Ω))3 ,

where k is a multi-index in N3. These spaces are equipped with the norm ∥ · ∥m,p and semi-norm | · |m,p. The spaces
W s,2(Ω) and W s,2(Ω), with s ∈ R, are denoted respectively, by Hs(Ω) and Hs(Ω) with the associated norms denoted
by ∥ · ∥s and semi-norm by | · |s. Without distinction for the dimension, we denote the duality pairing between H1

0(Ω)
and its dual H−1(Ω) (or between H1

0(Ω) and H−1(Ω)) by ⟨·, ·⟩. More generally, for a space V and its dual V ′, we denote
the duality pairing by ⟨·, ·⟩V ′,V . For a fixed positive real variable T f and a separable Banach space E equipped with the
norm ∥ · ∥E , we denote by C0(0,T f ; E) the space of continuous functions from [0,T f ] with values in E. For a positive
integer p, we introduce the following Bochner spaces

Lp(0,T f ; E) =

u : (0,T f ) 7→ E :
(∫ T f

0
∥u(τ)∥pE dτ

)1/p

< ∞

 ,
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and for m a non-negative integer, the space Hm(0,T f ; E) is defined as

Hm(0,T f ; E) =
{
u ∈ L2(0,T f ; E) : ∂l

tu ∈ L2(0,T f ; E), 0 ≤ l ≤ m
}
.

For details on these spaces, we refer for example to [1] and [8, Chapter 2]. In order to derive the variational formulation
of the problem (4), (5) and (6), we start by introducing the following spaces

H =

{
v ∈ L2(Ω) : ∇ · v = 0, v · n

∣∣∣∣
∂Ω
= 0

}
,

V =
{
v ∈ H1

0(Ω) : ∇ · v = 0
}
.

Note that the set H is the closure of V in L2(Ω) with V ⊂ H ⊂ V′. We also define the temperature space as follows

H1
ΓD

(Ω) =
{
φ ∈ H1(Ω) : φ = 0, on ΓD

}
.

The space H1
ΓD

(Ω) can be provided with the H1
0(Ω)-norm, and based on the Poincaré-Friedrichs inequality |φ|1,Ω =

∥∇φ∥. The dual of H1
ΓD

(Ω) is denoted by H−1
ΓD

and its norm is also denoted by ∥ · ∥−1 when there is no confusion and the

context is clear. The traces of functions in H1
ΓD

(Ω) on ΓN belong to a special space H
1
2
00(ΓN), see [37, Chap.1] for the

definition of this space. We also introduce its dual space H
1
2
00(ΓN)′ and denote by

〈
·, ·

〉
ΓN

the duality pairing between

H
1
2
00(ΓN) and H

1
2
00(ΓN)′. Thus, we assume that the partition of ∂Ω into ΓN and ΓD is sufficiently smooth forD(Ω ∪ ΓN)

to be dense in H1
ΓD

(Ω), and sufficient conditions for this are given in [4] among others. We also recall the following
properties that can be found for example in [14]: For all u ∈ V, v,w ∈ H1(Ω) and φ, ψ ∈ H1(Ω),∫

Ω
(u · ∇)v · v dx = 0,

∫
Ω

(u · ∇)v · w dx = −
∫
Ω

(u · ∇)w · v dx,∫
Ω

(u · ∇)φ · φ dx = 0,
∫
Ω

(u · ∇)φ · ψ dx = −
∫
Ω

(u · ∇)ψ · φ dx,
(10)

and

∫
Ω

(u · ∇)v · w dx ≤



C|u|1|v|1|w|1, for all u, v,w ∈ H1
0(Ω),

C∥u∥ ∥v∥2 |w|1, for all v ∈ H2(Ω) ∩ H1
0(Ω), u,w ∈ H1

0(Ω),

C∥u∥ |v|1 ∥w∥2, for all w ∈ H2(Ω) ∩ H1
0(Ω), u, v ∈ H1

0(Ω),

C∥u∥2 |v|1 ∥w∥, for all u ∈ H2(Ω) ∩ H1
0(Ω), v,w ∈ H1

0(Ω),

C|u|1 |v|1 ∥w∥1/2 |w|1/21 , for all u, v,w ∈ H1
0(Ω),

C∥u∥1/2 |u|1/21 |v|1 |w|1, for all u, v,w ∈ H1
0(Ω),

(11)

where C is a generic constant independent of the time step that may have different expressions at each occurrence.

3. Fractional time-stepping method for thermal convection in non-Newtonian fluids

To formulate the proposed fractional time-stepping method, we first rewrite the continuous problem (4)-(5) in a
variational formulation. To this end we assume that

g ∈ L2
(
0,T f ; L2(Ω)

)
, ΘN ∈ L2

(
0,T f ; H

1
2
00(ΓN)′

)
,

(12)
ΘD ∈ L2

(
0,T f ; H

1
2 (ΓD)

)
∩ L∞

(
0,T f ; L2(ΓD)

)
, ∂tΘD ∈ L2

(
0,T f ; L2(ΓD)

)
.
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Notice that the assumption ΘD ∈ L2(0,T f ; H
1
2 (ΓD)) guarantees, thanks to Lemma 2.8 in [5], that for all ε > 0, there

exists a lifting RΘ ∈ H1(Ω) of the value of ΘD on ΓD satisfying for a.e t ∈ (0,T f )

∥RΘ∥L4(Ω) ≤ ε∥ΘD∥H
1
2 (ΓD)

and ∥RΘ∥H1(Ω) ≤ cR∥ΘD∥H
1
2 (ΓD)

, (13)

where the constant cR depends only on the domain Ω whereas, the assumption ∂tΘD ∈ L2
(
0,T f ; L2(ΓD)

)
implies that

∂tRΘ ∈ L2
(
0,T f ; L2(Ω)

)
. Hence, setting Θ : = Θ̂ − RΘ, a variational formulation for the system (4)-(5) is given by:

Find u ∈ L2
(
0,T f ; H1

0(Ω)
)
∩ H1

(
0,T f ; L2(Ω)

)
, p ∈ L2

(
0,T f ; L2

0(Ω)
)

and Θ ∈ L2
(
0,T f ; H1

ΓD
(Ω)

)
∩ H1

(
0,T f ; L2(Ω)

)
such that for all (v, q, φ) in H1

0(Ω) × L2
0(Ω) × H1

ΓD
(Ω)∫

Ω

(∂tu + (u · ∇)u) · v dx +
∫
Ω

2ν (Θ + RΘ, Du) Du : Dv dx −
∫
Ω

∇ · v p dx = α

∫
Ω

f (Θ + RΘ) · v dx,
(14)∫

Ω

∇ · u q dx = 0.

∫
Ω

(∂tΘ + u · ∇Θ) φ dx +
∫
Ω

λ (Θ + RΘ) ∇Θ · ∇φ dx =
∫
Ω

(−∂tRΘ − u · ∇RΘ) φ dx−∫
Ω

λ (Θ + RΘ)∇RΘ · ∇φ dx +
∫
Ω

gφ dx + ⟨ΘN , φ⟩ΓN . (15)

In order to discretize the system (14)-(15) with respect to the time variable, we subdivide the time interval [0,T f ] into

a uniform partition of subintervals [tk, tk+1], k = 0, . . . ,N of length ∆t =
T f

N
, and we denote by ωn the approximation

of any function ω(x, t) at t = tn. Thus, applied to the system (4)-(5), the time splitting method proposed in the present
work is carried out by the following four steps:

Step 1: Given un, compute un+1 solution of

un+1
− un

∆t
+ (un · ∇)un+1

− ∇ ·
(
2ν

(
Θn + Rn+1

Θ , Dun
)

Dun+1
)
= α f (Θn + Rn+1

Θ ). (16)

Step 2: Given Θn and un+1, compute Θ
n+1

solution of

Θ
n+1
− Θn

∆t
+ un+1

· ∇Θ
n+1
+

1
2
Θ

n+1
∇ · un+1

− ∇ ·

(
λ
(
Θn + Rn+1

Θ

)
∇Θ

n+1
)
=

∇ ·
(
λ
(
Θn + Rn+1

Θ

)
∇Rn+1
Θ

)
− un+1

· ∇Rn+1
Θ −

1
2
Rn+1
Θ ∇ · u

n+1
+ gn+1 − ∂tR

n+1
Θ . (17)

Step 3: Given un, un+1 and Θ
n+1

, compute
(
un+1, pn+1

)
solution of the Stokes problem

un+1 − un+1

∆t
− ∇ ·

(
2ν

(
Θ

n+1
+ Rn+1

Θ , Dun
)

Dun+1
)
+ ∇pn+1 = −∇ ·

(
2ν

(
Θn + Rn+1

Θ , Dun
)

Dun+1
)
,

(18)
∇ · un+1 = 0.

Step 4: Given Θ
n+1

, compute Θn+1 solution of

Θn+1 − Θ
n+1

∆t
− ∇ ·

(
λ
(
Θ

n+1
+ Rn+1

Θ

)
∇Θn+1

)
= −∇ ·

(
λ
(
Θn + Rn+1

Θ

)
∇Θ

n+1
)
. (19)
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Hence, the corresponding weak formulation of (16)-(19) can be obtained as follows:

Step 1: For all v ∈ H1
0(Ω), compute un+1

∈ H1
0(Ω) solution of∫

Ω

un+1
− un

∆t
· v dx +

∫
Ω

(un · ∇)un+1
· v dx +

∫
Ω

2ν(Θn + Rn+1
Θ , Dun)Dun+1 : Dv dx =

α

∫
Ω

f (Θn + Rn+1
Θ ) · v dx. (20)

Step 2: For all φ ∈ H1
ΓD

(Ω), compute Θ
n+1
∈ H1

ΓD
(Ω) solution of

∫
Ω

Θ
n+1
− Θn

∆t
φ dx +

∫
Ω

un+1
· ∇Θ

n+1
φ dx +

∫
Ω

1
2
Θ

n+1
∇ · un+1 φ dx+∫

Ω

λ(Θn + Rn+1
Θ )∇Θ

n+1
· ∇φ dx = −

∫
Ω

λ(Θn + Rn+1
Θ )∇Rn+1

Θ ∇φ dx −
∫
Ω

un+1
· ∇Rn+1

Θ φ dx−∫
Ω

1
2
Rn+1
Θ ∇ · u

n+1 φ dx +
∫
Ω

gn+1 φ dx + ⟨Θn+1
N , φ⟩ −

∫
Ω

∂tR
n+1
Θ φ dx. (21)

Step 3: For all (v, q) ∈ V × L2
0(Ω), compute

(
un+1, pn+1

)
∈ V × L2

0(Ω) solution of the following Stokes problem∫
Ω

un+1 − un+1

∆t
· v dx +

∫
Ω

2ν(Θ
n+1
+ Rn+1

Θ ,Dun)Dun+1 : Dv dx −
∫
Ω

pn+1 ∇ · v dx

=

∫
Ω

2ν(Θn + Rn+1
Θ , Dun)Dun+1 : Dv dx,

−

∫
Ω

q∇ · un+1 dx = 0.

(22)

Step 4: For all φ ∈ H1
ΓD

(Ω), compute Θn+1 ∈ H1
ΓD

(Ω) solution of

∫
Ω

Θn+1 − Θ
n+1

∆t
φ dx +

∫
Ω

λ
(
Θ

n+1
+ Rn+1

Θ

)
∇Θn+1 · ∇φ dx =

∫
Ω

λ
(
Θn + Rn+1

Θ

)
∇Θ

n+1
· ∇φ dx. (23)

It should be noted that the well-posedness of each step in the proposed scheme can be easily verified using the
assumptions (8), (12), (13) along with the usual arguments of steady linear elliptic problems for the steps (20), (21),
(23) and the arguments of steady Stokes problem for the step (22), see [22] for more details. This yields the following
results:

Lemma 1. Assume 2ν∞ > ν1 and 2λ0 > λ1 and for large enough ν∞ and λ0, the approximate velocities un+1, un+1

and temperatures Θn+1, Θ
n+1

verify

∥uN+1∥2 + ∥ΘN+1∥2 +

N∑
n=0

(
∥un+1 − ūn+1∥2 + ∥ūn+1 − un∥2 + ∥Θn+1 − Θ̄n+1∥2 + ∥Θ̄n+1 − Θn∥2

)
+

2Cr∆t
N∑

n=0

(
ν∞
4
|ūn+1|21 + (2ν∞ − ν1)|un+1|21 + ν∞|u

n+1 − ūn+1|21

)
+∆t

N∑
n=0

(
λ0

2
|Θ̄n+1|21 + (2λ0 − λ1)|Θn+1|21 + λ0|Θ

n+1 − Θ̄n+1|21

)

≤ ∥u0∥
2 + ∥Θ0∥

2 + ∆t(2λ0 − λ1)|Θ0|
2
1 +C

∥∂tΘD∥
2
L2(0,T f ;L2(ΓD)) + ∥g∥

2
L2(0,T f ;L2(Ω)) + ∥ΘN∥

2

L2

(
0,T f ;H

1
2

00 (ΓN )′
)
 .
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We also announce the following discrete Gronwall lemma [28] that will be used several times in what follows:

Lemma 2. For n ∈ N, let κ, an, bn, cn and dn be nonnegative numbers such that

aN + ∆t
N∑

n=0

bn ≤ κ + ∆t
N−1∑
n=0

an dn + ∆t
N−1∑
n=0

cn, ∀ N ≥ 1.

Then, for all N ≥ 1, the following inequality

aN + ∆t
N∑

n=0

bn ≤

κ + ∆t
N−1∑
n=0

cn

 exp

∆t
N−1∑
n=0

dn

 ,
holds.

For the purpose of analysis, we also use the algebraic identity

2(a − b)a = a2 − b2 + (a − b)2, (24)

where a and b are nonnegative generic numbers. In addition, we introduce the notation en+1
Θ , en+1

Θ
, en+1

u and en+1
u to

denote respectively, the semi-discrete errors associated to Θ
n+1

, Θn+1, un+1 and un+1 defined as

en+1
Θ = Θ(tn+1) − Θ

n+1
, en+1

Θ
= Θ(tn+1) − Θn+1,

en+1
u = u(tn+1) − un+1, en+1

u = u(tn+1) − un+1.

Note that to simplify notations in the forthcoming proofs, we also denoteΘR(tn+1) = Θ(tn+1)+RΘ(tn+1),Θn
R
= Θn+Rn+1

Θ

and Θ
n+1
R = Θ

n+1
+ Rn+1

Θ
.

4. Error estimates for the fractional time-stepping method

In this section we first establish the error estimates in l∞(0,T ; L2(Ω)) and l2(0,T ; H1(Ω)) norms for the approx-
imation of u by the semi-discrete velocities un+1 and un+1 using (20) in Step 2 and (22) in Step 4, which give a
bound where some terms still appear in the temperature solution. Next, this bound is injected into the temperature
error bound, which is established later using (21) in Step 1 and (23) in Step 3 to obtain 1/2-order estimates for the
approximation of Θ by the semi-discrete temperature solutions Θ

n+1
and Θn+1 in l∞(0,T, L2(Ω)) and l2(0,T ; H1(Ω))

norms. Therefore, injecting these last temperature estimates back into the velocity error bound would ensure 1/2-
order estimates for the semi-discrete velocity solutions as well. Finally, these bounds are improved to reach the full
first-order estimates for both velocity and the temperature solutions. We also provide error estimates for the pressure
approximation using the considered fractional time-stepping method. To this end, let us set the following assumptions
which will be repeatedly used in proofs of the error estimates established in this section

sup
t∈(0,T f )

{
∥Θ(t)∥22 + ∥∂ttΘ∥

2
−1 + ∥∂tΘ∥

2
}
≤ C, (25)

sup
t∈(0,T f )

{
∥u∥22 + ∥∂ttu∥2−1 + ∥∂tu∥2 + ∥p(t)∥21

}
≤ C, (26)

u ∈ L∞
(
0,T f ; W2,3+s(Ω)

)
, s > 0, which implies sup

t∈(0,T f )
∥∇u(t)∥2Rd×d ≤ C, (27)

Θ ∈ L∞
(
0,T f ; W2,3+s(Ω)

)
, s > 0, which implies sup

t∈(0,T f )
∥∇Θ(t)∥2Rd ≤ C, (28)

where C is a generic constant independent of ∆t which may have different expressions at each occurrence. The
following lemma delivers a first bound for the velocity errors en+1

u and en+1
u in Ł∞(0,T ; L2(Ω)) and L2(0,T ; H1(Ω))

norms:

8



Lemma 3. Assuming ν1 ≤ 2ν∞ and
40 C2

u C2
ν

ν∞Cr
≤ Cr

2ν∞ − ν1

4
, (29)

then

∥eN+1
u ∥2 +

N∑
n=0

(
∥en+1

u − en
u∥

2 +
1
2
∥en+1

u − en+1
u ∥

2
)
+Cr ∆t

N∑
n=0

(
ν∞|en+1

u |
2
1 + (2ν∞ − ν1)|en+1

u |
2
1 + ν∞|e

n+1
u − en+1

u |
2
1

)
≤ C∆t +C∆t

N∑
n=0

(
∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2
)
. (30)

Proof. Writing the first equation of (14) at t = tn+1 using Taylor expansion with integral remainder, subtracting (20)
from the result and choosing v = 2∆ten+1, we obtain∫

Ω

(
u(tn+1) − u(tn)

∆t
+ (u(tn+1) · ∇)u(tn+1)

)
· v dx +

∫
Ω

2ν(ΘR(tn+1), Du(tn+1)) Du(tn+1) : Dv dx −
∫
Ω

∇ · v p dx

= α

∫
Ω

f (ΘR(tn+1)) · v dx + ⟨In
u, v⟩, (31)

where In
u is the truncation error associated to the velocity u and defined as

In
u =

1
∆t

∫ tn+1

tn
(t − tn)∂ttu(t)dt.

Substracting (20) from (31), choosing v = 2∆ten+1
u and using the algebraic identity (24), we have

∥en+1
u ∥

2 − ∥en
u∥

2 + ∥en+1
u − en

u∥
2 + 4∆t

∫
ω

ν(Θn
R
, Dun) Den+1 : Den+1 dx

= 2α∆t
∫
Ω

(
f (ΘR(tn+1)) − f (Θn

R
)
)
· en+1

u dx − 2∆t
∫
Ω

∇p(tn+1) · en+1
u dx

− 2∆t
∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx + 2∆t

∫
Ω

(un · ∇)un+1
u · en+1

u dx + 2∆t⟨In
u, e

n+1
u ⟩

− 4∆t
∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx. (32)

Setting v = 2∆ten+1
u in (22), we obtain

∥en+1
u ∥

2 − ∥en+1
u ∥

2 + ∥en+1
u − en+1

u ∥
2 + 2∆t

∫
Ω

(
2ν(Θ

n+1
R , Dun) − ν(Θn

R
, Dun)

)
Den+1

u : Den+1
u dx

− 2∆t
∫
Ω

ν(Θn
R
, Dun)Den+1

u : Den+1
u dx + 2∆t

∫
Ω

ν(Θn
R
, Dun)D(en+1

u − en+1
u ) : D(en+1

u − en+1
u ) dx

= 4∆t
∫
Ω

(
ν(Θ

n+1
R , Dun) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx. (33)

Adding (33) to (32), using the viscosity bounds (9) and the Korn’s inequality with its constant denoted by Cr, we
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obtain

∥en+1
u ∥

2 − ∥en
u∥

2 + ∥en+1
u − en

u∥
2 + ∥en+1

u − en+1
u ∥

2 + 2Cr ∆t
(
ν∞|en+1

u |
2
1 + (2ν∞ − ν1)|en+1

u |
2
1 + ν∞|e

n+1
u − en+1

u |
2
1

)
≤ 2∆t⟨In

u, e
n+1
u ⟩ + 2α∆t

∫
Ω

(
f (ΘR(tn+1)) − f (Θn

R
)
)
· en+1

u dx − 2∆t
∫
Ω

∇p(tn+1) · en+1
u dx

− 2∆t
∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx + 2∆t

∫
Ω

(un · ∇)un+1
u · en+1

u dx

− 4∆t
∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx

+ 4∆t
∫
Ω

(
ν(Θ

n+1
R , Dun) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx. (34)

The right-hand side terms are bounded as follows

2∆t⟨In
u, e

n+1
u ⟩ ≤ C∆t∥In

u∥
2
−1 +

Cr ν∞∆t
5
|en+1

u |
2
1,

≤
C
∆t
∥

∫ tn+1

tn
(t − tn)∂ttu(t)dt∥2−1 +

Cr ν∞∆t
5
|en+1

u |
2
1,

≤ C(∆t)2
∫ tn+1

tn
∥∂ttu∥2−1dt +

Cr ν∞∆t
5
|en+1

u |
2
1.

The second assumption in (3) and the Poincaré inequality on en+1
u , yield

2α∆t
∫
Ω

(
f (ΘR(tn+1)) − f (Θn

R
)
)
· en+1

u dx ≤ 2α∆t∥Θ(tn+1) − Θ(tn) + en
Θ∥ ∥e

n+1
u ∥,

≤ C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +C∆t∥en
Θ∥

2 +
Crν∞∆t

5
|en+1

u |
2
1.

Using the divergence-free property of en+1
u , the pressure term is bounded by

−2∆t
∫
Ω

∇p(tn+1) · en+1
u dx = 2∆t

∫
Ω

∇p(tn+1) ·
(
en+1

u − en+1
u

)
dx,

≤ 2∆t|p(tn+1)|1 ∥en+1
u − en+1

u ∥,

≤ C(∆t)2|p(tn+1)|21 +
1
2
∥en+1

u − en+1
u ∥

2.

The nonlinear term can be simplified using the assumptions (10), then bounded using (11) and (26) as

−2∆t
(∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx −

∫
Ω

(un · ∇)un+1
· en+1

u dx
)
,

= −2∆t
(∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx −

∫
Ω

(un · ∇)u(tn+1) · en+1
u dx

)
,

= −2∆t
∫
Ω

((u(tn+1) − u(tn)) · ∇) u(tn+1) · en+1
u dx − 2∆t

∫
Ω

(en
u · ∇)u(tn+1) · en+1

u dx,

≤ 2∆t∥u(tn+1) − u(tn)∥ ∥u(tn+1)∥2 |en+1
u |1 + 2∆t∥en

u∥ ∥u(tn+1)∥2 |en+1
u |1,

≤ C(∆t)2
∫ tn+1

tn
∥∂tu∥2dt +C∆t∥en

u∥
2 +

Crν∞∆t
5
|en+1

u |
2
1,

The last two terms of (34) are bounded by (see Appendix A)

− 4∆t
∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx ≤ C∆t∥en
Θ∥

2 +
40 C2

u C2
ν

ν∞Cr
∆t|en

u|
2
1+

C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +C(∆t)2
∫ tn+1

tn
|∂tu|21dt + 2

Crν∞∆t
5
|en+1

u |
2
1,
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and

4∆t
∫
Ω

(
ν(Θ

n+1
R , Dun) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx ≤ C∆t∥en+1
Θ − en

Θ∥
2+

(2ν∞ − ν1)Cr∆t|en+1
u |

2
1 +C(∆t)2

∫ tn+1

tn
∥∂tΘ∥

2dt.

Collecting all the above inequalities and considering (29), we obtain

∥en+1
u ∥

2 − ∥en
u∥

2 + ∥en+1
u − en

u∥
2 +

1
2
∥en+1

u − en+1
u ∥

2 +Cr ∆t
(
ν∞|en+1

u |
2
1 + (2ν∞ − ν1)|en+1

u |
2
1 + ν∞|e

n+1
u − en+1

u |
2
1

)
≤ C∆t

(
∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2
)
+C∆t∥en

u∥
2 +C(∆t)2

∫ tn+1

tn

(
∥∂ttu∥2−1 + ∥∂tΘ∥

2 + ∥∂tu∥2 + |∂tu|21
)

dt

+C(∆t)2|p(tn+1)|21 +
40 C2

u C2
ν

ν∞Cr
∆t|en

u|
2
1.

Taking the sum over n = 0, 1, . . . ,N, we get

∥eN+1
u ∥2 +

N∑
n=0

(
∥en+1

u − en
u∥

2 +
1
2
∥en+1

u − en+1
u ∥

2
)
+Cr ∆t

N∑
n=0

(
ν∞|en+1

u |
2
1 + (2ν∞ − ν1)|en+1

u |
2
1 + ν∞|e

n+1
u − en+1

u |
2
1

)
≤ C∆t

(
∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2
)
+C∆t

N∑
n=0

∥en
u∥

2 +C(∆t)2
∫ T f

0
(
(
∥∂ttu∥2−1 + ∥∂tΘ∥

2 + ∥∂tu∥2 + |∂tu|21
)

dt

+C(∆t)2
N∑

n=0

|p(tn+1)|21 +
40 C2

u C2
ν

ν∞Cr
∆t

N∑
n=0

|en
u|

2
1.

By virtue of (29), we can move the last term to the right-hand side, and using the assumptions (26), (25), the above
inequality becomes

∥eN+1
u ∥2 +

1
2

(2ν∞ − ν1)|eN+1
u |21 +

N∑
n=0

∥en+1
u − en

u∥
2 +

1
2

N∑
n=0

∥en+1
u − en+1

u ∥
2

+Cr ∆t
N∑

n=0

(
ν∞|en+1

u |
2
1 +

1
2

(2ν∞ − ν1)|en+1
u |

2
1 + ν∞|e

n+1
u − en+1

u |
2
1

)

≤ C∆t +C∆t
(
∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2
)
+C∆t

N∑
n=0

∥en
u∥

2.

Applying the Gronwall lemma (2) ends the proof.

In order to establish the temperature error estimates announced in the next lemma, we suppose the following additional
assumption

ΘD ∈ L∞(0,T f ; W
2+s
3+s ,3+s(ΓD)), s > 0, (35)

which is mainly needed because of the non-homogeneous Dirichlet boundary conditions on the temperature. Note
that this assumption also implies that

RΘ ∈ L∞(0,T f ; W2,3+s(Ω)).
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Lemma 4. Under the assumptions of Lemma 3 in a addition to λ1 < 2λ0 and for small enough ∆t we have,

∥eN+1
Θ ∥

2 +

N∑
n=0

(
1
2
∥en+1
Θ − en

Θ∥
2 + ∥en+1

Θ − en+1
Θ ∥

2
)
+

∆t
N∑

n=0

(
λ0

2
|en+1
Θ |

2
1 + (2λ0 − λ1)|en+1

Θ |
2
1 +

λ0

2
|en+1
Θ − en+1

Θ |
2
1

)
≤ C∆t. (36)

Proof. Applying the Taylor expansion to the temperature derivative of (15) at tn+1 then subtracting (21) from it, setting
φ = 2∆ten+1

Θ and using the identity (24), we obtain

∥en+1
Θ ∥

2 − ∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2 + 2∆t

∫
Ω

λ(Θn
R

)∇en+1
Θ · ∇en+1

Θ dx = 2∆t⟨In
Θ, e

n+1
Θ ⟩

− 2∆t
∫
Ω

(
λ(ΘR(tn+1)) − λ(Θn

R
)
)
∇ (Θ(tn+1) + RΘ(tn+1)) · ∇en+1

Θ dx

− 2∆t
(∫
Ω

(u(tn+1) · ∇)Θ(tn+1)en+1
Θ dx −

∫
Ω

(un+1
· ∇)Θ

n+1
en+1
Θ dx −

∫
Ω

1
2
Θ

n+1
∇ · un+1 en+1

Θ dx
)

− 2∆t
(∫
Ω

u(tn+1) · ∇RΘ(tn+1) en+1
Θ dx −

∫
Ω

un+1
· ∇Rn+1

Θ en+1
Θ dx −

∫
Ω

1
2
Rn+1
Θ ∇ · u

n+1 en+1
Θ dx

)
, (37)

where In
Θ

is the truncation error associated to Θ given by

In
Θ =

1
∆t

∫ tn+1

tn
(t − tn)∂ttΘ(t)dt.

Choosing φ = 2∆t en+1
Θ

in (23), adding the result to (37) and considering the bounds of λ in (8), we obtain

∥en+1
Θ ∥

2 − ∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2 + ∥en+1

Θ − en+1
Θ ∥

2 + ∆t
(
λ0|e

n+1
Θ |

2
1 + (2λ0 − λ1)|en+1

Θ |
2
1 + λ0|en+1

Θ − en+1
Θ |

2
1

)
≤ −2∆t

(∫
Ω

(u(tn+1) · ∇)Θ(tn+1)en+1
Θ dx −

∫
Ω

(un+1
· ∇)Θ

n+1
en+1
Θ dx −

∫
Ω

1
2
Θ

n+1
∇ · un+1 en+1

Θ dx
)

︸                                                                                                                         ︷︷                                                                                                                         ︸
=A1

−2∆t
(∫
Ω

u(tn+1) · ∇RΘ(tn+1) en+1
Θ dx −

∫
Ω

un+1
· ∇Rn+1

Θ en+1
Θ dx −

∫
Ω

1
2
Rn+1
Θ ∇ · u

n+1 en+1
Θ dx

)
︸                                                                                                                         ︷︷                                                                                                                         ︸

=A2

−2∆t
∫
Ω

(
λ(ΘR(tn+1)) − λ(Θn

R
)
)
∇ (Θ(tn+1) + RΘ(tn+1)) · ∇en+1

Θ dx︸                                                                                 ︷︷                                                                                 ︸
=A3

+ 2∆t⟨In
Θ, e

n+1
Θ ⟩︸         ︷︷         ︸

=A4

+2∆t
∫
Ω

(
λ(Θ

n+1
R ) − λ(Θn

R
)
)
∇Θ(tn+1) · ∇en+1

Θ dx︸                                                          ︷︷                                                          ︸
=A5

.

Next, the right-hand side terms are bounded separately. By noting that∫
Ω

(un+1
· ∇)Θ

n+1
en+1
Θ dx +

∫
Ω

Θ
n+1
∇ · un+1 en+1

Θ dx = −
∫
Ω

(un+1
· ∇)en+1

Θ Θ
n+1

dx,
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and using the properties (10) we have for the term A1

A1 = −∆t
(∫
Ω

(u(tn+1) · ∇)Θ(tn+1)en+1
Θ dx −

∫
Ω

(un+1
· ∇)Θ

n+1
en+1
Θ dx

)
+∆t

(∫
Ω

(u(tn+1) · ∇)en+1
Θ Θ(tn+1) dx −

∫
Ω

(un+1
· ∇)en+1

Θ Θ
n+1

dx
)
, (38)

= −∆t
∫
Ω

(en+1
u · ∇)Θ(tn+1)en+1

Θ dx + ∆t
∫
Ω

(en+1
u · ∇)en+1

Θ Θ(tn+1) dx,

By (11)
≤ C∆t|en+1

u |1 |Θ(tn+1)|1 |en+1
Θ |1 +C∆t|en+1

u |1 |Θ(tn+1)|1 |en+1
Θ |1,

By (25)
≤ C∆t|en+1

u |
2
1 +

λ0∆t
10
|en+1
Θ |

2
1. (39)

Similarly, the term A2 is handled as

A2 = −∆t
∫
Ω

(en+1
u · ∇)RΘ(tn+1)en+1

Θ dx + ∆t
∫
Ω

(en+1
u · ∇)en+1

Θ RΘ(tn+1) dx,

Using (11)
≤ C∆t|en+1

u |1 |RΘ(tn+1)|1 |en+1
Θ |1 +C∆t|en+1

u |1 |RΘ(tn+1)|1 |en+1
Θ |1,

By (25)
≤ C∆t|en+1

u |
2
1 +

λ0∆t
10
|en+1
Θ |

2
1. (40)

It should be stressed that the terms A1 and A2 are the ones precluding the full first-order for the temperature estimates
mainly due to the term ∆t|en+1

u |
2
1. For the remaining terms A3, A4 and A5, we have

A3
By (8)
≤ 2λ2∆t

∫
Ω

|Θ(tn+1) − Θn| |∇Θ(tn+1) · ∇en+1
Θ | dx + 2λ2∆t

∫
Ω

|Θ(tn+1) − Θn| |∇RΘ(tn+1) · ∇en+1
Θ | dx,

By (28)and(35)
≤ C∆t∥Θ(tn+1) − Θn∥ |en+1

Θ |1 ≤ C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +C∆t∥en
Θ∥

2 +
λ0∆t
10
|en+1
Θ |

2
1,

A4 ≤ C∆t∥In
Θ∥

2
−1 +

λ0∆t
K
|en+1
Θ |

2
1,

≤ C(∆t)2
∫ tn+1

tn
∥∂ttΘ∥

2
−1dt +

λ0∆t
10
|en+1
Θ |

2
1. (41)

and

A5
By (8) and (28)
≤ Cλ2∆t∥Θ

n+1
− Θn∥ |en+1

Θ |1 ≤ Cλ2∆t
(
∥en+1
Θ − en

Θ∥ + ∥Θ(tn+1) − Θ(tn)∥
) (
|en+1
Θ − en+1

Θ |1 + |e
n+1
Θ |1

)
,

≤
Cλ2

2

λ0
∆t∥en+1

Θ − en
Θ∥

2 +C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +
λ0∆t

2
|en+1
Θ − en+1

Θ |
2
1 +

λ0∆t
10
|en+1
Θ |

2
1.

Assembling the previous inequalities and summing over n = 0, 1, . . . ,N, we can write

∥eN+1
Θ ∥

2 +

N∑
n=0

(
∥en+1
Θ − en+1

Θ ∥
2 + ∥en+1

Θ − en
Θ∥

2
)
+ ∆t

N∑
n=0

(
λ0

2
|en+1
Θ |

2
1 + (2λ0 − λ1)|en+1

Θ |
2
1 +

λ0

2
|en+1
Θ − en+1

Θ |
2
1

)
≤ C∆t

N∑
n=0

|en+1
u |

2
1 +C∆t

N∑
n=0

∥en
Θ∥

2 +C(∆t)2
∫ T f

0

(
∥∂tΘ∥

2 + ∥∂ttΘ∥
2
−1

)
dt +C∆t

N∑
n=0

∥en+1
Θ − en

Θ∥
2. (42)

Thanks to Lemma 3 we have

∆t
N∑

n=0

|en+1
u |

2
1 ≤ C∆t +C∆t

N∑
n=0

(
∥en
Θ∥

2 + ∥en+1
Θ − en

Θ∥
2
)
,

13



and for small enough ∆t, it is possible to write

C∆t
N∑

n=0

∥en+1
Θ − en

Θ∥
2 ≤

1
2

N∑
n=0

∥en+1
Θ − en

Θ∥
2.

Hence, the inequality (42) becomes

∥eN+1
Θ ∥

2 +

N∑
n=0

(
∥en+1
Θ − en+1

Θ ∥
2 +

1
2
∥en+1
Θ − en

Θ∥
2
)
+ ∆t

N∑
n=0

(
λ0

2
|en+1
Θ |

2
1 + (2λ0 − λ1)|en+1

Θ |
2
1 +

λ0

2
|en+1
Θ − en+1

Θ |
2
1

)
≤ C∆t +C∆t

N∑
n=0

∥en
Θ∥

2,

where we have used (25). Finally, applying the Gronwall lemma 2 ends the poof.

It should be noted that thanks to Lemma 3, we have for all n = 0, 1, . . . ,N + 1

∥en
Θ∥

2 ≤ C∆t,

which means that

∆t
N∑

n=0

∥en
Θ∥

2 ≤ C∆t. (43)

As we have seen in the above proof, the presence of the term ∆t
N∑

n=0

|en+1
u |

2
1 would degrade the order of the temperature

error estimates allowing only a 1/2-order. Hence, this result along with (43) would enable to finalize the 1/2-order
estimates of Lemma 3 which becomes:

Lemma 5. Under the assumptions of Lemma 3 and Lemma 4, we have

∥eN+1
u ∥2 +

N∑
n=0

(
∥en+1

u − en
u∥

2 +
1
2
∥en+1

u − en+1
u ∥

2
)
+Cr ∆t

N∑
n=0

(
ν∞|en+1

u |
2
1 + (2ν∞ − ν1)|en+1

u |
2
1 + ν∞|e

n+1
u − en+1

u |
2
1

)
≤ C∆t. (44)

The 1/2-order estimates being established for both velocity and temperature, we seek now to reach the full first-order
estimates. This is achieved by the following theorem:

Theorem 1. Under the assumpions of Lemma 3 and Lemma 4, we have

∥eN+1
u ∥2 + ∥eN+1

Θ ∥
2 +

N∑
n=0

(
∥en+1

u − en
u∥

2 + ∥ēn+1
Θ − en

Θ∥
2 + ∥en+1

Θ − ēn+1
Θ ∥

2
)
+Cr ν∞ ∆t

N∑
n=0

|en+1
u |

2
1

+ ∆t
N∑

n=0

(
λ0

2
|ēn+1
Θ |

2
1 +

λ0

2
|en+1
Θ − ēn+1

Θ |
2
1 + (2λ0 − λ1)|en+1

Θ |
2
1

)
≤ C(∆t)2.

Proof. Adding (20) to (22), substructing the result from (31), we get∫
Ω

en+1
u − en

u

∆t
· v dx +

∫
Ω

2ν(ΘR(tn+1), Du(tn+1))Du(tn+1) : Dv dx −
∫
Ω

2ν(Θ
n+1
R , Dun)Dun+1 : Dv dx

= α

∫
Ω

(
f (ΘR(tn+1)) − f (Θn

R
)
)
· v dx +

∫
Ω

p(tn+1)∇ · v dx −
∫
Ω

pn+1∇ · v dx −
∫
Ω

(u(tn+1) · ∇) u(tn+1) · v dx

+

∫
Ω

(un · ∇) un+1
· v dx + ⟨In

u, v⟩. (45)
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Setting v = 2∆ten+1
u , which is divgence-free, we obtain

∥en+1
u ∥

2 − ∥en
u∥

2 + ∥en+1
u − en

u∥
2 + 4∆t

∫
Ω

ν(Θ
n+1
R , Dun)Den+1

u : Den+1
u dx

= 2α∆t
∫
Ω

( f (ΘR(tn+1)) − f (Θn
R

)) · en+1
u dx − 4∆t

∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θ

n+1
R , Dun)

)
Du(tn+1) : Den+1

u dx

− 2∆t
(∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx −

∫
Ω

(un · ∇)un+1
· en+1

u dx
)
+ 2∆t⟨In

u, e
n+1
u ⟩,

where we have used (24). The assumptions (9) on ν and the Korn’s inequality allow to write

∥en+1
u ∥

2 − ∥en
u∥

2 + ∥en+1
u − en

u∥
2 + 4 Cr ν∞ ∆t|en+1

u |
2
1 ≤ 2α∆t

∫
Ω

( f (ΘR(tn+1)) − f (Θn
R

)) · en+1
u dx︸                                               ︷︷                                               ︸

=D1

+ 2∆t⟨In
u, e

n+1
u ⟩︸         ︷︷         ︸

=D2

−4∆t
∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θ

n+1
R , Dun)

)
Du(tn+1) : Den+1

u dx︸                                                                                      ︷︷                                                                                      ︸
=D3

−2∆t
(∫
Ω

(u(tn+1) · ∇)u(tn+1) · en+1
u dx −

∫
Ω

(un · ∇)un+1
· en+1

u dx
)

︸                                                                                  ︷︷                                                                                  ︸
=D4

.

Then, each term in the right-hand side is bounded separately as follows

D1 ≤ C∆t

∥∥∥∥∥∥
∫ tn+1

tn
∂tΘ(t)dt

∥∥∥∥∥∥2

+C∆t∥en
Θ∥

2 +
2ν∞Cr∆t

9
|en+1

u |
2
1,

≤ C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +C∆t∥en
Θ∥

2 +
2ν∞∆t

9
|en+1

u |
2
1,

where the assumption (3) has been used along with the Poincaré inequality on en+1
u . Next,

D2 = 2∆t⟨In
u, e

n+1
u ⟩ ≤

C
∆t

∥∥∥∥∥∥
∫ tn+1

tn
(t − tn)∂ttu(t)dt

∥∥∥∥∥∥2

−1
+

2ν∞Cr∆t
9

|en+1
u |

2
1,

≤ C(∆t)2
∫ tn+1

tn
∥∂ttu∥2−1dt +

2ν∞Cr∆t
9

|en+1
u |

2
1.

Following the approach detailed in Appendix A, the term D3 is bounded by

D3 = −4∆t
∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θ

n+1
R , Dun)

)
Du(tn+1) : Den+1

u dx,

≤ C∆t(∥en+1
Θ − en

Θ∥
2 + ∥en

Θ∥
2) +C(∆t)2

∫
Ω

|∂tu|21dt +
36 C2

u C2
ν

ν∞Cr
∆t|en

u|
2
1 + 4

ν∞Cr∆t
9
|en+1

u |
2
1.

The term D4 is first split, using the properties (10), into four terms D4,1,D4,2,D4,3 and D4,4 as

D4 = −2∆t
∫
Ω

(u(tn+1) · ∇) u(tn+1) · en+1
u dx +

∫
Ω

(un · ∇) un+1
· en+1

u dx,

= −2∆t
∫
Ω

((u(tn+1) − u(tn)) · ∇) u(tn+1) · en+1
u dx︸                                                        ︷︷                                                        ︸

=D4,1

−2∆t
∫
Ω

(en
u · ∇)u(tn+1) · en+1

u dx︸                                    ︷︷                                    ︸
=D4,2

,

+2∆t
∫
Ω

(u(tn) · ∇)en+1
u · en+1

u dx︸                                    ︷︷                                    ︸
=D4,3

− 2∆t
∫
Ω

(en
u · ∇)en+1

u · en+1
u dx︸                              ︷︷                              ︸

=D4,4

,
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then each term is separately bounded as follows

D4,1 = −2∆t
∫
Ω

((u(tn+1) − u(tn)) · ∇) u(tn+1) · en+1
u dx,

By (11)
≤ C∆t∥u(tn+1) − u(tn)∥ ∥u(tn+1)∥2 |en+1

u |1,

By (26)
≤ C∆t∥u(tn+1) − u(tn)∥ |en+1

u |1,

≤ C(∆t)2
∫ tn+1

tn
∥∂tu∥2dt +

2ν∞Cr∆t
9

|en+1
u |

2
1,

D4,2 = −2∆t
∫
Ω

(en
u · ∇)u(tn+1) · en+1

u dx,

≤ C∆t∥en
u∥ ∥u(tn+1)∥2 |en+1

u |1,

By (26)
≤ C∆t∥en

u∥ |e
n+1
u |1,

≤ C∆t∥en
u∥

2 +
2ν∞Cr∆t

9
|en+1

u |
2
1,

D4,3 = 2∆t
∫
Ω

(u(tn) · ∇)en+1
u · en+1

u dx,

≤ C∆t∥u(tn)∥2 |en+1
u |1 ∥e

n+1
u ∥,

≤ C∆t|en+1
u |1 ∥e

n+1
u ∥,

≤ C∆t(∥en+1
u − en

u∥
2 + ∥en

u∥
2) +

2ν∞Cr∆t
9

|en+1
u |

2
1,

D4,4 = −2∆t
∫
Ω

(en
u · ∇)en+1

u · en+1
u dx,

By (11)
≤ C∆t|en

u|
1
2
1 ∥e

n
u∥

1
2 |en+1

u |1 |e
n+1
u |1,

≤ C∆t|en
u|1 ∥e

n
u∥ |e

n+1
u |

2
1 +

2ν∞Cr∆t
9

|en+1
u |

2
1 ≤ C∆t∥en

u∥
2 +

ν∞Cr∆t
2
|en

u|
2
1 +

2ν∞Cr∆t
9

|en+1
u |

2
1,

where we have used |en+1
u |1 ≤ C that results from Lemma 5. Assembling the previous inequalities and summing over

n = 0, 1, . . . ,N, we obtain

∥eN+1
u ∥2 +

N∑
n=0

∥en+1
u − en

u∥
2 + 2 Cr ν∞ ∆t

N∑
n=0

|en+1
u |

2
1 ≤ C∆t

N∑
n=0

∥en
u∥

2 +C∆t
N∑

n=0

∥en+1
u − en

u∥
2 +

ν∞Cr∆t
2

N∑
n=0

|en
u|

2
1

+C(∆t)2
∫ T f

0

(
∥∂tu∥2 + |∂tu|21 + ∥∂ttu∥2−1 + ∥∂tΘ∥

2
)

dt +C∆t
N∑

n=0

(∥en+1
Θ − en

Θ∥
2 + ∥en

Θ∥
2)

+
36 C2

u C2
ν

ν∞Cr
∆t

N∑
n=0

|en
u|

2
1.

The assumptions (26), (25) along with the estimates of Lemma 5 and Lemma 4 allow to write

∥eN+1
u ∥2 +

N∑
n=0

∥en+1
u − en

u∥
2 +Cr ν∞ ∆t|eN+1

u |21 + Cr ν∞ ∆t
N∑

n=0

|en+1
u |

2
1 ≤ C(∆t)2 +C∆t

N∑
n=0

∥en
u∥

2 +C∆t
N∑

n=0

∥en
Θ∥

2, (46)
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where we have also used the assumption (29) to have
36 C2

u C2
ν

ν∞Cr
≤
ν∞Cr

2
. On the other hand, as mentioned before,

∆t|ēn+1
u |

2
1 is the only term degrading the order of temperature error estimates in Lemma 4. The idea here is to make

the term ∆t∥ēn+1
u ∥

2 appears instead of the abovementioned problematic term. Note that, according to the proof of
Lemma 4, the problematic term is originated from the bounds of the terms A1 in (38) and A2 in (40). Therefore, we
will reproduce the same steps as in the proof of Lemma4 except for the terms of interest A1 and A2 which are now
bounded as follows

A1 = −∆t
∫
Ω

(ēn+1
u · ∇)Θ(tn+1)ēn+1

Θ dx + ∆t
∫
Ω

(ēn+1
u · ∇)ēn+1

Θ Θ(tn+1) dx,

By (11)
≤ C∆t∥ēn+1

u ∥ ∥Θ(tn+1)∥2 |ēn+1
Θ |1 +C∆t∥ēn+1

u ∥ |ē
n+1
Θ |1 ∥Θ(tn+1)∥2,

By (25)
≤ C∆t∥ēn+1

u ∥
2 +

λ0∆t
12
|ēn+1
Θ |

2
1,

and

A2 = −∆t
∫
Ω

(ēn+1
u · ∇)RΘ(tn+1)ēn+1

Θ dx + ∆t
∫
Ω

(ēn+1
u · ∇)ēn+1

Θ RΘ(tn+1) dx,

By (11)
≤ C∆t∥ēn+1

u ∥ ∥RΘ(tn+1)∥2|ēn+1
Θ |1 +C∆t∥ēn+1

u ∥ |ē
n+1
Θ |1 ∥RΘ(tn+1)∥2,

By (35)
≤ C∆t∥ēn+1

u ∥
2 +

λ0∆t
12
|ēn+1
Θ |

2
1,

which yields the following inequality

∥eN+1
Θ ∥

2 +

N∑
n=0

(
∥ēn+1
Θ − en

Θ∥
2 + ∥en+1

Θ − ēn+1
Θ ∥

2
)
+ ∆t

N∑
n=0

(
λ0

2
|ēn+1
Θ |

2
1 +

λ0

2
|en+1
Θ − ēn+1

Θ |
2
1 + (2λ0 − λ1)|en+1

Θ |
2
1

)
≤ C∆t

N∑
n=0

∥ēn+1
u ∥

2 +C∆t
N∑

n=0

∥en
Θ∥

2 +C∆t
N∑

n=0

∥ēn+1
Θ − en

Θ∥
2 +C(∆t)2

∫ T f

0

(
∥∂tΘ∥

2 + ∥∂ttΘ∥
2
−1

)
dt. (47)

Thus, we have from Lemma 5

C∆t
N∑

n=0

∥ēn+1
u ∥

2 ≤ C∆t
N∑

n=0

∥en+1
u − ēn+1

u ∥
2 +C∆t

N∑
n=0

∥en+1
u ∥

2 ≤ C(∆t)2 +C∆t
N∑

n=0

∥en+1
u ∥

2,

and using Lemma 4 in addition to the assumptions (25), the inequality (47) becomes

∥eN+1
Θ ∥

2 +

N∑
n=0

(
∥ēn+1
Θ − en

Θ∥
2 + ∥en+1

Θ − ēn+1
Θ ∥

2
)
+ ∆t

N∑
n=0

(
λ0

2
|ēn+1
Θ |

2
1 +

λ0

2
|en+1
Θ − ēn+1

Θ |
2
1 + (2λ0 − λ1)|en+1

Θ |
2
1

)
≤ C(∆t)2 +C∆t

N∑
n=0

∥en+1
u ∥

2 +C∆t
N∑

n=0

∥en
Θ∥

2. (48)

Adding (47) to (46) we obtain

∥eN+1
u ∥2 + ∥eN+1

Θ ∥
2 +

N∑
n=0

(
∥en+1

u − en
u∥

2 + ∥ēn+1
Θ − en

Θ∥
2 + ∥en+1

Θ − ēn+1
Θ ∥

2
)
+Cr ν∞ ∆t|eN+1

u |21 + 2Cr ν∞ ∆t
N∑

n=0

|en+1
u |

2
1

+∆t
N∑

n=0

(
λ0

2
|ēn+1
Θ |

2
1 +

λ0

2
|en+1
Θ − ēn+1

Θ |
2
1 + (2λ0 − λ1)|en+1

Θ |
2
1

)
≤ C(∆t)2+C∆t

N∑
n=0

∥en
u∥

2+C∆t
N∑

n=0

∥en+1
u ∥

2+C∆t
N∑

n=0

∥en
Θ∥

2.
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Applying the discrete Gronwall lemma 2, we get

∥eN+1
u ∥2 + ∥eN+1

Θ ∥
2 +

N∑
n=0

(
∥en+1

u − en
u∥

2 + ∥ēn+1
Θ − en

Θ∥
2 + ∥en+1

Θ − ēn+1
Θ ∥

2
)
+ 2Cr ν∞ ∆t

N∑
n=0

|en+1
u |

2
1

+ ∆t
N∑

n=0

(
λ0

2
|ēn+1
Θ |

2
1 +

λ0

2
|en+1
Θ − ēn+1

Θ |
2
1 + (2λ0 − λ1)|en+1

Θ |
2
1

)
≤ C(∆t)2.

The next Theorem provides the 1/2-order error estimate for the pressure approximation in the L2
(
0,T f ; L2(Ω)

)
-norm.

Theorem 2. Under the assumptions of Lemma 3 and Lemma 4, we have N∑
n=0

∆t
∥∥∥p(tn+1) − pn+1

∥∥∥2
1/2

≤ C (∆t)1/2 . (49)

Proof. From (45), we have∫
Ω

(
p(tn+1) − pn+1

)
∇·v dx =

∫
Ω

en+1
u − en

u

∆t
·v dx−α

∫
Ω

(
f (ΘR(tn+1)) − f (Θn

R
)
)
·v dx+

∫
Ω

2ν(Θ
n+1
R , Dun)Den+1 : Dv dx

− ⟨In
u, v⟩ +

(∫
Ω

(u(tn+1) · ∇) u(tn+1) · v dx −
∫
Ω

(un · ∇) un+1
· v dx

)
+

∫
Ω

(
2ν(ΘR(tn+1), Du(tn+1)) − 2ν(Θ

n+1
R , Dun)

)
Du(tn+1) : Dv dx. (50)

The Inf-Sup condition (see for instance [22]) ensures

∥∥∥p(tn+1) − pn+1
∥∥∥ ≤ C sup

v∈H1
0(Ω

∫
Ω

(
p(tn+1) − pn+1

)
∇ · v dx

|v|1
.

On the other, we can upper-bound the right-hand side terms of (50) as follows∫
Ω

en+1
u − en

u

∆t
· v dx ≤ C

∥∥∥∥∥∥en+1
u − en

u

∆t

∥∥∥∥∥∥ |v|1, (By Cauchy-Schwarz and Poincaré inequalities).

−α

∫
Ω

(
f (ΘR(tn+1)) − f (Θn

R
)
)
· v dx

By (3)
≤

(
∆t

∫ tn+1

tn
∥∂tΘ∥

2dt
) 1

2

|v|1 + ∥en
Θ∥ |v|1,∫

Ω

2ν(Θ
n+1
R , Dun)Den+1 : Dv dx

By (9)
≤ ν1|en+1|1 |v|1,

⟨In
u, v⟩ ≤ ∥I

n
u∥−1|v|1 ≤

(
∆t

∫ tn+1

tn
∥∂ttu∥2−1dt

) 1
2

|v|1.

As for the nonlinear term, it is first split into three terms as follows∫
Ω

(u(tn+1) · ∇) u(tn+1) · v dx −
∫
Ω

(un · ∇) un+1
· v dx =

∫
Ω

(u(tn+1) − u(tn) · ∇) u(tn+1) · v dx+∫
Ω

(en
u · ∇)u(tn+1) · v dx +

∫
Ω

(un · ∇) en+1
u · v dx,
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then bounded, using the inequalities (11), as∫
Ω

(u(tn+1) − u(tn) · ∇) u(tn+1) · v dx ≤ C∥u(tn+1) − u(tn)∥ ∥u(tn+1)∥2|v|1
By (26)
≤ C

(
∆t

∫ tn+1

tn
∥∂tu∥2dt

) 1
2

|v|1,

∫
Ω

(en
u · ∇)u(tn+1) · v dx ≤ C|en

u|1|u(tn+1)|1|v|1
Using (26)
≤ C|en

u|1|v|1,

∫
Ω

(un · ∇) en+1
u · v

By (10)
= −

∫
Ω

(en
u · ∇)en+1

u · v −
∫
Ω

(u(tn) · ∇)v · en+1
u

≤ C|en
u|1 |e

n+1
u |1 |v|1 +C∥u(tn)∥2 |v|1 ∥en+1

u ∥

≤ C|en
u|1 |v|1 +C|v|1 ∥en+1

u ∥,

where we have used |en+1
u |1 ≤ C given by Lemma 5. Following the argument detailed in Appendix A, we achieve∫

Ω

(
2ν(ΘR(tn+1), Du(tn+1)) − 2ν(Θ

n+1
R , Dun)

)
Du(tn+1) : Dv dx ≤ C

∥en+1
Θ ∥ +

(
∆t

∫ tn+1

tn
|∂tu|21 dt

) 1
2

+ |en
u|1

 |v|1.
Assembling the above inequalities, we get

∆t∥p(tn+1) − pn+1∥2 ≤
1
∆t
∥en+1

u − en
u∥

2 +C∆t
(
|en+1

u |
2
1 + ∥e

n+1
u ∥

2 + |en
u|

2
1 + ∥e

n+1
Θ ∥

2 + ∥en
Θ∥

2
)

+C(∆t)2
∫ tn+1

tn
(∥∂ttu∥2−1 + ∥∂tu∥2)dt +C(∆t)2

∫ tn+1

tn
∥∂tΘ∥

2dt.

Finally, taking the sum over n = 0, 1, . . . ,N and using the estimates of Lemma 5 and Lemma 4 and Theorem 1 along
with the assumptions (26) and (25), end the proof.

5. Numerical results and examples

Two examples are presented in this section to assess the computational performance of the proposed fractional
time-stepping method for solving unsteady thermal convection in non-Newtonian fluids. In the first example, we
solve the three-dimensional equations (4) with manufactured exact solutions to validate the theoretical error estimates
established in this study for the semi-discrete velocity, temperature, and pressure solutions. In the second example,
we apply the proposed method for solving the two-dimensional benchmark problem of thermal flow past a circular
cylinder with nonlinear fluid viscosity and thermal conductivity coefficients depending on the velocity and temperature
solutions. The third example solves a flow problem of natural convection of power-law fluids in a square enclosure
with differentially heated side walls. In all considered examples, the well-established Taylor-Hood P2/P1 mixed finite
elements are implemented for the spatial discretization for which the quadratic P2 finite elements are used for the
velocity u and temperature Θ whereas the linear P1 finite elements are used for the pressure p. It should also be noted
that this class of mixed finite elements satisfies the inf-sup condition required in Step 3 of the fractional time-stepping
method. In our computations reported in this section, the resulting linear systems of algebraic equations are solved
using the Generalized Minimal Residual (GMRES) iterative solver with a tolerance of 10−7 to stop the iterations.

5.1. Accuracy example

To examine the accuracy of the proposed fractional time-stepping method and its theoretical error estimates, we
consider a test example with known analytical solutions. Thus, we solve the three-dimensional equations (4) in the
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Figure 1: Convergence results using the l2(L2)-error for the velocity u (first column), pressure p (second column) and temperature Θ (third column)
obtained for the accuracy example using m ≤ 1 (first row) and m ≥ 1 (second row).

spatial domain Ω = [0, 1]3 subject to Dirichlet-type boundary conditions and temperature-dependent viscosity and
thermal conductivity defined by

ν (Θ, Du) = ν∞ + (γ(Θ) − ν∞)
(
1 + β2

0 ∥Du∥2R3×3

)m − 1
2 ,

with
γ(Θ) = 10−4

(
1 + sin2(Θ)

)
, λ(Θ) = 10−4e

ln(1 + Θ)
1 + Θ

, (51)

where β0 = 1, ν∞ = 5 × 10−5, α = 10 and the power index m = 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75. The boundary
and initial functions are defined such that the analytical solution of the system (4) is given by

u1(t, x, y, z) =
(
2x + 3xy − 2xz + x2 − 0.5z2

)
(1 − cos(2t)) e−t,

u2(t, x, y, z) = −
(
−2y − xy + yz − 2y2 − x2

)
(1 − cos(2t)) e−t,

u3(t, x, y, z) =
(
yz − xz + 0.5z2 + 2y2

)
(1 − cos(2t)) e−2t, (52)

p(t, x, y, z) = (x − 2y + z) (1 − cos(2t)) e−t,

Θ(t, x, y, z) = 1 +
(
2x2 + y2 + 3z2 + 0.5

)
(1 − cos(2t)) e−t.

Hence, using these exact solutions and (51), expressions of the source terms f and g in (4) are calculated as

f =
∂u
∂t
+ (u · ∇) u − ∇ · (2ν(Θ, Du)Du) + ∇p − 10

(
1 − e−Θ

)
,

g =
∂Θ

∂t
+ (u · ∇)Θ − ∇ · (λ(Θ)∇Θ) .
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Figure 2: Convergence results using the l2(H1)-error for the velocity u (first column), pressure p (second column) and temperatureΘ (third column)
obtained for the accuracy example using m ≤ 1 (first row) and m ≥ 1 (second row).

It is evident that the analytical solutions (52) are manufactured to be polynomials in space with the same degree as the
finite element polynomial basis. This would drastically reduce the spatial errors and enable a better assessment of the
behavior of time errors which are the prime interest of the current work. For this example, the convergence rates are
calculated using errors between the analytical and numerical solutions computed using the following discrete norms

∥e∥l2(X) =

∆t
N∑

n=0

∥en∥X

1/2

, ∥e∥l∞(X) = sup
n=0,...,N

∥en∥X ,

where X is assumed to be as L2(Ω) or H1(Ω) for the velocity solution, and as L2(Ω) or H1(Ω) for temperature and

pressure solutions. We use different timesteps evaluated by ∆t =
0.1
2k (k = 1, . . . , 5) and the obtained results are

presented at the final time t = 0.5 using a structured finite element mesh with 20 × 20 × 20 elements.

In Figure 1 we present the computed errors for the velocity u, the pressure p and temperature Θ in the selected
l2

(
0,T f ; L2(Ω)

)
norm for both cases of shear-thinning fluids (m < 1) and shear-thickening fluids (m > 1). Those

errors computed using the l2
(
0,T f ; H1(Ω)

)
norm are displayed in Figure 2. It is clear that for this test example,

the convergence plots demonstrate that the L2-error and H1-error for the velocity solution and the L2-error and H1-
error for the temperature solution are of full first-order as predicted by the established error estimates. In addition,
the convergence rates achieved for the pressure solution in both l2

(
0,T f ; L2(Ω)

)
and l2

(
0,T f ; H1(Ω)

)
norms reveal

a higher order than the theoretical 1/2-order estimated in Theorem 2. This behavior can be attributed to the fact
that the established error estimates of the pressure solution are sub-optimal and they can be further improved. For
the considered test example, it is also clear that the obtained error plots for both cases of shear-thinning and shear-
thickening fluids maintain the same trend which is also consistent with the error estimates proved in the present study
for the proposed fractional time-stepping method.
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Figure 3: Domain configuration along with the boundary conditions used for the problem of thermal flow past a circular cylinder.

5.2. Thermal flow past a circular cylinder

In this test example we consider the problem of an incompressible shear-thinning fluid confined in a horizontal
rectangular domain containing a hot circular cylinder in the middle and undergoing a natural convection phenomenon
due to a temperature difference between the cylinder surface and the domain upper and lower walls. Here, we solve the
two-dimensional equations (4) in a rectangular domain of length 10D and height 4D, with D = 0.1 m represents the
diameter of the cylinder located in the centre of the domain as shown in Figure 3. The boundary conditions used for the
temperature and flow velocity are also illustrated in this figure. Here, the cylinder is maintained heated at a constant
hot temperature ΘH = 30◦C while the upper and lower walls of the domain are maintained at a cold temperature
ΘC = 20◦C, and the two vertical walls are thermally insulated. No-slip boundary condition u = 0 is applied on all
boundaries of the computational domain. It is well known that when the temperature difference ΘH − ΘC is large
enough, a convection flow phenomena is triggered for which the high-temperature fluid rises up around the cylinder
under the effect of the buoyancy force. Thus, using the well-established Boussinesq approximation, the source terms
in (4) are given by

α f (Θ) = βg (Θ − ΘC) , g =
(
0, 9.8 m/s2

)⊤
, g = 0,

where β is the coefficient of thermal expansion and g represents the gravitational force. In all the simulations re-
ported in this section, the physical parameters are set to be shear-rate and temperature-dependent according to the the
following laws

ν(Θ, Du) = ν∞ + (γ(Θ) − ν∞)
(
1 + β2

0 ∥Du∥2R2×2

) m−1
2 , γ(Θ) = γ0

(
1 + e−γ1Θ

)
, λ(Θ) = κ (1 + ϵΘ) ,

with
γ0 = 5 × 10−4, γ1 = 1, β0 =

√
2, ν∞ = 2.5 × 10−4, κ = 2.2 × 10−5, ϵ = 0.3.

As in most natural convection problems, the Rayleigh number Ra and the Prandtl number Pr associated with this
example are defined as

Ra =
β∥g∥(Θh − Θc)D3

κγ0
, Pr =

γ0

κ
.

In our computations for this example, we use an unstructured triangular mesh of 29018 mixed elements with 14509
pressure nodes, and 57491 velocity and temperature nodes. This mesh offers a compromise between accuracy and
efficiency in the proposed fractional time-stepping method. The timestep ∆t is fixed to 0.05 s and steady-state numer-
ical results are presented for the Prandtl number Pr = 0.71 and two different Rayleigh numbers namely, Ra = 103 and
Ra = 104.

Figure 4 depicts the temperature distributions and the streamlines along with the velocity magnitudes obtained
using the selected values of the power index m = 0.2, 0.4, 0.6, 0.8 and 1 at the Rayleigh number Ra = 103. Those
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Figure 4: Temperature distribution along with isotherms (first column) and velocity magnitude along with streamlines (second column) for the
problem of thermal flow past a circular cylinder using Ra = 103 and different values of the power index. From top to bottom m = 0.2, 0.4, 0.6, 0.8
and 1.
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Figure 5: Same as Figure 4 but using Ra = 104.
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Figure 6: Horizontal cross-sections at y = 3.5D of the temperature (first column) and velocity magnitude (second column) for the problem of
thermal flow past a circular cylinder using Ra = 103 (first row) and Ra = 104 (second row) with different values of the power index.

results obtained using the Rayleigh number Ra = 104 are presented in Figure 5. For the considered natural convection
regimes, we clearly see the formation of two symmetrical main recirculation zones rotating in opposite directions
to each other in addition to four smaller vortices at the corners. The temperature distribution on the other side,
indicates that the heat transfer through natural convection has already taken place at the selected Pr and Ra numbers
for all values of the power index m. As the Rayleigh number increases, the main flow recirculations intensify and
collide with obvious distortions near the upper half (respectively, lower half) of the thermal source where two vertical
(respectively, horizontal) and symmetrical vortices appear in the shear-thinning case m < 1 (starting from m = 0.8),
separating the main ones. Moreover, the vortices at the corner become elongated with more intensity and growth in the
upper ones. This is mainly due to the fact that the natural convection turns stronger for large Rayleigh numbers and it
tends to perturb the flow behavior vertically since it is acting against the gravity. This also explains the concentration
of temperature contours in the upper zone near the hot cylinder where convective heat transfer is more important. For
this test example, it can be clearly seen that the complicated flow and heat features are well captured by the proposed
fractional time-stepping method.

The influence of shear-thinning on the flow structures and heat features is also noticeable from the results included
in Figure 4 and Figure 5. Here, as the power index m decreases, strong shear-thinning takes place and it weakens the
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Table 1: Coordinates of centers of the main recirculations (scaled by the diameter D) for the problem of thermal flow past a circular cylinder using
Ra = 103 and Ra = 104 with different values of the power index m.

Ra Vortex m = 1 m = 0.8 m = 0.6 m = 0.4 m = 0.2

103 Left (2.715, 2.194) (2.633, 2.206) (2.544, 2.219) (2.449, 2.194) (2.403, 2.156)

Right (7.329, 2.182) (7.347, 2.224) (7.453, 2.216) (7.555, 2.202) (7.607, 2.150)

104 Left (2.293, 2.149) (2.302, 2.100) (2.255, 2.057) (2.308, 2.046) (2.260, 2.002)

Right (7.703, 2.148) (7.692, 2.087) (7.726, 2.051) (7.726, 2.051) (7.760, 2.016)

Table 2: Averaged Nusselt number for the problem of thermal flow past a circular cylinder using Ra = 103 and Ra = 104 with different values of
power index m.

Ra m = 1 m = 0.8 m = 0.6 m = 0.4 m = 0.2

103 35.6237 36.4612 37.456 38.4998 39.489

104 52.311 55.7395 58.3358 59.9684 60.8314

viscosity in the high shear-stress regions near the cylinder and the domain walls. Thus, with the viscous effects that
tend to dissipate energy being less intense, the momentum becomes dominant and is transferred from the cylinder
region, where the velocity is greater due to the natural convection, to the surroundings. This is clearly seen from the
velocity distribution in the case with m = 0.2, where the recirculation velocity almost keeps its highest magnitude
compared to the case with m = 0.8, where the recirculation velocity is higher near the cylinder and much weaker far
from it. Moreover, as shear-thinning effects increase, the corner vortices (especially the upper ones) become enlarged
and squeeze the two main recirculation regions inward. Additionally, the small pairs of symmetrical vortices above
and under the cylinder become larger and push as well the main ones horizontally, which transforms them to a rather
more oval shape for m = 0.2 compared to greater values of m. This displacement of the main recirculation zones is
clearly shown in Table 1, where coordinates of their corresponding centers, scaled by the cylinder diameter, are listed.
We can see that as m drops towards m = 0.2, the horizontal displacement is more important at Ra = 103, while at
Ra = 104, the vertical displacement prevails. The former is due to the forthcoming two vortices above the cylinder
where the main ones move away horizontally as preparations for their appearance. As pointed out before, the latter is
due to the important growth of the upper corner vortices. This also confirms that the proposed fractional time-stepping
method is very attractive since the computed flow solutions remain stable and accurate for the thermal convection in
non-Newtonian fluids.

To further illustrate the influence of the power index m on the flow and heat patterns, Figure 6 presents horizontal
cross-sectional profiles of the velocity magnitude and temperature above the cylinder at y = 3.5D. From the first
glance, we can see a perfect symmetry with respect to the vertical centerline for all values of m at both selected
Rayleigh numbers. On the other hand, the noticeable effect of decreasing the power index m on the velocity and
temperature solutions is also detected in these results. As the power index m goes far from the Newtonian regime,
the velocity intensifies significantly above the cylinder due to the greater convection process in this region, especially
at higher Rayleigh numbers. For the same reasons, the temperature profile undergoes important changes localized
near the cylinder, which also explains the structure of temperature contours of Figure 5, which shows more curvature
and more concentration in the upper region as m decreases. This emphasizes the fact that stronger shear-thinning
features induce stronger convective heat transfer, and consequently, a complex flow behavior takes place. To further
demonstrate this impact, Table 2 summarizes the variations of the averaged Nusselt number as a function of the power
index m. Notice that the averaged Nusselt number quantifies the ratio of heat transfer by convection to heat transfer
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Figure 7: Domain configuration along with the boundary conditions used for the problem of natural convection in a square enclosure with differen-
tially heated side walls.

by conduction, and it is computed along the surface of the cylinder as

Nu =
∮
∂D

∂Θ

∂n
ds,

where n is the outward normal vector on the cylinder surface ∂D. As it can be seen from the Table 2, the Nusselt
number increases monotonically with growing shear-thinning features such that more increase is expected for higher
Rayleigh numbers. This means that more natural convection is occurring at low values of m and consequently more
complex behavior for the fluid flow as explained before. Moreover, under the conditions of the present test example,
the influence of m on the averaged Nusselt number in the conditions of the present test, seems overall to be weak at
low Rayleigh numbers and intensifies as the later grows. These observations are qualitatively in good agreement with
the published results on the flow behavior of shear-thinning fluids under natural convection, see for instance [44] and
the references therein.

5.3. Natural convection in a square enclosure with differentially heated side walls

Our final test example consists of applying the proposed viscosity-splitting method to a natural convection problem
of power-law fluids in a square enclosure with differentially heated side walls investigated in [54] among others. Here,
we solve the equations (4) in a two-dimensional squared cavity of length L differentially heated from the sides and
filled of a fluid equipped with the power-law model for the shear-rate-viscosity relationship given by

ν (Du) = νp

(
2 ∥Du∥2R2×2

)m − 1
2 , (53)

where νp is the so-called consistency coefficient of the power-law model. The flow is subject to no-slip boundary
conditions on the cavity walls. The right wall is maintained hot at constant temperature ΘH and the left one is kept
at cold temperature ΘC with a difference ∆Θ = ΘH − ΘC = 10 K, while the horizontal boundaries are insulated.
Detailed description of the computational domain and boundary conditions for this problem are sketched in Figure 7.
It should be stressed that these fluid flows are known to be highly driven by two non-dimensional coefficients namely,
the Rayleigh number Ra and the Prandtl number Pr which are defined here as

Ra =
gα∆Θ L2m+1

νp (λp)m and Pr = νp(λp)m−2 L2−2m,

where λp is the thermal diffusivity coefficient assumed to be constant in our simulations. Hence, the Rayleigh number
quantifies the relative strength of natural convection induced by the buoyancy force to the dissipative effects due to
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m = 0.6 m = 0.8 m = 1 m = 1.2 m = 1.6 m = 1.8

Figure 8: Temperature distribution along with isotherms (first row) and velocity magnitude along with streamlines (second row) for the problem of
natural convection in a square enclosure with differentially heated side walls using Pr = 100 and different values of the power index. From left to
right m = 0.6, 0.8, 1, 1.2, 1.6 and 1.8.

m = 0.6 m = 0.8 m = 1 m = 1.2 m = 1.6 m = 1.8

Figure 9: Same as Figure 8 but using Pr = 1000.

viscosity and thermal diffusion, whereas the Prandtl number indicates the relative importance between the momentum
transport and the thermal transport. For this problem, we use the same parameters as in [54] such as the Rayleigh
number Ra = 104, the Prandtl number Pr = 100 and 1000, and the power index m = 0.6, 0.8, 1, 1.2, 1.4, 1.6 and
1.8 which covers a wide range of Non-Newtonian fluids including shear-thinning fluids (m < 1) and shear-thickening
fluids (m > 1). For the mixed finite element discretization, an unstructured triangular mesh of 11412 elements with
5707 pressure nodes, and 22573 velocity and temperature nodes is used in our computations.

In Figure 8 we present the temperature distributions along with isotherms and the streamlines along with the
velocity magnitudes obtained using the selected values of the power index m = 0.6, 0.8, 1, 1.2, 1.6 and 1.8 for the
Prandtl number Pr = 100. Those results obtained using the Prandtl number Pr = 1000 are illustrated in Figure 9.
It is clear from these results that the flow field of power-law fluids at the considered Rayleigh and Prandtl numbers
generates a recirculation zone centered in the middle of the domain and rotating in the counterclockwise direction.
This recirculation zone is more circular at higher values of the power-index m = 1.6 and 1.8 but becomes distorted
in the anti-diagonal direction as m tends to the Newtonian case (m = 1). In the shear-thinning case (m < 1), the
corresponding central zone becomes stretched horizontally until it splits into two smaller symmetrical vortices at
m = 0.6. Notice that the distortion indicates the dominance of the convective transport occurring vertically where the
hot fluid from the right wall is rising up due to the buoyancy then travelling to the colder left wall where it is cooled and
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Figure 10: Horizontal cross-sections at y = 0.5 of the temperature for the problem of natural convection in a square enclosure with differentially
heated side walls using Pr = 100 (left) and Pr = 1000 (right) with different values of the power index.

Table 3: Mean Nusselt number for the problem of natural convection in a square enclosure with differentially heated side walls using Pr = 100 and
Pr = 1000 with different values of power index m.

Pr m = 1.8 m = 1.6 m = 1.4 m = 1.2 m = 1 m = 0.8 m = 0.6

100 1.09784 1.18186 1.35520 1.68755 2.27492 3.48246 5.76528

1000 1.09786 1.18184 1.35519 1.68757 2.27491 3.51869 5.86870

pushed down by gravity. For shear-thickening fluids (m > 1), increasing the power-index m strengthens the viscosity
(especially near the walls) and by-product natural convection motion is dumped by the dissipative viscous effects
that tends to stabilize the flow field. Therefore, we observe more regular and symmetrical velocity distributions with
weaker magnitudes as m grows larger than unity. On the other hand, strong shear-thinning effects tend to weaken the
viscous forces letting the convection motion to prevail and consequently a more agitated flow takes place. Moreover,
the influence of the power-index on this flow problem is also clearly noticeable from the temperature distributions in
Figure 8 and Figure 9 where the isotherms have sharper deviations at low values of m < 1 suggesting greater heat
transfer by natural convection. The latter form of heat transfer is enfeebled by increasing m > 1 giving the dominance
to conductive heat transport which explains the isotherms becoming less distorted as we reach m = 1.8. These results
are almost identical for both considered Prandtl numbers Pr = 100 and 1000 indicating that at Ra = 104 the flow is
weakly influenced by the Prandtl number. These results also agree well with those reported in [54] for the same flow
parameters.

To further demonstrate the previous observations more closely, we display in Figure 10 horizontal cross-sections
of the dimensionless temperature at the centerline for different values of the power-index m. For comparison purposes,
we also include results from [54] in these plots. It is obvious from Figure 10 that the temperature distribution is more
nonlinear at lower power-index values of m < 1 and tends to become linear as we move towards the shear-thickening
case and closer to m = 1.8. This confirms the previous conclusions that due to high shear-thickening effects, the heat is
mainly transported by conduction, while convective heat transport overcomes in the shear-thinning case. Comparing
the results obtained using our viscosity-splitting method to those published in [54], it shows almost a perfect agreement
which illustrates the efficiency of the proposed method not only for shear-thinning fluids but also for shear-thickening
fluids at high Prandtl numbers. To quantify these effects, we also calculate the mean Nusselt number defined by

Nu =
1

ΘH − ΘC

∮
∂L

∂Θ

∂n
ds,
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where n is the outward normal vector on the right wall ∂L. The results obtained for the mean Nusselt number are
summarized in Table 3 for the two considered Prandtl numbers and the selected values of the power-index m. It
is evident that Nu increases as the power-index decreases with significant growth in the shear-thinning case, which
in turn emphasizes the importance of heat transfer by convection occuring at low values of m as observed before.
Moreover, the temperature profiles and the mean Nusselt numbers at Pr = 100 are almost the same as those obtained
at Pr = 1000 which also confirms the weak influence of the Prandtl number on this flow problem at the present flow
conditions.

6. Conclusions

In this paper, we presented a fractional-step method for the numerical solution of unsteady thermal convection in
incompressible non-Newtonian fluids whose viscosity is temperature and shear rate-dependent according to a generic
law with temperature-dependent thermal conductivity. The method employs viscosity-splitting techniques that effi-
ciently remove any numerical boundary layer by maintaining the full original boundary conditions. It also allows
the temperature to be transported by a non-divergence-free velocity, which is an unusual feature in most existing
methods in the literature. We conducted a rigorous error analysis for all the solutions and established first-order
accuracy for both velocity and temperature solutions and 1/2-order accuracy for the pressure solution in their appro-
priate norms. To assess the computational performance of the fractional-step method, numerical results obtained for
a three-dimensional example with the manufactured exact solution and for the benchmark of a thermal flow past a
circular cylinder are presented. The method is also applied for solving a natural convection problem of power-law
fluids in a square enclosure with differentially heated side walls. The results obtained for these examples confirm the
convergence, accuracy and applicability of the proposed time fractional-step method for solving thermal convection in
non-Newtonian fluids. Future work will focus on establishing error estimates for the fully discrete problems. Exten-
sion of this analysis to thermal non-Newtonian fluids with more generalized constitutive laws will also be considered
for future work.
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Appendix A.

Denote by G1 the mapping defined, for all fixed s ∈ Rd×d by

G1 : R −→ R

t −→ ν∞ + (γ(t) − ν∞)
(
1 + β2

0∥s∥
2
Rd×d

)m − 1
2 ,

with the same parameters m, ν∞, γ and β0 as in (7). Hence, the derivative of G1 is given by

G
′

1(t) =
(
1 + β2

0∥s∥
2
Rd×d

)m − 1
2 γ

′

(t), ∀s ∈ Rd×d.

Since m ≤ 1 and thanks to (8), it is easy to verify that

∥G
′

1∥∞ ≤ C,

where the constant C is independent of s. Denote by G2 the mapping defined, for all fixed t ∈ R, by

G2 : Rd×d −→ R

s −→ ν∞ + (γ(t) − ν∞)
(
1 + β2

0∥s∥
2
Rd×d

)m − 1
2 ,

with the same parametersm, ν∞, γ and β0 as in (7). Thus, its differential is given, for all fixed t ∈ R, by

dG2(s) : h −→ (m − 1))β2
0(γ(t) − ν∞)

(
1 + β2

0 ∥s∥
2
Rd×d

)α−1
⟨s,h⟩, ∀ h ∈ Rd×d.

It is readily verified that

sup
s∈Rd×d ,s,0

∥dG2(s)∥
∥s∥Rd×d

≤ Cν,

where

Cν = |m − 1|β0 (ν1 − ν∞)
(

2(1 − α)
1 − 2α

)α−1 1
√

1 − 2α
.

Thanks to the mean-value theorem (see for instance [47]) we can write

|ν(t1, s1) − ν(t2, s2)| ≤ |ν(t1, s1) − ν(t2, s1)| + |ν(t2, s1) − ν(t2, s2)|,

≤ C|t1 − t2| +Cν∥s1 − s2∥Rd×d . (A.1)

Next, we can bound the last two terms of (34) as follows

I1 = −4∆t
∫
Ω

(
ν(ΘR(tn+1), Du(tn+1)) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx

≤ 4Cu∆t
(∫
Ω

|ν(ΘR(tn+1), Du(tn+1)) − ν(Θn
R
, Dun)|2 dx

)1/2

∥Den+1
u ∥, (Cauchy-Schwarz’s inequality and (27))

By(A.1)
≤ 4Cu∆t

(∫
Ω

(C|Θ(tn+1) − Θn| +Cν∥Du(tn+1) − Dun∥Rd×d )2 dx
)1/2

∥Den+1
u ∥,

≤ C∆t
(
∥Θ(tn+1) − Θ(tn)∥ + ∥en

Θ∥ + ∥Du(tn+1) − Du(tn)∥
)
∥Den+1

u ∥ + 4
√

2Cu Cν∆t∥Den
u∥ ∥Den+1

u ∥,

≤ C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +C(∆t)2
∫ tn+1

tn
|∂tu|21dt +C∆t∥en

Θ∥
2 + 2

Crν∞∆t
J
|en+1

u |
2
1 +

8JC2
u C2

ν

ν∞Cr
∆t|en

u|
2
1.
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Similarly,

I2 = 4∆t
∫
Ω

(
ν(Θ

n+1
R , Dun) − ν(Θn

R
, Dun)

)
Du(tn+1) : Den+1

u dx,

≤ 4Cu∆t
(∫
Ω

(
C|Θ

n+1
− Θn|

)2
)1/2

∥Den+1
u ∥, (Cauchy-Schwarz’s inequality and (27))

≤ C∆t
(
∥Θ(tn+1) − Θ(tn)∥ + ∥en+1

Θ − en
Θ∥

)
∥Den+1

u ∥,

≤ C(∆t)2
∫ tn+1

tn
∥∂tΘ∥

2dt +C∆t∥en+1
Θ − en

Θ∥
2 + (2ν∞ − ν1)Cr∆t|en+1

u |
2
1.
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