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A B S T R A C T 

The details of the dynamo process that is responsible for driving the solar magnetic activity cycle are still not fully understood. In 

particular, while differential rotation provides a plausible mechanism for the regeneration of the toroidal (azimuthal) component 
of the large-scale magnetic field, there is ongoing debate regarding the process that is responsible for regenerating the Sun’s 
large-scale poloidal field. Our aim is to demonstrate that magnetic buoyancy, in the presence of rotation, is capable of producing 

the necessary re generativ e ef fect. Building upon our pre vious work, we carry out numerical simulations of a local Cartesian 

model of the tachocline, consisting of a rotating, fully compressible, electrically conducting fluid with a forced shear flow. 
An initially weak, vertical magnetic field is sheared into a strong, horizontal magnetic layer that becomes subject to magnetic 
buoyancy instability. By increasing the Prandtl number we lessen the back reaction of the Lorentz force on to the shear flow, 
maintaining stronger shear and a more intense magnetic layer. This in turn leads to a more vigorous instability and a much 

stronger mean electromotive force, which has the potential to significantly influence the evolution of the mean magnetic field. 
These results are only weakly dependent upon the inclination of the rotation vector, i.e. the latitude of the local Cartesian model. 
Although further work is needed to confirm this, these results suggest that magnetic buoyancy in the tachocline is a viable 
poloidal field regeneration mechanism for the solar dynamo. 
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 I N T RO D U C T I O N  

ne of the leading paradigms for the maintenance of the Sun’s ob-
erved large-scale magnetic field is the αω-dynamo, following ideas
ntroduced by Parker ( 1955b ). This dynamo mechanism requires
ifferential rotation to stretch magnetic field lines in the toroidal
azimuthal) direction, via the ω-effect. The dynamo loop is then
losed by the α-effect, whereby the action of rising, twisting motions
acting upon this shear-generated toroidal field) lead to the production
f a mean poloidal field. The strongest rotational shear is known to be
ocated in the solar tachocline, at the base of the conv ectiv e env elope,

aking it a likely site for the ω-effect to be operating. However,
he exact source of the α-effect remains contro v ersial. F ollowing
arker’s original ideas (Parker 1955b , 1993 ), the α-effect is often
ttributed to cyclonic convection. Yet simulations of dynamos driven
y (moderately) turbulent rotating convection typically produce only
isordered, small-scale magnetic fields (e.g. Cattaneo & Hughes
006 ; Favier & Bushby 2013 ), suggesting a negligible α-effect in
uch systems. It is therefore natural to seek alternative processes that
an produce a similar ‘rise and twist’ re generativ e effect. 

It is well known that regions of strong magnetic field tend to be
ess dense than their surroundings (Jensen 1955 ; Parker 1955a ), and
re therefore buoyant. Moti v ated by the solar tachocline, direct nu-
 E-mail: craig.d.duguid@durham.ac.uk 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
erical simulations have been used to study the magnetic buoyancy
nstability in a horizontal magnetic layer that is induced by a vertical
hear (Vasil & Brummell 2008 , 2009 ; Silvers, Bushby & Proctor
009a ; Silvers et al. 2009b ; Barker et al. 2012 ). In these studies,
n which the effects of rotation are neglected, an initially weak,
niform, vertical magnetic field is wound up by a shear flow that
s maintained by a fixed volumetric forcing. Despite the similarity
f the models, the results are surprisingly varied. Whereas Vasil &
rummell ( 2008 ) found magnetic buoyancy instability only with an
nrealistically strong shear forcing (an order of magnitude larger
han the sound speed), Silvers et al. ( 2009b ) were able to excite

agnetic buoyancy instability with a significantly weaker shear.
ilvers et al. ( 2009b ) attributed their success to double-dif fusi ve
ffects, in particular the small ratio of magnetic to thermal diffusivity.
ore recently, ho we ver, Le wis ( 2022 ) has pointed out that another

rucial difference between these two models is in the choice of initial
ondition. If the fluid is initialized from rest (as in Vasil & Brummell
008 ) then the Lorentz force from the growing magnetic field can
ct to suppress the shear before the field itself becomes buoyantly
nstable. By contrast, if the shear flow is established before the
ertical magnetic field is introduced (as in Silvers et al. 2009b ) then
he toroidal field can become stronger by several orders of magnitude,
reatly increasing the likelihood of magnetic buoyancy instability. It
hould be emphasized that, in both of these scenarios, the instability
rises as a perturbation in an evolving system, and the dominant
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Figure 1. Schematic of the Cartesian model, which represents a local patch 
of the solar interior located at some latitude φ (note that ne gativ e values of 
φ correspond to the Southern hemisphere). The arrows in the x-direction 
represent the tachocline-like shear flow and the vertical field lines represent 
the imposed initial magnetic field B 0 e z . 
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Table 1. Non-dimensional parameters in the system, including a text descrip- 
tion/name of the quantity, the definition, and the value (or range of values) 
the parameter takes. Full details regarding the definitions of these parameters 
can be found in Paper I. ∗ This value for ζ0 is that adopted for almost all of the 
presented results, although we comment briefly on the impact of increasing 
this parameter in Section 3 . 

Description Definition Values 

F Magnetic field strength 
B 

2 
0 

R T 0 ρ0 μ0 
{ 0 , 2 . 5 × 10 −6 } 

σ Prandtl number 
μc p 

K 

0.00025–0.01 

θ Temperature gradient 

T 

T 0 
5 

κ Thermal dif fusi vity 
K 

dρ0 c p 
√ 

R T 0 
0.01 

ζ0 Inverse Roberts number 
ηc p ρ0 

K 

∗5 . 0 × 10 −4 

γ Ratio of specific heats 
c p 

c v 
5 / 3 

m Polytropic index 
gd 

R 
T 
− 1 1.6 

Ta 0 Taylor number (top) 
4 ρ2 

0 �
2 d 4 

μ2 
- 

Ta Taylor number (mid) Ta 0 

(
1 + 

θ

2 

)2 m 

10 7 – 5 × 10 8 

φ Latitude - {− π
2 , − π

4 , − π
6 } 

A Shear amplitude - 0.02 
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ode of instability changes o v er the course of this evolution (Lewis
022 ). 
The effects of rotation on magnetic buoyancy instability are non- 

rivial (see e.g. the review by Hughes 2007 ). However, idealized 
odels of the magnetic buoyancy instability with an imposed 
agnetic layer have shown that it can produce a mean electromotive 

orce (EMF) that could, in principle, lead to the production of a mean
oloidal field (e.g. Moffatt 1978 ; Davies & Hughes 2011 ). In our
ecent publication (Duguid, Bushby & Wood 2023 , henceforth Paper 
), we considered the evolution of a shear-generated magnetic layer, 
xtending the model of Silvers et al. ( 2009b ) to include rotation.
or sufficiently rapid rotation, a systematic positive-signed EMF 

as produced in the direction parallel to the mean field. Such a
ystematic mean EMF is likely to be conducive to dynamo action 
f αω-type as per the original ideas of Parker ( 1955b ). Ho we ver,
urther work is needed to confirm this idea, and there are some
ey limitations that will need to be o v ercome before a successful
ynamo can be produced. In particular, the parameter regime in 
hich these simulations operate is an extremely challenging one 

similar to that of Silvers et al. 2009b ): the viscosity and magnetic
if fusi vity are both several orders of magnitude smaller than the
hermal dif fusi vity, which greatly increases the range of scales that

ust be resolved in the simulations. It would not be feasible to run
 global spherical dynamo calculation in this parameter regime, and 
ven local Cartesian dynamo models will be very demanding in terms
f computational requirements. Another limitation is that the shear 
ow in all of the simulations presented in P aper I ev entually became
un-tachocline-like’, either through the suppression of differential 
otation or through the generation of strong meridional shear, as a 
esult of the Lorentz force associated with the large-scale magnetic 
eld. The simulations were therefore inherently transient, making it 
ifficult to extract meaningful statistics. Finally, these calculations 
ere restricted solely to the polar regions of the solar interior, which

s not the primary region of interest for the solar dynamo. Overcoming 
hese limitations forms the moti v ation for this paper. 

The main aim of this paper is to demonstrate that many of
hese issues can be o v ercome by making appropriate changes to
he parametric regime of the simulations. In Section 2 , we present
rief details of the model, focusing upon the differences between this
odel and that considered in Paper I. This is followed, in Section 3 ,

y a detailed numerical study, focusing upon the effects of varying 
he dif fusi ve parameters. Section 4 describes the ef fect of v arying the
atitude of the domain, i.e. the angle between the rotation axis and
ravity. We conclude the paper with a summary of the main findings
nd further discussion. 
 N U M E R I C A L  M O D E L  

.1 Equations and parameters 

he model, which we shall briefly summarize in this section, is
 generalization of that presented in Paper I. We consider a local
artesian box within the tachocline, which we model as an ideal gas

hat is electrically conducting and fully compressible. As indicated 
n Fig. 1 , the local Cartesian axes x , y , z are defined in the directions
f increasing longitude, colatitude, and depth, respectively. When 
otation is included, we work in the frame rotating with constant
ngular velocity � = −�( cos ( φ) e y + sin ( φ) e z ), where φ represents
he latitude of the model and the scalar quantity � defines the rotation
ate. Note that ne gativ e values of φ correspond to the Southern
emisphere. A volumetric forcing is applied to the momentum 

quation to produce an azimuthal shear flow (in the x direction),
imicking the local differential rotation within the tachocline. 
ecause the rotation axis is tilted, the forcing required is slightly
ifferent to that in Paper I, and is defined below by equation ( 5 ). The
nitial state is that of the hydrodynamically stable shear flow with a
eak vertical magnetic field, B = B 0 e z , as well as small-amplitude

hermal noise to initiate three-dimensional motions of the fluid. The 
ertical field is subsequently stretched out in the x-direction by the
hear flow, producing a magnetic layer that eventually becomes 
ynamically significant and, potentially, susceptible to magnetic 
uoyancy instability. The domain size is the same as in Paper I,
ith 0 ≤ x ≤ 2 d , 0 ≤ y ≤ 0 . 5 d , and 0 ≤ z ≤ d where d is used as
ur characteristic length-scale. 
We use the same non-dimensionalization as in Paper I (scaling 

engths with respect to d , and time with respect to the isothermal
ound-crossing time) which results in a system of dimensionless, 
on-linear differential equations describing the temporal evolution 
f the density ρ, temperature T , velocity u , and magnetic field B .
e repeat the equations here for reference, 
MNRAS 535, 78–89 (2024) 
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Figure 2. Comparison between a solution of the horizontally invariant equa- 
tions (top panels, adapted from Lewis 2022 ) and the full three-dimensional 
equations (bottom panels, taken from Duguid et al. 2023 , where the angled 
brackets denote a horizontal average). The two cases have different values 
for the initial vertical field, F , and shear amplitude, A , leading to dynamics 
on different time-scales, but the profiles of the horizontally averaged B x (left 
panels) and u x (right panels) are qualitatively comparable. 

ρ

ρ

∇
H

τ

(  

t

P

T  

t  

t  

N  

m  

t
 

t  

a  

i  

fl  

t

u

B

T

T  

o  

v  

U

w  

I

U

w  

a  

p  

a  

p  

(  

o  

c  

w
 

0  

B  

t  

t  

U  

p  

a  

i  

d  

t  

t  

p  

m  

o  

fl  

c  

F  

t  

D  

m  

t  

i  

b  

i  

i  

i  

i  

s  

a  

fi

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/535/1/78/7819160 by U
niversity of D

urham
 user on 29 O

ctober 2024
∂ u 

∂t 
+ ρ( u · ∇) u = −Ta 0 

1 / 2 σκρ� × u − ∇P + θ ( m + 1) ρe z 

+ F ( ∇ × B ) × B + σκ∇ · τ + F s , (1a) 

∂T 

∂t 
+ ρ( u · ∇) T = −( γ − 1) P ∇ · u + γ κ∇ 

2 T 

+ F ( γ − 1) ζ0 κ|∇ × B | 2 + 

( γ − 1) σκ

2 
τ 2 , (1b) 

∂ B 

∂t 
= ∇ × ( u × B − ζ0 κ∇ × B ) , (1c) 

∂ρ

∂t 
= −∇ · ( ρu ) , (1d) 

 · B = 0 . (1e) 

ere, τ is the non-dimensional viscous stress tensor 

ij ≡ ∂u i 

∂x j 
+ 

∂u j 

∂x i 
− 2 

3 δij 

∂u k 

∂x k 
(2) 

where δij denotes the Kronecker delta), and the pressure P satisfies
he equation of state for an ideal gas, 

 = ρT . (3) 

he non-dimensional parameters along with their typical values in
his work are summarized in Table 1 . Most of these parameters retain
he same values as in Paper I to make direct comparisons simpler.
ote that the values for the Taylor number that we quote later are
easured at the mid-depth of the domain, z = 0 . 5 (the location of

he shear layer), and are related to Ta 0 by Ta ≈ 55 Ta 0 . 
All variables are assumed to be periodic in the horizontal direc-

ions. The upper and lower boundaries are modelled as impermeable
nd stress-free, with a vanishing tangential magnetic field. We also
NRAS 535, 78–89 (2024) 
mpose the temperature at the upper boundary ( z = 0) and the heat
ux at the lower boundary ( z = 1). In our non-dimensional units,

hese boundary conditions have the form 

 z = 

∂u x 

∂z 
= 

∂u y 

∂z 
= 0 for z ∈ { 0 , 1 } , (4a) 

 x = B y = 

∂B z 

∂z 
= 0 for z ∈ { 0 , 1 } , (4b) 

 = 1 for z = 0 , and 
∂T 

∂z 
= θ for z = 1 . (4c) 

he forcing term F s in equation ( 1a ) is chosen so that, in the absence
f magnetic fields or instabilities, it maintains a balance between
iscous and Coriolis forces with a ‘target’ azimuthal shear flow
 0 ( z) e x : 

F s ≡ −σκ

⎡ 

⎣ 

U 

′′ 
0 √ 

Ta 0 ρU 0 sin φ
−√ 

Ta 0 ρU 0 cos φ

⎤ 

⎦ , (5) 

here ′ denotes a z-deri v ati ve. The target flo w is the same as in Paper
: 

 0 ( z) ≡ A tanh [10( z − 0 . 5)] , (6) 

here A sets the shear amplitude. For reasons described earlier,
nd as in Paper I, the flow is allowed to settle to the target
rofile U 0 before we introduce a uniform vertical magnetic field
nd small-amplitude noise to the temperature. All simulations
resented later adopt the same domain size as in Paper I with
 Lx , Ly , 1) = (2 , 0 . 5 , 1) and are performed with a numerical res-
lution ( N x , N y , N z ) = (192 , 128 , 192). The parameter values were
hosen following a more e xtensiv e low-resolution parameter surv e y
ith ( N x , N y , N z ) = (128 , 64 , 128). 
In Paper I, we considered the low Prandtl number regime ( σ =

 . 00025) of Silvers et al. ( 2009b ), adopting a vertical rotation vector.
efore proceeding to describe the new results in this paper, it is useful

o first summarize the general evolution of a typical simulation from
his low Prandtl number regime. In the early stages, the shear flow
 0 ( z) e x deforms the initially vertical magnetic field, producing a
redominantly horizontal magnetic layer (aligned with the x-axis)
round z = 0 . 5, the peak amplitude of which initially grows linearly
n time. Once the magnetic field becomes strong enough to become
ynamically significant, the resultant Lorentz force causes the flow
o depart from U 0 . This eventually drives the system away from a
achocline-like profile, significantly limiting the field amplification
rocess (the field also diffuses due to resistivity, but this plays only a
inor role in the evolution of the large-scale field o v er the time-scale

f the simulations). Due to the significant density stratification, the
ow and the field develop vertical asymmetry, with more significant
hanges occurring in the upper half of the domain. As shown in
ig. 2 , the temporal evolution of the magnetic layer is comparable to

hat of the horizontally invariant system considered by Lewis ( 2022 ).
ue to the effects of rotation, the Lorentz force from the growing
agnetic layer also drives a persistent flow in the y-direction, as

he Lorentz, Coriolis, and viscous forces must remain approximately
n balance on long time-scales. In cases where the magnetic layer
ecomes unstable, we observe the formation of tube-like structures
n the flow and field (in the upper part of the layer) that are elongated
n the direction of the mean field, as expected for magnetic buoyancy
nstability. For the cases considered in Paper I, the magnetic buoyancy
nstability is quasi-two-dimensional in the early stages (before the
hear flow departs from the tachocline-like profile), taking the form of
n interchange instability, with no significant arching of the magnetic
eld lines. 
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Figure 3. Snapshots taken at t ≈ 500 for σ ∈ { 0 . 00025 , 0 . 005 , 0 . 01 } . Top: pseudo-coloured isovolumes of 
√ 

F B 

′ 
x , where B 

′ 
x = B x − 〈 B x 〉 , with 

√ 

F 〈 B x 〉 as a 
backdrop. Bottom: pseudo-coloured isovolumes of u z again with 

√ 

F 〈 B x 〉 as a backdrop. 
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.2 Mean EMF 

he most rele v ant quantity for assessing the system’s potential to
ct as a dynamo is the mean EMF. We compute the mean EMF
ollowing the standard mean-field approach (e.g. Moffatt & Dormy 
019 ). The velocity and the magnetic field are decomposed into 
heir mean and fluctuating parts, • ≡ 〈•〉 + •′ . Here, angled brackets 
enote horizontally averaged quantities defined by 

•〉 ≡ 1 

L x L y 

∫ L x 

0 

∫ L y 

0 
• d x d y , (7) 

here L x and L y define the domain size in the horizontal directions
we will make use of angled brackets throughout this paper to denote
orizontal averaging of this form), and primes denote fluctuating 
uantities. Applying this decomposition to the horizontally averaged 
nduction equation (equation 1c ), and noting that horizontal averages 
f fluctuating quantities vanish, we obtain 

∂〈 B 〉 
∂t 

= ∇ ×
(
〈 u 〉 × 〈 B 〉 + E 

)
+ ζ0 κ

∂ 2 

∂z 2 
〈 B 〉 , (8) 

here the mean EMF, E , is defined as 

 ≡ 〈 u 

′ × B 

′ 〉 . (9) 

e note that only the x and y components of E contribute to the
eneration of the mean field in equation ( 8 ). In idealized mean-field
heory, the mean EMF is often expressed as a sum of contributions
rom the α effect, turbulent pumping, and turbulent magnetic diffu- 
ion. Ho we ver, as noted by Davies & Hughes ( 2011 ), and discussed
n detail in Paper I, it is not clear that such a decomposition is
eaningful in the present context. In what follows, we will focus

pon the EMF itself rather than its interpretation in terms of mean-
eld theory. 

 VA RY IN G  T H E  V I S C O U S  A N D  MAGNE TIC  

IFFUSIVITIES  

 or plausible v elocity shear profiles, shear-driv en magnetic buoyanc y 
as only previously been achieved in numerical simulations by adopt- 
ng values for the viscosity and magnetic diffusivity that are much
maller than the thermal dif fusi vity. In particular, the simulations
resented in Paper I had ζ0 = 5 × 10 −4 and σ = 2 . 5 × 10 −4 (with
 dimensionless thermal dif fusi vity of κ = 0 . 01). Although these
imulations are far more dissipative than the real tachocline, these 
arameters do ensure that the viscous, Ohmic, and thermal diffusion 
ime-scales have the correct ordering, with the thermal diffusion 
ime much shorter than the other two. Ho we ver, as noted in the
ntroduction, this is a challenging numerical regime. Furthermore, 
he simulations described in Paper I had a number of other limitations,
articularly the eventual deviation of the mean velocity from the 
arget profile. In this section, we will investigate to what extent these
esults depend on the values of σ and ζ0 , and whether the constraints
n their values can be relaxed. As well as reducing the computational
urden we would ideally also like to find a parameter regime in which
he shear flow remains tachocline-like, with strong azimuthal shear 
in the x direction) and much weaker flows in the latitudinal ( y)
irection. 
MNRAS 535, 78–89 (2024) 



82 C. D. Duguid, P. J. Bushby and T. S. Wood 

M

Figure 4. Horizontally av eraged v ertical profiles taken at t ≈ 500 for σ ∈ 

{ 0 . 00025 , 0 . 005 , 0 . 01 } , as denoted by the legend. Note that for 
√ 

F B x we also 
show the profiles at t ≈ 200 (denoted by dotted/dashed lines) to highlight the 
evolution of the field. The insets in the lower two plots focus upon the higher 
σ cases. 
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Figure 5. Time series of the volume averaged vertical velocity energy for 
each value of σ (see legend). 
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In order to make direct comparisons with previous results, we will
etain most of the parameters from Paper I (see Table 1 ). Throughout
his section, we take the rotation axis to be vertical, with φ = −π/ 2
corresponding to the south pole) 1 and the rotation rate is fixed,
ith a mid-layer Taylor number of Ta = 5 × 10 8 , matching the most

apidly rotating case in Paper I. With the (dimensionless) thermal
if fusi vity fixed at κ = 0 . 01 (as in Paper I), we continue to restrict
NRAS 535, 78–89 (2024) 

 This is the same rotation vector considered in Paper I, but note that there is 
n erroneous minus sign in the definition of � in that paper, which should 
ead � = �e z rather than � = −�e z . 

e  

c  

c
 

p  
ttention to values of σ and ζ0 that are much smaller than unity, to
nsure that the thermal diffusion time-scale is al w ays shorter than
he other dif fusi ve time-scales. Ho we ver, there is certainly scope to
ncrease both σ and ζ0 without violating this condition. While this
oes push the calculations slightly further away from the conditions
n the tachocline, the advantage of adopting this approach is that it
akes the computations less onerous (which will be essential for

uture simulations of the full dynamo problem). 
We focus initially upon the effects of increasing ζ0 , i.e. increasing

he magnetic dif fusi vity . Unfortunately , even a modest increase from
0 = 5 . 0 × 10 −4 to ζ0 = 1 . 5 × 10 −3 suppresses the instability in our
imulations. This result is partly explained by enhanced diffusion
f the magnetic layer, which reduces the strength and gradient of
 B x 〉 . Much more importantly, ho we ver, the increased value of ζ0 

ncreases the magnetic field gradient required for magnetic buoyancy
nstability to occur (Gilman 1970 ; Acheson 1979 ; Hughes 2007 ).
ased on this finding, and given that we do not want to decrease ζ0 

ny further for numerical reasons, we therefore fix ζ0 = 5 × 10 −4 in
ll calculations that will be presented from here on. The remainder
f this section will focus upon the (much more interesting) changes
n behaviour that occur when the Prandtl number is varied. 

.1 Prandtl number 

uided by an e xtensiv e low-resolution parameter surv e y, we will
resent results for σ ∈ { 0 . 00025 , 0 . 005 , 0 . 01 } . We demonstrated in
aper I that the σ = 0 . 00025 case does indeed generate magnetic
uoyancy instability; it is provided here as a reference point for
he other cases. At the other end of this range, we elected not to
ncrease σ beyond 0.01 for a number of reasons. In particular, we
anted to ensure that the effects of viscous heating (associated with

he forced shear) remained negligible on the time-scales of interest,
nd it has been confirmed (by artificially suppressing the rele v ant
erms in the code) that this is indeed the case even for σ = 0 . 01.
econdly, we needed to ensure that the thermal diffusion time-scale
emained much shorter than the viscous time-scale, and increasing

much further would have violated this constraint. Finally, for
arger values of σ we found that the initial perturbations dissipated
ery quickly before the magnetic field became buoyantly unstable,
ignificantly delaying the apparent onset of the instability (for a given
nitial thermal perturbation). Given that the magnetic layer is itself
volving in time, delayed onset for the magnetic buoyancy instability
ould have detrimental consequences for any potential future dynamo
alculation. 

There is one further consideration that should be mentioned before
resenting the results, namely the stability of the background shear.
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Figure 6. The depth- and time-dependence of E x and E y for σ ∈ { 0 . 00025 , 0 . 005 , 0 . 01 } (upper three rows). In the bottom row, we also show (for the purposes 
of comparison) the depth- and time-dependence of 

√ 

F 〈 B x 〉 and 
√ 

F 〈 B x 〉 for σ = 0 . 01. 
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s discussed in Paper I, shear flows of this nature can be hydrodynam- 
cally unstable if the product of the Prandtl number and the Richard-
on number, Ri (which is the square of the Brunt–V ̈ais ̈al ̈a frequency
ivided by the local shearing rate), is small (Zahn 1974 ; Garaud,
agnier & Verhoeven 2017 ). For the simulations described here, 

or which Ri ≈ 18 . 57, we have Ri σ ≈ { 0 . 0046 , 0 . 0929 , 0 . 1857 } for
∈ { 0 . 00025 , 0 . 005 , 0 . 01 } , respectively. The two higher σ cases

ie well abo v e the approximate stability threshold of Ri σ > 0 . 007
etermined empirically by Garaud et al. ( 2017 ), which suggests
hat both should be stable. This has been confirmed by a set of
ydrodynamic simulations. In the absence of a magnetic field, any 
eviations from the target flow (which might be indicative of an
nderlying hydrodynamic instability) are even weaker in these cases 
han that shown for the lowest σ case in Paper I. 

Fig. 3 illustrates the key differences in the flow and field structures
s a function of σ after t ≈ 500 time units. The upper panels
MNRAS 535, 78–89 (2024) 
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Figure 7. The depth- and time-dependence of E x = 〈 u ′ y B 

′ 
z − u ′ z B 

′ 
y 〉 and E y = 〈 u ′ z B 

′ 
x − u ′ x B 

′ 
z 〉 and the constituent parts of these components, for σ = 0 . 01, 

filtered to show only contributions from flow and field components with the largest length-scale undular mode n x = 1. 
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how the distributions of 〈 B x 〉 and B 

′ 
x ; the lower panels show the

istribution of u z (note that the B x plots include a factor of 
√ 

F ,
hich allows a more direct comparison with the amplitude of u z in
ur dimensionless units). These snapshots show that the magnetic
uoyancy instability for each value of σ is at a different stage of
ts dev elopment. F or σ = 0 . 00025, the instability is confined to a
hin layer and the perturbations have a relatively low amplitude, with
ery short length-scales in both of the field-perpendicular ( y and
) directions. As was highlighted in Paper I, the instability for this
ase is interchange-like, in the sense that the perturbations have little
ariation in the direction parallel to the mean field. The perturbations
n both of the higher σ cases have reached a significantly greater
mplitude at t ≈ 500, because in those cases the instability has both
n earlier onset and a faster growth rate. As mentioned earlier, in
hose cases the instability is initially interchange-like, but by the
ime shown in Fig. 3 the perturbations have developed a clear undular
tructure. The fluid motions by this time have developed into plumes,
ith a ‘mushroom’-like cross-section (reminiscent of that observed
y Cattaneo & Hughes 1988 ). As would be expected, this undular
NRAS 535, 78–89 (2024) 

s  
tructure is characterized by a long length-scale in the field-parallel
irection, and a much shorter length-scale in the y direction, although
t is apparent that the typical length-scale in the y direction tends
o increase with increasing σ . One other difference that is worth
entioning at this stage is the relative tilt of the tube-like structures

n the xy-plane (a phenomenon that was discussed in detail in Paper
). Although it is not easy to see in these figures, there is quite a
ronounced tilt in the lowest σ case; the degree of tilt for larger σ is
uch smaller. 
The Prandtl number dependence that is illustrated by Fig. 3 can be

nderstood by analysing the underlying mean fields and flows. The
op panel of Fig. 4 shows the horizontally averaged vertical profiles of
 x at t ≈ 500 for each σ . As noted in Paper I for the lowest σ case, the
elocity shear is reduced by the action of the Lorentz force, eventually
eparting significantly from the target flow, U 0 . In the higher σ cases,
y contrast, the shear flow is practically indistinguishable from U 0 .
iven the importance of the shear profile for the generation of the
agnetic layer, it is not surprising that we see significant differences

n the horizontally av eraged v ertical profiles of B x , which are also
hown in Fig. 4 . At early times, in all cases, the induced field is
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Figure 8. The dependence of the σ = 0 . 01 case on the inclination of the rotation vector, showing snapshots (left to right) for φ ∈ {−π/ 2 , −π/ 4 , −π/ 6 } . Top: 
pseudo-coloured isovolumes of u z at t ≈ 250, with the horizontally averaged 

√ 

F B x as the backdrop. Bottom: The same quantities at t ≈ 500. 
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trongest about the mid-plane. At t ≈ 200, we see that the 〈 B x 〉
istributions are almost identical in the higher σ cases, whereas the 
owest σ case is already diverging as the flow is being perturbed by
he magnetic field (producing a shallower magnetic field gradient 
bo v e the mid-plane). While the peak magnetic fields are of the
ame order of magnitude in all cases at t ≈ 200, the Prandtl number
ependence of the forcing (equation 5 ) means that the field can more
asily perturb the force balance in the lowest σ cases, leading to 
he observed flattening of the shear profile. At later times, we see a
moother 〈 B x 〉 profile in the σ = 0 . 00025 case, while there is much
ore structure in the mean field distribution in the higher σ cases. 
his is a signature of the vigour of the magnetic buoyancy instability
t higher Prandtl number, which is strong enough to significantly alter 
he vertical distribution of the horizontal magnetic field. The relative 
igour of the instability in these cases is simply a consequence of a
teeper vertical gradient in the shear-generated magnetic layer, which 
ends to promote instability (Gilman 1970 ; Acheson 1979 ; Hughes 
007 ). 
As discussed in Paper I, the inclusion of rotation tends to drive
ean flows in the y-direction once the magnetic field becomes large 

nough to disturb the initial hydrodynamic force balance (in which 
he imposed body force balances viscosity and the Coriolis force that 
esults from the driven shear). For the reasons outlined above we 
ight again expect to see weaker flows in this field-perpendicular 

irection at higher σ . This can be seen to be the case in the third plot
f Fig. 4 , which shows the horizontally av eraged v ertical profiles of
 y for each Prandtl number at t ≈ 500. In the σ = 0 . 00025 case,
hese flows reach a peak amplitude that is comparable in magnitude
o that of the initial shear. While there is also a systematic 〈 u y 〉
ow in the higher σ cases, its amplitude is negligible (more than
n order of magnitude smaller) compared to the mean flow in the x-
irection. Since 〈 B y 〉 is being induced by 〈 u y 〉 , at a rate approximately
roportional to ∂ z 〈 u y 〉 , we observe a decrease in the magnitude of
 B y 〉 for increasing σ (in the lower part of Fig. 4 ). To put this another
ay, while the mean horizontal field exhibits a significant tilt in the
y-plane in the σ = 0 . 00025 case (which significantly complicates
he interpretation of the mean EMF measurements, as discussed in 
aper I), this tilting effect tends to be reduced as we increase σ . This

ack of tilt is reflected in the field and flow structures that are shown
n Fig. 3 . 

To analyse the onset (and subsequent evolution) of the mag- 
etic buoyancy instability in a more quantitative manner, Fig. 5 
hows the v olume-a veraged energy in the vertical velocity for
∈ { 0 . 00025 , 0 . 005 , 0 . 01 } . All cases feature an initial decay phase

s the initial, thermally induced perturbations gradually dissipate. 
ote that the oscillatory behaviour at early times is indicative of

he presence of acoustic and internal gra vity wa ves, the latter of
hich are dominant. In both the σ = 0 . 00025 and σ = 0 . 005 cases,

he perturbation energy plateaus at t ≈ 150 (at a lower level in
he latter case). For σ = 0 . 005, the magnetic buoyancy instability
nsets at around t ≈ 200, and we observe a rapid growth phase
ntil saturation occurs at around t ≈ 300. In the lowest σ case, the
nstability is clearly delayed (due to the smoothing of the shear
rofile), and only at around t ≈ 400 do we start to see well-defined
MNRAS 535, 78–89 (2024) 
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Figure 9. Horizontally averaged vertical profiles for each latitude φ ∈ 

{−π/ 2 , −π/ 4 , −π/ 6 } as denoted by the legend, for σ = 0 . 01. In all cases, the 
profiles are taken at t ≈ 500 (with additional profiles at t ≈ 440 for 

√ 

F 〈 B x 〉 
as an insert which further illustrates the evolution of the field). 
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ndications of growth. In the σ = 0 . 01 case, the initial decrease in the
nergy in the vertical velocity plateaus slightly later, and at a much
o wer le vel (due to the enhanced dif fusion). Ho we ver, the magnetic
uoyancy instability again sets in at t ≈ 200, with the energy in the
 ertical v elocity then growing at a similar rate to the σ = 0 . 005 case.
ere, the instability saturates slightly later, at t ≈ 400, because it

akes longer for the amplitude of the perturbations to grow to the
equired level for saturation. Further increases in σ would further
educe the amplitude of the remaining perturbation at the critical
ime for the onset of the magnetic buoyancy instability (at t ≈ 200),
urther delaying the point at which the instability starts to produce
ynamically significant perturbations to the field and flow. 
NRAS 535, 78–89 (2024) 
.2 Mean electromoti v e force 

ith a detailed understanding of the behaviour of the flow and
eld as σ is v aried, we no w look at how this influences the mean
MF components, E x = 〈 u 

′ 
y B 

′ 
z − u 

′ 
z B 

′ 
y 〉 and E y = 〈 u 

′ 
z B 

′ 
x − u 

′ 
x B 

′ 
z 〉 .

s noted abo v e, these are the only components of the mean EMF
hat contribute to the generation of the mean magnetic field in
quation ( 8 ). Although there are some difficulties in terms of the
tandard mean-field interpretation of the mean EMF in the context of
his magnetically driven instability, insights from mean-field theory
uggest that the component of the mean EMF that is parallel to the
ean magnetic field should play a crucial re generativ e role in any
ark er-lik e dynamo mechanism. 
The lowest Prandtl number case ( σ = 0 . 00025) was discussed in

etail in Paper I, so we only briefly summarize the main results here.
he time- and depth-dependence of the x and y components of the
ean EMF for σ = 0 . 00025 are shown in the upper panels of Fig. 6 .

n this case, E x has a systematic positive-signed localized peak that
rows superlinearly in time. The peak first appears near the mid-plane
nd then migrates upwards, roughly following the evolution of the
uoyancy instability. There is also a substantial negative E y , whose
ocation closely follows that of E x . Furthermore, the magnitude of
 y significantly exceeds that of E x . Davies & Hughes ( 2011 ), who
bserved similar behaviour in their idealized linear system, associate
he component of the EMF that is perpendicular to the mean field with

agnetic pumping and turbulent diffusion. Although the magnitude
f the EMF is small (e.g. E x is approximately 5 × 10 −5 at t ≈ 500),
oth components are still growing at the end of the simulation, and
ight eventually become large enough to influence the evolution of

he mean magnetic field. Ho we ver, by this time the mean flow has
lready departed significantly from the imposed ‘tachocline-like’
ow, so it is not clear that longer integrations would be meaningful.
he substantial (and depth-dependent) rotationally induced tilt of

he mean horizontal field also makes it difficult to disentangle the
eld-parallel and field-perpendicular contributions to the mean EMF.
his further complicates the interpretation of these measurements.
s noted in the previous section, the rotationally induced tilt of

he mean magnetic field is significantly reduced at higher Prandtl
umbers, meaning that the geometrical distinction between the field-
arallel and field-perpendicular directions is much clearer in these
ases. 

The second and third rows of Fig. 6 show the time- and depth-
volution of E x and E y for the higher Prandtl number cases, σ ∈
 0 . 005 , 0 . 01 } . For these cases, we find | E x | to be approximately
wo orders of magnitude larger than in the σ = 0 . 00025 case at
omparable times (at least up to t ≈ 500). This is a consequence of
 much more vigorous magnetic buoyancy instability (which is itself
 consequence of the fact that the shear remains closer to the target
hear), which produces stronger perturbations to the field and flow.
 mean EMF component of this magnitude is much more likely to
lay a significant role in the evolution of the mean field than the
orresponding E x component in the σ = 0 . 00025 case. Compared
o the lowest Prandtl number case, there is also a more complicated
epth dependence for E x . While there is still a systematic positive E x 
n the vicinity of the mid-plane, both the σ = 0 . 005 and σ = 0 . 01
ases show a very thin negative band that migrates towards the surface
s the simulation progresses, following the evolution of the magnetic
uoyanc y instability. F or σ ∈ { 0 . 005 , 0 . 01 } , we can see from Fig. 6
hat E y remains predominantly ne gativ e and is consistently of larger

agnitude than E x . Furthermore, just like E x , the region of significant
 y expands into the upper regions of the domain as time evolves. A
ubstantial E y therefore seems to be a robust feature of this system,
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Figure 10. The depth- and time-dependence of E x and E y for latitudes φ ∈ {−π/ 4 , −π/ 6 } in the σ = 0 . 01 case. These can be compared with the third row of 
Fig. 6 which shows corresponding quantities for φ = −π/ 2. 
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ndependent of the choice of σ . The bottom row of Fig. 6 shows the
ime- and depth-evolution of the mean-field components 

√ 

F 〈 B x 〉 
nd 

√ 

F 〈 B y 〉 for the case with σ = 0 . 01. Although there is a clear
orrelation between the location of the mean field and that of the
ean EMF, the two are not related in a straightforward (e.g. linear)

ashion. 
In order to understand the observed features of the mean EMF, it

s instructive to analyse its constituent parts in more detail. In the
ase of E x = 〈 u 

′ 
y B 

′ 
z − u 

′ 
z B 

′ 
y 〉 , for example, separate consideration of

 u 

′ 
y B 

′ 
z 〉 and −〈 u 

′ 
z B 

′ 
y 〉 yields some important insights (as shown in

aper I for σ = 0 . 00025). Ho we ver, we can gain further insights by
ourier decomposing the magnetic field and flow perturbations into 
 sum of components with different wavenumbers in the azimuthal 
 x-)direction. The reason for considering such a decomposition is 
o determine the relative importance of undular and interchange 
odes in the production of the mean EMF. Due to the periodicity

f the domain, the (dimensionless) azimuthal wavenumbers of 
hese Fourier components take the form n x π , where n x is a non-
e gativ e inte ger representing the number of wav elengths in the x-
irection. Therefore, n x = 0 corresponds to an interchange mode, 
hile n x = 1 corresponds to the undular mode with the longest
ermitted wavelength in the domain, 0 ≤ x ≤ 2. The mean EMF,
nd its constituent parts, can then be expressed as sums over the
ontributions from different values of n x . We will focus our Fourier
nalysis on the higher Prandtl number cases below. The same analysis
an be carried out for the σ = 0 . 00025 case but the results are
ualitati vely dif ferent. This is a consequence of the rotationally 
nduced tilt of the mean magnetic field (which, as noted abo v e,
ignificantly complicates the interpretation of the analysis). 

In the larger Prandtl number cases, the dominant contributions 
o E x come from perturbations with n x ∈ { 0 , 1 } , which represent
he longest wavelengths in the field-parallel direction. In Fig. 7 , 
e show the contribution from perturbations with n x = 1 in the
 F
= 0 . 01 case. 2 It is clear from comparing Figs 6 and 7 that the
 x = 1 mode has the same spatiotemporal structure as the total E x ,
s well as a similar magnitude. The n x = 0 mode for this simulation
not shown) is somewhat smaller in magnitude, and has a less
oherent structure. As a result, the n x = 1 mode is the dominant
omponent, with the interchange mode (i.e. n x = 0) accounting for
ost of the small differences between the contribution from n x = 1
ode and the total E x . Both terms 〈 u 

′ 
y B 

′ 
z 〉 and −〈 u 

′ 
z B 

′ 
y 〉 of E x are

f similar magnitude for n x ∈ { 0 , 1 } . The former of these terms is
redominantly ne gativ e, whereas the latter is predominantly positive, 
part from a thin ne gativ e band that propagates upwards. As a result
hese two terms generally work in opposition, but reinforce one 
nother in the upper band leading to the observed strong negative
 x . We observe similar features when decomposing the EMF in the
ase σ = 0 . 005 (not shown). As for E x , the dominant contributions
o E y come from the n x ∈ { 0 , 1 } modes of the flow and field. The
 x = 1 contribution, which is illustrated in Fig. 7 , is again the larger
f the two. Further, it is evident that the u 

′ 
z B 

′ 
x term is the dominant

omponent. This analysis clearly shows that the undular ( n x = 1)
agnetic buoyancy mode is playing a crucial role in the production

f a substantial mean EMF in the higher Prandtl number cases. 

 VA RY IN G  T H E  ROTAT I O N  

ased on insights from mean-field theory, a lack of reflectional 
ymmetry should be conducive to the production of a systematic 
ean EMF . W e might therefore expect to see a strong dependence

f these results upon the choice of rotation rate and the inclination of
he rotation vector, φ (which corresponds to the latitudinal location 
MNRAS 535, 78–89 (2024) 

ourier modes of u and B with n x = 1 are included. 
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f the local Cartesian domain). Given the latitudinal distribution of
unspots, which are never observed near the poles, it is particularly
mportant to consider the effects of varying the inclination of the
otation vector, which we will describe later in this section. Ho we ver,
e shall first briefly discuss the effects of varying the rotation rate in

he case of a vertical rotation vector ( φ = −π/ 2). 

.1 Taylor number dependence 

he rotation rate dependence in the lowest Prandtl number case
 σ = 0 . 00025) was clearly demonstrated in Paper I. At moderate
aylor numbers, this system produced a coherent E y but a negligible
 x . To produce a more substantial E x , it was necessary to increase

he Taylor number to Ta = 5 × 10 8 (which moti v ated this choice of
arameter in this paper). We have already seen that the higher Prandtl
umber cases produce a much larger mean EMF for Ta = 5 × 10 8 

han the case considered in Paper I. Furthermore, the increased
randtl number has a profound impact upon the maintenance and
eneration of the mean flows, with a more closely maintained target
hear and much weaker mean flows in y-direction. Given these
ifferences, it is not immediately obvious how these higher Prandtl
umber cases will depend upon Ta. 
Taking the case σ = 0 . 01, we have reduced the Taylor num-

er from Ta = 5 × 10 8 to 10 7 , which we previously found was
ufficient to produce qualitative changes to the dynamics in the
ase σ = 0 . 00025. For σ = 0 . 01, by contrast, this reduction yields
ualitatively similar dynamics, only on a longer time-scale. In
articular, both components of the mean EMF are similar to those in
he lower panels of Fig. 6 , except that a longer time is taken to reach
omparable magnitudes. We conclude that, for this larger value of σ ,
he dynamics are affected by rotation at a lower value of Ta. This may
e explained by the fact that, in our dimensionless units, increasing
while fixing Ta corresponds to increasing the rotation rate (which

s why the Coriolis term in equation ( 1a ) includes a factor of σ ). 

.2 Varying the inclination 

aving noted that the higher Prandtl number cases are not strongly
ependent upon the choice of Ta, we now fix Ta = 5 × 10 8 (for ease
f comparability with previous results) and vary φ. In addition to
he results presented earlier for φ = −π/ 2 (high latitude), we have
herefore also performed calculations for φ = −π/ 4 (mid latitude)
nd φ = −π/ 6 (low latitude). The rest of the parameters are fixed
o the values presented in Table 1 , focusing e xclusiv ely upon the
= 0 . 01 case. 
Fig. 8 shows volume renderings of u z at t ≈ 250 and t ≈ 500 for

ach value of φ. During the early, essentially linear development of
he instability ( t ≈ 250), we see that the flow structures are elongated
n a direction roughly parallel to the rotation axis, in accordance with
he Taylor–Proudman effect. In all cases, the perturbations grow at
 similar rate, and non-linear saturation of the instability occurs at
 ≈ 400. The bottom part of Fig. 8 shows a later stage of each of the
imulations (at t ≈ 500). By this point in the evolution, the effects
f the tilt have become significantly less apparent. In all cases, we
ee a comparatively vigorous instability, with some indication of
ndulation in the field-wise direction (particularly in the φ = −π/ 6
ase). Once the magnetic buoyancy instability has saturated, the
ilting of the rotation vector appears to have little effect on the key
eatures of the dynamics. 

To assess the effects of a tilted rotation vector in a more quantitative
anner, the mean fields and flows at t ≈ 500 are plotted in Fig. 9 ,
hich shows snapshots of these quantities at this time. In all cases, the
NRAS 535, 78–89 (2024) 
hear flow profile remains close to the target flow profile, U 0 , even
ell into the non-linear regime. The secondary 〈 u y 〉 flow remains
eak (an order of magnitude smaller than the shear flow in the x-
irection), but reaches a slightly higher peak value in the low latitude
 φ = −π/ 6) case. The evolution of 〈 B x 〉 is similar in all cases with
nly minor quantitative differences being observed (with the most
trongly inclined case deviating slightly from the other two). As a
onsequence of the relatively low amplitude of 〈 u y 〉 in all cases, the
mplitude of 〈 B y 〉 is generally an order of magnitude smaller than
he amplitude of 〈 B x 〉 at a comparable depth. Again, the mean field

aintains a high degree of alignment with the x-axis. 
Given that the dynamics seem to be only weakly dependent on the

ilt angle, we might expect to see comparable mean EMF profiles.
he components of the mean EMF for the φ = −π/ 4 and φ = −π/ 6
ases are plotted in Fig. 10 . Comparing these profiles with the lower
anels of Fig. 6 , we see that these are indeed remarkably similar. One
mall difference is that the maximum amplitude of each component
ecreases slightly as the latitude is reduced. Indeed, on symmetry
rounds we would expect E x to vanish at the equator, i.e. for
= 0 (e.g. Davies & Hughes 2011 ). None the less, these results

emonstrate that a significant EMF can be generated by magnetic
uoyancy instability across a wide range of latitudes. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

agnetic buoyancy in the presence of rotation provides a natural
lternative mechanism to convection for the ‘rise and twist’ effect
equired for a Park er-lik e scenario for the solar dynamo (Parker
955b , 1993 ). The simulations presented in this paper, which built
pon those of Paper I, considered the evolution of a shear-generated
agnetic layer in a rotating domain, focusing initially upon the

implest case of a vertical rotation vector. A shear flow is maintained
n the x-direction, via the imposition of a body force that balances the
iscous and Coriolis terms in the go v erning equations. An initially
niform vertical magnetic field is stretched out in the direction of
he flow, producing a magnetic layer that is susceptible to magnetic
uoyancy instability. One of the key limitations of the calculations
hat were presented in Paper I was that the mean horizontal flow
 u x 〉 evolved substantially away from the initial forced shear (due
o the dynamical influence of the generated magnetic layer), with
ignificant mean flows also being driven in the y-direction. We were
ble to resolve this issue by increasing the Prandtl number, which
ade it more difficult for the Lorentz force to disrupt the initial

ydrodynamic force balance, and found only minimal departures
rom the target flow for σ ∈ { 0 . 005 , 0 . 01 } . This persistent shear
ow generated a stronger magnetic layer and hence a more vigorous
agnetic buoyancy instability. 
We also analysed the resulting mean EMF in the new higher σ

ases, comparing this analysis with the low σ case of Paper I. The
arger σ simulations result in a more complicated time- and depth-
ependence of E x than that of the low σ cases. In particular, E x 
as dual banded structure with a positive band around the mid-
lane that expands in time, above which there is a shallow ne gativ e
and that mo v es tow ards the surf ace as the simulation progresses.
rucially, E x is of much higher amplitude than in the lower σ case

hat was considered in Paper I, and so is much more likely to play
 significant re generativ e role in a corresponding dynamo model.
e found that this mean EMF component was largely generated

y undular modes of the underlying magnetic buoyancy instability,
nd this partially accounts for the differences between the lowest
randtl number case (from Paper I), in which the instability remained

argely interchange-like, and the higher Prandtl number calculations
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hat were presented here. Undular modes also make the dominant 
ontribution to E y , which has a simpler structure than E x but again
eached higher amplitudes in the higher Prandtl number cases. 

Finally, we investigated the effects of varying the inclination of 
he rotation vector, which corresponds to changing the latitudinal 
osition of the computational domain within the tachocline. The 
nclination angle clearly played a dynamical role during the linear 
evelopment of the buoyancy instability, but in the non-linear regime 
e found only minor quantitative differences between the cases. For 

ll values of the inclination angle studied, we obtained a substantial 
ean EMF, which is evidence that this re generativ e mechanism can

perate ef fecti vely at the lower latitudes that are of most rele v ance
or the solar dynamo. 

Having established computationally accessible conditions under 
hich this system is able to produce a significant mean EMF, while

lso maintaining a tachocline-like shear flow, the next logical step 
s to investigate the corresponding dynamo problem (adjusting the 
nitial imposed magnetic field so that there is zero net magnetic flux
cross the domain). Based on standard mean-field arguments (Parker 
955b , 1993 ; Mof fatt 1978 ; Mof fatt & Dormy 2019 ), we anticipate
hat the combination of shear and a significant mean EMF in the
irection of the mean field will be conducive to dynamo action. 
n fact, these are precisely the ingredients required for a ‘dynamo 
ave’ model, i.e. a migratory dynamo similar to that observed in the
un. Further work to explore these ideas is underway, and will be
resented in a future publication. 
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