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1 Introduction

The study of quantum cosmology is one of the most difficult — and important — problems
in theoretical physics. One possible approach is to use the AdS/CFT correspondence, but
one immediate problem is that AdS is not a cosmology (at least in the usual sense). Another
possibility is to take a path integral approach and integrate over an appropriate space
of metrics. This is in principle elegant, but in practice difficult to implement and often
plagued with ambiguities. One important exception is in low-dimensional systems, where in
non-cosmological contexts controlled computations are possible and can be tested against
boundary CFT expectations (most notably in two dimensions [1]). In general, however,
we are restricted to the study of the saddle points’ contributions to the path integral, i.e.,
solutions to Einstein’s equations. Studies of Euclidean saddle points have led to important
insights, for example, on black hole thermodynamics, but real Euclidean saddle points exist
only in certain special cases; in more general settings, the saddle points that appear are
complex. The interpretation of such complex saddle points is often subtle, but here again,
AdS/CFT provides valuable guidance.

In constructing our theory of cosmology, our inspiration is the double-cone geometry
of [2]. In the context of two-dimensional (Jackiw-Teitelboim) gravity, the metric of the double
cone is that of AdS2 metric in Rindler (i.e., black hole) coordinates:

ds2 = − sinh2 u dt2 + du2, (1.1)

with the time coordinate t identified periodically, t ∼ t+T . This geometry has two boundaries
at u → ±∞, each of which is a time-like circle with period T . So this geometry is interpreted
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as giving a contribution to the spectral form factor1

Z(β + iT )Z(β − iT ), (1.2)

where Z(β + iT ) = Tr e−βH+iHT is the partition function of the theory. More precisely, it
contributes to the square of a microcanonical version of the partition function,

YE,∆E(T ) =
∫

dβ eβE+β2∆E2
Z(β + iT ). (1.3)

Crucially, the overline in equation (1.2) indicates that this should be interpreted as an averaged
observable, a notion that can be understood precisely in theories with holographic duals. In
holographic theories, the averaging is a disorder average over a suitable family of microscopic
boundary Hamiltonians (as was made completely precise in [1]). In general, however, it can be
interpreted as a more familiar coarse-graining over a small energy window as in equation (1.3).

The double-cone geometry has a singularity at the tip of the cone, u = 0. So, one
must proceed carefully in determining whether it is a legitimate contribution to the path
integral. One important point of evidence in favor of its inclusion is that, as noted in [2],
its action can be computed and has an important physical interpretation. Specifically, the
classical action vanishes, and the one-loop determinant is linear in T , due to the mode which
describes a (relative) reparametrization of the two boundary circles. This linear growth in
the spectral form factor is a generic expectation of a chaotic theory, where it describes the
repulsion of energy eigenvalues.2 This linear growth was dubbed the “ramp” in [3], and
appears generically in chaotic systems at late time. It is remarkable that this detailed spectral
structure is encoded in a semi-classical gravitational saddle point.

For this to work, one needs to better understand the singularity at u = 0. One approach
is to resolve the singularity by complexifying the metric slightly; we will review this complex-
ification (and others) in the next section. When one does so, the two asymptotic regions are
connected by a smooth (although complex) geometry near u = 0. The important point is that
there is a clear criterion, known as the Kontsevich-Segal (KS) condition, that characterizes
the precise circumstances under which a complex geometry can be viewed as a perturbatively
stable saddle point [4, 5]. This complexification procedure allows one to understand exactly
which perturbative fluctuations are allowed in the double cone geometry [6].3

Our goal is to explore other complexifications of the double-cone geometry, to see what
classical solutions they describe, and to investigate their interpretation as saddle points for
observables in the dual CFT. An important motivation for this exploration is the observation
that inside the black hole horizon, a periodic identification of the time direction produces a
spatially compact cosmology. This can be seen directly from equation (1.1), where this interior

1The difference in signs comes from the fact that the isometry ∂t is future-directed in one asymptotic region
and past-directed in the other; the saddle is topologically a cylinder, and a rotation around the cylinder will
appear clockwise viewed from one end and anticlockwise from the other.

2Writing Z(β) =
∫

dE ρ(E)e−βE a linear growth in the form factor implies the typical repulsion ρ(E)ρ(E′) ∼
1

(E−E′)2 expected for chaotic systems in the GUE universality class.
3Indeed, the role of complex saddle points has been recognized elsewhere, including rotating black holes

and cosmology [7–9], global symmetries in two dimensions [10], JT gravity in nearly dS [11], and holographic
Schwinger-Keldysh contours [12–14]. Most recently, this includes constraints on inflation [15, 16] and more
general aspects of cosmology [17, 18].
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region corresponds to imaginary values of u so that t is now a (compact) spatial direction.
Such geometries have big bang/crunch singularities, which we will resolve by complexifying
the geometry just as in the case of the double cone. Remarkably, this complexification will
connect the cosmology to the region outside the horizon — roughly, the big bang/crunch
singularities will be replaced by asymptotically AdS regions with periodic Lorentzian time.
This offers a novel perspective on the quantum theory of the Lorentzian cosmology. This
is particularly interesting in the context of three-dimensional gravity, where the resulting
cosmological spacetime inside the horizon of BTZ is a torus cosmology, which has been
extensively investigated.4

There are a number of antecedents for this construction: the Hartle-Hawking no-boundary
proposal constructs cosmological saddle points by connecting a smooth compact Euclidean
section to a Lorentzian cosmology [7]. A similar recent construction with a negative cosmolog-
ical constant connects a Euclidean AdS space with a boundary to a Lorentzian cosmology [22].
Our construction is different in that these constructions connect a Euclidean solution to a
Lorentzian one at a moment of time symmetry in the cosmology, while our construction
will connect two Lorentzian solutions close to the singularity in the cosmology. As in the
previous constructions, these saddle points could be used to define a wavefunction on a
spatial slice of the cosmology. Our focus, however, is on understanding their description
from the dual CFT perspective.

This CFT interpretation is possible because the solutions have two Lorentzian asymp-
totically AdS boundaries, as in the double cone. So, they can be interpreted in terms of
the statistics of the density of states in the dual CFT. We will consider this in AdS2 and
AdS3. In the AdS2 case, we can construct contours that satisfy the KS condition, but they
will not satisfy the same boundary conditions for the dilaton at both ends, so they are
not contributions to a spectral form factor in a single theory.5 In AdS3, the new contours
give contributions to a novel observable that describes correlations between the spectrum at
different values of the energy in a single theory. Our main result is that the torus cosmology
contributes to the spectral observable

YẼ,∆Ẽ(T̃ )YE,∆E(−T ), (1.4)

where Ẽ = T 2

4π2 E and T̃ = 4π2

T . Here we are normalizing our energy so that empty AdS
has negative energy E = − ℓ

8G , and E → 0 corresponds to states just at the threshold for
black hole formation in AdS3. As with the double cone, this observable is sensitive to pair
correlations between the energy eigenvalues. The difference, however, is that we will now
make a prediction for the correlations between eigenvalues at different values of the energy.
If one takes large T with fixed E, this describes correlations between states with very high
energy (i.e., black hole microstates) and states in the bulk of the black hole spectrum. On
the other hand, if we take large T with fixed Ẽ it describes correlations between black hole
states and states with energy near 0. This is a surprising result from the usual random
matrix theory perspective.

In the next section, we will describe in detail our geometries, and their complexification,
and analyze the Kontsevich-Segal condition which guarantees their stability. This will lead

4See [19] for a review and [20, 21] for more recent works.
5We thank Martin Sasieta for pointing out the importance of the dilaton here.
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us to the cosmological interpretation of our new spectral observable (1.4). In section 3 we
will discuss the action and one-loop determinants on these solutions and make a specific
prediction for this observable. In section 4 we analyze field theory in this background, which
is described in terms of the spectrum of black hole (anti-)quasinormal modes. We conclude
in section 5 with some speculation and discussion of future directions. Appendix A contains
comments on the higher-dimensional cases.

2 Cosmology from complex geometries

In this section, we describe the complex geometries that probe both the exterior and the
interior of the AdS-Schwarzschild geometry. This family of geometries includes the double
cone of [2] (which describes the “ramp” in the spectral form factor) as well as novel geometries
that probe the cosmological region behind the event horizon.

We begin by considering, in general, an AdS-Schwarzschild black hole in d+1 dimensions,
with the following metric:

ds2 = −f(r) dt2 + dr2

f(r) + r2 dΩ2
d−1, (2.1)

where f(r) = r2 + 1− M
rd−2 , using units where the AdS radius ℓAdS = 1. This has a horizon

at r = rh, where f(rh) = 0. The double-cone geometry is found by identifying t ∼ t + T

in the two exterior regions with r > rh. In the interior, r < rh, f(r) < 0, and this metric
describes a time-dependent spacetime. After we identify t ∼ t + T this is a cosmology with
compact spatial sections. Before making the identification, the exterior and interior regions
are smoothly connected, but the identification in t has a fixed point at the bifurcation surface,
so the relation is a little more complicated. Nonetheless, there is clearly a close relation
between the cone geometry outside the horizon and the cosmology, which we will exploit
to understand better the quantum theory in cosmological contexts.

To do so, we will complexify the metric, which is most clearly described in an isotropic
coordinate

u =
∫ r

rh

dr′√
f(r′)

, (2.2)

where the metric takes the general form

ds2 = −g(u) dt2 + du2 + h(u) dΩ2
d−1. (2.3)

This coordinate is sometimes introduced as a convenient way to describe the whole Einstein-
Rosen bridge, as u ∈ (−∞,∞) covers the two exterior regions. It thus provides a good
coordinate system for the double-cone geometry. In the cosmology, since f(r) < 0, u becomes
imaginary, and the cosmology inside the horizon corresponds to (a portion of) the imaginary
axis in the complex u-plane.

As reviewed in the introduction, even for the double-cone geometry, one must complexify
the metric in order to avoid the singularity at u = 0, where g(0) = 0. This complexification
can be taken to be arbitrarily small and thus should really be viewed as an infinitesimal
regularization of the geometry which allows one to properly treat the double cone as a saddle
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point of general relativity. The appearance of the cosmology on the imaginary axis further
motivates us to investigate other possible contours in the complex u-plane. Indeed, we will
discover that it is similarly possible to make an arbitrarily small complex deformation of the
cosmology that is obtained when u is purely imaginary. In a similar way, this regularizes
the cosmological “big bang” and “big crunch” singularities. Once we do so, we will discover
something remarkable: an interpretation of this cosmology in terms of a particular CFT
observable (a spectral two-point function) in the boundary theory.

The complex geometries we will consider are obtained by specifying a contour in the
complex u-plane, which we will denote u(ρ) with ρ real. The metric on this complex geometry is

ds2 = −g(u) dt2 +
(

∂u

∂ρ

)2
dρ2 + h(u) dΩ2

d−1. (2.4)

Because this is related by a (complex) change of coordinates to the original AdS-Schwarzschild
geometry, this complex geometry will continue to be a solution of Einstein’s equation for
any choice of contour u(ρ). The original double-cone geometries correspond to the contour
u = ρ + iϵ for some small ϵ. Our goal is to investigate contours that look like cosmologies.

Of course, not every complex metric will be allowed. We will demand that our metrics
obey the Kontsevich-Segal criterion [4, 5], which requires that the real part of the matrix√
det ggµν be positive definite. For a diagonal metric gµν = λµδµν , this is the same as the

statement that the sum of the complex phases of the metric components is less than π:

d+1∑
µ=1

|Arg λµ| < π. (2.5)

Metrics that satisfy the Kontsevich-Segal criterion have the property that perturbative field
theories based on form fields are well defined, in the sense that all of the Gaussian integrals
that appear when one expands a field theory around this background are convergent. So
it appears to be a necessary (though possibly not sufficient) criterion for a metric to be
treated as a well-defined and perturbatively stable saddle-point contribution to a gravitational
path integral.

This will constrain significantly the possible choices of contour, in a way that depends
non-trivially on dimension. In the remainder of this section, we will study the allowed
contours in two and three dimensions; we relegate a discussion of higher dimensions to an
appendix. In section 2.1, we study two dimensions, where the contours include a Hartle-
Hawking-like contour which interpolates between a Euclidean and a Lorentzian geometry, and
new contours that contribute to the spectral form factor, interpolating between Lorentzian
geometries. In section 2.2, we study three dimensions, where we find contours that satisfy
the Kontsevich-Segal criterion and interpolate between two Lorentzian cones whose cycles
are swapped compared to each other. These are the main results of our paper.

2.1 Warm-up: new contours in two dimensions

In two dimensions, we write AdS2 in the isotropic black hole coordinates as

ds2 = − sinh2 u dt2 + du2. (2.6)
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u

(I)

(II)

π
(III)

(a)

u

(I)
−π

2
(II)

•

×

(b)

Figure 1. Contours in the u-plane for AdS2: contour (a) with the same metric asymptotics as the
double cone, and contour (b), where Im u = ±π

2 in region (I), which leads to the Hartle-Hawking
state (•) at u = ±iπ

2 , ending up at a big crunch (×) at u = 0 after evolving through the cosmology in
region (II).

The double-cone geometry of [2, 6] is obtained by identifying t ∼ t + T and considering real
u ∈ (−∞,∞). Since this geometry is real and Lorentzian, it saturates the Kontsevich-Segal
bound. We can then regulate the geometry by taking u = ρ + iϵ. The resulting geometry
then obeys the Kontsevich-Segal condition [5].

In the complex u-plane, we have other interesting solutions: if we set u = ρ ± iπ
2 , we

find a Euclidean AdS2 metric. As a real Euclidean metric, this of course also obeys the
Kontsevich-Segal condition. This was exploited in [6] to understand the modified time-
translation generator associated with the version of the double cone, where we go around
the singularity at ρ = 0 in the complex plane. Similarly, if we set u = ρ ± iπ, we obtain
the Lorentzian AdS2 space-time again.

Our primary interest, however, is the solution where u is purely imaginary: u = iρ. This
describes a cosmology that runs from a big bang at ρ = 0, reaching a maximum size where
it crosses the Euclidean section at ρ = ±π

2 , and ending with a big crunch at ρ = ±π. As
this geometry saturates the Kontsevich-Segal criterion, we would like to understand whether
it can be regulated in the same way as the double-cone geometry.

Let us consider a general contour u(ρ), and write u = x + iy. The Kontsevich-Segal
criterion (2.5) becomes

2 arctan
∣∣∣∣dy

dx

∣∣∣∣+ 2arctan
(
tan

(
π

2 − y

)
tanh |x|

)
< π, (2.7)

which restricts the allowed angles of the contour in the complex u-plane at each point. To
understand the range of possibilities, it is useful to plot the critical contours, those which
have

∑2
µ=1 |Arg λµ| = π. At each point, there are two such directions, distinguished by

the sign of dy
dx . These satisfy

dy

dx
= ± tan

(
π

2 − arctan
(
tan

(
π

2 − y

)
tanh |x|

))
= ± tan y

tanh x
, (2.8)

with solutions (corresponding to the plus and minus signs respectively)

sin y = a sinh x, and sin y = 1
a sinh x

. (2.9)
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0 1 2 3 4 5 6
x

0

π
8

2π
8

3π
8

4π
8

y
a = 10−1

a = 1
a = 10

Figure 2. Critical contours which saturate the Kontsevich-Segal condition, plotted in the complex
u-plane for the AdS2 case.

These are plotted for y ∈ (0, π
2 ) in figure 2. The contours are symmetric about y = π

2 so the
contours for y ∈ (π

2 , π) are obtained by reflection. As expected, we see that the direction
of the contour is unrestricted around the Euclidean AdS2 at y = π

2 . The critical contours
that start at the origin return to (x, y) = (0, π), while the ones that come in from infinity go
back out to infinity along y = 0 and y = π. We see that the latter have y → 0 as x → ∞
for all values of a. The critical contours correspond to the case where the KS criterion is
saturated. Hence, a physical contour’s slope at each point should be bounded above and
below by two critical contours to satisfy the KS criterion.

A familiar example of a contour involving the cosmology is a Hartle-Hawking-like contour
shown in figure 1(b), where we run along the Euclidean solution at y = ±π

2 , and then along
a portion of the imaginary axis, defining a state in the cosmology.

We are interested instead in contours that asymptotically approach the cone geometries.
We note that there is a Lorentzian cone geometry at y = 0, but there is also another one
at y = ±π, and we can consider a contour that runs between them. One option for such a
contour is the one pictured in figure 1(a), running through the cosmology. There is, however,
a family of other possibilities consistent with the Kontsevich-Segal criterion.

From the boundary perspective, these contours have the same metric asymptotics as the
double cone. However, if we consider these as solutions in JT gravity, they have different
asymptotics for the dilaton; (2.6) is a solution with ϕ = ϕh cosh u, so if the dilaton has a
positive value at real u it will have a negative value for u = ρ + iπ. Thus, these contours
do not contribute to the spectral form factor in JT gravity.6

2.2 Contours in three dimensions

We now consider our main interest, complex contours in three dimensions. We start with
the BTZ black hole in isotropic coordinates:

ds2 = −r2
h sinh2 u dt2 + du2 + r2

h cosh2 u dϕ2, (2.10)
6We thank Martin Sasieta for pointing out this issue with the dilaton.
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where rh is the horizon radius. We identify ϕ ∼ ϕ + 2π and t ∼ t + T , with the latter being
the identification that gives the double cone. The boundary CFT lives on a Lorentzian torus.

As before, the usual double cone represents a contribution to∣∣YE,∆E(T )
∣∣2, with E = r2

h
8G

. (2.11)

Following [2, 6], the singularity at u = 0 is resolved by shifting the contour in the complex
u-plane to u = ρ± iϵ for real ρ. In three dimensions, y = iπ

2 is a second copy of the Lorentzian
geometry, but with t and ϕ interchanged. In other words, setting u = ρ̃ + iπ

2 gives

ds2 = r2
h cosh2 ρ̃ dt2 + dρ̃2 − r2

h sinh2 ρ̃ dϕ2. (2.12)

This has period 2π in the timelike direction and period T in the spacelike direction. To
relate to more standard CFT observables, it is useful to make a conformal transformation to
restore the standard periodicity in the spacelike direction. This corresponds to a coordinate
transformation

ϕ = T

2π
t̃, t = T

2π
ϕ̃. (2.13)

We can rewrite the resulting solution by defining rh = 2π
T r̃h, so the metric is now

ds2 = −r̃2
h sinh2 ρ̃ dt̃2 + dρ̃2 + r̃2

h cosh2 ρ̃ dϕ̃2, (2.14)

with t̃ ∼ t̃ + T̃ and ϕ̃ ∼ ϕ̃ + 2π, where T̃ = 4π2

T . This metric saturates the Kontsevich-Segal
criterion but can be regulated as before by subtracting a small imaginary part from u. We
conclude that the contour u = ρ̃ + iπ

2 contributes to∣∣∣∣YẼ,∆E

(4π2

T

)∣∣∣∣2, with Ẽ = T 2r2
h

32π2G
. (2.15)

The segment of the imaginary axis between these two contours, u = iξ for ξ ∈
(
0, π

2
)
,

is the torus cosmology:

ds2 = −dξ2 + r2
h sin2 ξ dt2 + r2

h cos2 ξ dϕ2. (2.16)

Of course, this geometry exactly saturates the Kontsevich-Segal condition.
Our goal is to deform this cosmological contour to satisfy the Kontsevich-Segal criterion.

We construct a contour that approaches the horizontal contours asymptotically and passes
through the cosmology, as sketched in figure 3. This contour will offer some insight into
the microscopic description of the cosmology.

To investigate the Kontsevich-Segal criterion, we again write u = x + iy with y ∈
(
0, π

2
)
,

and the condition (2.5) becomes

2 arctan
∣∣∣∣dy

dx

∣∣∣∣+ 2arctan
(
tan

(
π

2 − y

)
tanh |x|

)
+ 2arctan (tan y tanh |x|) < π. (2.17)

The KS criterion restricts the angle of the contour in the complex u-plane at each point. In
particular, for large |x|, we find that the right-hand side of equation (2.17) takes the form

2 arctan
(
tan

(
π

2 − y

)
tanh |x|

)
+ 2arctan(tan y tanh |x|) = π −O

(
e−2|x|

)
. (2.18)

Consequently, all allowable contours are restricted to be nearly horizontal at large |x|.

– 8 –



J
H
E
P
1
0
(
2
0
2
4
)
1
8
4

u

(I)

(II)

π
2

(III)

Figure 3. A contour in the u-plane for BTZ black hole: this contour passes through the cosmology
in region (II), but connects on either end to half of the double-cone geometry in regions (I) and
(III). Thus, the cosmological contour has two asymptotically AdS boundaries once we regulate the
cosmological singularities by complexifying the metric.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0

π
8

2π
8

3π
8

4π
8

y

a = 10−1

a = 1
a = 10

Figure 4. Critical contours in the complex u-plane in three dimensions.

As in the AdS2 case it is useful to consider the critical contours with
∑3

µ=1 |Arg λµ| = π,
which delimit the range of allowed contours. At each point, there are two such directions,
distinguished by the sign of dy

dx . These have

dy

dx
= ± tan

(
π

2 − arctan
(
tan

(
π

2 − y

)
tanh |x|

)
− arctan (tan y tanh |x|)

)
= ± sin 2y

sinh 2x
,

(2.19)
with solutions (corresponding to the plus and minus signs respectively)

y = arctan(a tanh x), and y = arctan(a coth x), (2.20)

plotted in figure 4. These critical contours are horizontal at large x, with the curves
with dy

dx > 0 approaching the origin as x → 0, and the curves with dy
dx < 0 approaching

(x, y) =
(
0, π

2
)
. Similar to the previous case, the allowed contours lie in between the critical

contours, with their slope at each point bounded above and below by the critical contours.
We wish to construct a contour that is within a distance ϵ from the real axis at large x.

As x becomes smaller, it cannot rise faster than the limiting contour with dy
dx < 0. A limit
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curve with y ∼ ϵ asymptotically has a ∼ ϵ. This will remain close to the real axis until x ∼ ϵ.
Thus, all allowed contours that start near the real axis hug the real axis until close to x = 0.
Similarly, a contour starting close to y = π

2 as x → −∞ stays horizontal until close to x = 0.
Thus, if we want a contour that is close to y = 0 for x → ∞ and close to y = π

2 for x → −∞,
it will have to run between 0 and π

2 close to the cosmology contour at x ≈ 0.
There are many contours that would work. A simple explicit example is

y = arctan
(

ϵ

ϵ + tanh x

)
for x > 0,

y = π

2 − arctan
(

ϵ

ϵ − tanh x

)
for x < 0.

(2.21)

Here we have demanded that the curve and its first derivative are smooth at (x, y) = (0, π
4 ),

although the second derivative is not. However, the continuity of the first derivative is enough
to make this a solution of Einstein’s equations at x = 0. One can further modify the contour
near x = 0 to smooth it out even more; there are no constraints on the contour near x = 0
so it can be smoothed out in any desired way. We have thus constructed contours of the
desired form that run through the cosmology and connect two asymptotic cone regions.
Furthermore, we see that, unlike in the two-dimensional case, the space of possibilities with
these asymptotics is quite limited, so understanding the dual observable offers us a better
hope of probing the role of the cosmology.

On this contour, there are two asymptotic cone regions, one of which has period T in the
timelike direction and energy E, while the other has period T̃ = 4π2

T and energy Ẽ = T 2

4π2 E.
From the boundary perspective, this would therefore represent a contribution to

YẼ,∆Ẽ(T̃ )YE,∆E(−T ),

as claimed in the introduction. This is a distinct observable, which is helpful as it cleanly
separates the contribution of this saddle point from that of the usual double cone. It is
also an interesting quantity from the dual perspective; a nonzero value for this observable
indicates some pair correlation between energy eigenstates at different energies.

3 Gravity on complexified geometries

The contours described above represent novel saddle points in the path integral of general
relativity. To understand their contribution to the spectral two-point function, we will now
evaluate their classical action and consider the one-loop determinant around these saddles.

We will focus in this section on the more interesting case of three dimensions, where
the action is the usual Einstein-Hilbert action, but a similar analysis would apply to the
two-dimensional case, using the JT gravity action.

3.1 Classical Einstein-Hilbert action

For purely Euclidean or Lorentzian solutions, the calculation of the action is a standard
exercise, but this is a little more non-trivial for our saddles, as they involve non-trivial
contours in the complex plane. The prescription we will adopt for evaluating the action along
such a contour is to evaluate the integrand (essentially the volume form, because our solution
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is locally AdS) on the real axis and continue it to the full contour as a holomorphic function
of u. Note that because of this, any bulk contributions to the action will be independent of
small deformations of the contour as long as one remains in a region where the integrand
is analytic. Thus, the action we compute will turn out to be independent of the exact
choice of contour through the bulk.

To set the notation, let us first briefly review the action calculation in the three-
dimensional Euclidean black hole, and in the Lorentzian region outside the horizon, corre-
sponding to real u. In three dimensions with Euclidean signature, the gravity action is

I = − 1
16πG

∫
d3x

√
g(R − 2Λ)− 1

8πG

∫
d2x

√
hK + 1

8πG

∫
d2x

√
h. (3.1)

For simplicity, we will set ℓAdS = 1. The equations of motion give us R−2Λ = 4Λ = − 4
ℓ2 = −4.

For BTZ solution (2.10),
√

hK = r2
h cosh 2ρ, and the volume is∫

d3x
√

g = 2πβr2
h

∫ ρmax

0
dρ sinh ρ cosh ρ = π

2βr2
h(cosh 2ρmax − 1). (3.2)

In the action, the divergent part of the volume and the entire extrinsic curvature term cancel
against the counterterm action, leaving just the finite term from the volume,7

I = −βr2
h

8G
. (3.3)

In the Lorentzian action for the region outside of the black hole horizon, the volume
form is

√
−g = r2

h sinh ρ cosh ρ again, so the only difference is in the periodicity of t. The
Lorentzian action for a single cone is thus

S = −Tr2
h

8G
= −ET. (3.4)

Consider now the standard double-cone contour, where we integrate along the real axis,
passing underneath the singularity at u = 0 in the complex u-plane. We define the integrand
to be a holomorphic function of u, so the volume is∫

d3x
√
−g = 2πTr2

h

∫ ρmax

−ρmax
dρ sinh ρ cosh ρ = 0, (3.5)

as the integrand is an odd function of ρ. Similarly, defining the volume measure and extrinsic
curvature in the boundary term to be

√
−h = r2

h sinh ρ cosh ρ and
√
−hK = r2

h cosh 2ρ

respectively, we see that two boundary terms will also cancel so that the overall value of
the action vanishes.8 This agrees with the claim in [2] that the action should in general
vanish for the double cone, as the two sides are complex conjugates of each other. Note
that this is different from simply taking the action (3.4) of the cone region outside the

7As a check, using β = 2π
rh

, the action becomes I = − (2π)2

8Gβ
. This gives SBH = (β ∂

∂β
− 1)I = (2π)2

4Gβ
= 2πrh

4G

as expected. The energy is E = ∂
∂β

I = r2
h

8G
.

8It might not seem so clear that such an analytic continuation prescription is natural for the boundary
terms, as these are only evaluated at the endpoints, not along the contour. However, the prescription for
defining the boundary terms must be chosen consistently with the bulk prescription for the action to remain
stationary under variations preserving the relevant boundary conditions.
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horizon twice, which is what we might be naturally led to do if we ignored the deformation
of the contour near ρ = 0.

In the contour introduced in the previous subsection, taking the integrand to be a
holomorphic function of u, the action will also vanish. Traversing the contour in figure 3
along region (III) to region (I), the bulk contribution is given by:

Sbulk =
∫ 0

−ρmax
dρ− sinh(2ρ−+iπ)−i

∫ π
2

0
dξ sinh(2iξ)+

∫ ρmax

0
dρ+ sinh2ρ+

=−1
2(1−cosh2ρmax)−

1
2(cosπ−1)+1

2(cosh2ρmax−1)= cosh2ρmax.

(3.6)

In the boundary terms, we have
√

h = 1
2 sinh 2u; at u = −ρmax+iπ

2 we get sinh 2u = sinh 2ρmax,
so the boundary terms at each end have the same sign in this contour, and the boundary
contributions cancel the divergent part of the bulk, leaving us with zero action. In fact, this is
in line with the intuition that the classical action would contribute as an overall phase of the
form eiẼT̃−iET to the observable (2.21): since ẼT̃ = ET in this geometry, the phase is zero.

Thus, the classical action for our three-dimensional contour vanishes, just as for the
double-cone contour. Similarly in two dimensions, the JT gravity action will vanish along
the contours interpolating between y = 0 and y = π. The only significant difference in
the two-dimensional case is that the bulk contribution to the action vanishes on-shell, so
there are only boundary contributions.

3.2 Gravitational one-loop determinant

We are also interested in the one-loop determinant of the metric and bulk fields around this
saddle point. An important contribution comes from the metric zero modes, as in [2, 6].
There is a relative time shift Trel between the two boundaries, which is canonically conjugate
to the energy E = r2

h
8G , i.e., {Trel, E} = 1 [23, 24]. As we are in three dimensions, there is

also a relative shift ϕrel of the angular coordinate between the two boundaries, canonically
conjugate to the angular momentum (we have set the angular momentum to zero in our
discussion for simplicity). Thus, for fixed values of the energy and angular momentum, we
actually have a two-parameter family of classical saddles to integrate over. The range of
integration in Trel is fixed by the periodicity T we have chosen for the t coordinate, and
the range of integration of ϕrel is similarly fixed by the 2π periodicity of ϕ. More precisely,
we also integrate over a window of energies and angular momenta, so the path integral
includes a zero mode integral over∫ ∆E

0
dE

∫ T

0

dTrel
2π

and
∫ ∆J

0
dJ

∫ 2π

0
dϕrel. (3.7)

The first integral gives a contribution of the form T∆E, and the second integral gives a
contribution of the form 2π∆J . While we write the first integral as T∆E, the expression
is actually symmetric between the two boundaries: while the periods T and T̃ in the two
asymptotic regions are not equal, the relation between the energies implies that T∆E = T̃∆Ẽ.
Hence, integrating over this family of solutions gives us a factor of the volume of the torus in
the one-loop determinant, 2πT . As in the double cone [2], this implies that the contribution

– 12 –



J
H
E
P
1
0
(
2
0
2
4
)
1
8
4

from these saddles grows linearly with T

YẼ,∆Ẽ(T̃ )YE,∆E(−T ) ≃ T (3.8)

This is a cosmological version of the ramp in the spectral form factor. In the microscopic
theory, we expect this ramp behavior to be cut off at some value of T but this will not be
visible in our semi-classical saddle-point analysis.

Because we chose a contour that satisfies the Kontsevich-Segal criterion, the remaining
contribution to the one-loop determinant from nonzero modes will be well-behaved and
finite. That is, we expect the spectrum of fluctuations around this contour to have negative
imaginary parts so that their contribution to the one-loop determinant goes to one at large T .
In the next section, we consider explicitly the fluctuations of a scalar field around our contours
and find that the spectrum is related to the quasinormal modes of the black hole, as in [6].

4 Fields on complexified geometries

To better understand our cosmological contour, we now introduce a probe scalar field. We
consider the contours in two and three dimensions discussed earlier. We will argue that, as in
the double cone contour, the asymptotic boundary conditions restrict the spectrum to the
quasinormal modes of the black hole (and their mirror images in the complex plane, which
we will argue are not included in the actual physical spectrum). This is a non-trivial result,
particularly in the three-dimensional case, where the modes mix as one goes through the
cosmology portion of the contour. This provides evidence that the one-loop determinant
for these contours will behave in the same way as in [6].

4.1 Scalar fields in two dimensions

We consider scalar fields on the contours in the complex plane considered in section 2.1. We
will first consider the double-cone geometry in two dimensions, discussed in [6], and then
extend the analysis to the contour that passes through the cosmology.

4.1.1 Scalar fields over the double cone

In the double cone, following [6], we expand the metric (2.6) about u = 0. In this limit the
metric behaves like a (1 + 1)-dimensional Rindler spacetime,

ds2 ≈ −ρ2 dt2 + du2. (4.1)

Let us consider a minimally coupled massive scalar field over the double cone contour. Our
goal is to solve the equations of motion subject to appropriate boundary conditions. We take

ϕ(t, u) = eiωtg(u) (4.2)

so the equations of motion become

1
u

∂u(u ∂ug) +
(

ω2

r2 − m2
)

g = 0, (4.3)
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(II) (I)
×

×

×

Figure 5. Probe scalar over the SSS contour [2] in the u-plane for the AdS2 black hole.

where m is the mass of the scalar field. The approximation (4.1) is only valid near u = 0;
the solution in this region is

g(u) = Aωu−iω + Bωuiω. (4.4)

We evolve our solutions from u > 0 (region I) to u < 0, (region (II)), along the contour
described in figure 5, which is the double-cone contour of [2]. We denote the radial coordinate
in region (I) as u = ρ+, and in region (II) as u = eiπρ−.

We impose standard asymptotic boundary conditions as ρ± → ∞, keeping only the modes
that fall at infinity. Since ϕω is an analytic function away from the branch cut at u = 0, we
can match the solutions in region (I) and region (II) up to an overall factor that is fixed by the
normalization of the mode functions at the two boundaries. Going around the origin, we find

g(ρ+) = g(eiπρ−) = Aωeπωρ−iω
− + Bωe−πωρiω

− . (4.5)

To satisfy the boundary conditions at both ends we need ϕω(ρ−) to have the same functional
form as ϕω(ρ+), that is

g(ρ−) = Λ(ω)g(ρ+). (4.6)

This can be satisfied in three ways:

1. Aω = 0, which corresponds to the quasinormal modes,

2. Bω = 0, which corresponds to the anti-quasinormal modes,

3. ω = in with n ∈ Z. This does not satisfy the asymptotic boundary conditions unless it
also satisfies either of the two conditions above.

Following this logic, [6] found that these conditions imply that the spectrum of the scalar
field on the double cone obtained from this analysis of the wave equation consists of the
quasinormal modes and their mirror images in the upper half-plane. We expect only the
former to appear in the physical spectrum, as the general Kontsevich-Segal argument leads
us to expect that the one-loop determinant will be well-behaved, which it will not be if
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Figure 6. The cosmological contour in the u-plane contributing to the spectral form factor in AdS2.
The red lines denote the branch cuts.

there are poles in the upper half-ω-plane.9 The authors of [6] observed that this double
cone contour corresponds to a modified boost operator K̃ which is part of a one-parameter
family of operators obtained by conjugation with the generator P , which all have the same
spectrum. This family includes the Hamiltonian for the Euclidean AdS2 solution at u = iπ

2 ,
showing that the spectrum includes only quasinormal modes.

4.1.2 Scalar fields over the new contour in two dimensions

Let us move on to our cosmological contour in two dimensions. The metric is

ds2 = − sinh2 u dt2 + du2. (4.7)

We now look at the complex u contour in figure 6 that has the following three regions:

1. Region (I): u = ρ+, ρ+ ∈ [0,∞), with the line element ds2 = − sinh2 ρ+ dt2 + dρ2
+,

2. Region (II): u = ei π
2 ξ, ξ ∈ [0, π], with the line element ds2 = sin2 ξ dt2 − dξ2,

3. Region (III): u = eiπρ−+iπ, ρ− ∈ [0,∞), with the line element ds2 = − sinh2 ρ− dt2 +dρ2
−.

The metrics in regions (I) and (III) are the same, but for clarity, we use different names
for the regions that represent different parts of the contour. Here we have taken regions
(II) and (III) with a positive imaginary part of u. The analysis with a negative imaginary
part for regions (II) and (III) proceeds similarly.

The coordinates in different regions are related to each other as

ρ+ = ei π
2 ξ = eiπρ− + iπ. (4.8)

With the ansatz φ(t, u) = eiωtg(u) the massive scalar equation of motion is

1
sinh u

∂u(sinh u ∂ug) +
(

ω2

sinh2 u
− m2

)
g = 0, (4.9)

9On the other hand, if we had chosen the contour to go above the singularity i.e., −iϵ prescription, we
would have expected the anti-quasinormal modes to contribute to the one-loop determinant. That is because
we are computing Tr

(
eiKT

)
which is well behaved in the limit T → ∞.
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with solution

g(u) = Bω (tanh u)iω(cosh u)∆−1
2F1

[
a+,

1
2 + a+, 1 + iω; tanh2 u

]
+ Aω (tanh u)−iω(cosh u)∆−1

2F1

[
a−,

1
2 + a−, 1− iω; tanh2 u

]
,

(4.10)

where ∆ = 1
2

(
1 +

√
1 + 4m2

)
is the conformal dimension and

a± = 1
2(1−∆)± i

2ω. (4.11)

Near u → 0 the solution (4.10) can be expanded to give the limiting Rindler expansion
encountered in (4.4), i.e.,

lim
u→0

g(u) = Aωu−iω + Bωuiω. (4.12)

Now we do the analog of the double-cone matching conditions for our contour in the
complex u-plane. Our prescription is that we demand a single-valued mode solution while
crossing the branch points by matching across distinct contours up to overall normalizations.
We apply the same standard boundary condition as before in regions (I) and (III).

We go over the contour shown in figure 6 in the following order: from region (I) to
region (II), we rotate in the clockwise direction with ρ+ = ei π

2 ξ, and after evolving along
the imaginary axis, at u = iπ we rotate in the anticlockwise direction with ξ = ei π

2 ρ− − π.
The first step corresponds to a rotation slightly above 0 in the complex u-plane, followed by
a translation along the imaginary axis, and finally another rotation slightly below u = iπ.
This leads to the solution

g(ρ+) = eiπ∆e−πωBω (tanh ρ−)iω(cosh ρ−)∆−1
2F1

[
a+,

1
2 + a+, 1 + iω; tanh2 ρ−

]
+ eiπ∆eπωAω (tanh ρ−)−iω(cosh ρ−)∆−1

2F1

[
a−,

1
2 + a−, 1− iω; tanh2 ρ−

]
,

(4.13)

Despite the presence of a cosmology segment, this is (apart from an overall phase shift eiπ∆)
the same result as the one obtained for the double cone: the coefficients of the two solutions
pick up factors of e±πω as we evolve from region (I) to region (III).

Since the asymptotics in the two cone regions are the same, and we apply the same
boundary condition as in the double cone case, the spectrum of fluctuations around our
contour is the same as before: that is, we can satisfy the boundary conditions at both ends
only if Aω = 0 or Bω = 0. This gives a spectrum that includes both the quasinormal modes
and the anti-quasinormal modes.

As in the double-cone case, we expect that only quasinormal modes are present in
the physical spectrum, as the one-loop determinant should be well-behaved by the general
Kontsevich-Segal argument. It would be interesting to give a more direct argument for
this; the argument based on conjugation from [6] does not seem to extend straightforwardly
to our contour.
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4.2 Scalar fields in three dimensions

In the three-dimensional case, the geometry is

ds2 = −r2
h sinh2 u dt2 + r2

h cosh2 u dϕ2 + du2. (4.14)

Letting φ = eiωrht+ikrhϕg(u), the massive scalar equation of motion is

1
sinh u cosh u

∂u(sinh u cosh u ∂ug) +
(

ω2

sinh2 u
− k2

cosh2 u
− m2

)
g = 0. (4.15)

The solutions are easy to obtain (see, e.g., [25]). The general solution is

g(u) = Bω,k (tanh u)iω(cosh u)∆−2
2F1[a++, a+−, 1 + iω; tanh2 u]

+ Aω,k (tanh u)−iω(cosh u)∆−2
2F1[a−+, a−−, 1− iω; tanh2 u],

(4.16)

where
aϵη = 1

2(2−∆) + i
2(ωϵ + kη), ϵ, η = ±1, (4.17)

with ∆ = 1 +
√
1 + m2.

For the cosmological part of the contour, u = iξ, we have

g(ξ) = βω,k (tan ξ)iω(cos ξ)∆−2
2F1

[
a++, a+−, 1 + iω;− tan2 ξ

]
+ αω,k (tan ξ)−iω(cos ξ)∆−2

2F1
[
a−+, a−−, 1− iω;− tan2 ξ

]
.

(4.18)

We relate the solutions near ξ = 0 to the solutions near ξ = π
2 using the transformation

formula for the hypergeometric functions,

2F1(a, b, c; z) = Γ(c)Γ(b − a)
Γ(b)Γ(c − a)(−z)−a

2F1

[
a, a − c + 1, a − b + 1; 1

z

]
+ Γ(c)Γ(a − b)

Γ(a)Γ(c − b)(−z)−b
2F1

[
b, b − c + 1, b − a + 1; 1

z

]
.

(4.19)

Applying the formula in our case, using ξ = π
2 − ξ, we get

g
(
ξ
)
= δω,k

(
tan ξ

)ik(
cos ξ

)∆−2
2F1

[
a++, a−+, 1 + ik;− tan2 ξ

]
+ γω,k

(
tan ξ

)−ik(
cos ξ

)∆−2
2F1

[
a+−, a−−, 1− ik;− tan2 ξ

]
,

(4.20)

where
γω,k =

( Γ(1− iω)Γ(ik)
Γ(a−+)Γ(1− a+−)

αω,k + Γ(1 + iω)Γ(ik)
Γ(a++)Γ(1− a−−)

βω,k

)
, (4.21)

and
δω,k =

( Γ(1− iω)Γ(−ik)
Γ(a−−)Γ(1− a++)

αω,k + Γ(1 + iω)Γ(−ik)
Γ(a+−)Γ(1− a−+)

βω,k

)
. (4.22)

This shows a non-trivial mixing between the solutions across the cosmology in three dimensions,
in contrast to the two-dimensional case.
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Figure 7. The contour in the u-plane for BTZ black hole.

On the contour at u = ρ+, with ρ+ ∈ (0,∞), as we take the limit ρ+ → ∞, we have
two modes behaving as e−∆ρ+ , e(∆−2)ρ+ . The boundary condition sets the latter mode to
zero. Using the transformation formula

2F1(a,b,c;z)= Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)2F1[a,b,a+b+1−c;1−z]

+Γ(c)Γ(a+b−c)
Γ(a)Γ(b) (1−z)c−a−b

2F1[c−a,c−b,1+c−a−b;1−z],
(4.23)

we obtain
Γ(1− iω)

Γ(1− a++)Γ(1− a+−)
Aω,k + Γ(1 + iω)

Γ(1− a−+)Γ(1− a−−)
Bω,k = 0. (4.24)

Under the contour rotation near u = 0, we get Aω,k = e−
π
2 ωαω,k, Bω,k = e

π
2 ωβω,k. Con-

sequently, we have
αω,k

βω,k
= eπω Aω,k

Bω,k
= −eπω Γ(1 + iω)Γ(1− a++)Γ(1− a+−)

Γ(1− iω)Γ(1− a−+)Γ(1− a−−)
(4.25)

Similarly, on the contour at u = iπ
2 − ρ−, the solution is given by

g = Dω,k (tanh ρ−)ik(cosh ρ−)∆−2
2F1

[
a++, a−+, 1 + ik; tanh2 ρ−

]
+ Cω,k (tanh ρ−)−ik(cosh ρ−)∆−2

2F1
[
a+−, a−−, 1− ik; tanh2 ρ−

]
.

(4.26)

Imposing the asymptotic boundary condition on this contour gives
Γ(1− ik)

Γ(1− a++)Γ(1− a−+)
Cω,k + Γ(1 + ik)

Γ(1− a+−)Γ(1− a−−)
Dω,k = 0. (4.27)

The contour rotation near ρ− = 0 is ρ− = iξ, which gives Cω,k = e−
π
2 kγω,k, Dω,k = e

π
2 kδω,k,

so we get
γω,k

δω,k
= eπk Cω,k

Dω,k
= −eπkΓ(1 + ik)Γ(1− a++)Γ(1− a−+)

Γ(1− ik)Γ(1− a+−)Γ(1− a−−)
, (4.28)

while (4.21), (4.22), (4.25) give
γω,k

δω,k
= −e−πkΓ(1 + ik)Γ(1− a++)Γ(1− a−+)

Γ(1− ik)Γ(1− a+−)Γ(1− a−−)
. (4.29)

Thus, if e2πk ̸= 1, and the above analysis holds, ω, k are not in the spectrum.
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The cases that could survive are where iω, ik, or one of the a±± is an integer, where
some of the Gamma functions above have poles, and the general analysis breaks down. In
fact, only the cases where one of the a±± is a positive integer survive.

In the cases where iω or ik is an integer, we get only one linearly independent solution in
terms of a hypergeometric function. The other solution will, in general, involve log u near
u = 0 or u = iπ

2 , and as in [6] it is not possible to satisfy the boundary conditions at both ends
for these solutions with logarithmic behavior. If a±± is zero or a negative integer, there is no
simplification in the asymptotic boundary conditions; one of the relations (4.21) and (4.22)
simplifies in these cases, but the inconsistency between equations (4.28) and (4.29) persists.

This leaves the cases where one of a±± is a positive integer. If, for example, a++ is a
positive integer, the boundary conditions simplify to Bω,k = 0 and Dω,k = 0, and these are
consistent conditions as δω,k ∝ βω,k. Similarly for the other cases. The mismatch between
equations (4.28) and (4.29) is resolved as these are both equal to zero or infinity, so the
mismatch in the multiplying factor is irrelevant.

We conclude that the allowed values of ω are

ω = ±k ± i(2m +∆), m ∈ Z≥0, (4.30)

where the two sign choices are independent. The positive sign in the second term corresponds
to the quasinormal modes obtained in [25]. Thus, we once again find that the spectrum of
fluctuations around this contour is given by the quasinormal modes and their mirror images
in the upper half-plane. This is particularly striking in this case, where the form of the
solutions along the two cone portions of the contour is different, and hence the boundary
conditions differ; this is compensated by the non-trivial transformation across the cosmology.
As in the previous cases, we expect that the actual physical spectrum will be just the
quasinormal modes. It would be interesting to give a more direct argument for this, but
we leave that for future work.

5 Discussion and speculations

The torus cosmology

ds2 = −dξ2 + r2
h sin2 ξ dt2 + r2

h cos2 ξ dϕ2 (5.1)

with ϕ ∼ ϕ + 2π and t ∼ t + T is a natural solution of Einstein gravity with a negative
cosmological constant in three dimensions. In this paper we have argued that the big
bang/crunch singularities at ξ = 0 and ξ = π

2 can be resolved by taking a small detour in
the complex plane, connecting the cosmology to external cone regions. Although the region
where the metric is complex can be infinitesimally small, it leads to a surprising result: the
amplitude for this cosmology is, in a holographic theory, computed by the spectral observable

YẼ,∆Ẽ(T̃ )YE,∆E(−T ) ≃ T (5.2)

where E = r2
h

8G , Ẽ = T 2

4π2 E and T̃ = 4π2

T . We are using units where ℓAdS = 1. The left-hand
side of this equation is an observable in the boundary conformal field theory; it is the two-point
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function of the density of states, which describes correlations between black hole states with
different energy. The right-hand side is a prediction based on the computation of the action
at classical and one-loop order. It is important to note that the prediction here is for the
connected part of the correlation function. Of course, there will be disconnected contributions
as well, which — as with the double cone — are simply related to the averaged density of states.

Several comments are in order. First, as we vary T , it is impossible to keep both E

and Ẽ fixed. So, this is not a spectral observable that describes correlations between black
hole microstates with fixed energy. One option is to take E fixed and T large, in which
case it describes correlations between states with finite energy and those with very large
energy. Another option is to keep Ẽ fixed as T becomes large, in which case it describes
correlations between black hole states and those with E → 0. This option is interesting
because the limit E → 0 describes small black holes, i.e., those just above the threshold
for black hole formation in AdS3.

This way of interpreting the formula (5.2) may provide important information about
the dual CFT. In CFT language, the states on the circle are dual to operators with scaling
dimension ∆ = E + c

12 (recall that we are measuring E in AdS units). If we take large T

with fixed Ẽ, this means that we are taking rh ∼
√

G/T → 0. In the CFT language, this
means that we are considering the correlations of black hole states (which have dimension
∆ ≫ c

12) with those of dimension ∆ = c
12 +O

(
1

T 2

)
. It is important to note that, in order

to trust our computation, we should require that rh ∼
√

G/T ≫ G, so that the “light”
black holes under consideration are still large in Planck units. So we must keep T ≪ 1/

√
G.

This means that our prediction describes correlations between heavy states and those with
∆− c

12 ≫ O
(

1
c

)
. In the semi-classical (large c) limit this includes states which are close to

the threshold for black hole formation. If we impose the stronger condition that the light
black holes have horizons which are AdS scale, i.e., rh = O(1), we find that the light states
under consideration have ∆ − c

12 = O(c).
This is an important regime from the point of view of the dual CFT because it is

one where the structure of the density of states may depend on the detailed nature of the
microscopic theory. In particular, it includes states that lie in the so-called “enigmatic regime”
c

12 < ∆ < c
6 . As shown in [26], simply imposing modular invariance along with a sparse light

spectrum does not determine the density of states in this regime at large c. We see that the
structure of states in this regime now has a cosmological interpretation. It is tempting to
speculate that equation (5.2) represents the behavior in a “typical” holographic theory, and
that in such a theory the big bang/crunch singularities may be regulated by complexifying
the geometry. In an atypical theory, this may not be the case.10

A second comment is that, so far, we have been frustratingly vague about the exact
nature of the averaging implied by the overline in equation (5.2). It would be interesting to
understand whether there is a natural ensemble of two-dimensional CFTs (e.g., as in [27])
where the statistical properties of the ensemble reproduce this prediction. In pure gravity,
some insight might be gained by considering the Euclidean T2 × R wormholes considered

10Similar statements can be made about the double-cone geometry, which predicts a linear ramp in the
spectral form factor expected in a typical (chaotic) conformal field theory. In special theories, including those
that are integrable, the ramp may not be present.
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in [28]. Or it may be interesting to consider restricted ensembles of CFTs where the averaging
can be carried out explicitly, as in [29, 30]; in fact, the two-point function of the density of
states in the ensemble of Narain CFTs was computed in [31]. This could lead to a cosmological
interpretation of the observables of U(1) gravity. Of course, it may also be possible to clarify
this by considering string theories in AdS3. The big bang/crunch singularities that arise in
our torus cosmology are very similar to those considered in the string theory constructions
of [32, 33].11 This would be interesting to pursue in future work.

Third, we have so far made comments only about the statistical properties of the density
of states but not about other CFT data, such as OPE coefficients. There are natural
generalizations of the torus wormhole of the form

ds2 = −dξ2 + sin2 ξ dΣ2 (5.3)

where dΣ2 is the metric on a constant negative curvature surface. This metric can be
generalized so that the geometry of this surface depends on ξ, e.g., as in [34]. We propose that
one can similarly resolve the cosmological singularities of this space-time by complexifying the
geometry and that the result will take the form of a statistical prediction for the properties
of OPE coefficients in the “enigmatic regime.” This would be interesting to pursue but is
more technically challenging than the present computation.

Fourth, we note that the prediction (5.2) is rather special to two-dimensional CFTs. As we
discuss in appendix A, there does not seem to be a straightforward higher-dimensional analog.

Finally, using the modular invariance of two-dimensional CFTs one can give different
interpretations to our spectral observable. To apply a modular transformation, one needs to
consider a more conventional spectral form factor involving the canonical partition function
Z(β + iT ). There are two subtleties when doing this: first, it was observed in [2] that the
double cone is not really a saddle point for the canonical spectral form factor, due to a
pressure towards lower energies. Second, for states that are close to the BTZ threshold,
it is not clear whether the usual relation between energy and temperature will be valid.
However, there is at least one case where it seems legitimate. Let us consider equation (5.2)
at large T and fixed E so that Ẽ is becoming very large. So we expect that we can freely
interpret YẼ,∆Ẽ(T̃ ) in terms of a canonical ensemble partition function. We can then perform
a modular transformation to relate this to low-energy states. In this case our observable (5.2)
is interpreted as a connected correlation function between black holes and the light spectrum
of the theory (i.e., those states with ∆ ≪ c

12). We can then ask what sort of light states
could contribute to this connected correlator. The light spectrum includes empty AdS (i.e.,
the identity operator) and its Virasoro descendants. This spectrum is fixed entirely by
symmetry and therefore should not contribute to a connected correlator. So our observable is
interpreted as describing correlations between the spectrum of black hole microstates and
light, non-vacuum primary states in the theory.

This may have important implications for pure gravity. In particular, a “pure” theory
of quantum gravity (in the sense of [35]) is one that possesses no primary states other than

11Indeed, the asymptotically AdS3 regions which we obtain by smoothing out the cosmological singularity
appear to be closely related to the “whiskers” discovered in the coset CFTs of [33]. We thank J. Maldacena
for pointing this out to us.
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the vacuum in the window − c
12 < E < 0. A theory with no states in this window cannot

have non-trivial spectral correlations with black hole microstates. Simply the existence of a
nonzero connected correlation function would seem to rule out the existence of such pure
theories of quantum gravity! In order to make this argument precise, however, one needs
a clearer understanding of the precise circumstances, and for what CFTs, equation (5.2)
will hold. A more conservative conclusion would be that, if pure gravity exists, it is highly
non-generic. Perhaps for some reason, multi-boundary saddle points do not contribute to
the path integral. This would be expected in integrable theories, which do not have the
usual ramp described by the double cone.12 In any case, our argument implies that, if a pure
theory of quantum gravity exists, its saddle points likely do not include the complexified
torus cosmology we have described above.
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A Contours in higher dimensions

In section 2, we considered contours in the complex u-plane in two and three dimensions. It
is natural to ask what the analogs are in higher dimensions. It turns out that the previous
discussion is quite special to low dimensions. One significant reason is that in the BTZ case,
region (III) in figure 3 involves flipping a minus sign for the metric components gtt and gϕϕ

as compared to region (I). For the AdSd+1 black hole with d > 2, we have d > 1 transverse
directions, and consequently, the contour in region (III) does not satisfy the KS criterion (2.5).

Nevertheless, it might be interesting to understand what kind of contours we can have in
higher dimensions. Consider for simplicity AdS5-Schwarzschild with the following metric:

ds2 = −f(r) dt2 + dr2

f(r) + r2dΩ2
3, f(r) = r2

ℓ2 − r4
h

ℓ2r2 . (A.1)

The analog of the u-coordinate used previously is an isotropic coordinate, covering the whole
Einstein-Rosen bridge. With r = rh

√
cosh u, we have

ds2 = −r2
h sinh2 u

ℓ2 cosh u
dt2 + ℓ2

4 du2 + r2
h cosh u dΩ2

3. (A.2)

The Einstein-Rosen bridge is given by real u ∈ (−∞,∞). The region with u = iξ is a
cosmology, propagating from a big bang at ξ = 0 to a big crunch at ξ = π

2 . The novelty
here is that the proper length in the t direction blows up at ξ = π

2 ; this is associated with
the negative power of r in f(r).

12Indeed, the candidate pure theory of gravity related to the Monster CFT discussed in [35] is integrable, in
the sense that every state in the theory is a descendant of the vacuum under an appropriate chiral algebra.
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Figure 8. The limit of all allowed contours for AdS5-Schwarzschild.

As expected, the horizontal contour at u = ρ + iπ
2 is not allowed. The time and sphere

directions have a factor of i here, so
∑5

µ=1 |Arg λµ| = 2π along this curve. In general,
writing u = x + iy,

5∑
µ=1

|Arg λµ| = 2arctan
∣∣∣∣dy

dx

∣∣∣∣+ 4arctan(tan y tanh |x|) + 2 arctan
(
tan

(
π

2 − y

)
tanh |x|

)
.

(A.3)
There is a region where the r.h.s. is > π even for horizontal contours, where there are no

allowed contours. The boundary of this region is at tan2 y = coth2 x − 2, which is plotted
in figure 8. We see that there are no contours that satisfy the KS condition which reach
large x. The real axis, u = x, has

∑5
µ=1 |Arg λµ| = π, on the margin of satisfying the KS

condition, but for coth2 x < 2 deforming away from the real axis increases
∑5

µ=1 |Arg λµ|
(near the origin, for coth2 x > 2, it decreases it).

This provides a significant obstruction to constructing contours that satisfy the KS
condition in higher dimensions, implying also that the double cone contour of [2] does not
satisfy this condition in higher dimensions.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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