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A B S T R A C T   

In September 2021 an eruption began of Cumbre Vieja, La Palma (Spain) that lasted 3 months. Previous studies 
have shown that volcanic ash particles can be associated with adverse effects on human health however, the 
reasons for this are unclear. Particle shape has been shown to contribute to cellular uptake in prostate cancer 
cells. Hence we aimed to study 3D structure, elemental composition and effects on cultured lung cells of particles 
collected from the La Palma volcanic eruption. 3D imaging of PM10 sized and below particles was performed 
using a LEXT OLS4100 confocal microscope (Olympus Corporation, Japan). A Zeiss EVO 50 (Carl Zeiss AG, 
Germany) Scanning Electron Microscope (SEM) was used to assess elemental composition. In addition, volcanic 
particle concentration dose response for pneumococcal adhesion to A549 human alveolar epithelial cells was 
investigated. Confocal microscopy showed that some PM10 and below sized particles had sharp or angular 3D 
appearance. SEM x-ray analysis indicated silicate particles with calcium, aluminium and iron. We observed 
increased colony forming units indicating increased Pneumococcal adhesion due to exposure of cells to volcanic 
particles. Thus in addition to the toxic nature of some volcanic particles, we suggest that the observed sharp 
surface particle features may help to explain adverse health effects associated with volcanic eruptions.   

1. Introduction 

Volcanic ash particles can cause widespread environmental disrup-
tion that has deleterious effects on for example vegetation, animal and 
human health as well as on infrastructure and aeroplanes (Hufford et al., 
2000; Horwell and Baxter, 2006; Ayris and Delmelle, 2012; Lombardo 
et al., 2013; Clarkson et al., 2016; Tesone et al., 2018; Wygel et al., 2019; 
Stewart et al., 2022; Nogales et al., 2022). In addition to volcanic ash 
particles, volcanic gas emissions can also affect human health (Hansell 
and Oppenheimer, 2004). Volcanic particles are primarily aluminium 
and iron silicates, and silicate glass (Bukowiecki et al., 2011; Gislason 
et al., 2011; Jones and Bérubé, 2011; Horwell et al., 2012; Horwell et al., 
2013; Damby et al., 2017; Wygel et al., 2019). 

Particles of small size and volcanic gases such as SO2 can travel 
hundreds of kilometres in the atmosphere thus being deposited far from 
the original eruption (Bukowiecki et al., 2011; Stevenson et al., 2013; 

Stevenson et al., 2015; Filonchyk et al., 2022; Milford et al., 2023). 
When breathing through the nose, it is particles that are of small size 
PM10 and particularly PM2.5 that are of most concern for health as it is 
thought that they are more likely to be absorbed in the airways and 
lungs (Buist et al., 1986; Brown et al., 2013; Chen et al., 2019); particles 
are also associated with other potential adverse health concerns such as 
eye conditions (Lombardo et al., 2013). Bacterial replication in vitro has 
been observed to increase with volcanic particles (Monick et al., 2013). 
In a cohort study of long-term health effects associated with the 2010 
eruption of the Eyjafjallajökull volcano in Iceland, for example the 
prevalence of wheezing symptoms was increased in the group who had 
lived close to the volcano (Hlodversdottir et al., 2016). 

The structure of volcanic ash particles has mostly been investigated 
with 2D microscopic techniques, for example brightfield microscopy or 
more complex techniques such as scanning electron microscopy (SEM) 
(Veronesi et al., 2002; Bukowiecki et al., 2011; Damby et al., 2017). An 
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angular appearance in some volcanic particles has been noted from SEM 
imaging (Damby et al., 2017). We have previously described a method 
using confocal microscopy to assess the structure of such particles in 3D 
as this helps to better elucidate the nature and colour of the surface in 
which some particles have a sharp or jagged appearance (Wertheim 
et al., 2017). The confocal microscope approach has also recently been 
applied to study the 3D structure of Diesel Particulate Matter (DPM), as 
well as roadside and underground railway train station Particulate 
Matter (Miyashita et al., 2021; Wertheim et al., 2023); using this 
confocal microscopy technique a true colour image can be superimposed 
on the 3D surface which can help in understanding the visualisation of 
the particle’s 3D shape. The structure and shape of particles is likely to 
be important as it has been shown to for example affect surfactant film 
spreading in lungs (Gerber et al., 2006), drug delivery (Minchinton and 
Tannock, 2006; Champion et al., 2007; Zellnitz et al., 2019; Shachar- 
Berman et al., 2020) and influence their ability to attach to cancer cells 
(He and Park, 2016). 

Inhalation of volcanic ash particles is considered to be associated 
with increased incidence of adverse health conditions affecting for 
example respiratory and cardiac function (Buist et al., 1986; Bernstein 
et al., 1986; Gudmundsson, 2011; Lombardo et al., 2013; Carlsen et al., 
2015; Tam et al., 2016; Mueller et al., 2020; Michellier et al., 2020; 
Carlsen et al., 2021). For example, the prevalence of exercise-induced 
bronchoconstriction has been reported to be four times higher in 

children exposed to high levels of volcanic particles compared with 
those exposed to low levels (Forbes et al., 2003). However, the mecha-
nism of action of volcanic particles on health is poorly understood. 

The September 2021 eruption of Cumbre Vieja, La Palma (Spain), 
occurred in a populated area and lasted 3 months. As well as constant 
lava output from at least one main vent, 2 or more vents at the top of the 
cone continually emitted tephra, ash and gas to form a plume. The 
average plume height was 3 km, varying between 1.2 and 6 km 
(PEVOLCA, 2021). The prevailing wind direction caused the thickest 
tephra and ash build-up on the southwestern side of the cone, and after 
2 months of the eruption around 6630 ha of the Aridane valley (popu-
lation 20,000) was covered by deposits 0.1-3 m thick (Copernicus 
EMSR546, 2021). Ash was deposited across the island, including in the 
capital city Santa Cruz de La Palma, and regularly caused the closure of 
the island airport. In Los Llanos, a large town that became a centre for 
those displaced by lava flows and the emergency services, air quality 
levels of PM10 were ́Unfavourablé or worse (́Indice de Calidad del Aire 
[ICA], 2019) for 33 days of the eruption, while PM2.5 levels were 
Únfavourablé or worse for 16 days of the eruption (GOBCAN, 2021); 
these levels signify risk for all sections of the population. The first week 
of November 2021 saw four days of the highest warning ́ Extremely 
Unfavourablé (grave risk) level, which together with sulphur dioxide 
levels, led local authorities to close schools and businesses (PEVOLCA, 
2021). Ash reached neighbouring islands including La Gomera, Tenerife 

Fig. 1. Example of confocal microscope images of volcanic particles. Fig. 1A, 2D image with x50 objective lens, field 256 × 256 μm. Fig. 1B, 3D visualisation of 
image field 128 × 128 μm, maximum height 19 μm from confocal microscopy using a x100 objective lens. A 3D visualisation of image field 128 × 128 μm, maximum 
height 19 μm from confocal microscopy using a x100 objective lens and close-ups of some PM10 particles with sharp appearing surfaces in figs. C and D. For the image 
in D, the z axis is magnified by 2 to show the 3D surface appearance more clearly. 
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and Gran Canaria. The quantity of ash and tephra emitted classified the 
eruption at VEI 3 (Nogales et al., 2022) (10 million m3 of tephra 
released), with ash particles now regularly remobilised by strong winds. 

The aims of this study were thus to examine the 3D structure, 
elemental composition and effects on cultured lung cells of La Palma 
volcanic ash particles. 

2. Materials and methods 

2.1. Volcanic ash particle acquisition 

Volcanic ash particles were collected from the opening phase of the 
Cumbre Vieja 2021 eruption, on 19th September 2021. Particles were 
collected by airfall using a wide-mouth (10 cm) high-density poly-
ethylene (HDPE) bottle over a period of 1 h. Samples were collected at a 
distance of 3 km from the initial volcanic vents, in the former town of 
Todoque. Todoque was under the prevailing wind direction for La Palma 
and was receiving steady tephra-fall, yet was outside the zone of larger 
particles falling (>1 cm, which dominantly occurred within 2 km of the 
vent at that time). Therefore samples could be considered representative 
of steady tephra flux to the local population at that time. 

2.2. Confocal microscope slide preparation and imaging 

A drop of propan-2-ol was placed on a glass slide in a petri-dish. 
Grains of the collected aggregated volcanic particles were sprinkled 
through a 20 μm gauze filter onto the propan-2-ol droplet on the slide. 

The droplet containing the particles in suspension dispersed across the 
surface of the glass slide and the propan-2-ol was allowed to evaporate 
naturally for 20 min at room temperature thus leaving just the particles 
on the glass slide. 

A LEXT OLS4100 confocal microscope (Olympus Corporation, 
Japan) was used to image volcanic particles on the glass slide using a 
similar approach to that previously described (Wertheim et al., 2017; 
Miyashita et al., 2021; Wertheim et al., 2023); for 3D imaging a x50 or 
x100 dry objective lens was used both of which have a numerical 
aperture of 0.95. The scanning acquisition range took account of the 
working distance of the lens and was set at just below the slide surface to 
just above the highest particle level in order to obtain the full height of 
the particles in the image field. The scanning was performed in fine 
mode setting with images acquired with a resolution of 1024 × 1024. 
Particle size measurements were made with the Olympus microscope 
software. 

2.3. Scanning electron microscope slide preparation and imaging and 
spectroscopy 

Volcanic particles in propan-2-ol were separated using an ultrasound 
bath for 5 min. One drop of the solution on a glass cover slip, mounted 
on a specimen stub, was allowed to air dry overnight and subsequently 
coated with a gold / palladium alloy. 

A Zeiss EVO 50 (Carl Zeiss AG, Germany) Scanning Electron Micro-
scope (SEM) in both the secondary and backscattered mode was used to 
examine the slide. Bright phases seen on Backscattered Electron (BSE) 

Fig. 2. Example of SEM backscattered electron image of 3 PM10 particles and corresponding energy dispersive x-ray (EDX) microanalysis spectra.  
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imaging were then assessed qualitatively with energy dispersive x-ray 
(EDX) microanalysis. 

2.4. Cell investigations 

Volcanic particles were filtered using a mesh (10 μm) and suspended 
in Dulbecco’s phosphate-buffered saline (DPBS). Aliquots of volcanic 
particles were diluted in DPBS to a final concentration of 1 mg/mL and 
stored as a master stock at − 20 ◦C. 

2.5. Airway cells 

Cells from an A549, human alveolar type II epithelial cell line 
(Sigma- Aldrich, Poole, UK) were maintained in Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with fetal bovine serum (FBS) 
and penicillin-streptomycin (Lonza, Basel, Switzerland). Human 

primary nasal epithelial cells (HPNEpC) from PromoCell® (Heidelberg, 
Germany) were maintained in airway epithelial cell growth medium, 
with supplement kit, Primocin (InvivoGen, San Diego, USA), and 10 % 
FBS; the Passage number was <5. 

2.6. Platelet-activating factor receptor (PAFR) expression 

Airway cells were seeded overnight into adherent cell culture plates 
(2 × 105 cells per well) and cultured with volcanic particles for 2 h 
before washing and detaching with trypsin. Cells were stained with an 
anti-PAFR primary antibody (1:200; ab104162 Abcam, Cambridge, UK) 
for 1 h with shaking at room temperature. A PAFR isotype control 
(1:200; ab172730, Abcam, Cambridge, UK was included to control for 
nonspecific staining. The epithelial marker E-cadherin was included in 
all assays (1:100; ab1416, Abcam, Cambridge, UK). Cells were subse-
quently washed and stained with secondary antibodies conjugated to 

Fig. 3. The upper graphs shows individual value 
plots of Pneumococcal adhesion in human primary 
nasal epithelial cells with volcanic particles added 
compared with cells without volcanic particles 
expressed as Colony forming units (CFU) count / mL . 
The lower graphs shows Median Fluorescence In-
tensity (MFI) of platelet-activating factor receptor 
expression in the A549 and nasal epithelial cells with 
volcanic particles added compared with cells without 
volcanic particles. Each round blue dot shows one 
measurement with the median being shown with an 
orange diamond symbol.   
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either Alexa Fluor 488 (1:3000; ab150077, Abcam, Cambridge, UK) for 
detection of PAFR/isotype expression, or allophycocyanin (1:1500; 
ab130786, Abcam, Cambridge, UK) for detection of E-cadherin. Analysis 
was carried out on the BD Fluorescence-Activated Cell Sorting (FACS) 
Canto II system using BD FACSDiva software (BD Biosciences, Oxford, 
UK). PAFR expression was compared to an isotopic control for median 
fluorescent intensity (MFI). 

2.7. Pneumococcal adhesion 

The Streptococcus pneumoniae type 2 encapsulated strain D39 (NCTC 
7466) was from the National Collection of Type Cultures (Central Public 
Health Laboratory, London, UK), grown to mid-logarithmic phase 
(OD600 = 0.4 to 0.6) in brain–heart infusion broth (BHI) (Oxoid, 
Basingstoke, UK) and stored at − 80 ◦C. Airway epithelial cells were 
seeded overnight into adherent cell culture plates (2 × 105 cells per well) 
and exposed to volcanic particles for 2 h. Cells were subsequently 
washed to remove particles before adding S. pneumoniae D39 for a 
further 2 h to allow adhesion. Cells were finally washed to remove non- 
adherent bacteria and lysed before plating on blood agar plates for 
colony forming unit count (CFU/mL). 

2.8. Data analysis 

Data were analysed using Excel (Microsoft Corporation, USA) and 
Minitab v19 (Minitab LLC, USA); graphs were prepared with Minitab. 
The Ryan-Joiner test in Minitab was used to assess normality and data 
analysed accordingly. 

3. Results and discussion 

3.1. 3D microscopy imaging 

Confocal microscope imaging demonstrated a range of volcanic 
particle sizes including PM2.5, PM10 and above; the particles were of 
different shapes and colours as seen in the example in Fig. 1. The true 
colour images demonstrated particles corresponding to PM2.5 and PM10 
frequently had edges with a sharp or jagged appearance as shown in the 
examples in Fig. 1b, c and d. The sharp appearing particles were seen 
particularly in the PM10 and below particles. Other particles had a 
crystalline surface appearance. 

3.2. Scanning electron microscopy 

Scanning electron microscopy (SEM) showed image shapes that were 
consistent with that seen from the confocal microscope images. SEM x- 
ray analysis indicated the presence primarily of silicon, calcium, oxygen, 
aluminium and iron as shown in the 2D spectrum of a PM10 particle in 
Fig. 2. These particles are thus likely to be silcate glasses, amphiboles 
and pyroxenes. 

3.3. Cell investigations 

For each set of experiments at least five separate measurements were 
taken as shown in the individual value plots in Fig. 3. Volcanic particles 
increased pneumococcal adhesion to human primary nasal epithelial 
cells when compared with cells without volcanic particles as seen in 
Fig. 3 (upper graph) and Table 1 as well as dose response to A549 human 
alveolar cells in Fig. 4, where each set of experiments had six separate 
measurements. There was a significant difference in colony forming unit 
(CFU) values for volcanic particle concentrations of 10 μg/mL and 20 
μg/mL compared with the control results (p < 0.001, one-way ANOVA 
using Dunnett’s method); when comparing with the control data there 
was a mean (95 % confidence interval) difference of 2639 (1551 to 
3727) count / mL at 10 μg/mL and 3061 (1973 to 4149) count / mL at 
20 μg/mL. Volcanic particles also increased PAFR expression in both 
A549 and the nasal epithelial cells (HPNEpC) when compared with cells 
without addition of volcanic particles as seen in Fig. 3 (lower graphs) 
and Table 1. 

PM2.5 and PM10 particles are thought to be of particular interest in 
understanding possible associations with respiratory health (Buist et al., 
1986). As we have previously seen in particles from Eyjafjallajökull and 
Grímsvötn volcanic eruptions in 2010 and 2011 respectively, the 3D 
appearance indicated that some particles had sharp or jagged appearing 
edges (Wertheim et al., 2017) which could be hard to discern from 2D 
imaging. Previous studies have identified possible associations between 
volcanic eruptions and adverse health effects (Lombardo et al., 2013; 
Carlsen et al., 2021) however, the underlying reasons are not well 
understood. 

The presence of silicon and oxygen in particles we examined using 
energy dispersive x-ray (EDX) microanalysis, suggests some of the par-
ticles are likely to be silicates as expected. Studies have highlighted the 
issue of silica particles being emitted in volcanic eruptions as well as 
those involving other sources and possible adverse health effects (Cook 
et al., 2005, Horwell et al., 2012, Horwell et al., 2013, Damby et al., 
2017). A study of bronchoalveolar lavage (BAL) samples suggest adverse 
health effects associated with volcanic eruptions may also be related to 
the presence of toxic metals in people exposed to the 2001 Mount Etna 

Table 1 
PAFR and pneumococcal adhesion for A549 human alveolar cells and human 
primary nasal epithelial cells with and without addition of volcanic particles.     

Median Min Max N 

PAFR (MFI) 
A549 

Control  0  0  907  5 
Volcanic  2356  1270  5255  5 

Nasal Control  276  25  457  5 
Volcanic  2557  1789  5337  5 

Adhesion (CFU / mL) 
A549 

Control  1233  500  2233  6 
Volcanic  4050  3000  5167  6 

Nasal 
Control  1227  989  1554  5 
Volcanic  4300  3166  5200  5 

Median, minimum and maximum of PAFR expression (median fluorescence in-
tensity, MFI) in both A549 and nasal epithelial cells (HPNEpC) when comparing 
with cells with and without addition of volcanic particles. Lower part of table has 
median, minimum and maximum pneumococcal adhesion (CFU count / mL) to 
both A549 human alveolar cells and human primary nasal epithelial cells when 
comparing with cells with and without volcanic particles. The concentration of 
volcanic particles was 10 μg/mL for the data in this table. 

Fig. 4. Dose dependent individual value plots of Pneumococcal adhesion in 
A549 human alveolar cells with volcanic particles added compared with cells 
without volcanic particles expressed as Colony forming units (CFU) count / mL . 
Each round blue dot shows one measurement with the median being shown 
with an orange diamond symbol. 

D. Wertheim et al.                                                                                                                                                                                                                              



Science of the Total Environment 899 (2023) 165647

6

particulate fallout (Censi et al., 2011). 

4. Conclusions 

We observed that volcanic particles increased pneumococcal 
adherence and PAFR expression in A549 lung epithelial cells and human 
primary nasal epithelial cells in vitro; for Pneumococcal adhesion we 
observed an increase in colony forming units which was dependent on 
the concentration of volcanic particles. Furthermore, the La Palma 
volcanic particles can have angular and sharp appearing surface features 
which may affect cellular uptake. Thus in addition to the toxic nature of 
some particles we suggest that the observed sharp surface particulate 
features may help to explain the adverse health effects associated with 
volcanic eruptions. 
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