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Abstract 

Background  Understanding the interaction between environmental conditions, crop yields, and soil health is crucial 
for sustainable agriculture in a changing climate. Management practices to limit disease are a balancing act. For exam-
ple, in potato production, dry conditions favour common scab (Streptomyces spp.) and wet conditions favour blackleg 
disease (Pectobacterium spp.). The exact mechanisms involved and how these link to changes in the soil microbiome 
are unclear. Our objectives were to test how irrigation management and bacterial pathogen load in potato seed 
stocks impact: (i) crop yields; (ii) disease development (blackleg or common scab); and (iii) soil microbial community 
dynamics.

Methods  We used stocks of seed potatoes with varying natural levels of Pectobacterium (Jelly [high load], Jelly [low 
load] and Estima [Zero – no Pectobacterium]). Stocks were grown under four irrigation regimes that differed in the tim-
ing and level of watering. The soil microbial communities were profiled using amplicon sequencing at 50% plant 
emergence and at harvest. Generalised linear latent variable models and an annotation-free mathematical framework 
approach (ensemble quotient analysis) were then used to show the interacting microbes with irrigation regime 
and Pectobacterium pathogen levels.

Results  Irrigation increased blackleg symptoms in the plots planted with stocks with low and high levels of Pectobac-
terium (22–34%) but not in the zero stock (2–6%). However, withholding irrigation increased common scab symptoms 
(2–5%) and reduced crop yields. Irrigation did not impact the composition of the soil microbiome, but planting stock 
with a high Pectobacterium burden resulted in an increased abundance of Planctomycetota, Anaerolinea and Acidobac-
teria species within the microbiome. Ensemble quotient analysis highlighted the Anaerolinea taxa were highly associ-
ated with high levels of Pectobacterium in the seed stock and blackleg symptoms in the field.

Conclusions  We conclude that planting seed stocks with a high Pectobacterium burden alters the abundance of spe-
cific microbial species within the soil microbiome and suggest that managing pathogen load in seed stocks could 
substantially affect soil communities, affecting crop health and productivity.
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Background
To meet the growing global demand for food, it has been 
estimated that agricultural crop production needs to 
more than double by 2050 [1]. Production rates are pre-
dicted to decrease due to the impact of climate change 
and requirements for environmentally sustainable pro-
duction [2]. Potatoes (Solanum tuberosum) are one of the 
most important food crops, with over 359 million metric 
tons produced globally [3]. However, production yields 
have stagnated over the past decade and land use for 
potatoes has decreased [4, 5]. Potatoes are highly suscep-
tible to infection from a plethora of pests and pathogens. 
These include for example; oomycetes (late blight; Phy-
tophthora infestans [6, 7]), bacteria (blackleg; Pectobac-
terium spp. [8]), (common scab; Streptomyces spp. [9]), 
potato cyst nematodes (Globodera spp. [10]) and viruses 
[11]. These diseases reduce plant growth, the quality of 
tubers and overall potato production yields. Changing 
environmental conditions are anticipated to exacerbate 
disease prevalence and future potato crop production 
[12–15]. For example, even within the UK, there is exten-
sive variation in sustainable management solutions, 
which need to be customised to the local environmental 
conditions. Growers must also make trade-offs between 
crop value (based on consumer choice and supply chains) 
and pathogen management. While cultivar selection is 
largely driven by crop value, there are known to be both 
climate-induced and cultivar-induced differences in dis-
ease susceptibility [16–18]. However, this effect is highly 
variable and not clearly understood. Thus, a deeper 
understanding of the impact of management practices, 
potato stock selection and pathogen load on plant sus-
ceptibility and soil diversity would be invaluable.

Soil moisture content is a key parameter in the devel-
opment of many potato crop diseases. In dry conditions, 
crops are typically more prone to common scab, Strep-
tomyces species [19, 20]. In contrast, wet conditions 
promote the development of blackleg disease, Pectobac-
terium spp. [21], while a combination of wet, warm and 
dry conditions favours late blight, Phytophthora infestans 
[21]. In this work, we will focus on two of these diseases: 
common scab and blackleg disease.

Common scab disease results in scab-like lesions on 
potato tubers. Timing is crucial for disease development, 
with potatoes being the most vulnerable up to 6  weeks 
post-tuber initiation (i.e. tuber development; [19]). Irri-
gation applied during the period when plants are most 
susceptible to common scab infection can reduce dis-
ease and increase crop yields [22–25], but some authors 
have noted that this is not a reliable means of control 
[26]. Indeed, the mechanisms of control via irrigation or 
other means (soil pH amendment) are not clearly under-
stood. Moreover, disease control is challenging as many 

Streptomyces spp. are naturally present in the soil envi-
ronment [27].

Blackleg disease of potato stems and soft rot disease of 
tubers are typically caused by Pectobacterium atrosep-
ticum in the UK but may be caused by other Pectobac-
terium and Dickeya species elsewhere [28]. A high soil 
moisture content induces blackleg infection in two ways. 
Firstly, anaerobic conditions from water logging cause the 
suppression of plant oxidative stress response-mediated 
defence mechanisms and increase plant cell permeability 
[29–31]. Secondly, P. atrosepticum is a facultative anaer-
obe and thus anoxic conditions enable it to proliferate 
and take advantage of the previously mentioned weak-
nesses in the plant host [30]. Pectobacterium species are 
thought to have limited survival in soil, with disease pri-
marily spread through contaminated seed tubers. There 
are no chemical control options for blackleg and control 
of the disease has primarily been through stringent seed 
lot certification. For example, in the UK there is zero tol-
erance in the first-generations of progeny seed [pre-basic 
seed grade] [32]. In terms of management practice, tubers 
are typically only grown for 5–6 years due to the build-up 
of P. atrosepticum [33, 34]. However, other factors such 
as irrigation, aerosols and contaminated seed handling 
equipment may also play a role [35, 36]. Additional man-
agement practices during the growing season are not well 
defined and are less evidenced in the literature, but some 
practices include rogueing fields to remove crops show-
ing characteristic above-ground wilting associated with 
blackleg disease [37]. Blackleg disease development is 
heavily influenced by climate; thus, management must be 
modified to local conditions [31]. For example, Scotland 
produces most UK potato seed stock, which are mainly 
grown without irrigation to avoid blackleg disease, whilst 
in England irrigation is used to manage common scab, 
to avoid plant desiccation and increase yield in what are 
mainly ware crops. This example nicely highlights the 
balancing act placed on potato growers, where they must 
trade off management practices with the environmental 
niches of multiple pathogens.

Management practices to control crop disease could 
also affect soil fertility and health, which in turn could 
impact crop productivity. For example, fertilisation can 
lead to soil degradation, while mechanical tillage can lead 
to soil erosion [38]. Soil microbial communities are also 
influenced by agricultural practices such as crop rota-
tions [39], soil compaction [40], tillage and crop choice 
[41, 42]. This is important, as the microorganisms in soil 
are part of a wider interactive web involving animals and 
plants whose activities contribute to soil fertility, diver-
sity and plant health. These factors are essential for global 
food production [43], but the exact mechanisms of these 
interactions and how these intricate systems respond to 
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management practices and changing environmental con-
ditions remain unclear [44]. Nevertheless, regulating, 
predicting and manipulating these responses is crucial 
for healthy soil and global food security in a changing 
global environment.

We are beginning to recognise that the soil microbi-
ome is intrinsic to ecosystem health, services and plant, 
animal and human health [45]. Agricultural management 
practices can disrupt or alter the native soil microbiomes 
[46, 47]. However, the ramifications of such impacts are 
not clearly understood. Soil and plant microbiome net-
works are complex and shaped by interactions with 
surrounding fauna and responses to the abiotic and 
biotic environment. Despite this complexity, it has been 
observed that some plants show a bespoke local micro-
biome that is distinct from the surrounding soil micro-
biome [48]. In some cases, this microbiome can be 
modulated using the plant’s defence system for protec-
tion against pathogens [49]. The soil microbiome can also 
play a role in defence against diseases, e.g. in disease-
suppressive soils [50, 51]. Which soil microorganisms are 
involved in the interactions essential for plant health and 
what variables drive these key microbial taxa remains to 
be unravelled. A perspective by Toju et al. [52] discussed 
this concept and highlighted the potential for multiple 
states of healthy soil microbiome (core microbiomes) 
akin to human gut-associated microbiomes (enterotypes) 
which, if understood, could allow us to unlock the poten-
tial of sustainable agroecosystems.

In this study, our overall aim was to determine whether 
there are interactions between agricultural management 
practices, potato seed stocks and crop health and how 
these link to soil microbial communities. Using agri-
cultural field trials at NIAB Cambridge, UK we tested 
whether irrigation practices and/or starting pathogen 
burden (Pectobacterium sp.) in different stocks of seed 
potatoes affected crop yields, disease symptoms (com-
mon scab and blackleg) and overall diversity (taxonomic 
and functional) of the core soil microbial communities. 
To more specifically quantify differences in ‘key’ micro-
bial taxa or the contributions of rare taxa to the micro-
biome, we then used differential heat-tree analysis and 
generalised linear latent variable modelling (GLLVM) 
to specifically compare microbial community composi-
tion in relation to the experimental treatments and used 
ensemble quotient analysis (EQO) to test whether there 
was a correlation between disease symptoms (blackleg 
and common scab) with particular microbial genera.

Materials and methods
Seed stock selection
To select appropriate seed stocks with varying Pectobac-
terium levels, we used blackleg-susceptible commercial 

potato stocks which were tested for pathogen prevalence 
by SASA (Science and Advice for Scottish Agriculture). 
Two of the stocks were of the Jelly variety: JellyHigh (Pre-
basic Class Generation 3 stock [PB3] with peel contain-
ing a mean of 1.47 × 103 colony forming units (cfu)/g of 
P. atrosepticum and 5.74 × 104  cfu/g of Pectobacterium 
carotovorum) and JellyLow (Pre-basic Class Genera-
tion 2 stock [PB2] containing a mean of 400  cfu/g of P. 
atrosepticum and 1.88 × 103  cfu/g of P. carotovorum). 
No commercial Jelly stocks available to us were free of 
Pectobacterium and Jelly mini-tubers were unavailable. 
Therefore, for the stock without Pectobacterium we used 
Estima mini-tubers (EstimaZero) stock [Pre-basic PB1], 
which were found contain zero Pectobacterium species. 
Note: Pectobacterium atrosepticum is the causative agent 
of blackleg disease, while Pectobacterium carotovorum 
is not typically associated with the disease in the field, 
although authors have shown potential for disease out-
come using inoculation experiments [53].

Irrigation regimes
We compared four irrigation treatments: (1) rainfed only 
(Unirrigated); (2) irrigated when the soil moisture deficit 
(SMD) reached 40 mm (Irrigation 1); (3) irrigated main-
taining SMD < 15  mm during the common scab control 
period (the 4  weeks following the onset of tuber initia-
tion) and unirrigated for the rest of the season (Irrigation 
2); and (4) irrigated maintaining SMD < 15  mm dur-
ing the common scab control period and then < 25  mm 
throughout the rest of the season (Irrigation 3). Irrigation 
was applied using 20–25  mm applications for all irriga-
tion regimes. The total amount of water applied during 
the season was 150 mm for Irrigation 1 and Irrigation 2, 
and 251 mm for Irrigation 3. The total rainfall recorded 
from plant emergence was 202 mm. No plots were pro-
tected from rainfall.

Field trials
The field-trial experiments were carried out at NIAB, 
Cambridge (52.2417°N, 0.0987°E). The soil profile is 
included in the Supplementary Information. The field was 
randomised into a factorial block design using combina-
tions of the three seed stocks (JellyHigh, JellyLow and 
EstimaZero) and four irrigation regimes (Unirrigated, 
Irrigation 1, Irrigation 2, and Irrigation 3), which were 
replicated in triplicate plots. Details of the schematic of 
the experimental design (Supplementary Figure  S1) and 
layout of the plots (Supplementary datasheet 1) are pro-
vided in Supplementary Information. The experiment 
was planted on the 23rd of April 2020 using 30–40 mm 
Jelly seed (1206 tuber count/50  kg) and 25–30  mm 
Estima mini-tubers (2078 tuber count/50 kg) at a within-
row spacing of 30  cm in 75  cm rows. The seed was 
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dibbed 12  cm deep into pre-formed ridges, which were 
raked after planting to re-form the original ridge. Plots 
were 3.6 m long and four rows wide, with a 2-m pathway 
between strips of plots. An extra guard row was planted 
on either side of each plot to act as an additional buffer 
against overland and aerial movement of water from 
the irrigator. Plots were tie-bunded at either end to pre-
vent over-land water flow between plots to minimise the 
risk of between-plot transfer of blackleg. Post-planting 
(30/04/2020), ammonium nitrate was applied at a rate of 
200 kg N/ha and herbicides and fungicides were applied 
as required to keep the experiment free from weeds and 
blight. Irrigation was scheduled using the Cambridge 
University Farm (CUF) Potato Irrigation Scheduling 
Model based on meteorological data obtained from a 
Delta-T Devices weather station c. 450 m from the exper-
imental plot. The irrigation was carried out using a diesel 
engine-driven Briggs VR4 90/400 hosereel and R50 boom 
equipped with Senninger LDN UP3 Single Pad nozzle 
dropper pipes to allow discrete irrigation between plots.

Crop monitoring and crop yield
Plant emergence was recorded by counting the number 
of plants that had emerged within the two central harvest 
rows. Emergence was first recorded on the 19th of May 
2020 and recorded every 3–4  days thereafter until the 
15th of June 2020. The number of plants with initiated 
tubers in a two-plant sample harvested in every plot was 
counted every 2 days, commencing on the 8th of June. At 
harvest (23–25th September 2020), tubers were graded, 
counted and weighed in 10  mm increments to provide 
total tuber yield and volume per hectare.

Blackleg incidence and common scab prevalence
Plants were scored for blackleg symptoms on 18th June, 
26th June, 6th July, 31st July and 20th of August 2020. 
Blackleg symptoms were considered as either black 
decaying lesions on stems or wilted leaves on a single 
stem. At harvest tubers showing rot symptoms were 
bagged separately, counted and the weight recorded. A 
total of 50 tubers from the final harvest were selected for 
common scab assessment, which was determined as the 
total surface area infected with common scab which was 
further sorted into the following threshold levels: 0, 1, 5, 
10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and 90% surface area 
infected [54].

Complete metadata for the field-trial was collated and 
included plot number, plot area (based on location in the 
field—Supplementary data files  1–2), seed stock, irriga-
tion regime, rainfall, temperature, irrigation volumes, 
starting levels of P. atrosepticum and of P. carotovorum 
in the starting seed stock), blackleg incidence, blackleg 

percentage prevalence, the weight of rotted tubers and 
common scab percentage.

DNA extraction and amplicon sequencing of the 16S rRNA 
gene
Soil samples were taken for microbiome analysis at 50% 
plant emergence (22nd May 2020) and at final harvest 
(15th September 2020). Samples were taken across treat-
ments (Unirrigated, Irrigation 1, Irrigation 2, and Irri-
gation 3) and potato stock/pathogen levels (JellyHigh, 
JellyLow and EstimaZero). Comparisons in microbial 
communities across time were made using soil (20 sam-
ples per plot) sampled from the ridge (near the top of the 
furrow) at 50% plant emergence (T_E Ridge) and harvest 
(T_H Ridge). In addition, to determine if there were dif-
ferences in microbial communities sampled closer to the 
plant roots, additional samples (20 per plot) were also 
taken at the bottom of the furrow at harvest only (T_H 
Root), to avoid damaging roots in the emerging plants 
(Supplementary Figure  S1). Samples were taken using a 
soil corer. Corer diameter was 29 mm and the depth of 
insertion was 150  mm, giving a core volume of 99  cm3. 
Twenty cores were taken  per plot (c. 1 kg soil), the soil 
was bulked together and mixed thoroughly.  Samples 
were stored in cold storage at NIAB before shipping to 
the University of Glasgow for further homogenisation 
of sample material by mixing in large sampling bags and 
taking aliquots for storage at − 80 ºC. DNA was extracted 
with the Fast DNA™ SPIN Kit for Soil (MP Biomedicals, 
CA, USA) using 0.5 g of soil material. Negative controls 
(nuclease-free water) were additionally passed through 
the extraction procedure for each set of extractions. DNA 
quality was assessed by agarose gel electrophoresis and 
quantified using a QuBit 3 Fluorometer (Thermo-Fisher 
Scientific, Renfrew, Scotland). Amplicon sequencing 
was then carried out using the universal bacterial and 
archaeal primer set (515f and 806r; [55]) that contained 
the Illumina adapter sequence ‘TCG​TCG​GCA​GCG​TCA​
GAT​GTG​TAT​AAG​AGA​CAG’ on the forward primer 
and the adapter sequence ‘GTC​TCG​TGG​GCT​CGG​AGA​
TGT​GTA​TAA​GAG​ACAG’ on the reverse primer. Sam-
ples were indexed using the Nextera XT DNA Library 
Preparation Kit (Illumina Inc., Hayward, CA, USA Illu-
mina). Amplicon libraries were pooled and quality 
checked using a Bioanalyser (Agilent, Santa Clara, CA, 
USA) and RT-qPCR (quantitative reverse transcription 
polymerase chain reaction) using the Kapa library Quan-
tification kit on an Applied Biosystems StepOne plus sys-
tem (Applied Biosystems, MA, USA). Sequencing was 
carried out using the Illumina technology at the Glasgow 
Polyomics sequencing facility using a standard flow cell 
and 600  cycle v3 reagent cartridge for 2 × 300  bp (base 
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pair) reads on an Illumina MiSeq instrument (Illumina 
Inc., Hayward, CA, USA).

Bioinformatic analysis
The paired-end reads were demultiplexed and converted 
to FastQ format sequence files for further analysis. These 
raw sequences were submitted to the sequence read 
archive (SRA) database under Bioproject Submission 
PRJNA992106. A total number of 13,575,540 reads were 
obtained from 222 samples. Briefly, we used Qiime2 soft-
ware for the sequencing analysis [56]. Within the Qiime2 
framework, the DEBLUR algorithm [57] was used for the 
generation of amplicon sequencing variants (ASVs), after 
quality trimming the reads with a Phred quality score of 
20. The final ASVs (p = 33,464 ASVs for n = 222 samples) 
were then classified against the SILVA v138.1 SSU Ref NR 
database [58]. The abundance table was then combined 
with the taxonomy to produce a biom file, on which 
downstream statistics were applied. In addition, predic-
tive functional analysis was carried out using PICRUSt2 
software within the Qiime2 framework, which produced 
sample-level KEGG orthologs and MetaCyc pathways as 
biom and functional.tsv files [59]. As a pre-processing 
step, we removed typical eukaryotic contaminants such 
as Mitochondria, Chloroplasts and any ASVs unassigned 
at all levels, as per recommendations given at https://​
docs.​qiime2.​org/​2022.8/​tutor​ials/​filte​ring/. Moreover, 
singletons and samples with reads < 5000 were excluded 
from analysis. This resulted in 31,114 ASVs from 208 
samples. Prior to the downstream statistical analysis, we 
used the ‘decontam’ package in R to remove contami-
nants by comparing the prevalence of ASVs in the nega-
tive controls to true samples [60].

Abundant and core microbial genera
The top 25 most abundant microbial families as a pro-
portion of total relative abundance per sample were vis-
ualised using ggplot2 [61]. We considered the common 
‘core’ microbiome to constitute the genera present in all 
field-trial samples (with > 1% compositional abundance in 
at least 85% of samples). The common core microbiome 
has been summarised in a review Shetty et al. [62]. Anal-
ysis was conducted in R (R version 4.1.3: [63]) using ‘phy-
loseq’ [64]. The core microbiome was calculated using R’s 
microbiome package [65] based on the preliminary work 
of [66].

Statistical analysis
Statistical analysis methods are provided in the Supple-
mentary Information.

Results
Crop yields
The choice of potato stock (with associated pathogen lev-
els) and irrigation regime both impacted crop yield. Not 
irrigating reduced the tuber yield for all potato stocks, 
particularly for the EstimaZero mini-tubers (Table  1). 
Irrigation regime 1 (irrigated when SMD reached 40 mm) 
resulted in the highest yield for both Jelly stocks (Jelly-
High 69  tons/HA; JellyLow 67.4  tons/HA). In contrast, 
irrigation regime 3 (irrigated maintaining SMD < 15  mm 
during the common scab control period and then < 25 mm 
throughout the rest of the season) resulted in the high-
est yield for the EstimaZero stock, which was the high-
est tuber yield observed for all stocks and treatments 
(75 tons/HA).

Table 1 shows tuber yield information for each potato 
stock (JellyHigh, JellyLow and EstimaZero) and each 
irrigation regime (Unirrigated, Irrigation 1, Irrigation 2 
and Irrigation 3). Tuber yield was calculated by the total 
number of tubers per hectare (HA) and the tuber yield 
in tonnes per hectare. Results of the statistical analysis (P 
values) testing the impact of ‘Stock’, ‘Irrigation’ and ‘Stock 
and Irrigation’ are shown at the bottom of the table. Val-
ues are significant when P < 0.05. We have highlighted in 
bold which values are significant.

Disease prevalence
The Jelly stocks with both high and low initial Pectobac-
terium loads both showed a high percentage of black-
leg symptoms at the end of the field trial (Table 2). The 

Table 1  Potato crop yields from the experimental field trials at 
harvest

Stock Irrigation Total no. of 
tubers (000/
ha)

Total tuber 
yield (t/ha)

JellyHigh Unirrigated 267 45.2

Irrigation 1 349 69.0

Irrigation 2 277 50.0

Irrigation 3 299 63.8

JellyLow Unirrigated 339 49.9

Irrigation 1 369 67.4

Irrigation 2 341 54.5

Irrigation 3 308 64.9

EstimaZero Unirrigated 264 29.8

Irrigation 1 324 60.5

Irrigation 2 394 59.0

Irrigation 3 401 75.0

Fprob Stock 0.020 0.501

Fprob Irrigation 0.032 < 0.001
Fprob Stock*Irrigation 0.011 0.006

https://docs.qiime2.org/2022.8/tutorials/filtering/
https://docs.qiime2.org/2022.8/tutorials/filtering/
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percentage of blackleg symptoms was strongly impacted 
by the irrigation regime, with the unirrigated treatment 
showing the lowest symptom prevalence (16.7% Jelly-
High and 18.1% JellyLow) and irrigation 3 showing the 
highest symptom prevalence (34% for both Jelly stocks), 
although there was some variation among plots (Sup-
plementary Table S1). Examining the blackleg symptoms 

over time highlights that disease incidence developed at a 
similar rate in the stock with low starting levels of Pecto-
bacterium (JellyLow) as compared to the stock with high 
starting levels (JellyHigh) (Fig. 1). This trend was exacer-
bated in the irrigation treatments (Irrigation 1, Irrigation 
2 and Irrigation 3). In contrast, the EstimaZero with no 
initial Pectobacterium detected showed very low levels of 
blackleg symptoms across the entire experiment (reach-
ing only 0.7% in the unirrigated treatment and ranging 
from 2.8 to 5.6% in the irrigated treatments at harvest; 
Table 2). Despite substantial blackleg symptoms recorded 
in the field for the Jelly stocks, overall, the degree of tuber 
rotting at harvest was low, with < 1.5% of rotted tubers 
(Supplementary Table  S2). Moreover, no significant dif-
ference was observed with respect to irrigation or potato 
stock on the observed proportion of rotting tubers.

While irrigation increased blackleg disease symptoms, 
a lack of irrigation (rainfed only) strongly impacted com-
mon scab severity in the tubers upon harvest (Table  2). 
The unirrigated treatments showed the highest common 
scab levels, and the Estima tubers were the most affected 
(5.43% EstimaZero, 3.29% JellyLow and 2.74% JellyHigh). 
In general, tubers from irrigation regime 3 (irrigated 
maintaining SMD < 15 mm during the common scab con-
trol period and then < 25 mm throughout the rest of the 
season) showed the lowest common scab severity (1.94% 

Table 2  Blackleg and common scab symptoms at the end of the 
experimental trial

Stock Irrigation Blackleg 
symptoms (%)

Common 
scab severity 
(%)

JellyHigh Unirrigated 16.7 2.74

Irrigation 1 22.2 2.13

Irrigation 2 29.2 1.72

Irrigation 3 34 1.51

JellyLow Unirrigated 18.1 3.29

Irrigation 1 29.9 1.83

Irrigation 2 29.9 1.56

Irrigation 3 34 1.73

EstimaZero Unirrigated 0.7 5.43

Irrigation 1 2.8 2.46

Irrigation 2 5.6 2.27

Irrigation 3 4.2 1.94

Fig. 1  Blackleg symptoms (%) plotted against time from plant emergence (18/06/2020) to plant harvest (27/08/2020). Symptoms are based 
on the average of blackleg symptoms per plot based on the incidences of recorded symptoms in the field. Values are shown by stock (EstimaZero, 
JellyLow and JellyHigh) and irrigation regimes (Unirrigated, Irrigation 1, Irrigation 2 and Irrigation 3). Standard deviation bounds are shown on 
the horizontal lines on the box-plot whiskers per condition
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EstimaZero, 1.73% JellyLow and 1.51% JellyHigh—Fig. 1; 
Table 2).

Table  2 shows the percentage of the crop showing 
blackleg symptoms on 20th August 2020 and the percent-
age of common scab severity from tubers from the final 
harvest (23–25th September 2020) for the three potato 
stocks (JellyHigh, JellyLow and EstimaZero) and the four 
irrigation regimes (Unirrigated, Irrigation 1, Irrigation 2 
and Irrigation 3).

Dominant microbial community composition and core 
microbiome
The 25 most abundant microbial families in the soil com-
munities were remarkably stable (Fig. 2) in relation to ini-
tial Pectobacterium levels (Zero, Low and High), potato 
variety (Jelly seed or Estima mini-tubers) and irrigation 
regime (Unirrigated, Irrigation_1, Irrigation_2 and Irri-
gation_3). Some of the most abundant taxa were species 
within the Vicinamibacterales (~ 20%), Nitrososphaer-
aceae (~ 12%), Nocardiodaceae (~ 8%) and Sphingomono-
daceae (~ 8%) families (Fig. 2). Although we did observe 
some shifts in relative abundance across time in the ridge 
samples (T-E—50% plant emergence and T-H—plant 
harvest) and in the relative abundances of the top 25 fam-
ilies between the ridge and root samples at harvest, the 
pattern of changes were similar across stocks and irriga-
tion treatments (Fig. 2). Based on a threshold of presence 
in at least 85% of samples, we observed that 65 genera 

were part of the ‘core microbiome’ that did not change 
in relation to treatments (Supplementary Figure S3; Sup-
plementary Table S4). Of these, Vicinibacterales, Nocar-
dioides, Pyrinomonadaceae (RB41) and Chloroflexi 
(KD4-96) species showed the highest prevalence (75–
100%) and the highest number of amplicon sequencing 
variants (ASVs) detected (298–1362 ASVs).

Alpha and beta diversity
Alpha diversity represents the number and evenness of 
different ASVs within a single sample, while beta diversity 
is a measure of similarity or dissimilarity between ASVs 
from two communities [67]. In addition to considering 
ASVs (taxonomic diversity) we also considered functional 
diversity, which was based on the number and evenness 
of KEGG orthologs (KOs) within a single sample (alpha 
diversity) and the dissimilarity of KOs between two com-
munities (beta diversity).

Irrigation
At 50% plant emergence, the irrigation management 
practice did not significantly impact taxonomic or func-
tional microbial diversity either within or between treat-
ments (Supplementary Figure  S4–S5). At harvest, there 
were no significant differences in taxonomic diversity 
within treatments (Supplementary Figure S6A). However, 
there were differences in taxonomic diversity between 
treatments, with samples showing some clustering with 

Fig. 2  Stacked vertical bar chart showing the soil microbiome composition, comparing the relative abundance of the top 25 microbial families 
found in soil across treatments (irrigation regime), stocks/ pathogen levels (JellyHigh, JellyLow, Estima), time (50% plant emergence T_E, or harvest, 
T-H) and whether samples were taken from the ridge (background soil community at both timepoints) or root (rhizosphere at harvest). Colours 
represent the relative abundance of each taxonomic family. See Supplementary Table S3 for the taxonomic description). The white portion 
of the bars indicate the contribution of microbial families that were not represented in the top 25
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respect to Irrigation 2 and whether samples were from 
the root or ridge (Supplementary Figure  S6B; Dim 1 
6.85%, Dim 2 2.9%). At harvest, functional diversity 
within treatments was altered, with more unique KOs 
detected in the Irrigation 1 ridge samples, which was sig-
nificantly higher (0.01 or more) than the ridge samples 
from Unirrigated, Irrigation 2 and Irrigation 3 regimes 
(Supplementary Figure  S7A). We also observed differ-
ences with respect to functional diversity between treat-
ments, with samples clustering according to irrigation 
regime (particularly Unirrigated and Irrigation 2) and 
whether samples were from root or ridge (Supplementary 
Figure S7B; Dim 1–77.89%, Dim 2–5.16%).

Potato stock
In the above analysis, the taxonomic and functional 
diversity of the microbial communities between treat-
ments indicated that samples from the same potato stock 
were highly similar irrespective of irrigation regime. 
We, therefore, repeated the analysis using potato stock 

as the grouping variable. At 50% plant emergence, taxo-
nomic diversity was significantly different within treat-
ments. For example, JellyHigh treatments showed both 
an increased number of ASVs (richness values of ~ 480–
920) and a more balanced distribution in the abundance 
of these ASVs (evenness values of ~ 0.935–0.975), while 
JellyLow showed reduced values, with richness values of 
400–550 and evenness values of 0.90–0.96, Fig.  3A). It 
must be noted that the scale of these changes was rela-
tively low, with evenness values ranging from 0.90 to 
1.0 and richness values ranging from 400–900 (Fig. 3A). 
There were also significant differences in taxonomic 
diversity between treatments. JellyHigh samples with 
a high pathogen burden were highly similar and clus-
tered together, whereas in general, the low (JellyLow) 
and zero (EstimaZero) stocks were more similar to each 
other and dissimilar to the JellyHigh (Fig. 3B; Dim1 8.7%, 
Dim2 4.19%). Some Estima samples (from plots 3–4, 
3–8, 3–9, 3–11) clustered within this JellyHigh cluster. 
At harvest, there were fewer differences in taxonomic 

Fig. 3  Taxonomic diversity of the soil microbiomes at 50% plant emergence (T_E). Diversity is influenced by potato stock Pectobacterium levels 
and potentially potato variety. Colours represent potato stock (EstimaZero—E, JellyLow—JL and JellyHigh—JH), time-point (50% plant emergence–
T_E and soil sample type (Ridge–Ri). Symbols represent the irrigation regimes (Unirrigated, Irrigation_1, Irrigation_2 and Irrigation 3). A The relative 
distribution of taxa (Pielou’s evenness) and diversity (Richness) within the communities. Pair-wise ANOVA P-values are displayed P < 0.05*, P < 0.01**, 
and P < 0.001***. B Principal coordinate analysis (PCoA) based on Bray–Curtis distance of beta diversity dissimilarity between the communities
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diversity within treatments. However, values for Jelly-
Low root samples were lower than the other treatments, 
with evenness values of 0.95 and richness values of 450 
(Fig.  4A). At harvest, we again observed significant dif-
ferences in taxonomic diversity between treatments, 
with EstimaZero and JellyLow samples showing greater 
similarity, while JellyHigh samples were more dissimilar 
and formed a distinct cluster (Fig. 4B; Dim1 6.85%, Dim2 
2.9%). Interestingly, while some JellyLow/EstimaZero 
samples clustered with the JellyHigh samples, no Jelly-
High was observed outside the JellyHigh signature cluster 
(Fig.  4B). When we considered the taxonomic diversity 
within treatments over time (ridge samples only), even-
ness values decreased over time in the EstimaZero and 
JellyHigh but were increased in the JellyLow (Supple-
mentary Figure  S8A), while richness values increased 
over time in all but the JellyHigh samples (Supplementary 
Figure 8A). No distinct temporal pattern was observed in 

taxonomic diversity between treatments (Supplementary 
Figure S8B).

In terms of functional diversity within treatments, 
at 50% plant emergence and at plant harvest, the dis-
tribution in the abundance of KEGG Orthologs (KOs) 
was lower in the JellyHigh samples (evenness), and the 
number of detected functions was slightly higher in the 
JellyHigh samples (Supplementary Figure  S9A, Supple-
mentary Figure S10A). Again, the scale of these changes 
was very low (differences of 0.01 for evenness and 100 for 
richness). At 50% plant emergence, functional diversity 
between treatments showed some clustering with respect 
to potato stock (Supplementary Figure S9B; Dim 1 74.48, 
Dim2 7.29%). At harvest, this was more pronounced with 
sample clustering according to potato stock and sam-
ple type (Ridge or Root) (Supplementary Figure  S10B; 
Dim 1 77.29, Dim2 5.17%). However, these were not as 
clearly differentiated as observed in the taxonomic diver-
sity plots (Fig.  4B; Dim1 6.85%, Dim2 2.9%). When we 

Fig. 4  Taxonomic diversity of the soil microbiomes at plant harvest (T_H). Diversity is influenced by potato stock Pectobacterium levels 
and potentially potato variety. Colours represent potato stock (EstimaZero—E, JellyLow—JL and JellyHigh—JH), time-point (plant harvest—T_H) 
and soil sample type (Ridge—Ri, Root—Ro). Symbols represent the irrigation regimes (Unirrigated, Irrigation_1, Irrigation_2, and Irrigation 3). 
A The relative distribution of taxa (Pielou’s evenness) and diversity (Richness) within the communities. Pair-wise ANOVA P-values are displayed 
P < 0.05*, P < 0.01**, and P < 0.001***. B Principal coordinate analysis (PCoA) based on Bray–Curtis distance of beta diversity dissimilarity 
between the communities
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considered the functional diversity within treatments 
over time (ridge samples only), evenness values increased 
in the EstimaZero and JellyLow, but reduced in the Jel-
lyLow (Supplementary Figure S11A), while richness val-
ues increased over time in all but the JellyHigh samples, 
which remained stable (Supplementary Figure  S8A). 
Functional diversity between treatments showed that 
samples loosely clustered according to time-point and 
potato stock (Supplementary Figure S11B).

Statistical analysis of taxonomic diversity 
between treatments
For the taxonomic diversity between treatments (beta 
diversity), we also implemented permutational multivari-
ate analysis of variance (PERMANOVA) to determine 
what categorical variables could explain dissimilarity 
between such treatments. We determined that potato 
stock and plot number were highly significant variables 
(P = 0.001), explaining 8.3% and 43% of the variance 
between treatments, respectively. The irrigation regime 
was also a significant variable (P = 0.043; R2 4.5%). At har-
vest, potato stock, plot area and plot number were again 
highly significant (P = 0.001), and sample type (Root or 
Ridge; P = 0.007) and explained 3.4%, 6%, 17.85% and 
0.9% of the variance, respectively. Irrigation was also 
significant (P = 0.007; R2 2.4%). Notably, the remaining 
residual variation was 69%, suggesting that the experi-
mental variables explained a relatively low amount of 
variation. PERMANOVA analysis of the ridge samples 
over time showed that time was also a highly significant 
variable (P = 0.001; R2 1.9%). Redundancy analysis (RDA) 
with forward selection and subsequent PERMANOVA 
analysis revealed that blackleg and common scab symp-
toms per plot were highly significant between the ridge 
samples from EstimaZero, JellyLow and JellyHigh stocks 
(P < 0.001), explaining 42% and 17% of the variance, 
respectively. Irrigation volume was determined not to be 
significant (P = 0.138). The same pattern was observed in 
the root samples, although here irrigation volume was 
slightly significant (P = 0.049).

Contribution of rare taxa to betadiversity
We further assessed how ‘Rare’ microbial taxa (< 1% 
relative abundance) contribute to taxonomic diversity 
between potato stocks. We found that all taxa at the 
ASV-level fell into the ‘Rare’ category and at this level, no 
ASVs were categorised as ‘Abundant’ (> 1% relative abun-
dance) or ‘Conditionally Rare’ (ASVs with max:min > 100 
across groups) [data not shown]. The majority of ASVs 
were ‘Persistently Rare’ (ASVs with a maximum relative 
abundance < 5 times their minimum value [max:min < 
= 5]) with some ‘Other Rare’ [ASVs whose abundances 
were outwith the thresholds for ‘Conditionally Rare’ and 

‘Persistently Rare’] ASVs (data not shown). ‘Persistently 
Rare’ ASVs contributed 42–95% to taxonomic diversity 
between potato stocks, and ‘Other Rare’ ASVs contrib-
uted 10–55% (Supplementary Figure  S9). The contribu-
tion of ‘Persistently Rare’ taxa to taxonomic diversity 
increased over time in the EstimaZero and JellyHigh 
samples but decreased in the JellyLow, while the opposite 
was observed for the contribution of ‘Other Rare’ ASVs 
(Supplementary Figure S12).

Differential microbial taxa associated with irrigation 
management practice
To assess the impact of irrigation regimes on microbial 
communities, we first implemented differential heat tree 
analysis, which determines microbial taxa with a Log2 
fold difference in abundance in pair-wise comparisons 
between irrigation regimes. This analysis revealed that 
no taxa showed a Log2 fold difference between irrigation 
regimes at 50% plant emergence or at harvest (Supple-
mentary Figures  13–16). We then applied a generalised 
linear latent variable model (GLLVM) to the dataset 
to find individual microbial genera either positively or 
negatively associated with each irrigation regime. At 
50% plant emergence, we found no significant asso-
ciations between microbial taxa and irrigation regime 
(data not shown). However, at harvest, we found that 
seven microbial genera (out of the top 50 genera) were 
positively associated with a lack of irrigation in the root 
samples. These included Massilia, Sphingomonas, Gem-
matimonas, Streptomyces, Microlunatus, Nocardiodes 
and Mycobacterium genera (Fig.  5), while in the ridge 
sample, 16 microbial genera (out of the top 50 gen-
era) were negatively associated with Irrigation 3. These 
included Acidimicrobiia, Chthoniobacter, Streptomyces, 
Sphingomonas, Nocardiodes and Vicinimibacteraceae 
(Supplementary Figure S17).

Differential microbial taxa associated with potato stock 
and time
We repeated the above analysis with potato stock as 
the grouping variable. The differential heat tree analysis 
revealed substantial differentiation in the abundance of 
particular taxonomic groups between potato stocks at 
both time points (T_E and T_H) and in root and ridge 
samples. At 50% plant emergence, the soil planted with 
potato stock with a high Pectobacterium load (JellyHigh) 
showed Log2 fold increases in Planctomycetota phylum 
(Phycisphaeae [WD2101 soil group], Pirellulales [Pirel-
lula] and Gemmatales [Gemmatela]), Chloroflexi phy-
lum (Anaerolineae [Caldilineales, SBR1031, A4B]) and 
Acidobacteria phylum (Vincinamibacteraceae members) 
as compared to both the JellyLow and Estima stocks 
(Fig.  6A). In contrast, there were almost no differences 
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between the low (JellyLow) and zero (EstimaZero) stocks. 
This trend was also observed in the harvest root samples 
(Fig. 6B). However, in the ridge samples at potato harvest, 
the JellyLow showed significantly increased Planctomyce-
tota, Vicinibacteria and Anaerolinea as compared to the 
EstimaZero stock and showed no difference in taxa with 
the JellyHigh (Fig. 6C).

Using the GLLVM analysis we further observed that 
at 50% plant emergence 16 (out of the top 50) micro-
bial genera were positively associated with the stock 
with a high pathogen burden [JellyHigh] (Supple-
mentary Figure  S19). The most positively associated 
were Chthoniobacter, Anaerolineae, Planctomycetota, 
Tepidisphaerales, Pirellula and Vicinamibacteria spe-
cies (Supplementary Figure  S19). Eight of these were 
also positively associated with the JellyLow samples. 
Interestingly, at harvest, we observed a different pattern 
in the JellyLow root samples, which showed more nega-
tive or neutral associations with microbial genera that 
were typically positively associated with the JellyHigh 

samples (e.g. Chthoniobacter and Vicinamibacteria; 
Supplementary Figure  S20). Typically, genera that 
were positively associated with JellyHigh or JellyLow 
(e.g. Planctomycetota, Anaerolineae, Tepidisphaerales, 
Latescibacterota and Vicinamibacteria) were negatively 
associated with the EstimaZero group (Supplementary 
Figure 21).

The GLLVM analysis on temporal samples (ridge 
samples from 50% plant emergence and harvest) further 
revealed that Planctomycetota (OM190), Anaerolinea 
(SBR1031, A4b and RBG-13), Haliangium, Pseudocar-
dia, Latescibacterota, Pirellula and Pseudomonas were 
all positively associated with the potato harvest time 
point (Supplementary Figure S21). In contrast, the fol-
lowing taxa were negatively associated with the potato 
harvest time point; Massilia, Sphingomonas, Flavobac-
terium, Devosia, Arenomonas and Acidobacteria (Sup-
plementary Figure S22).

Fig. 5  Plot highlighting the impact of ‘Irrigation Regime’ on the abundance of microbial taxa in the potato harvest (T_H) root soil samples based 
on the generalised linear latent variable model (GLVMM) analysis. The microbial genera names are indicated on the y-axis and the environmental 
covariate values are indicated on the x-axis, which in this case is (e.g. Unirrigated, Irrigation_1 and Irrigation_3 as compared to the Irrigation 1 
treatment). The values range from positive, neutral to negative associations with the specific taxa on the y-axis. The red lines show taxa that are 
positively associated with the indicated environmental covariate, and the blue lines show taxa that are negatively associated; the lines in grey are 
not significantly different. Note: Irrigation 1 treatment is not displayed as the analysis uses this treatment as the reference. The results showing 
the analysis excluding the Unirrigated treatment instead are shown in Supplementary Figure S18
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Microbial taxa associated with blackleg and common scab 
disease symptoms
Finally, we wanted to determine which microbial gen-
era were correlated to blackleg disease symptoms or 
common scab disease symptoms at potato harvest. This 
was achieved using Ensemble Quotient Optimisation 
(EQO), which returns the subset of microbial genera 
(ensemble) associated with a continuous variable. In the 
ridge samples, approximately eight genera comprised 

the minimum subset correlated with blackleg disease 
symptoms. Within these, the Anaerolineae (SBR1031) 
consistently showed increased relative abundance with 
increasing blackleg symptoms (Fig. 7). A clear trend was 
seen between the increasing percentage blackleg symp-
toms and the increasing abundance of the minimum 
subset of taxa identified by EQO. This contrasts with the 
patterns observed in the harvest root samples, where 
there was no trend indicating a key microbe to blackleg 

Fig. 6  Heat tree analysis to visualise the differential taxa between potato stock soil microbiomes. A high initial pathogen burden in the potato 
seed stocks impacts the ridge and root-soil microbial communities. The full legend for the tree branches is shown in Supplementary Figure S13. 
In each plot four red boxes are highlighted, which correspond to: 1. Planctomycetota; 2. Vicinibacteria; 3. Anaerolinea; and 4. Verrucomicrobiae. The 
size of the branch nodes shows the number of ASVs, while the differential Log2 ratio median proportion is shown by the colours. The figures show 
a comparison between JellyHigh (purple) compared to EstimaZero (blue), JellyLow (purple) compared to JellyHigh (blue) and JellyLow (purple) 
compared to EstimaZero (blue) A at the 50% plant emergence (T_E) sampling period of the ridge microbiome; B at the harvest (T_H) sampling 
period of the ridge microbiome; and C at the harvest (T_H) sampling period of the root microbiome
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disease prevalence, with many genera in the subset (12–
20) present across low to high blackleg symptoms (Sup-
plementary Figure  S23). For common scab symptoms, 
there was also no trend correlating key taxa to common 
scab symptoms, with most genera of the subset found 
across low to high common scab symptoms (Supple-
mentary Figure  S24). A similar result was observed in 
the root samples, though the relative abundance of Ter-
rabacter and Saccharamonidales appeared to increase 
with increasing common scab symptoms (Supplementary 
Figure S25).

Discussion
The factors underlying disease development in food 
crops like potatoes are a global issue. Management prac-
tices and climate conditions can mitigate or exacerbate 
disease symptoms, influence crop yields and perturb 
the supporting microbial communities [38–40]. In this 
study, we assessed the influence of Pectobacterium load, 
seed stock and irrigation on potato yields, common scab 
and blackleg disease symptoms and the impact on the 

soil microbial communities. While we observed that the 
irrigation regimes impacted both crop yield and disease 
prevalence, we found that neither this nor pathogen bur-
den translated to disruption in the dominant soil micro-
bial communities since the most abundant members of 
the microbial communities were stable irrespective of 
irrigation regime or initial pathogen burden of the seed 
potato stocks. However, by also including analyses that 
allowed consideration of changes in less abundant taxa, 
we observed that the initially high Pectobacterium path-
ogen burden on the JellyHigh seed stock was correlated 
with an increased abundance of particular microbial 
groups, even though the final disease burdens were simi-
lar between the low and high Jelly stocks. In contrast, we 
did not observe substantial changes in rarer taxa in com-
parisons between the JellyLow or EstimaZero stocks or 
in relation to irrigation regimes. This suggests that the 
conditions under which seed stocks are maintained and 
which lead to a high pathogen burden are more of an 
important driver of microbial community composition 
than the irrigation regime. Our results also emphasise the 

Fig. 7  Minimum subset of amplicon sequencing variants (ASVs) associated with percentage blackleg symptoms during the field trial, based 
on the Ensemble Quotient Optimisation (EQO) analysis, considering the at most 20 microbial taxa for the ridge samples at harvest. The left y-axis 
shows the relative abundance of the microbial taxa, and the right y-axis shows the percentage blackleg symptoms observed. The x-axis shows 
the sample identity, with colour legends for potato stock (Green = EstimaZero, Blue = JellyLow and Red = JellyHigh) and the irrigation regimes 
(Unirrigated, Irrigation 1, Irrigation 2 and Irrigation 3)
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value of basing the interpretation of microbiome com-
munity dynamics not only on the effects of treatments on 
the “core microbiome” but also on more fine-scale analy-
ses of rarer taxa, as suggested in a meta-analysis of agri-
cultural studies in China [68].

Crop yields
Crop yields were highly influenced by the irrigation 
regime. Not irrigating reduced yields for all planted 
stocks, and this was most pronounced for the Estima-
Zero mini-tubers, indicating that the rainfall for the 
region (Cambridge, UK) was insufficient to fulfil the 
growth requirements of the crop, as is often the case, 
given the need for irrigation management as reported by 
UK growers. However, irrigating when the soil moisture 
deficit (SMD) reached 40 mm increased the yields for all 
stocks. Potatoes are vulnerable to drought stress, as the 
rooting system is relatively shallow [69] but there is vari-
ation in water requirements for different potato varieties 
[22, 70]. In addition, the method of irrigation supply can 
impact crop yields [71, 72]. Like other studies [73, 74], 
we noted an increase in crop yields with irrigation. How-
ever, we only analysed the conventional furrow irrigation 
methodology that would be the typical system of grow-
ers in England. Rainfed growth (unirrigated) is a practice 
that is used in Scotland for seed crops, which experiences 
2–3 times more rainfall than in England. This emphasises 
regional variations and the need for adaptable manage-
ment practices, particularly in the face of future climac-
tic changes [14]. Potato production models simulating 
climate change (temperature, solar radiation, precipi-
tation and CO2 levels) on potato growth development 
and yield have shown that by 2055 yields will increase in 
some areas (e.g. Western Europe) and decrease in others 
(e.g. North America and Eastern Europe) but that over-
all, production will have declined globally by 2085 [75]. 
Given that such models do not include impacts of biotic 
interactions (pests, pathogens and beneficial microbes) 
or management practices, the impacts of climate change 
could be even more dramatic. Our results emphasise the 
importance of matching management practices to local 
climatic conditions and carefully monitoring impacts on 
the most serious threats to production.

Disease prevalence
Although we observed only very low levels of rotting in 
our study, we observed that blackleg symptoms increased 
to a similar level in seed stocks with an initial Pectobacte-
rium species burden regardless of whether the pathogen 
level was low or high. Importantly, even low levels of Pec-
tobacterium in the seed stock translated into symptoms 
in the field that were on par with stock carrying a much 
higher initial burden. Our results contrast with those of 

authors who correlated the development of disease with 
Pectobacterium inoculum levels in seed tubers in both 
field trials with native levels and with artificial infections 
following in  vitro inoculation of blackleg-causing spe-
cies [76, 77]. However, while our results were based on 
multiple repetitions, they may have differed from those 
above due to only single stocks being used in our study 
and the levels of P. atrosepticum in both our high and 
low stocks are low as compared to both studies  men-
tioned. Authors observed in field trials in Switzerland 
that the levels of Dickeya spp., Pectobacterium wasabiae 
and P. carotovorum subsp. brasiliense (now classified as 
P. brasiliense) could be correlated to initial inoculum lev-
els but did not see the same trend with P. atrosepticum 
[35]. In our study, blackleg symptoms were worsened 
with applied irrigation regimes and were highest in the 
regime that maintained a soil moisture deficit of less than 
15 mm during the common scab control period and con-
tinued irrigation through the rest of the growing season. 
This confirms the link between blackleg disease and soil 
moisture content [30]. In contrast, blackleg symptoms 
were very low in the stock without initial Pectobacterium 
contamination (EstimaZero). These results, therefore, 
reinforce the requirement for stringent seed certification 
for blackleg as even low levels of initial bacterial contami-
nation greatly increased disease incidence.

Although common scab disease prevalence was under 
5% in our study, we observed increased disease symptoms 
in the unirrigated (rainfed only) treatments compared to 
all irrigated treatments; this is in agreement with previ-
ous field-trial studies [23, 25]. The irrigation regime spe-
cifically designed to reduce common scab (Irrigation 2) 
was effective for all the stocks, and the regimes that con-
tinued watering post-tuber-initiation (Irrigations 1 and 3) 
also reduced common scab as well as increasing the total 
yield of tubers. This emphasises the potential trade-off 
in disease management practices since these irrigation 
treatments also resulted in higher blackleg incidence. 
Once again, local decisions about irrigation practices 
are predicted to have even more importance as climate 
change will increase the unpredictability of rainfall [75].

Impact of irrigation on the soil microbial communities
It is encouraging that our results show that differences 
in irrigation regimes did not perturb the dominant spe-
cies or overall diversity of microbial communities asso-
ciated with potatoes. Many studies have assessed the 
impact of irrigation on potato crop production [21, 22, 
70] but so far there have been limited specific considera-
tions about interactions between crop irrigation and soil 
microbial communities [78]. Of those studies that have, 
they explore the impacts of irrigation on soil microbial 
communities and do so with the aim of understanding 
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recycled wastewater rather than in an agricultural set-
ting [79–82]. The GLLVM approach by Niku et al. allows 
computationally efficient analysis of the correlations 
between environmental variables and microbial taxa [83]. 
Using this method, we observed that certain microbial 
groups were positively associated with the unirrigated 
treatments. These include Streptomyces, Terrabacter, 
Gemmatimonas, Sphingomonas and Massilia genera. 
Streptomyces, Sphingomonas and Gemmatimonas, are 
common taxa that have been observed previously in 
soil from potato field trials [84, 85]. Although amplicon 
sequencing alone did not allow resolution to species, 
Streptomyces scabies and other Streptomyces spp. are 
the causative agents of common scab. However, species 
of Streptomyces and Terrabacter have also been linked 
to disease-suppressive soils for many bacterial and fun-
gal plant diseases [86, 87]. Massilia spp. play a role in the 
hydrolysis of inorganic phosphates and are thought to be 
more abundant in soils with limited phosphate [88]. Sim-
ilarly, Gemmatimonas spp. are phosphate-solubilizing 
species that can make phosphate bioavailable to plants 
[89, 90]. These results suggest more complex interactions 
between the microbial communities and other environ-
mental parameters (such as nutrient content).

Impact of pathogen burden on the soil microbial 
communities
Interestingly, we observed that the initial seed stock 
pathogen burden impacted beta diversity (between treat-
ments) of soil microbial communities and the differential 
abundance of key taxa. Using Bray–Curtis dissimilari-
ties, the communities from the EstimaZero and JellyLow 
stocks were more similar than the JellyHigh stock. The 
differential heat tree and GLLVM analysis confirmed that 
a high Pectobacterium burden in the starting seed stock 
resulted in increased Anaerolineae, Chthoniobacter, 
Planctomycetota, Tepidisphaerales, Pirellula and Vici-
namibacteria species, at both 50% plant emergence and 
at harvest, compared to the other stocks. The JellyLow 
stocks also became more similar to the JellyHigh stocks 
at harvest, showing increased Planctomycetota, Vicini-
bactiera and Anaerolinea compared to the EstimaZero 
stocks. Buckley et  al. [91] found that Planctomycetota 
taxa could be correlated with soil management history 
and these taxa showed increased diversity with increased 
nitrate concentrations. Vicinamibacteria are characteris-
tic species in loamy soil, confirming the soil type of our 
field conditions [92]. Anaerolineae are strictly anaerobic 
bacteria that are fermentative species capable of growth 
on a diverse range of substrates [93–95] and have been 
associated previously with waterlogged agricultural fields 
[96]. Our research provides evidence of a distinct soil 

response to the potato stock with a high pathogen bur-
den that is stronger than the effect of irrigation.

The challenge in microbiome studies is moving beyond 
statistical correlations to a mechanistic understanding. 
Therefore, we used the ensemble quotient (EQO) analy-
sis, which identified the minimal subset of taxa linked 
to blackleg or common scab disease prevalence values 
based on patterns of statistical variation. This method 
further revealed that in the ridge samples, the Anaero-
linea (SBR1031) showed a high relative proportion in 
the subset of taxa that were linked to increasing black-
leg prevalence. The underlying cause for the link between 
the taxa and the planting of seed stock with a high Pec-
tobacterium pathogen burden (as revealed by the dif-
ferential and EQO analysis) is unclear. These taxa could 
merely be responding to environmental conditions that 
coincidentally favour blackleg disease but could also be 
involved in synergistic activities with Pectobacterium. An 
alternate hypothesis is the ‘cry-for-help’ model, where 
plants modulate their phytohormones to alter the com-
position of the rhizosphere microbiome to promote path-
ogen-suppressive microbes to help protect them from 
attack [97–99]. Thus, taxa from the Anaerolinea may 
get recruited during infection. Evidence for this hypoth-
esis could be the development of a similar signature in 
the JellyLow at harvest. The passing of altered microbial 
signatures to the next ‘seed’ generation has been shown 
previously [100]. This theory may be possible given that 
the JellyHigh was a generation 3 stock and blackleg levels 
accumulate over time [31]. Why we observe a strong sig-
nature in the ridge microbiome as compared to the root 
microbiome remains to be ascertained but may relate to 
the larger build-up of Pectobacterium at the ridge site. 
Moreover, our study only considers bacterial populations 
and, given the symbiotic association of potatoes with 
fungi (mycorrhiza), we are almost certainly not captur-
ing the complexity of these interactions. Therefore, future 
research efforts should focus on untangling the interac-
tions between potato pathogen burden, plant defence 
responses and the soil microbiome (for multiple trophic 
groups including fungi), and more specifically on inves-
tigating further the roles of genera such as Streptomyces 
and Anaerolinea, e.g. in highly controlled pot experi-
ments. Understanding the associations between genera 
and management practices such as irrigation (e.g. Strep-
tomyces) or a high pathogen burden (e.g. Anaerolinea) 
could help to develop strategies to modulate the response 
of agricultural potato soil microbiomes.

Conclusions
Our work underscores the importance of employ-
ing advanced bioinformatic tools to unravel the com-
plex associations between management practices, soil 
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microbiomes and crop outcomes by identifying specific 
bacterial genera, such as Streptomyces and Anaerolinea, 
as influenced by management practices or high pathogen 
burden. Thus, providing insights for developing strate-
gies to modulate the response of agricultural potato soil 
microbiomes. Overall, this research enhances our under-
standing of the interplay between management practices, 
soil microbiomes, disease prevalence and crop yields. 
The findings contribute to the potential improvement 
of sustainable agriculture by enabling the development 
of targeted strategies to optimise crop productivity and 
mitigate disease risks in potato cultivation.
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Supplementary Material 1: Supplementary data file 1. Layout of the plots

Supplementary Material 2: Supplementary data file 2. Complete metadata 
for the field-trial

Supplementary Material 3: Supplementary Figure S1. Schematic diagram 
showing the experimental design of this study. This includes the choice of 
potato seed stock with high, low (both Jelly varieties) and zero (Estima 
mini-tubers) starting levels of Pectobacterium species and irrigation 
regimes (Unirrigated [rainfed only], Irrigation 1 [SMD 40 mm], Irrigation 2 
[SMD < 15 mm during the common scab control period then unirrigated], 
and Irrigation 3 [SMD < 15 mm during the common scab control period 
then unirrigated]. Comparisons in microbial communities across time 
were made using soil sampled from the ridge (near the top of the furrow) 
at 50% plant emergence (T_E Ridge) and harvest (T_H Ridge). In addition, 
to determine if there were differences in microbial communities sampled 
closer to the plant roots, samples were also taken at the bottom of the 
furrow at harvest only (T_H Root), to avoid damaging roots in the 
emerging plants. Details about the plot layout can be found in Supple-
mentary Data File 2. Supplementary Figure S2. Rarefaction curves showing 
the number of reads from the 16S rRNA gene in DNA from the soil 
samples on the x-axis and the number of OTUs within a 97% percent 
sequence similarity threshold on the y-axis. Treatment groups are 
indicated by colour-coded lines. Supplementary Table S1. Percentage of 
blackleg disease symptoms in potato plants per plot over the course of 
the experimental field trial in 2020. Supplementary Table S2. Proportion of 
tubers with rotting (%) and weight of rotted tubers (tubers/hectare) at 
potato harvest. Table also shows the results of the statistical analysis of 
individual stocks and irrigation regimes. The respective degrees of 
freedom (D.F.) is given within the standard error (S.E.). Supplementary 
Table S3. Genus identifier list for Supplementary Fig. 2 and the average 
percentage prevalence in all samples. Supplementary Figure S3.The ‘core 
microbiome of the soil microbial communities from the field trial. The ‘core 
microbiome’ was set at 85% minimum prevalence of samples. Numbers 
referring to the individual genera are shown on the x-axis (defined in 
Supplementary Table 3), with colours highlighting the taxonomic phyla. 
The y-axis shows the detection threshold of absolute genera abundances 
and heatmap colours showing the average prevalence of each genus 
within all samples, ranging from 0–1. Supplementary Table S4. Genus 
identifier list for Supplementary Fig. 2 and the average percentage 
prevalence in all samples. Supplementary Figure S4. Taxonomic diversity 
of the soil microbiomes (ridge samples) at the 50% plant emergence (T_E) 
timepoint. Colours represent the irrigation regime (Unirrigated, Irrigation 
1, Irrigation 2, and Irrigation 3). Symbols represent the potato seed stock 
(EstimaZero, JellyLow, and JellyHigh). A) Shows alpha diversity based on 
the relative distribution of taxa (Pielou’s evenness) and the number of 
different ASVs (Richness) within the communities; there were no 
significant differences between the watering regimes and no obvious 
clustering based on potato stock. B) Principal coordinate analysis (PCoA) 

based on Bray–Curtis distance of beta diversity dissimilarity between the 
communities; note that there was no distinct clustering in relation to 
irrigation regime, but there was clustering with respect to potato stock. 
Supplementary Figure S5. Functional diversity of the soil microbiomes 
(ridge samples) at the 50% plant emergence (T_E) timepoint. Colours 
represent the irrigation regime (Unirrigated, Irrigation 1, Irrigation 2, and 
Irrigation 3). Symbols represent the potato seed stock (EstimaZero, 
JellyLow, and JellyHigh). A) Shows diversity based on the relative 
distribution of KEGG Orthologs (KOs; Pielou’s evenness) and number of 
KEGG Orthologs (KOs; Richness) within the communities; there were no 
significant differences in relation to irrigation treatment and no obvious 
clustering by potato stock. B) Principal coordinate analysis (PCoA) based 
on Bray–Curtis distance of functional beta diversity dissimilarity between 
the communities as assessed through PiCrust2 and hierarchical 
metastorms analysis; note that there was no distinct clustering in relation 
to any of the variables. Supplementary Figure S6. Taxonomic diversity of 
the soil microbiomes at the harvest (T_H) timepoint. Colours represent 
the irrigation regime (Unirrigated, Irrigation 1, Irrigation 2, and Irrigation 3) 
and whether the sample was from the ‘Ridge’ or ‘Root’. Symbols represent 
the potato seed stock (EstimaZero, JellyLow, and JellyHigh). A) Shows 
diversity based on the relative distribution of taxa (Pielou’s evenness) and 
the number of different ASVs (Richness) within the communities; which 
were similar across irrigation regimes. B) Principal coordinate analysis 
(PCoA) based on Bray–Curtis distance of beta diversity dissimilarity 
between the communities; note that samples clustered according to 
potato stock, sample type (ridge or root) and Irrigation 2 samples showed 
some clustering. Supplementary Figure S7. Functional diversity of the soil 
microbiomes at the harvest (T_H) timepoint. Colours represent the 
irrigation regime (Unirrigated, Irrigation 1, Irrigation 2, and Irrigation 3) and 
the sample was from the ‘Ridge’ or ‘Root’. Symbols represent the potato 
seed stock (EstimaZero, JellyLow, and JellyHigh). A) Shows diversity based 
on the relative distribution of KEGG Orthologs (KOs; Pielou’s evenness) and 
number of KEGG Orthologs (KOs; Richness) within the communities; there 
were no significant differences in relation to irrigation treatment and no 
obvious clustering by potato stock. B) Principal coordinate analysis (PCoA) 
based on Bray–Curtis distance of functional beta diversity dissimilarity 
between the communities as assessed through PiCrust2 and hierarchical 
metastorms analysis; note that samples loosely cluster according to 
irrigation regime, sample type (root or ridge) and primarily cluster 
according to potato stock. Supplementary Figure S8. Taxonomic diversity 
of the soil microbiomes at the 50% plant emergence (T_E) and plant 
harvest (T_H) time points from ‘Ridge’ samples only. Colours represent the 
irrigation regime (Unirrigated, Irrigation 1, Irrigation 2, and Irrigation 3). 
Symbols represent the potato seed stock (EstimaZero, JellyLow, and 
JellyHigh). A) Shows diversity based on the relative distribution of taxa 
(Pielou’s evenness) and the number of different ASVs (Richness) within the 
communities; which were similar across irrigation regimes. B) Principal 
coordinate analysis (PCoA) based on Bray–Curtis distance of beta diversity 
dissimilarity between the communities; note that samples clustered 
according to potato stock. Supplementary Figure S9. Functional diversity 
of the soil microbiomes at 50% plant emergence (T_E). Colours represent 
potato stock (EstimaZero – E, JellyLow – JL, and JellyHigh – JH). Symbols 
represent the irrigation regimes (Unirrigated, Irrigation_1, Irrigation_2, and 
Irrigation 3). A) Shows diversity based on the relative distribution of KEGG 
Orthologs (KOs; Pielou’s evenness) and number of KEGG Orthologs (KOs; 
Richness) within the communities; there were no significant differences in 
relation to irrigation treatment and no obvious clustering by potato stock. 
B) Principal coordinate analysis (PCoA) based on Bray–Curtis distance of 
functional beta diversity dissimilarity between the communities as 
assessed through PiCrust2 and hierarchical metastorms analysis; note that 
samples very loosely cluster according to potato stock. Supplementary 
Figure S10. Functional diversity of the soil microbiomes at plant harvest 
(T_H). Colours represent potato stock (EstimaZero – E, JellyLow – JL, and 
JellyHigh – JH), time-point (50% plant emergence – T_H), and soil sample 
type (Ridge – Ri, Root – Ro). Symbols represent the irrigation regimes 
(Unirrigated, Irrigation_1, Irrigation_2, and Irrigation 3). A) Shows diversity 
based on the relative distribution of KEGG Orthologs (KOs; Pielou’s 
evenness) and number of KEGG Orthologs (KOs; Richness) within the 
communities; there were no significant differences in relation to irrigation 
treatment and no obvious clustering by potato stock. B) Principal 
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coordinate analysis (PCoA) based on Bray–Curtis distance of functional 
beta diversity dissimilarity between the communities as assessed through 
PiCrust2 and hierarchical metastorms analysis; note that samples loosely 
cluster according to potato stock and sample type. Supplementary Figure 
S11. Functional diversity of the soil microbiomes at the 50% plant 
emergence (T_E) and plant harvest (T_H) time points from ‘Ridge’ samples 
only. Colours represent the irrigation regime (Unirrigated, Irrigation 1, 
Irrigation 2, and Irrigation 3). Symbols represent the potato seed stock 
(EstimaZero, JellyLow, and JellyHigh). A) Shows diversity based on the 
relative distribution of KEGG Orthologs (KOs; Pielou’s evenness) and 
number of KEGG Orthologs (KOs; Richness) within the communities; there 
were no significant differences in relation to irrigation treatment and no 
obvious clustering by potato stock. B) Principal coordinate analysis (PCoA) 
based on Bray–Curtis distance of functional beta diversity dissimilarity 
between the communities as assessed through PiCrust2 and hierarchical 
metastorms analysis; note that samples loosely cluster according to 
potato stock and time point. Supplementary Figure S12. Analysis of rare 
taxa from the Estima, JellyLow and JellyHigh samples at T_E (50% plant 
emergence) and T_H (plant harvest) divided into ridge and root samples 
(Ri and Ro). These figures show the percentage contribution (%) to 
taxonomic beta-diversity dissimilarity of: A) ‘Persistently Rare’ taxa B) 
‘Abundant’ taxa; C) ‘Conditionally Rare’ taxa; and D) ‘Other Rare’ taxa. 
Supplementary Figure S13. Taxonomic map for differential heat tree 
analysis. The branches show the taxonomic identification of all ASVs. Note 
that the same tree can be used for each differential heat tree analysis 
instance. Supplementary Figure S14. Heat tree analysis to visualise the 
differential taxa between irrigation regimes at 50% plant emergence (T_E). 
The full legend for the tree branches is shown in Supplementary Fig. 10. 
Each tree shows a pair-wise comparison between irrigation regimes 
(denoted by either purple or blue). The size of the branch nodes shows 
the number of ASVs, while the differential Log2 ratio median proportion is 
shown by the colours. Note that there are no Log2 fold differences 
between taxa across the irrigation regimes. Supplementary Figure S15. 
Heat tree analysis to visualise the differential taxa between irrigation 
regimes at potato harvest (T_H) in soil ridge samples. The full legend for 
the tree branches is shown in Supplementary Fig. 10. Each tree shows a 
pair-wise comparison between irrigation regimes (denoted by either 
purple or blue). The size of the branch nodes shows the number of ASVs, 
while the differential Log2 ratio median proportion is shown by the 
colours. Note that there are no Log2 fold differences between taxa across 
the irrigation regimes. Supplementary Figure S16. Heat tree analysis to 
visualise the differential taxa between irrigation regimes at potato harvest 
(T_H) in soil root samples. The full legend for the tree branches is shown in 
Supplementary Fig. 10. Each tree shows a pair-wise comparison between 
irrigation regimes (denoted by either purple or blue). The size of the 
branch nodes shows the number of ASVs, while the differential Log2 ratio 
median proportion is shown by the colours. Note that there are no Log2 
fold differences between taxa across the irrigation regimes. Supplemen-
tary Figure S17. Plot highlighting the impact of ‘Irrigation Regime’ on the 
abundance of microbial taxa in the potato harvest (T_H) ridge soil 
samples, based on the GLVMM analysis. The microbial genera names are 
indicated on the y-axis. The environment covariates values are indicated 
on the x-axis which are the coefficient values against the environmental 
covariates (e.g. Unirrigated, Irrigation_2, and Irrigation_3 as compared to 
the Irrigation 1 treatment). The values range from positive, neutral to 
negative associations with the specific taxa on the y-axis. The red lines 
show significantly positive taxa associated with the indicated environmen-
tal covariate and the blue lines show significantly negative taxa; grey lines 
are not statistically significant. Note: Irrigation 1 treatment is not displayed 
as the analysis uses this treatment as the reference. Supplementary Figure 
S18. Plot highlighting the impact of ‘Irrigation Regime’ on the abundance 
of microbial taxa in the potato harvest (T_H) root soil samples, based on 
the GLVMM analysis. The microbial genera names are indicated on the 
y-axis. The environment covariates values are indicated on the x-axis 
which are the coefficient values against the environmental covariates (e.g. 
Irrigation_1, Irrigation_2, and Irrigation_3, as compared to the Unirrigated 
treatment). The values range from positive, neutral to negative associa-
tions with the specific taxa on the y-axis. The red lines show significantly 
positive taxa associated with the indicated environmental covariate and 

the blue lines show significantly negative taxa; grey lines are not 
statistically significant. Note: Unirrigated treatment is not displayed as 
the analysis uses this as the reference. Supplementary Figure S19. Plot 
highlighting the impact of ‘Potato Stock’ on the abundance of microbial 
taxa at 50% plant emergence (T_E), based on the GLVMM analysis. The 
microbial genera names are indicated on the y-axis. The environmental 
covariates values are indicated on the x-axis which are the coefficient 
values against the environmental covariates (e.g. ‘Potato Stock’ either 
JellyHigh, JellyLow as compared to the EstimaZero. The values range 
from positive, and neutral to negative associations with the specific 
taxa on the y-axis. The red lines show significantly positive taxa 
associated with the indicated environmental covariate and the blue 
lines show significantly negative taxa; grey lines are not statistically 
significant. Note: The EstimaZero group is not displayed as the analysis 
uses this as the reference. Supplementary Figure S20. Plot highlighting 
the impact of ‘Potato Stock’ on the abundance of microbial taxa in the 
root samples at potato harvest (T_H), based on the GLVMM analysis. 
The microbial genera names are indicated on the y-axis. The 
environment covariates values are indicated on the x-axis which are the 
coefficient values against the environmental covariates (e.g. ‘Potato 
Stock’ either JellyHigh, JellyLow as compared to the EstimaZero. The 
values range from positive, neutral to negative associations with the 
specific taxa on the y-axis. The red lines show significantly positive taxa 
associated with the indicated environmental covariate and the blue 
lines show significantly negative taxa; grey lines are not statistically 
significant. Note: The EstimaZero group is not displayed as the analysis 
uses this as the reference. Supplementary Figure S21. Plot highlighting 
the impact of ‘Potato Stock’ on the abundance of microbial taxa in the 
ridge samples at potato harvest (T_H), based on the GLVMM analysis. 
The microbial genera names are indicated on the y-axis. The 
environment covariates values are indicated on the x-axis which are the 
coefficient values against the environmental covariates (e.g. ‘Potato 
Stock’ either JellyHigh, EstimaZero as compared to the JellyLow. The 
values range from positive, neutral to negative associations with the 
specific taxa on the y-axis. The red lines show significantly positive taxa 
associated with the indicated environmental covariate and the blue 
lines show significantly negative taxa; grey lines are not statistically 
significant. Note: The JellyLow group is not displayed as the analysis 
uses this as the reference. Supplementary Figure S22. Plot highlighting 
the impact of time on the abundance of microbial taxa in the ridge soil 
samples, based on the GLVMM analysis. The microbial genera names 
are indicated on the y-axis. The environment covariates values are 
indicated on the x-axis which are the coefficient values against the 
environmental covariate (e.g. Harvest [T_H] time point, as compared to 
the 50% plant emergence [T_E] time point. The values range from 
positive, neutral to negative associations with the specific taxa on the 
y-axis. The red lines show significantly positive taxa associated with the 
indicated environmental covariate and the blue lines show significantly 
negative taxa; g grey lines are not statistically significant. Note: The 50% 
emergence time point (T_E) is not displayed, as the analysis uses this as 
the reference. Supplementary Figure S23. Minimum subset of amplicon 
sequencing variants (ASVs) associated with percentage blackleg 
symptoms during the field trial. Analysis using the Ensemble Quotient 
Optimisation (EQO) technique considering at most 20 microbial taxa 
and the root samples at harvest. The left y-axis shows the relative 
abundance of the microbial taxa, and the right y-axis shows the 
percentage blackleg symptoms observed. The x-axis shows the sample 
identity with a colour legend for potato stock (Green EstimaZero, Blue 
JellyLow, and Red JellyHigh) and the irrigation regimes are shown in 
text (Unirrigated, Irrigation 1, Irrigation 2, and Irrigation 3). Supplemen-
tary Figure S24. Continuous ensemble quotient analysis (EQO) of the 
harvest ridge samples. Plot shows a stacked bar chart showing the 
minimum subset of amplicon sequencing variants (ASVs) associated 
with common scab symptoms. The x-axis shows the sample details 
including the potato stock (EstimaZero – Green, JellyLow – Blue, and 
JellyHigh – Red) and the irrigation regime is indicated in text. The right 
y-axis shows the relative abundance of the ASVs and the right y-axis 
shows the percentage (%) of common scab symptoms. Supplementary 
Figure S25. Continuous ensemble quotient analysis (EQO) of the 
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harvest root samples. Plot shows a stacked bar chart showing the 
minimum subset of amplicon sequencing variants (ASVs) associated with 
common scab symptoms. The x-axis shows the sample details including 
the potato stock (EstimaZero – Green, JellyLow – Blue, and JellyHigh 
– Red) and the irrigation regime is indicated in text. The right y-axis shows 
the relative abundance of the ASVs and the right y-axis shows the 
percentage (%) of common scab symptoms.
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