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1 Introduction

Computations in curved spacetimes can be extremely involved, mainly due to the high
non-linearity of Einstein’s equations. However, this same non-linearity allows for exciting
solutions to arise in gravitational theories. When working on asymptotically flat spacetimes,
simplifications can arise. For example, the scattering amplitudes of gravitons can be written
as the double copy of the scattering amplitudes of gluons [1–4]. This can be done by
exchanging color structures with kinematic ones, which satisfy the same algebra due to
the color-kinematics duality. One of the simplest realizations of the double copy is within
the so-called self-dual sector [5–14]. This corresponds to the sub-sector of solutions that
have a self-dual curvature tensor.

It is well known that Ricci flat spacetimes that are solutions to the vacuum Einstein
equations with a self-dual Riemann tensor can be described by a single scalar satisfying the
Plebanski “heavenly” equation [5]. Furthermore, when working in the lightcone gauge, the
interactions of this scalar can be written in terms of nested Poisson brackets acting in a two-
dimensional subspace, which gives rise to a single cubic vertex. This cubic vertex corresponds
to the (++−) vertex. For real momenta, all the tree-level scattering amplitudes of this theory
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vanish, which is a consequence of their classical integrability [6, 8, 9, 12, 13, 15–18]. This
property is broken at loop order, but the amplitudes are simple rational functions [19, 20],
and the theory is one-loop exact, since no 2-loop or higher diagrams can be written with the
single (+ +−) vertex. Similar statements hold for self-dual Yang-Mills in a flat spacetime.
In this case, the interactions are given in terms of a Lie bracket and the same Poisson
bracket as in the gravitational case. This structure showcases one of the simplest examples of
color-kinematics duality. The Poisson bracket encodes the kinematic algebra, which in this
case is given by area-preserving diffeomorphisms [21]. Different realizations of the double copy
in the self-dual sector have been described in [22–37]. Other explicit realizations of kinematic
algebras or Lagrangians with explicit color-kinematics duality have arisen in various contexts
for theories beyond the Yang-Mills self-dual sector [38–59].

An interesting question that has been asked in the past few years is whether a double
copy relation can exist in curved spacetimes, and hence help us to simplify the complicated
calculations arising in these backgrounds. This has been explored in many different contexts
in [50, 60–85], but a systematic understanding of the double copy in general backgrounds is
still lacking. A promising avenue is to consider self-dual theories in curved spacetimes. A first
step in this direction was taken in [79], where self-dual gravity in Anti-de Sitter (AdS) space
was reduced to a simple cubic scalar theory which arises from the double copy of self-dual
Yang-Mills in AdS, and exhibits a deformed w1+∞ algebra analogous to that of self-dual gravity
in flat spacetime [86, 87].1 Other formulations of self-dual gravity in de Sitter (dS) space
were constructed in [100–103]. The w1+∞ symmetry in AdS was subsequently studied from
other perspectives in [93, 94]. In this paper, we will explore a further generalization of these
ideas to cosmological spacetimes. In particular, we show that they extend to self-dual gravity
in radiation dominated and coasting (non-accelerating) FLRW spacetimes, as well as an
infinite class of solutions, obtained by performing Weyl transformations, whose stress tensors
become FLRW-like after imposing a certain constraint on the scalar theory. The scalar theory
describing self-dual gravity in these backgrounds contains cubic interactions constructed from
Jacobi brackets [104–106], which encode a kinematic algebra analogous to the color algebra
of self-dual Yang-Mills, reflecting a color/kinematics duality in these backgrounds.

The outline of the paper is as follows. In section 2, we introduce the concept of off-
shell and on-shell self-dual Weyl tensor. We show that the on-shell case, where the Ricci
tensor is fully fixed by a chosen stress-energy tensor, only gives rise to the known flat and
(A)dS cases. These self-dual solutions can be cast in terms of a scalar theory with cubic
interactions. We extend this description to other backgrounds by considering solutions to the
self-dual Weyl tensor without incorporating the Einstein equations, that is, in the off-shell
case. This construction gives three conformal classes of metrics with self-dual off-shell Weyl
tensors. For each of these conformal classes, we find a Jacobi bracket that characterizes their
cubic interactions. We continue in section 3 by deriving these self-dual solutions from the
double copy of Yang-Mills in conformally flat backgrounds and showing that they exhibit
a deformed w1+∞ algebra which is closely tied to the kinematic algebra encoded by the
Jacobi brackets. This construction generalises the previously known flat and dS cases to
more general cosmological self-dual solutions. In section 4, we analyse the stress tensors

1See also [88–99] for further work and deformations of these algebras in gravity and YM.
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and equations of state of the new cosmological self-dual solutions to gain further insight
into their physical interpretation. We highlight two new interesting cases whose Ricci scalar
is that of an FLRW metric; these are radiation-dominated and coasting FLRW self-dual
solutions. Finally, we summarize our results and discuss future directions in section 5. In
the appendices, we briefly review power-law cosmologies and provide more details about the
self-dual Weyl tensor equation, Jacobi brackets, and properties of the new self-dual solutions.

2 Self-dual gravity in the presence of sources

In spacetimes with vanishing Ricci tensor, the condition of a self-dual Weyl tensor is reduced to

Rµνρσ = 1
2ϵ ηλ

µν Rηλρσ. (2.1)

where ϵµνρσ = √
gεµνρσ, εµνρσ the 4-dimensional Levi-Civita symbol, and we work in split

signature.2 Note that this equation encodes both the Einstein equations and the Bianchi
identity when contracting two of its indices. Thus, solving eq. (2.1) is enough to find a
self-dual solution to the vacuum Einstein equations.

Let us instead consider the following constraint:

Cµνρσ = 1
2ϵµν

ηλCηλρσ, (2.2)

where the Weyl tensor is given by

Cµν
ρσ = Rµν

ρσ − 2R[µ
[ρgν]

σ] + 1
3Rg[µ

[ρgν]
σ] . (2.3)

Note that this equation is by definition invariant under Weyl transformations

gµν → Ω2gµν , (2.4)

where Ω is an arbitrary function of the coordinates. Hence, if we find one solution then
we can obtain an infinite family of solutions by applying Weyl transformations. We will
refer to this as a conformal class. Recall that the Ricci tensor and scalar are determined
by the Einstein equation as follows

Rµν = Tµν − 1
2Tgµν , (2.5)

where T µν is the stress-energy tensor, and T ≡ Tµ
µ is its trace. Making this replacement

in (2.3) then gives an object that we will refer to as the on-shell Weyl tensor:

Cµν
ρσ|on−shell ≡ Rµν

ρσ − 2T[µ
[ρgν]

σ] + 2
3Tg[µ

[ρgν]
σ] . (2.6)

We may then impose self-duality of the on-shell Weyl tensor, which we will refer to as
on-shell self-duality:

Cµνρσ|on−shell =
1
2ϵµν

ηλ Cηλρσ|on−shell (2.7)

2We can obtain non-trivial solutions in Lorentzian signature by adding a factor of i in the right-hand side
of eq. (2.1) and considering complex solutions.
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Contracting this equation on both sides with gνσ then implies the Einstein equations sourced
by a generic stress-energy tensor:

Rµρ − Tµρ +
1
2Tgµρ = 1

2
√

gϵσηλ
µ Rηλρσ = 0 . (2.8)

As in the vacuum case, the left-hand side gives the trace reversed Einstein equations, and
the right-hand side gives the Bianchi identity. If we set T µν = −Λgµν , we will recover the
result for an (A)dS spacetime found in [79].

2.1 On-shell self-duality

First, we will consider solutions to the on-shell self-dual equations in eq. (2.7). We will
work in double lightcone coordinates

u = t + iz , v = t − iz , (2.9)
w = x + iy , w̄ = x − iy , (2.10)

and consider the metric ansatz given by

ds2 = a(τ)2 (dw dw̄ − du dv + hµν dxµdxν) , (2.11)

where τ is the conformal time given by

τ = (u + v)/2 . (2.12)

This metric reduces to an FLRW metric when hµν = 0. We will refer to this as the background
metric. For convenience, we will split the spacetime coordinates as

xi = (u, w), yα = (v, w̄) . (2.13)

Since our coordinates are complex, xi corresponds to the holomorphic and yα the anti-
holomorphic sector. We work in lightcone gauge, huµ = 0, and take the ansatz.

hiµ = 0, hαβ = 1
4D(αD̃β)ϕ , (2.14)

where Dα and D̃α are differential operators that will be unspecified for now.
We proceed by making the following assumptions:

1. The Dα and D̃α operators are at most first order in derivatives and can only depend on
functions of conformal time.

2. When a(τ) → 1, the self-dual solution reduces to the standard result in a flat background
were

Dα = D̃α = (∂w, ∂u) , (2.15)

and the scalar equation of motion becomes

□R4ϕ − {{ϕ, ϕ}} = 0 (2.16)
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where the Poisson brackets are defined as

{f, g} = ∂wf∂ug − ∂uf∂wg

= εij∂jf∂ig .
(2.17)

The double Poisson bracket, which reflects the double copy structure of the theory
(detailed in section 3) is defined as

{{f, g}} = 1
2εij{∂jf, ∂ig} (2.18)

The interactions of this scalar are purely on the holomorphic sector and encode the
kinematic algebra corresponding to area-preserving diffeomorphisms of the holomorphic
xi plane [21].

3. The equation of motion for the scalar contains at most second-order derivatives.

Given these assumptions, we will show that the on-shell self-duality in (2.7), for an
homogeneous, isotropic source, can only be solved in flat or (A)dS backgrounds. We look
for solutions where the stress tensor in eq. (2.6) corresponds to a perfect fluid sourcing an
FRW spacetime with scale factor a:

T µν = ρuµuν + Pγµν , ρ = 3
(

a′

a2

)2
P = ρ

3 − 2a′′

a3 , (2.19)

where ρ is the energy density, P is the pressure, uµ is a timelike unit vector giving the direction
of flow of the fluid, and γµν = gµν +uµuν is the metric of the surface perpendicular to the flow.
This is the analogue of the flat and (A)dS on-shell solutions previously constructed in [5, 79].
We start by looking at the two components of eq. (2.7) that involve only hvv and hvw̄:

Cvuvu|on−shell −
1
2ϵvu

ηλ Cηλvu|on−shell =
1
2a′2hvv + aa′∂uhvv − a2

(
∂u∂whvw̄ − ∂2

uhvv

)
= 0 , (2.20)

Cw̄vwu|on−shell −
1
2ϵw̄v

ηλ Cηλwu|on−shell =
1
2a′ (a′hvv + a (∂uhvv − ∂whvw̄)

)
= 0 . (2.21)

Here, prime denotes a conformal time derivative: ′ ≡ ∂τ . Under assumptions 1-2, we find
that to solve eq. (2.21) we need to fix the operators as

Dα = (∂w, ∂u + F (τ)) D̃α = (∂w, ∂u + 2a′

a
− F (τ)) (2.22)

with an arbitrary function F . Using these operators on eq. (2.20) then gives

Cvuvu|on−shell −
1
2ϵvu

ηλ Cηλvu|on−shell =
(
2a′2 − aa′′

)
∂2

wϕ/4 = 0 . (2.23)

The only solution to this equation, without imposing any constraints on ϕ, requires the
scale factor to be either a constant or proportional to 1/τ . Thus, the on-shell self-duality
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equations can only be reduced to equations of motion of a scalar theory in flat [5] or (A)dS
background [79]. Instead of constraining the scale factor, we could impose ∂2

wϕ = 0, but
then the vuw̄u component of eq. (2.20) would lead to

Cvuw̄u|on−shell −
1
2ϵvu

ηλ Cηλw̄u|on−shell =
(
∂τ − 2a′/a

) (
2a′2 − aa′′

)
∂wϕ/8 = 0 . (2.24)

which again reduces the equations to the (A)dS and flat cases or further imposes ∂wϕ = 0.
Imposing the latter would lead to a non-interacting theory, as can be seen in eq. (4.27) below.
Thus, to find a solution in more general backgrounds, we must consider the less restrictive
constraint in (2.2), which we will refer to as off-shell self-duality.

2.2 Off-shell self-duality

Following the result above, we analyze whether the off-shell self-duality constraint in (2.2)
can be solved in a similar manner for more generic backgrounds. Since this equation is
invariant under Weyl rescalings of the metric, the scale factor will not play a role. In other
words, every solution obtained in this section does not correspond to a single metric but
a conformal class of metrics.

We start by solving the components of eq. (2.2) that are linear in hµν subject to the
ansatz in (2.11) and (2.14) and assumptions 1-3 described in the previous subsection. This
requires that

Cvuvu − 1
2ϵvu

ηλCηλvu ∝ ∂2
whw̄w̄ − 2∂u∂whvw̄ + ∂2

uhvv = 0 . (2.25)

This equation can be solved by taking

D = Π = (∂w, ∂u) , (2.26a)
D̃ = Πζ ≡ (∂w, ∂u + 2 ζ(u + v)) . (2.26b)

where ζ(u + v) is a function with units of inverse length. Using these operators, the self-dual
equations reduce to only two independent equations, non-linear in ϕ, given by the components
v, u, w̄, v and w̄, u, w̄, u of eq. (2.2). The v, u, w̄, v component determines the equation of
motion satisfied by the scalar field:

(−∂u∂v + ∂w∂w̄)ϕ − ∂uζ

ζ
(∂u + ∂v)ϕ − ∂2

uζ

ζ
ϕ

+
(

hvvhw̄w̄ − h2
vw̄ +

(
∂2

uζ

2ζ
− 2∂uζ + ζ2

)
(∂wϕ)2

)
= 0. (2.27)

Then, the w̄, u, w̄, u component of the self-dual equations can only be solved if

∂u

(
∂uζ

ζ2

)
= 0 , (2.28)

which gives3

ζ = −2
(u + v) , or ζ = constant . (2.29)

3Here and throughout the paper, we will ignore additional freedom corresponding to a constant shift of
conformal time.
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The details of this calculation can be found in the appendix B. The first case corresponds
to the (A)dS self-dual equation. The constant ζ case will give rise to a new solution if the
constant does not vanish and reduces to the flat one when ζ → 0.

Using eq. (2.28), the equation of motion eq. (2.27) can be rewritten as

√
gζ

(
□ζ −

Rζ

6

)
ϕ − {{Lζ ϕ, Lζ ϕ}}ζ = 0 , (2.30)

where
{{f, g}}ζ = 1

2εij{∂jf, ∂ig}ζ (2.31)

and □ζ is the Laplacian operator for an auxiliary metric (gµν)ζ of the form (2.11) with
hµν = 0 and scale factor a = Lζ. Note, however, that the scale factor of the auxiliary metric
should not be identified with that of (2.11) at this stage. Indeed, the off-shell self-duality
in (2.2) is Weyl invariant, so the scale factor in (2.11) plays no role. We have introduced
a length scale, L, to keep the scale factor dimensionless. Additionally, having the explicit
factors of this length scale in the equations of motion will allow us to take the correct flat
space limit. The auxiliary metric corresponds to de Sitter if ζ = −2/(u + v) or flat space
if ζ =constant. Rζ is its Ricci scalar, and gζ its determinant. Note that the kinetic term
is that of a conformally coupled scalar and can be mapped to a massless kinetic term by
performing a Weyl transformation of the auxiliary metric to flat space. The interactions
are given by a bracket defined as

{f, g}ζ = {f, g}+ cζ ζ(u + v) (f∂wg − g∂wf) , (2.32)

cζ ≡ 2
(

∂uζ

ζ2 − 1
)
= constant , (2.33)

where the undeformed Poisson bracket is defined in (2.17). We remark that for the de Sitter
case (i.e. ζ = −2/(u + v)), {f, g}ζ reduces to the bracket {f, g}∗ introduced in [79], up to
analytic continuation to Euclidean AdS4.

It satisfies the Jacobi identity,{
f, {g, h}ζ

}
ζ
+
{

g, {h, f}ζ

}
ζ
+
{

h, {f, g}ζ

}
ζ
= 0. (2.34)

and instead of satisfying the Leibniz rule, it satisfies a deformed version of it,

{fg, h}ζ = f {g, h}ζ + g {f, h}ζ − cζζ(u + v) fg∂wh . (2.35)

As shown in appendix C, this bracket corresponds to a Jacobi bracket [105, 106], which
is defined as a Lie bracket on the algebra of smooth functions and is given by a bilinear
first-order differential operator D as

D(f, g) = i(P )(df ∧ dg) + f i(X)dg − g i(X)df (2.36)

where i denotes the interior product, P is a bivector, and X a vector (called the Reeb
vector field), satisfying

[P, P ] = 2X ∧ P , [X, P ] = 0 , (2.37)

– 7 –
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as a consequence of the Jacobi identity. Here, [ , ] is the Schouten-Nijenhuis bracket, which
is a generalization of a Lie bracket for multivector fields. Using a coordinate basis, (2.36)
can be expressed as

D(f, g) = P µν∂µf∂νg + fXµ∂µg − gXµ∂µf , (2.38)

where P µν is anti-symmetric. Then (2.32) can be put in the form above with P µν and
Xµ given in (C.3). It is interesting to note that other formulations of self-dual solutions
on AdS backgrounds obtained from twistor space also give rise to a Jacobi instead of a
Poisson bracket [93, 94].

The Poisson bracket, defined by eq. (2.32) with ζ = 0, defines a kinematic algebra
that can be lifted to the w1+∞ algebra [89]. In the following, we derive the deformation of
the w1+∞ algebra that arises when considering instead the Jacobi bracket with ζ ̸= 0. By
performing a Weyl rescaling ϕ → (1/(Lζ))ϕ one can rewrite eq. (2.30) as

□R4ϕ − 1
Lζ

{{ϕ, ϕ}}ζ = 0 . (2.39)

The equation of motion in (2.39) admits plane wave solutions

ϕ = eik·x , (2.40)

where k2 =0. We will now take the soft limit (ku, kv, kw, kw̄) → (0, 0, 0, 0) in such a way
that kw̄/ku = kv/kw = ρ, where ρ is some number. These plane waves can now be written
as an expansion in soft momenta given by

eik·x =
∞∑

a,b=0

(iku)a (ikw)b

a!b! eab , (2.41)

where eab = (u + ρw̄)a (w + ρv)b. Further defining wp
m = 1

2ep−1+m,p−1−m we find that

{wp
m, wq

n}ζ = {wp
m, wq

n}+
cζ

2 (m + q − p − n)ζ(u + v)wp+q−3/2
m+n+1/2 . (2.42)

When ζ = 0, this reduces to the w1+∞ algebra in flat space [86, 87], and ζ ̸= 0 gives a deformed
version of this algebra. There are known deformations of the w1+∞ algebra [88, 91, 92, 107],
which involve a constant parameter. In principle, this is similar to the case ζ = constant ̸= 0,
but it is unclear whether our case corresponds to any of the known deformations via a
change of variables.

3 Color-kinematics duality and double copy

An intriguing property of self-dual gravity in a flat background is that it can be derived
from the double copy of self-dual Yang-Mills at the Lagrangian level [21]. Since Yang-Mills
theory is classically scale-invariant in four dimensions, its Lagrangian in any conformally flat
background is the same as in flat space, although one has to impose boundary conditions if
there is a boundary. Moreover, self-dual gravity in AdS can be derived from an asymmetrical
double copy [79]. We will briefly review the self-dual Yang-Mills theory and then show how
to obtain self-dual gravity in more general backgrounds from a double copy.
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3.1 Self-dual Yang-Mills

We begin by summarizing the construction of the self-dual solution for gauge theories. In
this case, the self-dual condition is given as

Fµν = 1
2ϵµνρλF ρλ , (3.1)

where Fµν is the YM fields strength. Due to scale invariance, this equations imposes the
same constraint in any conformally flat background. Working in lightcone gauge, Au = 0,
the solution is given by

Ai = 0, Aα = ΠαΦ. (3.2)

with Πα as in (2.26a) and where Φ is a scalar field in the adjoint representation of the gauge
group whose equation of motion is

□R4Φ− i[{Φ,Φ}] = 0 , (3.3)
[{f, g}] = εαβ [Παf,Πβg] , (3.4)

and [ , ] is the standard Lie bracket of the gauge theory. While the same scalar field theory
describes the self-dual Yang-Mills solutions in all conformally flat spacetimes, the boundary
conditions will be different since Weyl transformations change the nature of the asymptotic
structure of the spacetime. For example, the lack of time translations in FLRW will be
explicit when calculating boundary correlation functions. Eq. (3.3) is solved by plane waves

Φ = ceik·x , (3.5)

where c is a spacetime constant in the adjoint representation, k · x is the flat space inner
product, and k satisfies the on-shell condition kukv − kwkw̄ = 0. Using these solutions as
external states, the three-point vertex is given by

VSDYM = 1
2 X (k1, k2) fa1a2a3 , (3.6)

X (k1, k2) = k1uk2w − k1wk2u (3.7)

where fa1a2a3 are the structure constants of the color algebra and the factor X (k1, k2) can be
thought of as the structure constants of the kinematic algebra which in this case corresponds
to area-preserving diffeomorphisms in the u − w plane. It is also worth highlighting that
the Jacobi identity for X (k1, k2) is satisfied for off-shell momenta, that is, without imposing
k2 = 0. This displays one of the simplest realizations of color-kinematics duality, which
relates color structures to kinematic numerators appearing in Feynman diagrams [1].

3.2 Double copy

The self-dual Yang-Mills and gravity solutions for conformally flat spacetimes that we have
described above are given in terms of a scalar field satisfying

□R4Φ− i[{Φ,Φ}] = 0 , (3.8)

□R4ϕ − 1
Lζ

{{ϕ, ϕ}}ζ = 0 , (3.9)

– 9 –
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respectively. Given the explicit color-kinematics duality in the self-dual Yang-Mills theory,
one can obtain straightforwardly the double copy by exchanging color by kinematics. At
the level of the equations of motion, one can perform the replacements

Φ → ϕ , i[ ] → 1
Lζ

{ }ζ (3.10)

to go from the self-dual Yang-Mills equation in (3.8) to the self-dual gravity one in (3.9).
This gives an asymmetric double copy since the gravitational equation of motion, eq. (2.39),
involves both the Poisson bracket in eq. (2.17) and the Jacobi bracket in eq. (2.32). Note
that throughout the paper, we have set the couplings of both Yang-Mills and gravity to one,
which is why we do not have the usual replacement g → κ. While this might look singular in
the flat space limit, ζ → 0, we can recover the flat self-dual equations of motion by keeping
Lζ fixed and taking ζ → 0 as explained in section 2.2.

Similarly to the self-dual Yang-Mills case, the self-dual gravity equation in (3.9) allows
for plane wave external states. The Feynman rule for the three-point vertex for such states
is then given by

VSDG = 1
2

1
Lζ

X (k1, k2)Xζ (k1, k2) , (3.11)

Xζ (k1, k2) = X (k1, k2)− i cζ ζ (k1 − k2)w . (3.12)

Thus, the double copy replacement for the three-point vertex is

fa1a2a3 → 1
Lζ

Xζ (k1, k2) . (3.13)

As before, the flat space limit is taken by keeping Lζ fixed and taking ζ → 0.
We have formulated the double copy by using the equations of motion of both Yang-Mills

and gravity with a flat auxiliary metric. We could have equivalently performed a field
redefinition of the scalar fields, Φ → aΦ and ϕ → aϕ, which changes the kinetic term to
a conformally coupled scalar in an FLRW background with scale factor a. Under these
rescalings, the equations of motion read

√
ga

(
□a − Ra

6

)
Φ− i a[{aΦ, aΦ}] = 0 , (3.14)

√
ga

(
□a − Ra

6

)
ϕ − a

Lζ
{{a ϕ, a ϕ}}ζ = 0 . (3.15)

The double copy is again given by the color-kinematic replacements in eq. (3.10) and eq. (3.13).
Note that this is not a different double copy in a new background, but simply a field redefinition
of the conformally coupled scalars. The double copy that we have formulated here is a double
copy for all conformal classes, not a double copy on a specific FLRW background.

4 Cosmological self-dual solutions

In the previous section, we derived general solutions to the off-shell self-duality equation
in (2.2). In this section, we will impose a constraint on the Ricci scalar, leaving the traceless
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part of the Ricci tensor unconstrained. Since we focus on cosmological solutions, we will
require the Ricci scalar, or equivalently, the trace of the stress-energy tensor to be that of an
FLRW metric. In the present case, the self-dual solutions above have

Rs.d. = RFLRW − 24(ζ∂ua − ∂2
ua)∂2

wϕ

a3 , (4.1)

RFLRW = 24∂2
ua

a3 , (4.2)

so that imposing

Rs.d. = RFLRW , (4.3)

leads to

ζ(u + v) ≡ ∂2
ua

∂ua
= ∂uH

H
+ aH , (4.4)

where H is the Hubble parameter. The usual expression for the Hubble parameter is given
in terms of cosmic time, defined by dt = adτ , so that H = ∂ta/a. In terms of lightcone
coordinates, we have H = 2(∂ua)/a2. The requirement of a self-dual Weyl tensor in eq. (2.28)
implies that we need to take either

a = ecτ/L , with c = constant or a = (τ/L)p , with p = 0,−1, 1 , (4.5)

where the length scale L determines the curvature of the spacetime. In the exponential case,
this is the scale factor of a coasting FLRW spacetime. For the power law, the first two cases
correspond to the flat and (A)dS solutions described above, while the third one gives the scale
factor of a radiation-dominated Universe. We explore the new cases, radiation-dominated
and coasting FLRW, in more detail in the following sections.

The source of these cosmological self-dual metrics can be interpreted as a viscous fluid
with a stress-energy tensor given by

T µν = ρuµuν + Pγµν − 2ησµν + q(µuν) , (4.6)

where ρ, P, uµ, and γµν are defined under eq. (2.19), η is the shear viscosity , qµ is the
momentum density, and the traceless tensor, σµν is the shear tensor (or anisotropic stress
perturbation) [108]. The equation of state parameter is defined as

ω = P/ρ . (4.7)

Below, we will examine the properties of the sources for the different cosmological self-dual
solutions.

One should remember that we are obtaining a non-perturbative result, but it can be
helpful for those familiar with cosmology to understand hµν as the perturbations that would
arise in standard cosmological perturbation theory [109]. In that case, these perturbations
are sourced by the deviations from the perfect fluid sources. In the present case, one can
choose appropriate boundary conditions on the scalar field and match any desired physical
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SD solution scale factor color-kinematics replacements
Flat a = 1 Φ → ϕ, i[ ] → { }

Radiation a = τ
L Φ → ϕ, i[ ] → { }

(A)dS a = −2L
τ Φ → ϕ, i[ ] → 1

a{ }ζ=a

Non-acc. FLRW a = eHτ Φ → ϕ, i[ ] → { }
ζ=H/2

Table 1. Color-kinematics replacements for self-dual gravity in different backgrounds. The replace-
ments should be applied to the self-dual Yang-Mills solution as given by eq. (3.14).

SD solution scale factor color-kinematics replacements
Flat a = 1 fa1a2a3 → X (k1, k2) ,

Radiation a = τ
L fa1a2a3 → X (k1, k2) ,

(A)dS a = −2L
τ fa1a2a3 → 1

aXζ=a (k1, k2) ,

Non-acc. FLRW a = eHτ fa1a2a3 → Xζ=H
2 (k1, k2) ,

Table 2. Color-kinematics replacements for the three-point vertices of self-dual gravity in different
backgrounds.

boundary conditions. For example, the boundary conditions can be chosen to have an
asymptotically FLRW spacetime [110, 111].

We have previously formulated a general double copy prescription for all the conformal
classes of cosmological self-dual metrics. We can restrict this procedure to the four special
solutions with Rs.d. = RFLRW, and consider now a double copy on a fixed FLRW background.
The color-kinematic replacements for the equations of motion and three-point vertex can
be found in table 1 and table 2 respectively.

4.1 Self-dual radiation-dominated FLRW

This section analyzes self-dual gravitational solutions sourced by a traceless stress-energy
tensor with a time-dependent scale factor. We dub these solutions as self-dual radiation. As
mentioned in the previous section, we can find a self-dual solution with a metric

ds2 =
(

u + v

2L

)2 (
dw dw̄ − du dv + 1

4
(
Π(αΠζ

β)ϕ
)

dxαdxβ
)

. (4.8)

When ϕ = 0, this reduces to the radiation-dominated FLRW solution. From (4.4), we see
that ζ = 0 for a = τ/L. Thus the scalar satisfies the same equation as it does in flat
background, (2.16). After a field redefinition that takes ϕ → aϕ, the equation of motion can
be rewritten in terms of the Laplacian for the FLRW radiation metric as

√
ga□aϕ − a{{aϕ, aϕ}} = 0 , (4.9)

where a = (u + v)/2L and the conformally coupled mass term vanishes since the Ricci scalar
vanishes in this background.
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The energy density and pressure of the source of the self-dual radiation solution are
given by

ρ = M2
P l

L2

(
3 + 3∂2

wϕ + (∂2
wϕ)2

a4 − L(∂u + ∂v + 2(∂u∂wϕ)∂w)∂2
wϕ

a3

)
, (4.10)

P = 1
3ρ . (4.11)

Both redshift as expected for a radiation component as long as ∂2
wϕ ≪ 1. Similarly, one can

find that the trace of the stress-energy tensor vanishes, Tµ
µ = 0, or equivalently that the

equation of state is ω = 1/3, which identifies the source as radiation. Note that contrary to
the standard perfect fluid sources of FLRW spacetimes, the source of this metric does not
have to be homogeneous or isotropic. We provide the full expression for the stress-energy
tensor, including the explicit contributions from the shear tensor and momentum density,
in an ancillary Mathematica file in the arXiv submission.

4.2 Self-dual coasting FLRW

An FLRW Universe with a(τ) = eHτ and H ≡ ∂τ a/a = constant is sourced by a perfect fluid
with an equation of state ω = −1/3. Going back to Cartesian coordinates and performing a
further change of coordinates to cosmic time, a(τ)dτ = dt, we write the background metric
in its better-known form

ds2 = −dt2 + (Ht)2dx2 , (4.12)

which describes a coasting FLRW cosmology [112]. When written in this form, one can
describe whether the Universe is accelerating by looking at the dimensionless parameter

q = −a
∂2

t a

(∂ta)2 , (4.13)

which is referred to as the deceleration parameter. The Universe is accelerating for q < 0,
decelerating for q > 0, and neither if q = 0, as in the metric above.

We have found a self-dual solution with the Ricci-scalar of this coasting FLRW spacetime.
This solution has a metric of the form

ds2 =
(
eH

u+v
2
)2
(

dw dw̄ − du dv + 1
4
(
Π(αΠζ

β)ϕ
)

dxαdxβ
)

. (4.14)

Noticing that the function ζ in eq. (4.4) can be written in terms of the deceleration parameter as

ζ = (1− q)H/2 , (4.15)

we see that in the present case ζ = H/2. From (2.27), we then find that the scalar field
satisfies the equation of motion

(∂u∂v − ∂w∂w̄)ϕ +
(
hvvhw̄w̄ − h2

vw̄ + (H/2)2 (∂wϕ)2
)
= 0 , (4.16)

which under a field redefinition, ϕ → aϕ can be rewritten as
√

g(□a + (H/a)2)ϕ − a{{aϕ, aϕ}}ζ=H/2 = 0 , (4.17)
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where a = eHτ , and the mass term is simply the conformal coupling in the coasting FLRW
spacetime.

We can compute the source for this solution and find that it is a viscous fluid with
energy density

ρ = (MP lH)2

a2

(
3 + Θ̂exp.∂

2
wϕ
)

, (4.18)

where Θ̂exp. is a differential operator given by

Θ̂exp. = 1 +H−1∂w∂uϕ∂w , (4.19)

and the equation of state of the fluid is

ω = −1
3 + Θ̂exp.∂

2
wϕ

6 + Θ̂exp.∂2
wϕ

. (4.20)

For ∂2
wϕ ≪ 1, this approaches the usual equation of state of a coasting FLRW spacetime.

In other words, it will have a slight acceleration or deceleration depending on the sign of
the second term in eq. (4.20). The full expression for the stress-energy tensor, including the
explicit contributions from the shear tensor and momentum density, can be found in the
ancillary Mathematica file in the arXiv submission.

4.3 Approximately FLRW self-dual metrics

While there are only four cases of self-dual cosmological solution with a Ricci scalar fixed to be
that of an FLRW metric, there are an infinite set of metrics with self-dual Weyl tensor which
fall into three conformal classes mentioned in section 2.2. Note that the self-dual solution
in radiation domination background can be obtained by performing a Weyl transformation
of the one in flat background so it belongs the same conformal class. Hence, the three
conformal classes can be obtained by performing Weyl transformations of the flat, dS, and
coasting solutions constructed in the previous section. In this section we will construct other
representatives of these conformal classes whose stress-energy tensor approximately behaves
as an FLRW one, as long as the scalar field satisfies a simple additional constraint.

Given a solution to the off-shell self-duality equation in (2.2), one can obtain another
solution by performing a Weyl transformation:

g̃µν = Ω2(τ)gµν . (4.21)

The new metric g̃µν is sourced by a stress-energy tensor given by

T̃µν

M2
P l

= Tµν

M2
P l

− 2∇µ∇νΩ
Ω + 4∇µΩ∇νΩ

Ω2

− gµν

(
−2∇µ∇µΩ

Ω + 4∇µΩ∇µΩ
Ω2

)
, (4.22)

where Tµν is the stress-energy tensor sourcing gµν and ∇µ is its covariant derivative. The
trace of the stress-energy tensor is

T̃ = 1
Ω2

(
6M2

P l

∇2Ω
Ω + T

)
, (4.23)
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where T = Tµ
µ. Since this new metric is no longer a homogeneous isotropic metric, the

metric is not expected to be sourced by a perfect fluid but rather by a viscous fluid with
a non-zero momentum flux vector and shear tensor, as in eq. (4.6). The energy density
and pressure of the fluid are

ρ̃ = T̃µν ũµũν , P̃ = 1
3 T̃µν γ̃µν (4.24)

where ũµ is a unit timelike vector with respect to g̃µν and the metric of the surface per-
pendicular to uµ is γ̃µν = g̃µν + ũµũν .

We will now perform Weyl transformations of self-dual solutions in flat, dS, and non-
accelerated FRLW backgrounds such that the resulting metric takes the following general form:

ds2 =
(

u + v

2L

)2p (
−dudv + dwdw̄ + 1

4
(
Π(αΠζ

β)ϕ
)

dxαdxβ
)

, (4.25)

which describes well-known power law cosmologies when ϕ = 0, see appendix A. This metric
can be obtained by applying a Weyl transformation with Ω = (τ/L)p to the solution in flat
background, Ω = (τ/L)p+1 to the one in dS background, and Ω = e−Hτ (τ/L)p to the one in
coasting background. The properties of the resulting stress-energy tensors are described in
detail in appendix D, and their energy density and equation of state take the schematic form

ρ = ρFLRW + Θ̂ζ ∂2
wϕ ,

ω = ωFLRW + Γ̂ζ ∂2
wϕ ,

where ρFLRW and ωFLRW are the energy density and equation of state of the source of the
metric in eq. (4.25) with ϕ = 0, and Θ̂ζ and Γ̂ζ are differential operators depending on
the conformal class we are working with. Note that if we require that ∂2

wϕ ≪ 1, these
solutions have sources that approximate those of the corresponding FLRW metric. This
case is closer to what happens in cosmological perturbation theory; the equation of state
remains close to the FLRW one, but it is not forced to remain the same. Strictly imposing
that ∂2

wϕ = 0, the scalar can be written as

ϕ = ϕ1(u, v, w̄) + wϕ2(u, v, w̄) , (4.26)

where the equation of motion now reduces to

√
ga

(
□a − Ra

6

)
ϕ1 + a2∂w̄ϕ2 +

a

ζ
(∂u(aϕ2))2 − cζΦ2∂u(aϕ2) = 0 , (4.27)

√
ga

(
□a − Ra

6

)
ϕ2 = 0 . (4.28)

We can see that ϕ2 is a free scalar whose u and w̄ derivatives source the scalar ϕ1.
As commented above, if we start with the self-dual solution in flat background and apply

a Weyl transformation with Ω = τ/L, this gives the self-dual solution in radiation-dominated
background. Similarly, if we Weyl transform the dS or non-accelerated self-dual solutions
to flat background (such that the resulting metric takes the form in (4.25) with p = 0), the
resulting stress tensor turns out to be traceless:

T̃ ∝ 6M2
P la∇2(1/a) + T = M2

P lR + T = 0 , (4.29)
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where R is the Ricci scalar of gµν , and we imposed the Einstein equations in the last equality.
On the other hand, the energy density does not evolve as the usual radiation-dominated
FLRW (ρ ∼ τ−4). Schematically, if we start with the dS self-dual solution and Weyl transform
to flat background the resulting stress-energy tensor has ρ ∼ τ−2 + Θ̂ζ∂2

wϕ, and if we start
with the coasting self-dual solution and Weyl transform to flat background we find that
ρ = constant + Θ̂ζ∂2

wϕ. The exact expressions are given in appendix D.

5 Conclusions and discussion

In this paper, we show that an infinite set of metrics with a self-dual Weyl tensor can
be described using conformally coupled scalars with cubic interactions containings Jacobi
brackets. These metrics look like a time-dependent deformation of the well-known solution
for self-dual gravity in flat space. In particular we find three distinct conformal classes
of self-dual metrics: flat, (A)dS, and coasting FLRW. We also present a general double
copy prescription that maps self-dual Yang-Mills in an FLRW background to these self-dual
cosmological solutions and show that they exhibit a deformed w1+∞ algebra, generalising
the one found for AdS in [79].

Interestingly, if we demand that the Ricci scalar of these self-dual solutions is equal to that
of an FLRW metric, there are only four possible backgrounds for which this is possible: flat,
dS, radiation-domination, and coasting FLRW. More general solutions can then be obtained
by performing Weyl transformations of these solutions. While the solution corresponding
to radiation domination can be obtained from a Weyl transformation of the flat solution, in
general performing such Weyl transformations will lead to solutions whose Ricci tensor is not
that of an FLRW metric. On the other hand, we find that the stress tensor of the resulting
solutions corresponds to viscous fluids whose equations of state become FLRW-like in the
limit ∂2

wϕ ≪ 1. Interestingly, we find that Weyl-transforming the dS and non-accelerated
self-dual solutions to the flat background results in a traceless stress tensor, which, therefore,
describes a fluid whose equation of state is that of radiation.

The existence of self-dual cosmological solutions and their intriguing Jacobi brackets
suggests many future directions. An immediate question is how the color-kinematics duality at
the level of equations of motion translates to correlation functions in FLRW spacetimes. While
all tree-level amplitudes of self-dual Yang-Mills and self-dual gravity vanish beyond three
points, this will not be the case for the curved background we consider because they are time
dependent so energy is not conserved. Nevertheless, we expect the correlation functions in
these backgrounds to be strongly constrained by symmetry. Finding an underlying geometric
interpretation of the Jacobi brackets and recovering an infinite hierarchy of asymptotic
symmetries, along the lines of [23], would also be another important direction. Finally, it
would be interesting to consider Moyal deformations of the scalar theories discussed in this
paper. In a flat background, such deformations give rise to chiral higher spin theories [91, 113],
so doing so in the present context may give higher spin theories in cosmological backgrounds,
which may be of interest for holography [114, 115].
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A Power law cosmologies

Power law cosmologies have the following metric:

ds2 =
(

u + v

2L

)2p

(−dudv + dwdw̄) , (A.1)

where
a(u + v) =

(
u + v

2L

)p

, (A.2)

and are sourced by a perfect fluid with stress-energy tensor

T µν = (ρ + P )uµuν + Pgµν , (A.3)

with an equation of state parameter

ω = 2− p

3p
. (A.4)

The metric, in this coordinates, is a decelerating (for p > 0) or accelerating (for p < 0)
FLRW spacetime. We approach the flat space limit as |u + v| → ∞ in both cases. In the
decelerating case, the spacetime has a null infinity and its Penrose diagram is the upper half
of the Minkowski one with a singularity at u + v → 0 corresponding to the Big Bang. These
spacetimes include the matter-domination with p = 2 and radiation-domination with p = 1.
On the other hand, the accelerating FLRW spacetimes have a spatial boundary at infinity, just
like de Sitter. Taking u + v → −∞ now brings us to the far past; hence, the spacetime looks
flat. Another relevant case, not included above, has a power law scale factor in cosmic time t,
defined from a(τ)dτ = dt, but becomes exponential in conformal time. This is the case of an
FLRW spacetime with no acceleration and ω = −1/3. Its Penrose diagram is the same as the
Minkowski one. Details on the conformal structure of these spacetimes can be found in [116].

B Self-dual off-shell Weyl tensor

In this appendix, we show how to solve the two independent self-dual equations that are
non-linear in the scalar field. We start with the simplest one, which can be written as

a−2
(

Cvuw̄v −
1
2ϵvu

ηλCηλw̄v

)
= 1

2ζ(u + v) ∂weom , (B.1)

where eom is given by eq. (2.27). The last self-dual equation is

Ψ = a−2
(

Cw̄vw̄v −
1
2ϵw̄v

ηλCηλw̄v

)
. (B.2)
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Since we have fixed the equation of motion of ϕ, to obtain a self-dual solution, we require
that eq. (B.2) can be written entirely in terms of the equation of motion and its derivatives.
When ζ = 0 we have that eq. (B.2) is

Ψ
∣∣
ζ=0 = (∂w∂w̄ − ∂u∂v)(eom)− ∂2

uϕ∂2
w(eom)

− ∂2
wϕ∂2

u(eom) + 2∂w∂uϕ∂w∂u(eom) .

To find a solution for a general scale factor we look at each derivative contribution separately:

Ψ = Ψ0 + ζΨ1 + (ζ2Ψ2 + ζ ′Ψ3)
+ (ζ3Ψ4 + ζζ ′Ψ5 + ζ ′′Ψ6)
+ (ζ2ζ ′Ψ7 + ζζ ′′Ψ8 + (ζ ′)2Ψ9 + ζ ′′′Ψ10) , (B.3)

where ′ ≡ ∂u+v. Writing Ψ0 = Ψ
∣∣
ζ=0 with the equation of motion for ζ ̸= 0 introduces new

terms proportional to ζ. We can now find an expression for Ψ1 in terms of the equation
of motion, which will also introduce new terms proportional to ζ, but this won’t affect the
previous solutions since the new terms arise at a higher mass dimension. Thus, we can
solve order by order in the mass dimension of the terms with ζ to find a complete solution.
Proceeding this way, we find that

Ψ1 = −2∂v(eom)− 2∂uϕ∂2
w(eom) + 2∂u∂wϕ∂w(eom)

− 2∂2
wϕ∂u(eom) + 2∂wϕ∂u∂w(eom)

+ ζ ′

ζ2 (∂u(eom) + ∂v(eom)) , (B.4)

But the solution breaks at the next order where there is no expression for Ψ2 and Ψ3 in terms
of the equation of motion for a general ζ. The obstruction arises due to the following term

Ψeom ⊃ −ζ∂u

(
∂uζ

ζ2

)(
∂2

uϕ + ∂2
vϕ
)

,

which cannot be written in terms of the equation of motion and necessarily appears when
rewriting lower-order contributions in terms of the equation of motion. To find a solution,
we need to fix ζ so that this term vanishes. This is the case for

ζ = −2
(u + v) , or ζ = 1/L , (B.5)

where L is a constant length scale. As mentioned earlier, when ζ = 0, Ψ is given by eq. (B.3).
When ζ = −2

(u+v)

Ψζ= −2
(u+v) = Ψ

∣∣
ζ=0 + ζΨ1 +

ζ ′′′

ζ ′
(∂wϕ∂w(eom))

+ ζ ′2

ζ2

(
6∂wϕ∂w(eom) + 2ϕ∂2

w(eom) + (6∂2
wϕ − 1/2)(eom)

)
− ζ ′′

ζ

(
5∂wϕ∂w(eom) + 2ϕ∂2

w(eom) + 5∂2
wϕ(eom)

)
. (B.6)
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Meanwhile, choosing ζ = 1/L ̸= 0 we find

Ψζ=c = Ψ
∣∣
ζ=0 + ζΨ1 + ζ2

(
(∂wϕ∂w(eom))

+ 6∂wϕ∂w(eom) + 2ϕ∂2
w(eom) + 6∂2

wϕ(eom)

− 5∂wϕ∂w(eom)− 2ϕ∂2
w(eom)− 6∂2

wϕ(eom)
)

. (B.7)

C Jacobi bracket of cosmological self-dual solutions

The bracket in (2.32) corresponds to a Jacobi bracket. In this appendix, we will explicitly
show that this is the case. For convenience, we reproduce the component-wise definition
of the Jacobi bracket in (2.38) below:

D(f, g) = P µν∂µf∂νg + fXµ∂µg − gXµ∂µf . (C.1)

We require D(f, g) to concide with our bracket

{f, g}ζ = {f, g}+ cζ ζ(u + v) (f∂wg − g∂wf) , (C.2)

with the first term defined in (2.17). We can then read off

P µν =


−1, µ = u, ν = w
1, µ = w, ν = u
0, otherwise

and Xµ =
{

cζ ζ(u + v), µ = w
0, otherwise . (C.3)

The Jacobi bracket is required to satisfy the conditions in (2.37):

[P, P ] = 2X ∧ P , [X, P ] = 0 . (C.4)

They ensure that the Jacobi identity is satisfied. Thus we could check them indirectly, by
looking at the Jacobi identity, but let us write them explicity, as a sanity check that we
have correctly identified P µν and Xµ. The Schouten-Nijenhuis bracket between an m-tensor
A and a p-tensor B is given by:

[A, B]µ1...µm+p = 1
(m − 1)!p!ε

µ1...µm+p
ν2...νmρ1...ρpAσν2...νm

∂Bρ1...ρp

∂xσ
+ 1

m!(p − 1)!ε
µ1...µm+p
ν1...νmρ2...ρpBσρ2...ρp

× ∂Aν1...νm

∂xσ
, (C.5)

Since all the components of P µν are constant, we immediately have

[P, P ] = 0 . (C.6)

We then explicitly have

2X ∧ P = 4cζ ζ(u + v) ∂

∂w
∧ ∂

∂w
∧ ∂

∂u
= 0 , (C.7)

thus the first condition is immediately satisfied. An alternative way to see the above is by
noting that P and X can be seen as tensors in a two-dimensional space spanned by u and w
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(P is simply the epsilon tensor in this space), where we treat v and w̄ as parameters. Then the
first equation in (C.4) is trivially satisfied, as both sides vanish, since they are three-forms.

For the second equality in (C.4) we can write explicitly

[X, P ]µ2µ3 = 1
2εµ2µ3

ρ1ρ2 Xσ ∂P ρ1ρ2

∂xσ
+ εµ2µ3

νρ2 P σρ2 ∂Xν

∂xσ
= cζ εµ2µ3

wu

∂ζ(u + v)
∂w

= 0 (C.8)

where we additionally made use of the fact that the non-zero coefficient of X is indepen-
dent of w.

D Properties of conformally self-dual metrics

We proceed to show explicitly the expressions for the energy density and equation of state
of the power law cosmological self-dual solutions.

Conformally flat self-dual. For conformally flat self-dual solutions, the energy density is

ρ = M2
P l

L2 a
− 2(1+p)

p p
(
3p +

(
3p + Θ̂flat

)
∂2

wϕ
)

, (D.1)

where a = (u + v)/(2L) and the operator Θ̂flat is

Θ̂flat =
1 + p

2 ∂2
wϕ − τ(∂τ + 2(∂u∂wϕ)∂w) , (D.2)

and the equation of state is given by

ω = P̃

ρ̃
= 2− p

3p
+ 2(p − 1)

3p

Θ̂flat∂
2
wϕ

3p +
(
3p + Θ̂flat

)
∂2

wϕ
. (D.3)

Thus, we obtain the usual FLRW equation of state when the second term in the equation
above vanishes. For a generic ϕ, this is only satisfied if p = 1, which corresponds to the case
of the self-dual radiation solution discussed in section 4.1.

Alternatively, as long as the second term is small, the solution has an equation of state
that approximates the corresponding perfect fluid. One possibility is to have ∂2

wϕ ≪ 1, in
which case the equation of motion of the scalar reduces to □R4ϕ − (∂u∂wϕ)2 ≃ 0.

Conformally dS self-dual. In the case of metrics conformal to the dS self-dual solution,
we use Ω = (τ/L)p+1 in eq. (4.21) and find that the energy density is given by

ρ = M2
P l

L2 a
− 2(1+p)

p

(
3p2 + (1 + p)

(
(1 + 3p) + Θ̂dS

)
∂2

wϕ
)

, (D.4)

where the operator Θ̂dS is

Θ̂dS = 1
2p∂2

wϕ + 2(∂wϕ)∂w − τ(∂τ + 2(∂u∂wϕ)∂w) , (D.5)

and the equation of state reads

ω = 1
3

 3p(2−p)
(1+p) +

(
(1− 3p) + Θ̂dS

)
∂2

wϕ

3p2

(1+p) +
(
(1 + 3p) + Θ̂dS

)
∂2

wϕ

 . (D.6)

– 20 –
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From this, we can see that when p = 0, we recover the equation of state of radiation. For
the case p ̸= 0, we can rewrite the equation of state as

ω = 2− p

3p
−

2
(
(1 + 2p) + (1− p)Θ̂dS

)
∂2

wϕ

3p
(

3p2

1+p +
(
(1 + 3p) + Θ̂dS)

)
∂2

wϕ
) . (D.7)

which shows that, just like in the conformally flat self-dual case, we can approach the FLRW
equation of state if ∂2

wϕ ≪ 1.

Conformally coasting self-dual. In this last case, we take Ω = e−τ/Lτp in eq. (4.21)
to obtain power law scale factors in conformal time. With this choice, we find that the
energy density is given by

ρ = M2
P l

L2 a
− 2(1+p)

p

(
3p2 +

(
3p2 + Θ̂non-a.

)
∂2

wϕ
)

, (D.8)

where the operator Θ̂non-a. is

Θ̂non-a. = p(1 + p)∂2
wϕ/2

− pτ(H (2 + ∂wϕ∂w) + ∂τ + 2(∂u∂wϕ)∂w)

× τ2
(
−H2∂2

wϕ/2 +H (∂τ + (∂u∂wϕ)∂w)
)

. (D.9)

Meanwhile, the equation of state can be written as

ω =
3p(2− p) +

(
3p(2− p) + 6pHτ + Θ̂non-a.

)
∂2

wϕ

3
(
3p2 +

(
3p2 + Θ̂non-a.

)
∂2

wϕ
) , (D.10)

which, as in the conformally dS self-dual case, reduces to 1/3 for p = 0. When p ̸= 0,
we can write

ω = 2− p

3p
+ 1

3


(
6pHt + 2(p−1)

p Θ̂non-a.
)

∂2
wϕ

3p2 +
(
3p2 + Θ̂non-a.

)
∂2

wϕ

 , (D.11)

such that, like in all the previous cases, when ∂2
wϕ ≪ 1, the equation of state approaches

that of the usual FLRW spacetime.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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