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Abstract

The standard approach to encoding constraints in quantum optimization is the quadratic penalty
method. Quadratic penalties introduce additional couplings and energy scales, which can be
detrimental to the performance of a quantum optimizer. In quantum annealing experiments
performed on a D-Wave Advantage, we explore an alternative penalty method that only involves
linear Ising terms and apply it to a customer data science problem. Our findings support our
hypothesis that the linear Ising penalty method should improve the performance of quantum
optimization compared to using the quadratic penalty method due to its more efficient use of
physical resources. Although the linear Ising penalty method is not guaranteed to exactly
implement the desired constraint in all cases, it is able to do so for the majority of problem
instances we consider. For problems with many constraints, where making all penalties linear is
unlikely to be feasible, we investigate strategies for combining linear Ising penalties with quadratic
penalties to satisfy constraints for which the linear method is not well-suited. We find that this
strategy is most effective when the penalties that contribute most to limiting the dynamic range are
removed.

1. Introduction

In recent years, noisy intermediate-scale quantum devices have become available on cloud platforms [1],
enabling small-scale experimental tests of quantum algorithms. One area of particular interest is
combinatorial optimization [2], in which the goal is to minimize an objective function that can take a finite
but very large set of possible solutions. Applications of quantum optimization have been explored in a
variety of fields including finance [3, 4], molecular biology [5], material design [6], and air traffic
management [7]. In this work, we consider an application in customer data science and perform experiments
on a quantum annealer developed by D-Wave systems [8]. For a review of quantum annealing (QA) for
industrial applications, see [9].

Combinatorial optimization problems that arise in industry are often highly constrained [9]. In
commerce and retail settings, constraints can number in the tens to hundreds and result from both strategic
and operational considerations. The large number of constraints influences how a researcher can tackle an
optimization problem in practice. Therefore, it is important to study quantum optimization problems that
include multiple constraints, since if quantum optimization is to find real value in a commercial setting, it
must be able to handle and thrive in problems significantly affected by or even dominated by constraints. In
QA [10-12], constraints are typically incorporated into the objective function by adding terms that penalize
solutions that do not satisfy the constraints. Typically, these terms are quadratic in the input variables and are
therefore called quadratic penalty functions. Devices that implement QA have certain physical limitations,
such as the number of qubits, the number of two-qubit interactions that can be realized, and the maximum
energy scale over which an interaction can take [13]. Quadratic penalty functions are physically intensive

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ad7e4a
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ad7e4a&domain=pdf&date_stamp=2024-10-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5835-2592
https://orcid.org/0000-0003-3483-5885
https://orcid.org/0000-0001-9347-0922
https://orcid.org/0000-0002-1293-0761
mailto:puya.mirkarimi@durham.ac.uk
mailto:nicholas.chancellor@gmail.com

10P Publishing

New J. Phys. 26 (2024) 103005 P Mirkarimi et al

with respect to these resources, hindering the performance of a quantum algorithm when reconciled with the
hardware’s physical limitations.

While the number of interactions and the structure of the interactivity graph are not generally considered
to be important limiting factors when solving optimization problems through traditional methods, they do
present a significant challenge in the analog setting of QA, particularly on current devices where problems
need to be minor embedded onto quasi-planar graphs [14]. For this reason, new methods for encoding
problems need to be considered in this setting, such as domain-wall encoding [15], which has been shown to
provide a larger performance enhancement than a re-engineered hardware graph [16] and make the
dynamics more favorable [17]. While domain-wall encoding can only be used efficiently to transform
one-hot constraints, the method we propose here can be applied to any kind of linear constraint, including
inequality constraints.

In this work, we consider a linear Ising penalty method as an alternative to the quadratic penalty method
for QA. While it is not guaranteed that this method can exactly implement the desired constraint in all cases,
it makes more efficient use of physical resources than the quadratic penalty method. Notably, the linear Ising
penalty method does not introduce any additional two-qubit interactions and often requires smaller energy
scales to implement. This method has been suggested in previous studies [4, 18, 19]. Mirkarimi et al [20]
explores the viability of the linear Ising penalty method through a theoretical and numerical analysis. Here,
we provide complementary results from experiments on real quantum hardware. Our findings indicate that
for some problems, the linear Ising penalty method results in better performance of quantum optimization
compared to the quadratic penalty method. For problems with multiple constraints, we find that a strategy
of using linear Ising penalties where possible and quadratic penalties for the remaining constraints has the
potential to work well in practice. By using a combination of the two penalty methods, we can gain some of
the advantages of the linear Ising penalty method while still satisfying constraints that it cannot implement
exactly.

This paper is structured as follows. In section 2, we summarize prior work, introduce the customer data
science problems that we consider, and outline the linear Ising penalty method. In section 3, we describe the
numerical and experimental methods used in this work. In section 4, we analyze the minor embedding costs
of the two penalty methods and how they scale with problem size. We present the results of our experiments
on a D-Wave device in section 5 and compare the performance of the two penalty methods. Finally, we
summarize our work and give some concluding remarks in section 6.

2. Background

In this section, we provide a background on prior work and introduce the key concepts in this study.
Section 2.1 describes the customer data science problems that we base our experiments on. Section 2.2
describes how constraints are encoded with the quadratic and linear Ising penalty methods.

2.1. Promotion cannibalization problem

Quantum optimizers, such as the implementation of QA on D-Wave quantum annealers, can be used to find
ground states of the Ising model. For local fields h € R" and couplings J € R"*", the Ising model is described
by the Hamiltonian

n n—1 n
Hp = Zhiaf-i-z Z Jijoio;, (1)

i=1 i=1j=it1

where 07 = 1971 ® 0, ® 19"~ is the Pauli operator o, acting on qubit i and identities acting on all other
qubits. Note that J is a strictly upper triangular matrix.

The Pauli matrices in the Ising Hamiltonian can be mapped to binary variables x € {0,1}" through the
mapping o7 — 1 — 2x;. Therefore, finding a ground state of Hp is equivalent to the quadratic unconstrained
binary optimization (QUBO) problem

n n—1 n
find: argminf(x) = Zaix,- + Z Z bi jx; X;. (2)
X i=1 i=1j=i+1

The real-valued coefficients a and b in the objective function f(x) are related to h and J through the equations

bij (3)

Jij= 1
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and

n

a; 1
hi==> =1 D b (4)

j=1j#i

In other studies, the QUBO problem is often expressed in terms of a single upper triangular matrix
Qe R™" where Q,'J' = b,"]‘ V] 7’5 iand Qi,i = a.

In this work, we consider two simplified forms of a customer data science problem that is faced by
retailers when planning product price reduction promotions. The goal of a promotion is to generate
additional revenue from sales of a product. Often, these additional sales come at the partial expense of other
products’ sales. This phenomenon, where a product takes sales from other products instead of generating
new sales, is called cannibalization [21, 22], and we will refer to cannibalization arising from promoting a
product as promotion cannibalization. When promoting two similar products concurrently, the overall
bilateral cannibalization can result in minimal new sales and possibly even a net reduction in revenue.
Consequently, one goal of promotion planning for retailers is to minimize the overall revenue loss due to
clashing concurrent promotions. We can model this by considering only promotion cannibalization between
pairs of products that are promoted at the same time, and using a matrix C, where the matrix element C; ;
represents the average amount of loss of revenue from sales of product i due to a promotion of product j
when both products are promoted at the same time. For this study, we will assume that C; ; > 0 Vi, .

An example problem that we use in this work is to find a promotion plan for one fiscal year that
minimizes the total amount of cannibalization between pairs of products that are promoted in the same
fiscal quarter. The promotion plan indicates which products are promoted in each quarter, and it must satisfy
various constraints that are imposed by the retailer. We consider three sets of constraints:

C1. Each quarter must have A products promoted.
C2. Each product must be promoted between By and By times by the end of the year.
C3. The same product cannot be promoted in two consecutive quarters.

In practice, there may be many more constraints that a retailer would want to implement.

This problem can be expressed as the constrained binary quadratic programming problem [23, 24]

My Mp

4
find: argminf(x) = Z Z Z AgCi i g% q (5)

q=1j=1i=1

p
subject to : in’q =A Vg, (6)
i=1
Biin < in,q < Bmax Vi, (7)
q=1
Xiq +X,’7q+1 <1 Vq < 3 Vi (8)

Here, the binary variable x; ; = 1 (= 0) if product i is (not) promoted during fiscal quarter g, 1, is the total
number of products, and ), is a seasonal scale factor representing the expected changes in total sales between
quarters. Equations (6)—(8) correspond to the sets of constraints C1, C2, and C3 respectively. Comparing
equation (5) with equation (2), we note that the quadratic coefficients in the objective function are equal to
Ag(Cij+ C; ;). Hence, while C is generally asymmetric, it can be assumed to be symmetric in the context of
this problem.

The constraints C1 are linear equality constraints, which take the general form

Z,u,-xi =, (9)
i=1

with some coefficients 1 € R” and constraint value ¢ € R. The constraints C2 and C3 are linear inequality
constraints of the form

n
Amin < Zyixi < dma}n (10)
i=1
with some coefficients v € R” and constraint values din, dmax € R.

3
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We also consider a simpler formulation of the promotion cannibalization problem, in which we are only
concerned with the promotion plan for a single quarter. In this case, the relevant quadratic programming
problem is

p My
find: argminf(x) = Z Z Ci jxi xj (11)
X j=1i=1
"p
subject to : in =A. (12)
i=1

Note that this problem only has one constraint. To distinguish between the two variations of the promotion
cannibalization problem, we will refer to equations (5)—(8) as the four-quarter problem and
equations (11)—(12) as the single-quarter problem.

As a metric to assess the quality of a solution x, we use the approximation ratio

R=1 JM (13)

fmax - fmin ’
where fin and fiax are the minimum and maximum objective values of the constrained problem
respectively. When x is feasible, i.e. satisfies all constraints, R ranges from 0 in the worst case (f(X) = fmax) to
1 for optimal solutions (f(X) = fiin). If an optimizer is run many times, we refer to the fraction of sampled
solutions that are optimal as S. Similarly, we refer to the fraction of samples that are feasible as F.

2.2. Penalty methods for encoding constraints
The promotion cannibalization problems expressed in the forms of equations (5)—(8) and equations (11)
and (12) are not QUBO problems because they include constraints, which cannot be natively expressed in
QA. Various methods for encoding constraints in QA have been proposed. The most common approach on
D-Wave quantum annealers is to incorporate constraints into the objective function using the penalty
method, where for each constraint, a penalty function P(x) is added to f(x). The purpose of the penalty
method is to raise the value of f(x) for solutions that do not satisfy all constraints (which are called infeasible
solutions) so that solutions that minimize the penalized objective function are feasible.

To encode equality constraints of the form given in equation (9), the quadratic penalty function

n 2
P(X) = (Z i Xi — C) (14)

i=1

is typically used in QA. For a large enough value of the penalty strength «;, adding P(x) to an objective
function will make it satisfy equation (9). Aside from the ability to scale the penalty function with «, this
penalty function has two desirable properties that hold for all a; > 0:

(i) P(x) = 0if x is feasible.
(i) P(x) > 0if x is infeasible.

The quadratic penalty method can impose severe limitations in QA. Expanding out the brackets of the
quadratic penalty in equation (14), we find quadratic terms with nonzero coefficients for all pairs of variables
in the constraint. This leads to an Ising Hamiltonian Hp with all-to-all couplings between the qubits
associated with the constraint. Many quantum devices, including the D-Wave quantum annealers, have
limited qubit connectivity. Because of this, most Ising Hamiltonians of interest cannot be directly mapped to
the hardware. On D-Wave devices, the lack of connectivity is resolved by representing each variable by a
logical qubit formed of a chain of ferromagnetically coupled physical qubits through a mapping called minor
embedding [9, 14]. After minor embedding, the necessary couplings are available to the logical qubits at the
cost of a larger number of physical qubits being used. Typically, O(n?) physical qubits are required to minor
embed a graph onto the hardware graph of a D-Wave annealer [9].

As well as the minor embedding cost, another drawback of the quadratic penalty method is that it will
often reduce the effective dynamic range of qubit interactions. Taking the quadratic penalty for the
constraints C1 and expanding out the brackets, we get

ny 2 ny n,—1 np
P(X) = Q) <le"q — A> = Q) Z (1 — 2A) Xi_’q + Z Z 2Xi7qxj7q —|—A2 . (15)
i=1 i=1 i=1 j=i+1

4
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Applying the QUBO to Ising mapping x;,g — (1 — 07 ) /2 gives

L TF40h = (1 . mp(mpy+1) 2
P=a, Z ZTJFZ(?*A)JM+?7”PA+A . (16)
i=1j=it1 i=1

The couplings and local fields can be read off as J; ; = o, /2 and h; = a;(n,/2 — A). The magnitudes of these
coefficients increase with the magnitude of a,, while the magnitude of the local fields is also proportional to
the absolute difference |1,/2 — A|. Therefore, if the desired constraint value (number of promotions A) is far
from half of the number of variables in the constraint (number of products 1, ), this penalty introduces
strong local fields.

There are physical limitations on the range of J or h values that can be implemented on a quantum
annealer. Because of this, the Ising Hamiltonian Hp implemented by the device is normalized by a factor A*
using

1
N

where V is usually chosen to be the minimum value such that all physical constraints on J and h are satisfied.
A penalty that introduces large-magnitude couplings or local fields is undesirable as it will often result in a
larger factor V, reducing the effective dynamic range of qubit interactions for the unconstrained part of the
problem.

Other methods of encoding constraints in QA have been proposed as alternatives to the quadratic penalty
method. One approach is to engineer interactions in the driver Hamiltonian H), that only allow for
transitions between feasible states, thereby naturally limiting the search space to the feasible subspace [25,
26]. This method can be combined with an encoding scheme in which qubits represent the parities of
products of spin variables [27, 28]. While the approach of re-engineering Hp would avoid the mentioned
limitations of the quadratic penalty method, it requires multi-qubit interactions that can be challenging to
physically implement. Currently, there are no commercial quantum annealers that support these
interactions. A different method uses small Ising problems called gadgets that are designed to have properties
that allow them to be combined in such a way to encode the original constrained problem [29-31]. To create
the gadgets, ancillary qubits are used. The layout of the gadgets can be tailored to a device’s hardware, leading
to a better efficiency than the quadratic penalty method in terms of dynamic range and the number of
physical qubits required after minor embedding.

In this work, we consider the use of linear Ising penalty functions for linear equality constraints.
Non-Ising linear penalty functions have been used by classical solvers [32]. For example, the penalty function
o ‘Z?:1 HiXi — c‘ implements the general linear equality constraint in equation (9). Computing this type of
penalty on a quantum computer requires the introduction of ancillary qubits because of the non-Ising
operation | - |. This has been demonstrated in the context of the quantum approximate optimization
algorithm [33]. Instead, we remove the non-Ising operator and use a linear Ising penalty function of the form

P(x) = a; <Zﬂ:wa> (18)
i=1

for the equality constraints in equation (6). Here, o is a penalty strength that can be positive or negative.
Due to the removal of the non-Ising operation, property (ii) of a conventional penalty function is no longer
fulfilled. Therefore, this penalty method is not always successful in producing a feasible solution as the
ground state of Hp. We make this trade-off so that the penalty function can be implemented with no ancillary
qubits or couplings, thereby avoiding many of the drawbacks of the quadratic penalty method. The linear
Ising penalty method has previously been suggested for QA in the contexts of portfolio optimization [4] and
quantum machine learning [19]. In the rest of this paper, the term linear penalty is used to refer to linear
Ising penalties of the form in equation (18) rather than linear penalties with non-Ising operations.

Recent work by Ohzeki [18] demonstrates a method for implementing constraints with linear terms by
applying a Hubbard—Stratonovich transformation [34, 35] to the partition function of a QUBO objective
function. Although Ohzeki uses a different mathematical motivation to what we present here, their work
arrives at an algorithm that is effectively the same as applying linear penalties, where 1 in equation (18) is
viewed as a Lagrange multiplier. This method is sometimes unsuccessful in exactly implementing hard
constraints [36]. In this work, we quantify the prevalence of instances that cannot be exactly constrained by
the linear penalty method, which previous work does not do. The problems considered in this work have
objective functions with non-negative quadratic coefficients, which gives them a structure that makes them

Hp Hp, (17)

5
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particularly amenable to the linear penalty method [20]. For cases in which sampled solutions do not satisfy
all constraints, a post-processing algorithm has been proposed that obtains feasible solutions from infeasible
solutions while minimizing the number of bit flips performed on the solution [36]. In this work, we use a
different strategy of switching to using quadratic penalties for constraints that are not being satisfied while
applying linear penalties to the other constraints.

The linear penalty function in equation (18) corresponds to the application of local fields equal to —a; /2
in the Ising formulation, up to a constant offset. Since this does not contribute any additional couplings to
Hp, the resulting minor embedding will often use fewer physical qubits than when the quadratic penalty
method is used. Furthermore, the maximum coupling strength is unchanged, and the magnitude of the local
fields that are applied by the penalty are not dependent on the values of v, and |1, /2 — Al, but only on «;.
This can result in a smaller normalization factor A/, which typically results in better performance. Such
improvements in effective dynamic range and performance have been observed in numerical
simulation [20]. Since in practice the linear penalties will have to be found iteratively, as discussed in detail in
[20], the use of linear penalties can be viewed as a hybrid quantum—classical algorithm [37].

The amount by which the linear penalty in equation (18) penalizes a solution depends only on the
Hamming weight of the variables involved in the penalty, which is the number of those variables equal to one
in a solution. A linear penalty with a negative value of ; energetically favors states in which the variables
involved with the constraint have a larger Hamming weight, whereas a positive o favors smaller Hamming
weights. To implement a constraint, o should be tuned such that the ground state of Hp has the desired
Hamming weight. As previously mentioned, it is not guaranteed that such a value of a; exists.

It is important to consider the type of constraint and structure of the objective function when deciding
whether the linear penalty method is suitable. Due to our assumption that C is non-negative, the example
promotion cannibalization problems in this work have objective functions comprised solely of non-negative
quadratic coefficients. In [20], it is explained that problems with this structure are more often able to be
successfully constrained with the linear penalty method compared to random QUBO problems with both
positive and negative couplings. Another important aspect of our examples is that the constraints we encode
with linear penalties are equality constraints on the Hamming weights of variables. It is not clear whether the
linear penalty method is as effective for other types of linear constraints. As a rule of thumb, Hamming
weight equality constraints on variables that only have non-negative quadratic term coefficients in the
objective function are good candidates for linear penalties, but this does not mean that other types of
constraints are not good candidates.

One example problem where we do not expect the linear penalty method to always be effective is the
knapsack problem, which has a linear objective function and a single linear inequality constraint. This
constraint differs to our example problems in that it is not a function of Hamming weight and is not an
equality. If a linear penalty could implement the constraint, the penalized objective function would be trivial
to solve as it would be entirely linear. Assuming the linear penalty strength could be tuned in polynomial
time, this would render the NP-hard problem trivial and thus show that P = NP. Note that typical knapsack
problem instances are known to be easy [38], so it is possible that the linear penalty method works well for
most, but not all, instances without requiring that P = NP. In fact, creating hard knapsack problem instances
is an active area of research [39]. Further work is required to assess how effective the linear penalty method is
for other types of constraints.

The constraints C2 and C3 are inequality constraints, which we encode with quadratic penalty functions.
For the constraints C3, penalties of the form

P(x) = i gXi g1 (19)
are sufficient. For the constraints C2 with a range A = Bpax — Bmin, binary encoded slack variables
s € {0,1}*°%(A+1) can be used to encode these four constraints with penalty functions of the form
2

log, (A+1)

p
P(x,8) = ZXW — Bhax + Z Zjilsj,q (20)
i=1

i=1
for cases where A + 1 is a power of two.

3. Numerical and experimental methods

This work made extensive use of the Python programming language [40] along with the NumPy [41] and
SciPy [42] libraries to perform computationally intensive calculations and Matplotlib [43] to produce plots.
The weighted least-squares method implementation in scipy.optimize.curve_fit was used to obtain

6
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linear fits. PyQUBO [44] was used as a convenient tool for the formulation of QUBO and Ising
problems. The code and data produced for this work can be found online [45].

Gurobi Optimizer [46] was used through the GurobiPy Python interface to find optimal solutions of
problem instances as well as their minimum and maximum objective values. Although Gurobi optimizer is
an exact solver, it operates at an adjustable numerical precision, which can lead to minor differences in
results depending on the software version and solver parameters being used. This work used Gurobi version
10.0.2 with a single thread and all other solver parameters set to their default values.

The C matrices used in our tests on the D-Wave annealer were generated with symmetric off-diagonal
elements C; j = C;; selected uniformly at random from the interval [0.1, 1). All main diagonal elements C; ;
were set to 0. These C matrices were made sparse by setting some of the off-diagonal elements equal to 0. A
minimum number of nonzero elements per product was chosen, and matrix elements C; ; were randomly
selected and set to zero if both products i and j had more than the minimum number of nonzero elements.
This was repeated until all matrix elements had been considered. In the context of C matrices, we use the
term ‘connectivity’ to refer to the number of nonzero cannibalization interactions with other products for a
given product. This is not to be confused with hardware connectivity, which refers to the physical couplings
available between physical qubits. For our analysis of the single-quarter promotion cannibalization problem,
10 000 instances with 100 products were generated with the minimum connectivity for each product set to 3.
Since some products will have more than the minimum number of nonzero elements, the average
connectivity is /= 3.4 for these instances. Another 10 000 instances were generated for the D-Wave runs on the
four-quarter problem with 10 products. For these, the minimum connectivity was set to 5 and the average
connectivity is ~ 5.1.

QA experiments were conducted on the Advantage system6.3 QPU [13], which is a D-Wave Advantage
quantum annealer. We used the D-Wave Ocean SDK [47] to interface with the annealer. For each problem
instance, 1000 solutions were sampled by the annealer. The find_embedding function in Ocean was used to
calculate minor embeddings before problems were submitted to the annealer. The find_embedding
function takes a seed parameter as an input, which affects the resulting embedding. We set this parameter to
a different value for each problem instance for all experiments other than in the case of experiments on the
single-quarter promotion cannibalization problem using the quadratic penalty method, where the first 100
instances’ minor embeddings were reused for the rest of the problem instances to save computation time. For
cases where the problem was fully connected, we considered using the £ind_clique_embedding function
instead; however, we found that although this heuristic provided more efficient minor embeddings, using
find_embedding resulted in better performance on average. We explain why we believe this occurs in
appendix A. Therefore, all results that we present in this paper are with the minor embeddings calculated
with find_embedding. Chain strengths were calculated by the uniform_torque_compensation function
in D-Wave Ocean with a prefactor of 1.414, which is the default behavior in Ocean.

To determine the value of the quadratic penalty strength o, used in experiments, the simulated annealing
algorithm [48] was utilized. Simulated annealing runs were performed on the Hamilton high performance
computing cluster at Durham University with the SimulatedAnnealingSampler sampler in Ocean. The
solver was set to sample 1000 solutions with a random seed of 0. All other solver parameters were set to their
default values.

4. Minor embedding improvements

As mentioned in section 2, one of the advantages of using the linear penalty method over the quadratic
penalty method is that it does not introduce any new couplings that do not already exist in Hp. For QA on
D-Wave hardware, this results in fewer physical qubits being used after minor embedding. In order to
demonstrate this difference in minor embedding efficiency between the linear and quadratic penalty
methods when solving the single-quarter problem, we plot two example minor embeddings in figure 1.
These correspond to the logical graph of the instance with ID 100_0 and were both calculated by the
find_embedding function in D-Wave Ocean. The minor embedding with the linear penalty method uses
189 physical qubits, whereas 1282 physical qubits are used with the quadratic penalty method. This
substantial difference arises because the quadratic penalty requires a fully connected logical graph, whereas
the linear penalty maintains the sparsity of the logical graph.

To quantify how the minor embedding efficiency of the penalty methods scale with problem size, we have
calculated minor embeddings of the four-quarter promotion cannibalization problem onto the hardware
graph of the D-Wave Advantage_system®6.3 for various different numbers of products. In figure 2, we show
how the average chain length (i.e. the number of physical qubits per logical variable) after minor embedding
scales with the problem size for problems with sparse C matrices. We observe that the average chain length

7
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(c)

Figure 1. (a) Logical graph of an instance of the single-quarter promotion cannibalization problem with 1, = 100 products and
without any penalty functions applied. Nodes represent variables and edges represent couplings. (b) An example of a minor
embedding of the problem instance onto the working graph of the D-Wave advantage QPU after applying a linear penalty. The
linear penalty does not change the logical graph of the problem. Nodes representing physical qubits are colored based on the
logical variable they represent. Black edges represent couplings between different variables. Qubits and couplings that are unused
are colored in grey. (c) An example of a minor embedding of the same problem instance where the quadratic penalty method is
used instead. The quadratic penalty results in a fully connected logical graph, which requires more physical qubits to minor
embed than with a linear penalty.
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Figure 2. Average chain length after minor embedding a four-quarter promotion cannibalization problem onto the D-Wave
Advantage hardware graph against the number of products 7, in the problem. We consider the case of an inequality constraint on
the number of promotions per product that introduces one slack variable per product. Hence, the number of logical variables is
51,. The C matrices are assumed to be sparse, with a minimum connectivity of 3. We compare the use of quadratic penalties
(orange) against linear penalties (blue) for the constraints on the number of promotions per quarter, using the find_embedding
function to calculate the minor embeddings. These points are averaged over 10 possible structures of the C matrix and given
linear fits. We also plot the average chain length after embedding with the find_clique_embedding function in red, with the
red shaded region representing the regime in which switching to this embedding heuristic would produce an embedding that uses
fewer physical qubits. The green line represents the chain length if the problem could be directly mapped to the hardware (i.e. 1).

scales much more favorably when using linear penalties for the constraints on the number of promotions per
quarter than when using quadratic penalties.

As the number of physical qubits of a quantum annealer is limited, it is not always possible to find a
minor embedding that fits onto the hardware. By producing minor embeddings with fewer physical qubits,
the linear penalty method allows for larger problems to be tackled than what is possible with the quadratic
penalty method. When using the annealer to solve multiple problems in parallel, smaller embeddings make it
possible to embed more problem instances on the hardware, which saves compute time. We have not
attempted this type of parallelization in our experiments.

The reduction in average chain length when using the linear penalty method may also lead to better
performance in minimizing the objective function. As the chain length for a particular logical variable is
increased, it becomes less likely that all associated physical qubits are measured to be in the same state at the
end of an anneal. In cases where there is a disagreement between the physical qubits, which is called a chain
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break, some strategy is applied to interpret the value of the logical qubit. A common strategy is a majority
vote. Shorter chains have been observed to produce better performance [49, 50].

5. Performance on a D-Wave quantum annealer

We have evaluated the performance of the D-Wave Advantage_system6.3 quantum annealer in solving
promotion cannibalization problems using the linear and quadratic penalty methods, and we present our
results in this section. In section 5.1, we consider the single-quarter promotion cannibalization problem, and
in section 5.2, we consider the four-quarter problem.

5.1. Problem with a single constraint

In this subsection, we consider the formulation of the promotion cannibalization problem in which we want
to find a promotion plan for a single fiscal quarter. We examine the case where there are 1, = 100 products to
choose from. The only constraint in this problem is the desired number of promotions A, which we choose to
be 50. While it is unusual for a retailer to promote half of their available products in a single quarter, we can
imagine a more realistic scenario in which the 100 products in the problem are a selection of products that
have been determined to be the most promising products to promote out of a larger set of available products.
In this scenario, the quantum optimizer is being used to select from these 100 candidate promotions. The C
matrices we have used for this problem have an average connectivity of ~ 3.4. Even at this level of sparsity, the
optimal solutions of all the constrained problem instances we generated have nonzero total cannibalization.

The quadratic and linear penalty methods behave differently when their penalty strengths «; and «; are
changed. For the quadratic method, a; must be large enough to produce a feasible ground state in Hp but
not so large that it hinders the quantum dynamics. Typically, there is a wide range of «, values that produce
near-optimal performance. Figures 3 and C1 show examples of this behavior in the case of simulated
annealing. In comparison, for the linear penalty method, the value of o; determines the value of the
constraint. More precisely, the value of A in equation (12) increases monotonically as «; is decreased.
Therefore, performance can often be more sensitive to the value of «;. This is explored in more detail in [20].

As suggested in [4], a value of o that correctly implements the constraint in the single-quarter problem
can be found with a simple search strategy that samples solutions and decreases (increases) «; if the
Hamming weight of the best found solution is too low (high). This strategy relies on the monotonic
relationship between «; and A. For some problem instances, there is no value of «; that produces the desired
constraint. Mirkarimi et al [20] provides a more detailed discussion of searching for «; in problems with a
single linear penalty and why a good value cannot be found for some instances®. In our analysis, we choose a
value of o for each instance uniformly at random from the range of values that produce the correct ground
state (if it exists and could be found up to a finite precision). These are not necessarily the optimal values of
a; instead, they approximately represent the typical «; values that would be found by a search strategy. Out
of 10 000 problem instances that were randomly generated, there were 1406 instances for which a value of o
that produced the correct ground state could not be found. The D-Wave runs in this subsection were
performed on 1000 instances that were randomly selected from the remaining 8594 instances for which the
linear penalty method was able to produce the desired constraint.

Since the quadratic penalty method is not as sensitive to the value of the penalty strength as the linear
penalty method, using a single value of «, for all instances often works well in practice. For all single-quarter
problem instance considered here, we set v, = 1.2. We arrived at this value by considering the fraction of
solutions sampled by a simulated annealing algorithm that are optimal or feasible for 200 randomly selected
problem instances as a function of av,, which is plotted in figure 3. The fraction S of optimal solutions was
normalized by the maximum value Sy, for each instance to prevent the average from being dominated by a
few instances for which S is large. For the sake of transparency, we show the data without normalization in
appendix B. In figure 3(a), we can see that the average value of S/S,.x peaks near o, = 1.2. Figure 3(b) shows
that o, = 1.2 also produces a large fraction F of solutions that are feasible for the majority of instances.
Although the large confidence interval in figure 3(a) indicates that there are some instances for which
a, = 1.2 does not produce a near-optimal probability of sampling an optimal solution, the fact that the
average value of S/Sy,y is around 0.5 implies that S is not far from its maximum value for the majority of

4 Mirkarimi et al [20] shows that by only having non-negative coefficients in the objective function of this promotion cannibalization
problem, the minimum objective value of solutions monotonically increases with Hamming weight. This structure makes it more likely
that a constraint can be exactly implemented with a linear penalty, but the gradient of a plot of minimum objective value against Hamming
weight would also need to be monotonically increasing to guarantee that a constraint can always be implemented, which is not always the
case for this problem.
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Figure 3. (a) For a simulated annealing algorithm solving the single-quarter promotion cannibalization problem with different
values of the penalty parameter a;, we plot the fraction S of sampled solutions that are optimal normalized by the maximum
measured fraction Smax. The points are averaged over 200 instances of the problem, with error bars representing the standard
error in the mean. The blue shaded region contains the 5th to 95th percentile values of S/Smax. Note that Smay is calculated for
each instance separately and is a maximum over the plotted values of cv,. (b) Same as (a), with the y axis instead showing the
fraction F of sampled solutions that are feasible.

instances. While we do not expect the D-Wave quantum annealer to behave exactly the same as the simulated
annealing algorithm considered here, the broadness of the peaks in figures 3(a) and C1(a)—(c) suggests that
our results from the quantum annealer would not be substantially impacted by small changes in our choice
of ;.

In this example problem, a quadratic penalty introduces many new couplings, and this has a large impact
on the minor embedding, as seen in the example in figure 1. Since the quadratic penalty acts on all variables,
it produces a logical graph that is fully connected. For the 1000 problem instances that we have used in our
D-Wave tests, = 1286 physical qubits are used on average to minor embed the 100 logical variables when the
quadratic penalty method is used. In contrast, no new couplings are introduced when the linear penalty
method is used, so the only couplings that exist come from the matrices C, which are sparse. After minor
embedding, ~ 156 physical qubits are used on average when the linear penalty method is used for the same
problem instances. This is a very significant reduction in the number of physical qubits, and we expect it to
improve performance.

Since the constraint value of A = 50 promotions is exactly half of the total number of products , in this
problem, the quadratic penalty for this constraint (equation (16)) applies no local fields and only contributes
to the couplings. This means that the dynamic range improvements from switching to linear penalties are not
as significant as they would be for other constraint values, where the quadratic penalty would introduce
strong local fields. For the problem instances used in this subsection, the maximum coupling strength
max(|J;j|) is ~ 2.21 x larger and the maximum local field strength max(|h;|) is ~ 1.26 x larger when the
quadratic penalty method is used than when the linear method is used. Therefore, switching to the linear
penalty method is expected to improve the dynamic range of qubit interactions by reducing the value of N in
equation (17). We suspect that this improvement does not impact performance as significantly as the
improvement in minor embedding efficiency in this experiment.

The results of the D-Wave annealer runs on the single-quarter problem are shown in figure 4. In
figure 4(a), we can see a noticeable increase in the fraction of sampled solutions that are feasible when the
quadratic penalty is replaced with a linear penalty. Out of the 1000 problem instances, there were 117
instances that the quantum annealer did not sample any feasible solutions for using the quadratic penalty
method, compared to only 4 instances with the linear penalty method. Figure 4(b) shows histograms of the
approximation ratios R of the best feasible solutions that were sampled. With the quadratic penalty method,
the quantum annealer is only able to sample low-quality feasible solutions, whereas with the linear penalty
method, the annealer finds optimal and near-optimal solutions. Optimal solutions were found for 541 of the
instances using the linear penalty method. There is a clear advantage of using the linear penalty method over
the quadratic method in this example, which we presume is primarily due to the improvements in minor
embedding efficiency.
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Figure 4. (a) Histograms of the fraction F of 1000 D-Wave annealer samples that are feasible solutions for 1000 instances of the
single-quarter promotion cannibalization problem. Samples were taken using the linear penalty method (blue) and the quadratic
penalty method (orange) to encode the problem’s constraint. (b) Histograms of the maximum approximation ratios R of the
same D-Wave sample sets. Note that the two histograms are using different bin widths to make the shapes of their distributions
clearer. The inset zooms into the region showing the histogram for the linear penalty method so it can be seen more clearly.

5.2. Problem with multiple constraints

In this subsection, we consider the promotion cannibalization problem with four fiscal quarters, r, = 10
products, and multiple constraints. The seasonal scale factors in equation (5) are set to

A= (1.5,1.0,1.0,1.5)" for all problem instances. We use either the linear or quadratic penalty method for
the constraints C1 on the number of promotions per quarter, while constraints C2 and C3 are implemented
with the quadratic penalty method only. For the constraints C1, we have set A = 4, which requires four out of
the ten products to be promoted in each quarter. For the constraints C2, we have set Byin = 1 and Bpin = 2,
which requires each product to be promoted once or twice in total. Note that this introduces 10 extra
variables with the slack variable encoding used in equation (20), bringing the total variable count to 50 for
this problem.

The C matrices used in this problem have an average connectivity of ~ 5.1, making them more dense
than those used in the single-quarter problem. This is due to the smaller number of promotions per quarter
in this problem, which results in optimal solutions with zero cannibalization occurring frequently if the C
matrices are made more sparse. Our choice of problem size is limited by the performance of the D-Wave
annealer. In real-world problems, the number of products and promotions would be much larger, so sparser
C matrices would still produce optimal solutions with non-zero cannibalization.

In contrast to the single-quarter promotion cannibalization problem, the four-quarter problem has many
constraints that can each take a different value of the penalty strength. In our analysis, we used a different
value of «, for each of these three sets of constraints C1, C2, and C3. In line with the previous subsection, the
vy, values were chosen using simulated annealing runs. The results of these runs and our chosen values of «;,
are shown in appendix C.

When there are multiple constraints that we are using the linear penalty method for, the different linear
penalties can interact with each other, making the search for ; values more difficult. In other words,
changing the penalty strength for a particular constraint does not just change the assignment of the variables
within the constraint, but it can also change the assignment of other variables through their couplings.
Nevertheless, we have implemented a simple search strategy that, when paired with a solver that returns the
optimal solution, works well in practice for the four-quarter problem instances. This search strategy is
detailed in appendix D. We are not certain whether a search strategy that can efficiently find penalty
strengths that produces a feasible ground state (up to a desired precision) exists for the four-quarter problem.
However, we suspect that the fact that the problem has non-negative couplings makes it likely that such a
strategy exists, as in the case for the single-quarter problem.

We first compare the use of linear penalties for all four constraints C1 against the use of all-quadratic
penalties. Out of the 10 000 randomly generated problem instances, we were able to find values of «; that
produced feasible optimal solutions for 6066 of them. For 3082 of these instances, using the same value of «;
for each of the four linear penalties was successful. In this set of D-Wave runs, we used 1500 instances that
were randomly selected from the 3082 instances that can be constrained with the same «; parameter for each
quarter. The specific value of «; for each instance was chosen uniformly at random from the range of values
that produce feasible ground states, like in the previous subsection.

11



10P Publishing New J. Phys. 26 (2024) 103005 P Mirkarimi et al

400 F 300
¢ (a) (b)
e 250+
©
% 300
£ 200F
S
o
-§ 200 F 150 +
o
-
S 100 +
L 100}
£ 501
=2
% 1 1 1 1 0 1 1 1 1
.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0
F max(R)

Figure 5. (a) Histograms of the fraction F of 1000 D-Wave annealer samples that are feasible solutions for 1500 instances of the
four-quarter promotion cannibalization problem. Samples were taken from the D-Wave annealer using the linear penalty method
(blue) and quadratic penalty method (orange) to encode the constraints on the number of promotions per fiscal quarter. Note
that the two histograms are using different bin widths so that the shapes of their distributions are clearer. (b) Histogram of the
maximum approximation ratios R of the D-Wave sample sets using only quadratic penalties. A histogram for the linear penalty
method sample sets is not shown because max(R) was equal to 1 for all but nine of the instances.

In figure 5, we show histograms of the fraction of samples that are feasible and the approximation ratio of
the best feasible sample for both penalty methods. The quality of the solutions is significantly enhanced
when switching the penalties on each quarter from quadratic to linear, which is in alignment with our
previous findings for the single-quarter problem. The penalty scheme involving four linear penalties found
feasible solutions for all 1500 instances and found optimal solutions for 1491 of them. In comparison, the
scheme using all-quadratic penalties was not able to find feasible solutions for 21 of the instances and found
the optimal solution for only 55 instances.

As mentioned above, there were 3934 instances for which we could not find values of «; that correctly
implemented all of the constraints in the ground state of Hp. This is unavoidable for some problem instances,
and it may happen more frequently as the problem size is increased. It will also be more common for some
problems that are formulated differently to the promotion cannibalization problem. We propose that in these
cases, linear penalties that are not working as intended can be switched to quadratic penalties while keeping
as many linear penalties as possible. This can be done by switching the misbehaving penalties from linear to
quadratic one by one until the best sampled solution satisfies all of the constraints. To investigate whether
such a method would work well in practice, we have taken the 3934 instances for which we could not
implement all four constraints C1 with linear penalties and attempted to find linear penalty strengths for a
strategy where two quarters have linear penalties applied and two have quadratic penalties applied. 2298 of
these instances were amenable to this approach.

We performed another set of D-Wave annealer experiments on the 2298 instances for which the linear
penalty method applied to all quarters does not produce the correct ground state but a combination of linear
and quadratic penalties does. Due to our choice of seasonal scale factors A = (1.5,1.0,1.0,1.5)T, there is a
symmetry in the problem that results in the objective value of a solution remaining the same if the promotion
plans for the first & fourth quarter and the second & third quarters are swapped. Therefore, to fix linear
penalties that produce the wrong Hamming weight, penalties should be switched from linear to quadratic in
pairs. Specifically, the only two linear-quadratic penalty combinations that can potentially fix misbehaving
penalties are those where the first and fourth quarters have quadratic penalties (QLLQ) or where the second
and third quarters do (LQQL). By the same symmetry argument as before, in the cases were LQQL or QLLQ
is successful in producing a feasible ground state, the two «; values can always be chosen to be the same. In
our D-Wave annealer runs, we used the same «; value for each pair of linear penalties. As before, these values
were randomly chosen from the range of a; values that produce feasible ground states for each instance.

Our tests on the quantum annealer show that using quadratic penalties for all four quarters produces
feasible solutions more often than when two of the penalties are quadratic and two are linear, as shown in
table 1. The LQQL and QLLQ schemes were only applied to the subset of instances for which the
corresponding scheme produced the correct ground state, which means their results are not directly
comparable as the instances in each set are not the same. With this caveat in mind, we note that the LQQL
scheme produced feasible solutions for a larger fraction of instances than the QLLQ scheme.

The objective values of the best solutions sampled with the LQQL and QLLQ schemes are very close to
those when using the all-quadratic penalty method. This is unlike the results of our previous tests where the
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Table 1. Fraction of problem instances for which a feasible solution was found in at least one of the 1000 D-Wave samples for the
four-quarter promotion cannibalization problem. We compare the penalty scheme of applying quadratic penalties to all four quarters
against the schemes of using linear penalties for the first and last quarters (LQQL) or the second and third quarters (QLLQ).

Fraction of problem instances for

Penalty scheme which a feasible solution was sampled
All-quadratic ~0.96
LQQL ~0.75
QLLQ 0.60
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Figure 6. Difference in objective value f(x) of the best feasible sample using the all-quadratic penalty scheme versus the (a) LQQL
penalty scheme or (b) versus the QLLQ penalty scheme. A negative difference (green) indicates that the LQQL/QLLQ scheme
found a higher quality solution, and a positive difference (red) indicates that the all-quadratic scheme found a higher quality
solution. One instance for which the difference in best objective value was zero is left out in (a).

linear penalty method produced a significant improvement over the all-quadratic method. Therefore, a more
rigorous analysis is required here to accurately compare the subtle differences in performance between the
penalty schemes. To do this, we compare the solution objective values on a per-instance basis in order to
avoid comparing results for instances that are more difficult to solve against results for easier instances. We
leave out instances for which one of the penalty methods being compared failed to find any feasible solutions.

In figure 6, we plot histograms of the difference in objective values between the best feasible solutions
sampled using the all-quadratic penalty scheme and the LQQL or QLLQ scheme. For each instance, a
negative difference in f{x) indicates that the introduction of the linear penalties resulted in a higher quality
solution being sampled, and a positive difference indicates that it resulted in a lower quality solution. There
were 741 instances for which the LQQL scheme improved the quality of the best solution compared to the
all-quadratic scheme and 592 instances for which the LQQL scheme worsened the quality of the best
solution. For the QLLQ scheme, there were 179 instances for which the scheme improved the quality of the
best solution and 265 instances for which the scheme worsened the quality of the best solution.

It appears that LQQL had a slight positive impact on the solution quality whereas QLLQ had a slight
negative impact, but it is unclear from this analysis alone whether these results are statistically significant. To
determine this, we can perform hypothesis tests on the number of times #;, that the LQQL or QLLQ scheme
found a lower energy feasible solution (i.e. performed better) than the all-quadratic penalty scheme and the
number of times n,, where it could only find higher energy feasible solutions (i.e. performed worse). We
ignore one case where the performance was the same. Our null hypothesis is that there is an equal probability
of better or worse performance than the all-quadratic scheme. The statistical significance of this is given by

1 ny+,y 1+ 1oy
P= S D ( i ) (21)

k:nb

where Z is the binomial coefficient. This is effectively the probability that the penalty scheme being

considered would happen to perform better than the all-quadratic scheme at least as many as times if there
was a 50% chance of it performing better for any given instance. Conventionally, p < 0.05 indicates a
statistically significant result that rejects the null hypothesis [51] and confirms that the penalty scheme under
consideration performs better than the all-quadratic scheme. We can also use this as a test for whether the
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penalty scheme performs worse than the all-quadratic scheme. We define p = 1 — p. A value of p < 0.05 is
also a statistically significant result, and it confirms worse performance than the all-quadratic scheme.

Substituting n, = 741 and n,, = 592 gives p = 2.5 x 107>, which confirms the statistical significance of
our result that the LQQL scheme finds higher quality solutions for more instances than the all-quadratic
scheme. Substituting n, = 179 and n,, = 267 gives p = 1.2 x 10>, which shows that the result indicating
that the QLLQ scheme finds higher quality solutions for fewer instances than the all-quadratic scheme is also
statistically significant.

Why does switching half of the constraints from quadratic to linear penalties have such a small effect on
performance compared to switching all penalties to linear? We suspect that the reason for this is that the
dynamic range improvements from using linear penalties are a significant factor in improving performance
in this example problem, and having a single quadratic penalty on one of the quarters is enough to eliminate
most of these dynamic range improvements. Each Hamiltonian is normalized based on its largest magnitude
values of J; ; and h;. In some scenarios, a single quadratic penalty is enough to bring the largest magnitude J; ;
or h; value up by as much as if all penalties in the problem were made quadratic. In this example problem, if a
quadratic penalty is placed on a quarter with the largest scale factor A; = 1.5, the largest magnitude J;; and &;
values are the same as if all four quarters had quadratic penalties. If placed on one of the quarters with
Aq = 1, there will be a less severe normalization of Hp than if all penalties were quadratic, but this still would
not be as efficient with the dynamic range as using linear penalties for all four quarters.

Indeed, we observed that max(|J; j|) and max(|h;|) are both unchanged when using the QLLQ scheme
instead of the all-quadratic scheme because the quarters with large values of \; have quadratic penalties
applied in both cases. When using the LQQL scheme, max(|J; j|) is reduced by ~ 1.14 x and max(|h,]) is
reduced by ~ 1.13x on average compared to using all-quadratic penalties. This is a small improvement
compared to what we observed when using linear penalties for all quarters, where max(|J;;|) was reduced by
~ 2.66x and max(|h;|) was reduced by ~ 2.25x on average compared to the all-quadratic scheme. This
suggests that the effective dynamic range when using the LQQL or QLLQ schemes is closer to that when
using the all-quadratic scheme than when using the linear penalty method for all quarters. It supports our
reasoning for why a more significant performance enhancement is not observed with LQQL or QLLQ in this
case.

For this example problem, the LQQL and QLLQ schemes are instead more successful in improving the
minor embedding efficiency. Averaged over all instances that each penalty scheme was applied to, the
number of physical qubits used after minor embedding is ~ 155 for LQQL and QLLQ, compared to ~ 168
for all-quadratic penalties and ~ 139 for linear penalties applied to all quarters. We expect that at larger
problem sizes, both the minor embedding and dynamic range improvements would be more significant and
lead to a clear performance advantage in using the LQQL or QLLQ schemes. The expected improvements in
dynamic range and minor embedding also depend on the formulation and sparsity of the problem, and a
much larger improvement might be observed for other problems with multiple constraints.

The difference in dynamic range improvement between the LQQL and QLLQ penalty schemes is likely
the reason why the LQQL scheme performed slightly better than the all-quadratic scheme in finding
low-energy solutions, whereas the QLLQ scheme performed slightly worse (figure 6). It also explains why we
found that the LQQL scheme produces feasible solutions more often than the QLLQ scheme (table 1).
Looking beyond this example promotional cannibalization problem, we infer that in order to make the most
of the dynamic range improvements of the linear penalty method, the quadratic penalties that have the
largest effect on dynamic range should prioritized when switching to linear penalties.

6. Conclusions

Using a D-Wave quantum annealer, we have experimentally tested the linear penalty method for encoding
equality constraints in quantum optimization. Our analysis was performed on two simplified forms of an
optimization problem that is of interest in customer data science. One of the example problems contains a
single constraint, whereas the other contains multiple constraints.

For most instances of the problem with a single constraint that we have considered, we have found that
the linear penalty method is able to exactly implement the desired constraint, but there are some instances
for which it cannot. For the problem instances with multiple constraints, applying linear penalties to four of
the constraints is successful in a smaller (but still significant) fraction of instances. We found that switching
some of the penalties from linear to quadratic is able to increase the fraction of instances that can be
successfully constrained.

We observed a significant improvement in the performance of the quantum annealer when using the
linear penalty method for the problem with a single constraint. With a quadratic penalty, the quantum
annealer was not able find high quality solutions for any of the problem instances. Switching to a linear
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penalty function resulted in the quantum annealer finding the optimal solution for over half of the problem
instances and finding near-optimal solutions for most of the other instances. Note that there are other
methods of implementing constraints that we have not considered here, and our observation of a
performance improvement when using linear penalties is specifically a comparison against the quadratic
penalty method.

For instances of the problem with multiple constraints in which linear penalties were successful in
implementing four of the constraints, the performance of the quantum annealer was again significantly
enhanced by the use of linear penalties. For problem instances that could not be successfully constrained
with four linear penalties, switching two of the linear penalties to quadratic penalties resulted in a much
smaller difference in performance when compared to the all-quadratic penalty scheme. We found that there
is a small but statistically significant improvement in the quality of sampled solutions when the two linear
penalties are applied to the constraints that have a larger impact on dynamic range, despite having a negative
impact on the feasibility of solutions. This suggests that a strategy of focusing on the penalties that have the
biggest impact on the dynamic range is worthwhile, which is something that can be determined without
actually performing any anneals. At larger problem sizes, where the minor embedding and dynamic range
benefits of linear penalties are greater, we predict a more substantial performance advantage of linear over
quadratic penalties.

The linear penalty method is more sensitive to its penalty strength parameter than the quadratic penalty
method, so there is often a need to make multiple calls to the solver in order to optimize the penalty strength
for each problem instance. This is usually not necessary for the quadratic penalty method. However, given
that quantum optimization is concerned with NP-hard problems that are expected to take exponentially long
to solve, we argue that running the solver more times is often a good trade-off to make for better
performance in sampling high quality solutions.

In conclusion, our findings indicate that the linear penalty method could play a role in enhancing the
performance of quantum optimization algorithms. Future research investigating problems with different
structures to those that we considered in this work would be beneficial in identifying the most suitable
applications of the linear penalty method. As quantum computing hardware matures, it would be interesting
to test the performance of the linear penalty method at larger problem sizes and on different hardware
platforms.
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Appendix A. Comparison of minor embedding heuristics for complete graphs

Since the constraint in the single-quarter promotion cannibalization problem acts on all variables, the
corresponding quadratic penalty function produces non-zero couplings between all of the problem’s
variables. This makes the interaction graph of Hp complete (i.e. fully connected). D-Wave’s Ocean library has
a function called find_clique_embedding that can minor embed a complete graph onto the hardware
graph of a D-Wave advantage using fewer physical qubits than the find_embedding function. However, we
found that the performance of the annealer was slightly better on average when using the find_embedding
function, even though the embeddings used more physical qubits than that of find_clique_embedding.
Therefore, the results we showed in section 5 are all using find_embedding.

It appears that the reason for the better average performance of find_embedding is to do with the fact
that the chain lengths in these minor embeddings are so long that the placement of a chain of qubits on the
hardware graph strongly influences its value at the end of an anneal. Figure A1 compares two example minor
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Figure Al. (a) A minor embedding produced by the find_clique_embedding function, mapping the single-quarter promotion
cannibalization problem onto the hardware graph of the D-Wave advantage. The quadratic penalty method was used to encode
the problem’s constraint, resulting in a fully connected logical graph. Nodes and edges, representing physical qubits and
couplings, are colored according to the lowest energy solution sampled by the quantum annealer. Chains of qubits corresponding
to logical variables equal to 0 (1) are colored blue (orange). Edges representing couplings between two different logical variables
are colored black. Unused qubits and couplings are shown in grey. (b) A similar diagram for the case where the find_embedding
function was instead used to calculate the minor embedding. Note that find_embedding produces a different embedding
depending on the value of its seed parameter, so this is an example with one particular parameter value.

embeddings using these functions. The chains are colored based on the values of the variables in the lowest
energy solution that was sampled in each case. We can see that in both solutions, roughly half of the chains
correspond to logical variables equal to 0 and half equal to 1. This indicates that the problem’s constraint of
placing half of the products on promotion is close to being satisfied. Looking at the chains corresponding to
variables with the same value, we can see a structure that is highly dependent on the locations of the chains.
In particular, it appears that the solutions partition the variables in such a way that chains with more physical
couplings between them are more likely to take the same logical value. The objective function of the problem
does not exhibit such a structure. Therefore, the particular mapping of logical variables to physical qubits
must be influencing the values the variables take in the solutions.

For the two examples shown in figure A1, the lowest energy solution that was sampled using the
find_embedding function has a lower energy than the lowest energy solution using
find_clique_embedding, even though more physical qubits are used with the find_embedding
embedding. This is because the find_embedding function happened to result in a more favorable
arrangement of variables in the minor embedding when measuring the energy of the best found solution. We
note that we used a different value of the seed parameter in find_embedding for each problem instance,
resulting in a variety of different minor embeddings. The example in figure A1(b) is for one particular
instance. In comparison, find_clique_embedding does not have a seed parameter, so the function
produces the same minor embedding for every instance of the problem.

Appendix B. Quadratic penalty strength choice for the single-quarter promotion
cannibalization problem

The value of the quadratic penalty strength o, = 1.2 for our D-Wave experiments on the single-quarter
promotion cannibalization problem was chosen based on the results of simulated annealing runs on 200
randomly selected problem instances. One of the metrics we considered was the fraction S of simulated
annealing samples that were optimal solutions. This metric was normalized by the largest measured value of
S for each problem instance in order to avoid instances with large values of S dominating the average. The
average of this normalized data is plotted in figure 3(a). Our choice of a;, was also based on the fraction F of
sampled solutions that were feasible, which is plotted in figure 3(b). For transparency, we plot S without
normalization in figure B1(a) for the same selection of problem instances. We also plot the average of this
unnormalized data in figure B1(b), which peaks at a similar value as in figure 3(a). The same process was used
to determine the quadratic penalty strengths for the four-quarter problem, which is discussed in appendix C.
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Figure B1. (a) For a simulated annealing algorithm solving the single-quarter promotion cannibalization problem, we plot the
fraction S of sampled solutions that are optimal against the quadratic penalty strength «, for 200 different problem instances,
shown in different colors. Lines connecting the points for each instance are shown to guide the eye. (b) We plot the average of S
over the 200 instances with error bars representing the standard error in the mean. The blue shaded region contains the 5th to
95th percentile values of S.
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Figure Cl1. For a simulated annealing algorithm solving the four-quarter promotion cannibalization problem, we have measured
the fraction S of sampled solutions that are optimal and normalized this by the maximum measured fraction Spmax for 200 random
problem instances. This problem is formulated with three sets of quadratic penalties. In each plot, the penalty strength for one of
these sets of penalties is varied along the x-axis while the others are kept constant. The average of S/Smax is plotted against the
quadratic penalty strength for the constraints (a) C1, (b) C2, and (c) C3. Note that Syay is calculated for each instance separately
and is a maximum over the plotted values of agc:). In (d), (e), and (f), we plot the average fraction F of sampled solutions that are
feasible against the quadratic penalty strength for the constraints C1, C2, and C3 respectively. The blue shaded regions contain the
5th to 95th percentile values of S/Smax or F, and error bars represent the standard errors in the means. Where kept constant, the

(

quadratic penalty strengths are 04261) =24, Oégcz) =0.6,and Oég(B) =1.2.

Appendix C. Quadratic penalty strength choices for the four-quarter promotion
cannibalization problem

The values of the quadratic penalty strengths used in the four-quarter promotion cannibalization problem
experiments on the D-Wave annealer were chosen based on the results of a simulated annealing algorithm, as
was done for the single-quarter problem experiments. For the four-quarter problem, we assigned each of the

three sets of constraints C1, C2, C3 a separate quadratic penalty strength, which we denote aga) s agcz) ,and
a§C3) respectively. The penalty strengths that we picked are ozga) =2.4, agcz) = 0.6, and agcs) = 1.2. The

values were chosen to produce large probabilities of sampling optimal and feasible solutions based on the
simulated annealing results shown in figure C1.
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Appendix D. Linear penalty strength search strategy for multiple linear penalties

When applying the linear penalty method to more than one constraint in a problem, the process of searching
for values of the penalty strengths «; is more complex than when there is only a single linear penalty. This is
because changing a penalty strength for one constraint can affect the assignment of variables in another
constraint. To determine which four-quarter promotion cannibalization problem instances could have all
four constraints C1 satisfied with linear penalties, we used an o search strategy that is outlined with
pseudocode in algorithm 1. The function 1inear_penalty_strength_search attempts to find values of
a such that equation (6) is satisfied for each fiscal quarter, where A is the constraint value. It makes use of an
exact solver that is called through the get_num_ones function, which returns the Hamming weight of each
fiscal quarter in the optimal solution. If linear_penalty_strength_search finds the desired values of
oy within the maximum number of iterations specified by the parameters max_iterations_1 and
max_iterations_2, it returns these values. If not, it returns Null. In principle, a search strategy with a similar
structure can be used with a solver that is not exact, such as a quantum annealer.

Algorithm 1. Four-quarter linear penalty strength search.

1: function LINEAR_PENALTY_STRENGTH_SEARCH (A, max_iterations_1, max_iterations_2)

1 target_num_ones < [A,A,A,A] > Target Hamming weight for each fiscal quarter
3:  pen_strengths + [—1,—1,—1,—1] > Initial linear penalty strengths for each quarter
4:  prev_pen_strengths < [0,0,0,0] > Array to store previous penalty strengths
5:  step <+ 0.5 > Penalty strength step size
6:  steps < [step, step, step, step]

7:  num_iterations < 0
8
9

average_converged <— False > Flag for convergence of the average Hamming weight
high, low <— Null, Null > Variables to store penalty strengths that are too large or small
10: while (not average_converged) and num_iterations < max_iterations_1 do
11: num_iterations <— num_iterations + 1
12: quarters_num_ones <— get_num_ones(pen_strengths) > Call solver and get an array of Hamming weights
13: av_num_ones <— mean(quarters_num_ones) > Average over the Hamming weights for each quarter
14: if av_num_ones < A then > If the average Hamming weight is too small
15: high < pen_strengths > Penalty strength was too high
16: if low = Null then > If a penalty strength that is too low hasn’t been found yet
17: prev_pen_strengths <— pen_strengths
18: pen_strengths <— pen_strengths — steps > Reduce the penalty strength by the step size
19: else > Otherwise, perform a binary search
20: prev_pen_strengths <— pen_strengths
21: pen_strengths <— 0.5 x (low + high)
22: elseif av_num_ones > A then > If the average Hamming weight is too large
23: low < pen_strengths > Penalty strength was too low
24: if high = Null then > If a penalty strength that is too high hasn’t been found yet
25: prev_pen_strengths <— pen_strengths
26: pen_strengths <— pen_strengths + steps > Increase the penalty strength by the step size
27: else > Otherwise, perform a binary search
28: prev_pen_strengths <— pen_strengths
29: pen_strengths <— 0.5 x (low + high)
30: else
31: average_converged <— True
32:  if quarters_num_ones = target_num_ones then
33: return pen_strengths > If all quarters’ Hamming weights converged to A, we are done
34:  num_iterations < 0
35:  converged_all = False > Flag for convergence of all quarters’ Hamming weights
36:  step < 0.1 X step > Reduce the step size before the second search
37:  while (not converged_all) and num_iterations < max_iterations_2 do
38: num_iterations <— num_iterations + 1
39: quarters_num_ones <— get_num_ones(pen_strengths) > Call solver and get an array of Hamming weights
40: converged_all = True
41: for q < from 0 to 3 do > For each fiscal quarter

(Continued.)
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(Continued.)

42: if quarters_num_ones[q] < A then > If the Hamming weight for the quarter is too low
43: converged_all < False

44: if pen_strengths[q] > prev_pen_strengths[q] then

45; new_pen_strength < 0.5 X (prev_pen_strengths|q| + pen_strengths[q])

46: else

47: new_pen_strength <— pen_strengths|q| — step

48: prev_pen_strengths|q] < pen_strengths[q]

49: pen_strengths|q] <— new_pen_strength

50: else if quarters_num_ones[q] > A then > If the Hamming weight for the quarter is too high
51: converged_all < False

52: if pen_strengths[q] < prev_pen_strengths[q] then

53: new_pen_strength <— 0.5 X (prev_pen_strengths|q| + pen_strengths[q])

54: else

55: new_pen_strength <— pen_strengths|q] + step

56: prev_pen_strengths|q] <— pen_strengths[q]

57: pen_strengths(q] < new_pen_strength

58: step = step x 0.93 > Reduce the step size in each iteration
59: if not converged_all then

60: return Null > Return null if the search failed

61: return pen_strengths

The strategy performs two searches. The first search, which is performed in lines 10 to 33 in algorithm 1,
uses the same value of ) for each constraint and attempts to tune the value such that the average Hamming
weight of the variables of the four quarters is equal to A. It performs a maximum of max_iterations_1
iterations, where in each iteration, «; is increased if the average Hamming weight is larger than A or
decreased if it is greater than A. The value of ¢ is increased or decreased by an amount given by the step size
step until a value that is too low and one that is too high is found. After that, a binary search is used to narrow
down on a value of «; for which the average constraint value is equal to A in the optimal solution, if it exists.
Sometimes, this first search finds a value of o; where not only does the average constraint value equal A, but
also each quarter satisfies its individual constraint. In this case, the search is complete.

In cases where the first search does not produce an optimal solution in which all four constraints are
satisfied, a second search is performed. This corresponds to lines 37 to 58 in algorithm 1. This second search
performs a maximum of max_iterations_2 iterations with a smaller step size step than in the first search. The
key difference is that in the second search, the values of a; for the four quarters are tuned individually. For
each quarter, o) is increased or decreased depending on the Hamming weight of the variables associated with
that particular quarter. If the direction in which « is being changed is opposite to the direction of the
previous step, then the value of o is set to the midpoint of its current and previous values. Otherwise, the
amount by which «; is changed is equal to step. In each iteration, the value of step is reduced so that the
search becomes increasingly more precise.

In our runs of this search strategy, we used the parameter values max_iterations_1 = 20 and
max_iterations_2 = 100. However, the average number of iterations performed by the search strategy was
~ 13 for problem instances that we were able to find good «; values for, implying that much smaller values of
max_iterations_1 and max_iterations_2 can be used for this problem. Furthermore, the number of iterations
could be reduced by optimizing the values of step on line 5 of algorithm 1 and the multiplicative factors on
lines 36 and 58.

In parts of our work, we considered penalty schemes where some of the constraints C1 are implemented
with linear penalties and others with quadratic penalties. The «; search strategy in algorithm 1 was also used
in these cases. To account for the quadratic penalties, the function get_num_ones was changed to apply
quadratic penalties instead of linear penalties to the relevant quarters. The quarters with quadratic penalties
applied always have the correct Hamming weight in the optimal solution as long as «, is chosen to be large
enough. The function linear_penalty_strength_search returns linear penalty strengths even for
quarters that have quadratic penalties applied, which can be ignored.
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