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A B S T R A C T

In the last decade, pressure-based schemes such as Back Pressure and Max Weight algorithms
have been widely researched and applied for traffic signal control due to their simplicity
and proven throughput maximization. In such algorithms, the next chosen signal phase at an
intersection in a road network is the one with the highest measured weight, representing the
pressure of traffic movements at the intersection, determined based on a single characteristic
of the traffic flow or vehicles’ state at that intersection. This paper develops a new optimal
Max Weight control mechanism to enhance the network throughput and reduce vehicle delays
in a network using a concept of platooning enabled by Connected Vehicles (CVs). To this end,
we propose a new proven optimal Max Weight control scheme where the weight consists of
several features including the platoon delay, as well as the speed and position of vehicles
within the platoon. To the best of our knowledge, this work is the first to propose a platoon
pressure-based concept considering multiple configurable attributes in formulating the pressure.
Furthermore, we provide a rigorous stability proof that ensures the throughput optimality of
the proposed control scheme. In addition, we also develop a machine learning procedure in this
paper to optimize the weighting parameter of each attribute contributing to the total pressure
enabling its seamless deployment in practice. A number of simulation results demonstrate the
feasibility of the learning procedure and show that our Max Weight platoon pressure-based
scheme outperforms the state-of-the-art and well-known existing pressure-based algorithms.

1. Introduction

Urban traffic congestion is still a pressing problem due to a rapid population growth and mobility demand within the metropolitan
areas. In this context, traffic signal control at urban network intersections remain the most widely used tool to effectively manage
conflicting traffic flows and mitigate congestion in the network.

There haven been many research efforts in the literature dedicated to optimize the urban traffic signal timings in order to
efficiently control the traffic network. Nevertheless, the recent advancement in information and communication technology (ICT)
enables better connectivity and provides a fresh opportunity to reform and improve the conventional operation of traffic signals
and management of the transport networks. More specifically, in the last decade, vehicular communication technologies and
infrastructure (i.e., vehicle-to-vehicle V2V, and vehicle-to-infrastructure V2I or simply V2X) have been widely deployed in many
countries around the globe. Vehicles equipped with V2X capability, referred to as Connected Vehicles or CVs, can now communicate
with each other and with the intersection controllers (or roadside units) to share information in real-time in order to enhance safety
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and efficiency of both the individual vehicle and the transport network. As a result, information collected in real-time such as vehicle
type, location, speed and acceleration of the approaching or leaving vehicles at an intersection can be used to make more effective
control decisions and reduce congestion in the network.

In the literature, numerous studies have attempted to enhance the control algorithm of traffic controllers utilizing real-time
ollected vehicular data. In particular, Ubiergo and Jin (2016) proposed a hierarchical green driving strategy to smooth vehicles’
rajectory, aiming to reduce the overall fuel consumption. In this work, it was assumed that each CV receives an individual speed
imit control signal based on its location and current traffic states. On the other hand, Stebbins et al. (2017) improved the Green
ight Optimal Speed Advisory system so that vehicles received not only speed but also acceleration guidance to minimize the delay.
urthermore, Priemer and Friedrich (2009) leveraged on V2I technology to propose an optimization framework and solved the
roblem by using dynamic programming technique. In their work, the intersection manager periodically calculated the signal phase
equence by optimizing the total queue length of vehicles.

Recently, Emami et al. (2021) used the data collected from CVs as input, then formulated traffic signal plans into a linear
ptimization problem to maximize the throughput of the whole network. In addition, Wang et al. (2021) introduced a two-level
raffic control system based on CV technologies. The authors presented an optimization model to optimize throughput for high-
emand traffic flows at the corridor level. An adaptive traffic signal control system was then provided at intersection level to reduce
ehicle delay.

It is well known that the combined problem of co-optimizing traffic signals and planning vehicle trajectories is very com-
lex (Nguyen et al., 2021), which requires significant computational resources. Optimized signal timings is essentially creating green
aves for as many vehicles to cruise through several intersections as possible together. Consequently, one can develop an approach

o form vehicles into platoons as they approach the intersection to improve efficiency rather than relying on the intersection’s
ignal control and green wave to achieve that. For example, He et al. (2011) proposed Platoon-based Arterial Multi-modal Signal
ontrol with online data scheme for connected vehicle networks where vehicles are grouped into platoons. The proposed scheme
imed to find the best signal timing plan to minimize the delay of platoons arriving at intersections. Recently, the work in Wang
t al. (2020) also developed a model to optimize arterial signal control based on platoons of connected vehicles by providing speed
uidance to pass through the intersection with the least stopping time. Nevertheless, all the traffic signal schemes discussed above
ere optimized centrally (i.e. centralized control) and hence were not scalable and impractical for deployment over wide areas due

o the exponential growth in its computational complexity as the size of the network increases.
To improve scalability, a number of studies instead proposed a distributed algorithm to solve the signal control problem in

rban networks (Priemer and Friedrich, 2009; Al Islam and Hajbabaie, 2017; Liang et al., 2021). One of the promising approaches
mong the proposed distributed schemes is pressure-based traffic signal control. Theoretically, pressure-based traffic signal control
an provide optimal throughput at a network level and does not require any prior knowledge of the traffic demand, and thus is
lexible and easily deployable (Wongpiromsarn et al., 2012; Varaiya, 2013). The application of the pressure-based algorithms initially
ame from the wireless communication research field, which was introduced in Tassiulas and Ephremides (1990). Since then, its
pplication to traffic control has attracted a huge interest from the transportation research community.

Table 1 provides the summary the existing representative works in traffic signal control utilizing pressure-based algorithms.
There are two variants of pressure-based algorithms in the literature: Back Pressure and Max Weight, where the former was first

escribed by Tassiulas and Ephremides (1990), the latter was introduced by McKeown et al. (1999), both in the telecommunications
nd data networking research areas. The main difference between Back Pressure and Max Weight algorithms is how the ‘‘pressure’’
f an approaching traffic movement at an intersection, or weight, is defined and calculated. In Back Pressure, the weight of a traffic
ovement is defined as the difference between the feature of that movement upstream link (i.e. queue length, delay or vehicle

patial distribution in a link) and the value of the corresponding features at the downstream links. In contrast, the weight of a
raffic movement in Max Weight is only calculated based on the features of movements at the upstream link of the intersection. For
his reason, Max Weight is a simpler mechanism but at the same time less explored due to the difficulties in providing the proof of
tability.

In the literature there have been several Back Pressure papers defining the pressure based on the queue length information of
he link or traffic movement (Wongpiromsarn et al., 2012; Varaiya, 2013; Gregoire et al., 2014a,b; Zaidi et al., 2016; Le et al., 2015,
017; Pumir et al., 2015; Lioris et al., 2016). The authors of Li and Jabari (2019), on the other hand, proposed the position-weighted
ack Pressure control policy. The proposed Back Pressure scheme utilized the spatial distribution of vehicles in a link as its defining
haracteristic. In addition, the work in Dixit et al. (2020) used traffic delay as a feature in their proposed framework, and the work
n Mercader et al. (2020) defined pressure using travel time information. Recently, Liu and Gayah (2022) proposed a delay-based
ack Pressure scheme based on the mathematical relationship between the number of queuing (standing) vehicles and link’s delay.

While Back Pressure control algorithms are very popular in the existing research literature, little attention has been paid to its
impler version, the Max Weight control algorithm, with an exception of Wu et al. (2017). Wu et al. (2017) introduced a delay-based
ax Weight for intersection control, where the weight of a traffic movement utilizes the sojourn time of its Head-Of-Line (HOL)

ehicle at the intersection. This proposed framework gained better fairness between vehicles; however, only explored the Max Weight
cheme for an isolated intersection.

Through the literature review, we found several research gaps that will be addressed in this paper. Firstly, while vehicle
latooning in CV network has been explored and shown significant performance improvements (He et al., 2011; Lioris et al., 2017;
iang et al., 2020), there have been no studies using pressure-based signal control applying for this promising platooning concept.
econdly, there is only a very limited number of studies that used the Max Weight signal control framework for network traffic signal

ontrol. Compared to Back Pressure, Max Weight algorithm does not require data from downstream movements at the intersections,

2 



T.A. Hoang et al.

v

m
i

T
s

2

2

Transportation Research Part C 167 (2024) 104832 
Table 1
Summary of pressure-based signal control studies.

Type Paper Pressure measurement Stability proof Network consideration

Back pressure

Wongpiromsarn et al. (2012) Queue length ✓ ✓

Varaiya (2013) Queue length ✓ ✓

Gregoire et al. (2014a,b) Queue length _ ✓

Le et al. (2015) and Le et al. (2017) Queue length ✓ ✓

Pumir et al. (2015) Queue length ✓ ✓

Lioris et al. (2016) Queue length ✓ ✓

Dixit et al. (2020) Crowd-sourced traffic delay _ ✓

Mercader et al. (2020) Normalized travel time _
only for work conservative

✓

Liu and Gayah (2022) Vehicle delay ✓ ✓

Max weight Wu et al. (2017) Vehicle delay ✓

only for single intersection
_

This work Queue length, platoons & other
local parameters

✓ ✓

hence it is simpler to implement when applying to large-scale networks. Finally, the existing works in the literature of pressure-
based algorithms only considered a single feature of the link, vehicle or traffic movement. We expect the signal control performance
to enhance further when considering several features together in the design of the pressure-based algorithm. In particular, we will
consider multiple characteristics of a platoon for the weight of signal phases. In a sense, our approach can be seen as a generalization
of the pressure-based algorithm of individual vehicles. Furthermore, we propose a new algorithm to learn and adapt the parameters
of the Max Weight algorithm depending on the traffic flow demand and the resulting platoon characteristics of that demand shaped
by the signal control which in turn forms a closed adaptive control system at the road intersections.

To this end, we develop a new platoon-based optimal Max Weight in this work to enhance the network throughput and reduce
ehicle delays using platoons with CVs. The contributions of this paper include:

• Propose a Max Weight decentralized signal control algorithm considering vehicle platooning in an urban network of connected
vehicles (CVs). In our proposed algorithm, the weight (or pressure) of a traffic movement at an intersection consists of several
platoon’s features (or characteristics) including its delay, and the speed and position of vehicles in the platoon.

• Develop a cross entropy method as the learning algorithm to optimize the contribution of each feature in the weight of the
proposed Max Weight signal control algorithm. The learned algorithm can optimize performance for moderate to low queue
sizes while retaining stability for larger queue sizes.

• Prove the stability property of proposed Max Weight signal control algorithm. To the best of our knowledge, this is the first
time a 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 road traffic stability result using Max Weight algorithm is obtained.

Furthermore, we provide extensive numerical results via simulation to show the effectiveness of our developed cross entropy
ethod to optimize the proposed Max Weight signal control algorithm. To this end, we extensively compare and show significant

mprovements in the proposed algorithm over other well-known pressure-based schemes.
The remainder of this paper is organized as follows: Section 2 defines our Learning Optimal Max Weight signal control model.

heoretical results, especially stability property of our Max Weight algorithm is presented in Section 3. Numerical results from the
imulation are presented in Section 4, and we conclude the paper in Section 5.

. Model

.1. Network model and queuing dynamics

Consider a transport network as a graph that N is the set of nodes representing intersections. We denote J as the set of all
turning movements, or queues in the network. Furthermore, J𝑛 is the set of all turning movements at intersection 𝑛 ∈ N . Let T
be the set of time steps.

Assume that at the beginning of time step 𝑡, each intersection controller of node 𝑛 ∈ N needs to decide whether its corresponding
turning movements (or queue) 𝑗 ∈ J𝑛 are activated or not. This decision is indicated by 𝑠𝑗 (𝑡) ∈ {0, 1}. Let 𝑆(𝑡) be the matrix that
denotes the activation of all turning movements at all intersections within the network during time step 𝑡. Then, we have S as
the set that contains all feasible network control matrices 𝑆 of intersections in the network. Likewise, for an arbitrary intersection
𝑛 ∈ N , 𝑆𝑛(𝑡) and S𝑛 indicate its turning movements matrix at time 𝑡 and set of all feasible control matrices in this intersection
respectively.

We let ⟨S ⟩ be the convex closure of S . Notice this gives the set of services achievable when we allow for randomness in service.
We define C to be the interior of ⟨S ⟩. We call C the capacity set of our network.

We let 𝐴𝑗 (𝑡) denote the number of arrivals at queue 𝑗 by time 𝑡. We let 𝐷𝑗 (𝑡) be the number of vehicles that have departed from
queue 𝑗 by time 𝑡. Both 𝐴𝑗 (𝑡) and 𝐷𝑗 (𝑡) are non-decreasing processes for 𝑡 ∈ T . We let 𝑄𝑗 (𝑡) be the queue size at time 𝑡. From this,
it is clear that 𝑄𝑗 (𝑡) should be a non-negative process satisfying
𝑄𝑗 (𝑡) = 𝑄𝑗 (0) + 𝐴𝑗 (𝑡) −𝐷𝑗 (𝑡) , 𝑗 ∈ J . (1)
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Arrivals at queue 𝑗 consist of both external arrivals, that is vehicles joining the queue from outside the network, and internal
rrivals, that is vehicles that have moved from another junction within the road network. We let 𝐸𝑗 (𝑡) be the total number of

external arrivals to queue 𝑗 by time 𝑡. We assume that 𝐸𝑗 (𝑡) − 𝐸𝑗 (𝑡 − 1) is non-negative independent identically decentralized with
bounded variance and mean 𝑎𝑗 . We let 𝛷𝑖,𝑗 (𝑠) indicate if the 𝑠th vehicle to depart queue 𝑖 ∈ J next joins queue 𝑗 ∈ J ∪ {∅}.
Specifically, when the 𝑠th job to depart queue 𝑖 next joins queue 𝑗 we have that 𝛷𝑖,𝑗 (𝑠) = 1 and 𝛷𝑖𝑗′ (𝑠) = 0 ∀𝑗′ ≠ 𝑗. We
assume that (𝛷𝑖,𝑗 (𝑠) ∶ 𝑖 ∈ J , 𝑗 ∈ J ∪ {∅}) are independent identically decentralized random variables with mean given by
(𝑃𝑖,𝑗 ∶ 𝑖 ∈ J , 𝑗 ∈ J ∪ {∅}). Here 𝑗 = ∅ indicates that the vehicle departs the network. Given the notation as just described
the total number of arrivals to queue 𝑗 can be expressed as

𝐴𝑗 (𝑡) = 𝐸𝑗 (𝑡) +
∑

𝑖∈J

𝐷𝑖(𝑡)
∑

𝑠=1
𝛷𝑖,𝑗 (𝑠) . (2)

We let 𝒂 = (𝑎𝑗 ∶ 𝑗 ∈ J ) be the exogenous arrival rate of vehicles at each queue. That is the mean number of jobs arriving
from outside the network at queue 𝑗 per unit time, of we model our network as a single traffic junction, all the vehicles will
leave the network after being served at the junction. Such queuing networks are called single-hop queueing networks. However, we
also wish to model networks where vehicles travel between different junctions. These are called multi-hop networks. To this end,
𝑃 = (𝑃𝑖,𝑗 ∶ 𝑖 ∈ J , 𝑗 ∈ J ∪ {∅}) as given above are the expected routing probabilities. Here 𝑃𝑖,𝑗 gives the probability that a vehicle
departing queue 𝑖 joins queue 𝑗 (i.e., 𝑃𝑖,𝑗 = lim𝑡→∞

∑𝑡−1
𝜏=0 E{𝑝𝑖,𝑗 (𝜏)}). Also, we let ∅ represent an exit state so 𝑃𝑖,∅ gives the probability

a job at queue 𝑖 departs the network. Under the above 𝝀 = (𝜆𝑖 ∶ 𝑗 ∈ J ) satisfying

𝜆𝑗 = 𝑎𝑗 +
∑

𝑖∈J

𝜆𝑖𝑃𝑖,𝑗 (3)

gives the rate of arrival of vehicles to queue 𝑗 (including arrivals from within the network). A special case of a multi-hop network
is one with fixed routing. Here the probability 𝑃𝑖,𝑗 is either zero or one.

We let 𝜇𝑗 , 𝑗 ∈ J be the nominal service rate of queue 𝑗. (It is average number of vehicle that can be processed per unit of
time in our discrete time model under ideal conditions. The service rate received can be impacted by the state and features of the
queueing network. We will later elaborate on the concept of service at a queue.) This represents the mean number of vehicles served
at queue 𝑗 when the queue length is sufficiently large. We let the vector 𝝆 = (𝜌𝑗 ∶ 𝑗 ∈ J ) be the load on each queue. Specifically,
we have that:

𝜌𝑗 ∶=
𝜆𝑗
𝜇𝑗

,

or 𝑗 ∈ J . It is now reasonable to ask what is the maximum load that the queueing network can maintain. It is well-known in
many settings that this is given by the condition that 𝝆 ∈ C .

The number of departures at each time depends on the service rule used and the state of jobs in the queue. We let 𝑋𝑗 (𝑡) =
𝑋𝑗𝑘(𝑡) ∶ 𝑘 = 1..., 𝑄𝑗 (𝑡)) be the features of each vehicle at queue 𝑗 at time 𝑡. The features of a vehicle are a choice of the algorithm
esigner, but could include information such as the position in the queue, delay, speed and importantly if the vehicle is part of a
latoon. Further discussion on these features is given in Section 2.2. We let 𝑁𝑗 (𝑡) be the number of vehicles that will be served at
unction 𝑗 given that 𝑠𝑗 (𝑡) = 1. We define:

𝜇𝑗
(

𝑋𝑗 (𝑡)
)

∶= E
[

𝑁𝑗 (𝑡) |𝑋𝑗 (𝑡)
]

(4)

which gives the expected number of vehicles to depart queue 𝑗 if served with a vehicle having features 𝑋𝑗 (𝑡) are waiting. We assume
that

𝜇𝑗
(

𝑋𝑗 (𝑡)
)

→ 𝜇𝑗 as |

|

|

𝑋𝑗 (𝑡)
|

|

|

→ ∞ (5)

i.e. as the queue becomes congested the service rate converges to a fixed rate. Given 𝑆𝑗 (𝑡) as defined above we have that

𝐷𝑗 (𝑡) =
𝑡

∑

𝜏=1
𝑁𝑗 (𝜏) 𝑠𝑗 (𝜏) . (6)

We assume that the set of features at each queue (𝑋𝑗 (𝑡) ∶ 𝑗 ∈ J ) evolves as a discrete-time Markov chain. Recall that a
Markov chain is positive recurrent if it reaches a state a positive fraction of the time. In the context of a queueing network this
is the state where all queues are empty and thus all demand has been served (Asmussen et al., 2003, Chapter 1). Given this, we
say that a scheduling policy is stable if this Markov chain is positive recurrent, otherwise, we say that the scheduling policy is
unstable (Tassiulas and Ephremides, 1990; Dai, 1995; Bramson et al., 2021; Mandjes et al., 2017).

2.2. Max weight with learned features of vehicles and platoons

Max Weight Policy: Let us consider a fundamental Max Weight policy utilizing queue length for intersection 𝑛 ∈ N , where the
weight of a turning movement 𝑖 ∈ J𝑛 is calculated as follows:

𝑤 (𝑡) = 𝑄 (𝑡) (7)
𝑖 𝑖

4 



T.A. Hoang et al.

a

d
𝑇
o

V
t
s
j
e
t
i

Transportation Research Part C 167 (2024) 104832 
We note that Eq. (7) is different from queue-based Back Pressure in Varaiya (2013). In Varaiya (2013), the weight takes into
ccount the queue length of downstream movements, i.e. ∑𝑗 𝑝𝑖,𝑗 (𝑡)𝑄𝑗 (𝑡). Hence, a queue-based Max Weight allocates service at a

timestep by maximizing the following objective function:

maximize
∑

𝑖∈J𝑛

𝜇𝑖𝑤𝑖𝑠𝑖 over 𝒔 ∈ S𝑛 . (8)

The Max Weight policy chooses the schedule that solves the above optimization problem.

Vehicles Platooning: At the beginning of every timestep, the intersection controllers will (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑙𝑦) group vehicles into platoons
based on their locations in each turning movement 𝑖 ∈ J . Note here that if a vehicle cannot go through the intersection in the
current timestep, its platoon formation will be re-calculated in the next timestep. There are two conditions to decide whether a
pair of consecutive vehicles belongs to the same platoon: firstly, they can cross the intersection within the same presumable green
timestep; and secondly, their headway is less than a predefined value. The first condition means that the size of a platoon must
not be larger than the maximum capacity 𝜇𝑖. The total number of platoons for movement 𝑖 is denoted by 𝐿𝑖(𝑡). Each platoon is
escribed by its length 𝑄𝑖,𝑚(𝑡), 𝑚 = {1,… , 𝐿𝑖(𝑡)} and its delay which is the sojourn time of Head-Of-Platoon (HOP) vehicle in the link
𝑖,𝑚(𝑡), 𝑚 = {1,… , 𝐿𝑖(𝑡)}. Note that a vehicle could be a platoon of itself if it does not satisfy the above conditions. Characteristics
f platoons can be shown by the following expressions:

𝑄𝑖,𝑚(𝑡) ≤ 𝜇𝑖 , 𝑚 = 1,… , 𝐿𝑖(𝑡) (9)

𝐿𝑖(𝑡)
∑

𝑚=1
𝑄𝑖,𝑚(𝑡) = 𝑄𝑖(𝑡) (10)

𝑇𝑖,𝑚(𝑡) ≥ 𝑇𝑖,𝑚+1(𝑡) , 𝑚 = {1,… , 𝐿𝑖(𝑡) − 1} (11)

ehicles and platoons’ features: We note that in the simple queue-based Max Weight described above, each vehicle counts equally
o weight at a queue, specifically, the weight of queue 𝑖, is 𝑄𝑖. We expect that there are more features that influence the rate of
ervice beyond the queue length, such as the characteristics of the platoon that vehicles belong to (i.e. sojourn time since the platoon
oins the link or platoon current velocity). Therefore, we seek to develop a system that can assess and optimize the importance of
ach of these features while maintaining good stability properties. Hence, rather than have each vehicle count 1, we allow vehicles
o each have an influence between 0 and 1 on the total weight of the queue. More formally, we seek to use a continuous and
ncreasing function 𝜎 ∶ R → [0, 1]. Specifically, we utilize the logistic function in this paper:

𝜎(𝑧) = 𝑒𝑧

1 + 𝑒𝑧
, 𝑧 ∈ R (12)

With each vehicle we assume there are statistics, 𝒙 = (1, 𝑥1,… , 𝑥𝑑 ) ∈ R𝑑+1. These statistics determine the characteristics (or context)
of vehicles. We assume that the components 𝑥1,… , 𝑥𝑑 determine other features and that these are bounded by a maximum value
𝑥max.

We apply a parameter 𝜽 ∈ R𝑑+1 to each of these statistics. In particular, if 𝒙(𝑘) is the statistic associated with the 𝑘th vehicle
then we set

𝑧(𝑘) ∶= 𝜃0 + 𝜃1𝑥
(𝑘)
1 +⋯ + 𝜃𝑑𝑥

(𝑘)
𝑑 = 𝜽⊤𝒙(𝑘) (13)

and

𝜎(𝑘) = 𝜎(𝑧(𝑘)) (14)

While our theoretical results and simulations focus on fixed turning probabilities and platooning, we note that features could
include other aspects such as the time of day or the anticipated turning probability of the vehicle. In other words, this model has
sufficient flexibility to account for features not typically addressed in a standard pressure-based traffic control model. In this paper,
𝜽 ∈ R𝑑+1 is optimized by applying cross entropy method, which is discussed in the next section.

Max Weight policy with learned features: We associate a parameter 𝜽𝑖,𝑗 ∈ R𝑑+1 with each movement. We now sum the statistics
associated with vehicles to give a weight for the queue at each junction. Specifically the weight of queue (𝑖, 𝑗) is:

𝑤(𝑖) =
𝑃𝑖
∑

𝑚=1

𝑄𝑖,𝑚
∑

𝑘=1
𝜎(𝜽⊤𝑖,𝑗𝒙

(𝑘)) (15)

for 𝜎(𝑘) as defined above. The optimal control at intersection 𝑛, 𝑆∗
𝑛 (𝑡), follows the below equation:

𝑆∗
𝑛 (𝑡) = arg max

𝑆𝑛∈S𝑛

⎧

⎪

⎨

⎪

∑

𝑖∈J𝑛

𝜇𝑖𝑤𝑖(𝑡)𝑠𝑖(𝑡)

⎫

⎪

⎬

⎪

(16)
⎩ ⎭
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2.3. Cross entropy method

The cross entropy method (CEM) is a generic optimization technique. It is a zeroth order method, i.e. we do not have gradients.1
o, for instance, it works well on combinatorial optimization problems, as well as reinforcement learning. Its convergence properties
ave also been well studied in academic literature (Costa et al., 2007)

he principle: Assume that we want to maximize a function 𝑆(𝑥) over 𝑥 ∈ X . We then sample random variables 𝑋1,… , 𝑋𝑁 from
X according to some parameterized distribution 𝑝(𝑥|𝜃). Assuming that we can fit the parameter 𝜃 given data (𝑋(1),… , 𝑋(𝑀)). Let �̂�
be the fit to this data. Finally, 𝜌 ∈ (0, 1) is an importance parameter used by CEM. The basic CEM procedure is now as follows:

1. Sample 𝑋1,… , 𝑋𝑁 from 𝑝(⋅|𝜃) and evaluate 𝑆(𝑋1),… , 𝑆(𝑋𝑁 ).
2. Order the sample 𝑋(1),… , 𝑋(𝑁) so 𝑆(𝑋(1)) ≥ 𝑆(𝑋(2)) ≥ ⋯ ≥ 𝑆(𝑋(𝑁)).
3. Fit �̂� to the top 𝑀 = ⌊𝜌𝑁⌋ samples, 𝑋(1),… , 𝑋(𝑀) and set 𝜃 ← �̂�.

The above three steps are repeated until convergence. The fit step of the CEM uses a specific optimization to find �̂�. In particular,
�̂� maximizes the cross entropy of the sample 𝑋(1),… , 𝑋(𝑀).2 But essentially �̂� is just the maximum likelihood estimator of the data
𝑋(1),… , 𝑋(𝑀) (assuming it was IID from distribution 𝑝(⋅|𝜃) for some 𝜃).

The update for 𝜃 can be smoothed out. Here we replace the update with

𝜃 ← (1 − 𝛼)𝜃 + 𝛼�̂�

for some 𝛼 ∈ (0, 1].

Proposed CEM-based Max Weight learning algorithm: In Section 2.2, we note that each vehicle in each movement has a range
of features 𝒙 = (1, 𝑥1,… , 𝑥𝑑 ) ∈ R𝑑+1. In this paper, we pick three features:

• Sojourn time since vehicle’s HOP join the link 𝑖 of movement (𝑖, 𝑗).
• Binary feature indicates whether the vehicle’s HOP is stopping and waiting at the intersection or not.
• Binary feature indicates whether the vehicle’s platoon can pass the intersection in the next time step or not, assuming that the

corresponding signal phase turns green. We can easily estimate this feature considering the current position and speed of the
vehicle, as well as the maximum capacity 𝜇𝑖,𝑗 .

While the first two features are motivated by Wu et al. (2017) and Liu and Gayah (2022), the third feature follows our
observation. We noted that platoons that can potentially pass the intersection in the next time-step need to play a more significant
role compared to those that cannot. Consequently, for each intersection, CEM needs to optimize the set of 𝜽(𝑖,𝑗)∈J ∈ R4. Our
pseudo-code of CEM is presented in Algorithm 1.
Algorithm 1: Cross Entropy Method

Initializing:
• 𝑀0 =

[

0 0 0 0
]

, 𝛴0 = 𝐼4, 𝑁 = 16, 𝜌 = 0.25,
𝛼 = 0.75

• Iteration 𝑖 = 0

Sample: Generate 𝜽1, ...,𝜽𝑁 with mean 𝑀𝑖 and covariance 𝛴𝑖
While 𝑉 𝑎𝑟[𝐷(𝜽(1)), ..., 𝐷(𝜽(𝑁))] ≥ 1(𝑠∕𝑣𝑒ℎ), do:

• Simulate the proposed Max Weight algorithm for each of the parameter set 𝜽𝑛, 𝑛 = 1, ..., 𝑁
• Let the delay 𝐷𝑛, 𝑛 = 1, ..., 𝑁 is the vehicle’s average delay of the 𝑛𝑡ℎ sample
• Order the sample 𝜽(1), ...,𝜽(𝑁) so 𝐷(𝜽(1)) ≤ 𝐷(𝜽(2)) ≤ ... ≤ 𝐷(𝜽(𝑁))
• Let 𝜽′ = 𝜽(1), ...,𝜽(𝜌𝑁), 𝑀 ′ = 𝑀𝑒𝑎𝑛(𝜽′), 𝛴′ = 𝐶𝑜𝑣(𝜽′)
• 𝑀𝑖+1 = (1 − 𝛼)𝑀𝑖 + 𝛼𝑀 ′, and
𝛴𝑖+1 = (1 − 𝛼)𝛴𝑖 + 𝛼𝛴′

• 𝑖 = 𝑖 + 1

3. Theoretical results

While we note that methods such as the Cross Entropy Method do not, in general, have established theoretical convergence
esults, it is still possible to argue that the class of proposed Max Weight policies have good stability behavior for a broad range of
ifferent queueing models as described in Section 2. This established that the policy class is sufficiently expressive.

The following theorem establishes the stability of the proposed Max Weight in single-hop networks.

1 Caveat: though one may (or may not) need gradient methods in the sub-routine that maximizes the cross entropy.
2 Note the one could instead use other alternatives to the cross entropy.
6 
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Theorem 1. For a single-hop network with load belonging to the capacity region, that is 𝝆 ∈ C , the proposed Max Weight algorithm is
stable for all choices of 𝜽 with 𝜃1 > 0.

The above result shows the proposed Max Weight is maximally stable for all single-hop networks. In the context of a road traffic
scenario, this shows that the policy will achieve the best throughput possible at individual junctions.

When networks of junctions are connected together, Max Weight is not in general known to be stable under subcritical loads
(although in practice it can often be an effective choice). For networks of queues, the Back Pressure algorithm is often considered.
However, as we see here the proposed Max Weight policy can also be applied to obtain stability.

Theorem 2. For each multihop network with 𝜌 ∈ C , there exists a choice of 𝜽 such that the proposed Max Weight is stable.

Here we see that the proposed Max Weight policy can also stabilize the network if parameters are appropriately learned. We
ote that there are also features of the Max Weight algorithm that must be learned, specifically routing probabilities and service
ates.

Next, we see that with an appropriate choice of features, the proposed Max Weight policy can express any queue-size-based
olicy for a bounded set of queue sizes.

heorem 3. Any policy on bounded queue sizes can be expressed with the proposed Max Weight algorithm.

The above results show that the proposed Max Weight can be very expressive for low to moderate queue sizes. Thus, with an
ppropriate set of features, this class of policies can perform more specific and effective decision-making rules that may account for
uanced aspects of decision-making. For instance, in our simulations, we apply features such as the speed of vehicles or whether
ehicles are part of a platoon approaching a junction.

.1. Proof of theoretical results

In this section, we apply a fluid model analysis to prove Theorems 1 and 2. This fluid model is a set of ordinary differential
quations which we define in Section 3.1.1. The theoretical justification for the fluid model, Proposition 2, is given in proven
n Appendix A. The proofs of Theorems 1 and 2 are then provided in Appendices B and C, while we will prove Theorem 3 in
ection 3.1.2.

.1.1. Fluid model
The fluid model associated with the queueing model described in Section 2 is given by a continuous-time processes 𝑞𝑗 (𝑡) , 𝑎𝑗 (𝑡) ,

𝑗 (𝑡) with 𝑗 ∈ J and 𝑡 ∈ R+ where, for each 𝑗 ∈ J , 𝑎𝑗 (𝑡) and 𝑑𝑗 (𝑡) are non-decreasing, Lipschitz continuous with 𝑎𝑗 (0) = 𝑑𝑗 (0) = 0
nd 𝑞𝑗 (𝑡) is positive and where the following conditions are satisfied:

𝑞𝑗 (𝑡) = 𝑞𝑗 (0) + 𝑎𝑗 (𝑡) − 𝑑𝑗 (𝑡) (17)

𝑎𝑗 (𝑡) = 𝑎𝑗 𝑡 +
∑

𝑖∈J

𝑑𝑖(𝑡)𝑃𝑖,𝑗 (18)

(

𝑑′𝑗 (𝑡)∕𝜇𝑗 ∶ 𝑗 ∈ J
)

∈ argmax
∑

𝑗∈J

𝑤𝑗𝑞𝑗 (𝑡)𝜎𝑗 over 𝝈 ∈ 𝑆 . (19)

In Proposition 2 which we state and prove in Appendix A, we show that the above fluid model is the limiting model for our model
in Section 2. We notice that the above fluid model has the same behavior as a weighted form of the Max Weight algorithm. This
means that for large queue sizes, the system behaves in a way that is comparable to standard Max Weight. The implication of this is
that we can then invoke Max Weight arguments to prove stability in the fluid system. In particular, after establishing Proposition 2,
the proof of Theorem 1 is a standard argument for Max Weight. The proof of fluid stability of Max Weight in multi-hop networks
is less standard and can be found in Theorem 2 of Bramson et al. (2021).

Thus we must establish stability in our fluid model above in order to prove the stability of the corresponding queueing model.
A fluid model is said to be stable if for all solutions there exists a time 𝑡0 > 0 such that, for all initial states with ∑

𝑗∈J 𝑞𝑗 (0) ≤ 1, all
solutions of the fluid model equations, (17)–(19), satisfy

∑

𝑗∈J

𝑞𝑗 (0) = 0, ∀ 𝑡 ≥ 𝑡0.

It has been well-known since (Dai, 1995) (see also Bramson (2008)) that, under appropriate conditions, the stability of a fluid model
will imply a positive recurrence of the associated queueing network. In our case, we employ the following proposition.

Proposition 1. Suppose that the fluid model (17)–(19) is stable. Then the corresponding queueing network model given in (2)–(6) is
positive recurrent.
We refer the reader to Bramson (2008) for the proof of this proposition.
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Table 2
Scenario 1 - Balanced traffic demand settings in low, medium, and high demand.

High/Medium/Low
demands (veh/s)

North East South West

North – 0.167
0.136
0.104

0.278
0.226
0.174

0.111
0.09
0.069

East 0.111
0.09
0.069

– 0.167
0.135
0.104

0.278
0.226
0.174

South 0.278
0.226
0.174

0.111
0.09
0.069

– 0.167
0.136
0.104

West 0.167
0.136
0.104

0.278
0.226
0.174

0.111
0.09
0.069

–

3.1.2. Proof of Theorem 3

roof. The proof of Theorem 3 is relatively straightforward. Suppose 𝜋 is a policy defined as a function of queue sizes less than
some constant 𝑞max. If the queue sizes are bounded there is only a finite set of queue sizes that can be achieved. Suppose we associate
features with each such state. That is for each queue size state 𝒒 we have a feature 𝑥𝑞 where 𝑥𝑞 = 1 if the queueing network is in
tate 𝒒 and 𝑥𝑞 = 0 otherwise. If queue 𝑗 is served under policy 𝜋 when in state 𝒒 then we can set the parameter associated with
𝑞 at queue 𝑗 to be 1, i.e. 𝜃𝑗𝑥𝑞 = 1, otherwise we set 𝜃𝑗𝑥𝑞 = 0. Further suppose that the function 𝜎(𝑧) is chosen such that 𝜎(1) = 1
nd 𝜎(0) = 0. Notice that then under the proposed Max Weight policy in this case, when the queueing network is in state 𝒒 only
ueues which are served under policy 𝜋 will be served because these are the only queues that receive a positive weight. Thus we
ave encoded the decisions of 𝜋 within this set of features. □

emark 1. Comparison with BackPressure. In the implementation of BackPressurre large queue sizes must build up in order to
educe queue sizes.

. Numerical experiments

In this section, we evaluate the performance of our proposed Max Weight platoon pressure-based signal control policy, called
earning Optimal Max Weight (LOMW), via SUMO simulation (Lopez et al., 2018) and compare it with existing pressure-based
ontrol policies in Wongpiromsarn et al. (2012) (the first Back Pressure based signal control algorithm), Wu et al. (2017), and Liu
nd Gayah (2022) (the latest pressure-based signal control algorithm). We call those compared policies Queue-based Back Pressure
QBP), Delay-based Max Weight (DMW) and Delay-based Back Pressure (DBP), respectively.

We conducted comprehensive simulation scenarios to demonstrate the effectiveness of our proposed algorithm. Our simulations
re divided into three parts. Firstly, we provide results regarding CEM for several traffic demand settings. There are two variants of
OMW in this part: one uses the single parameter set for all intersections, other uses distinctive parameter sets for each intersection.
e find that two LOMW variants perform equivalently and outperform other algorithms. From the insights from the first part, we

hen seek to find a single set of parameters that can fit every traffic demand and every intersection. Finally, we apply the parameter
et found in the second part to the large-scale Melbourne CBD network. The timestep size is set to 20 s for all algorithms. Similar
o Liu and Gayah (2022), we observe that the maximum service rate for both left turns and through/right turns is 1800 veh/h/lane.
inally, the vehicle length is 5 m and we utilize SUMO’s default Krauss car following model (Krauß, 1998).

Finally, as mentioned in Section 2, we choose three features to obtain the weight of the proposed control scheme in this study:

• Sojourn time since vehicle’s HOP join the link 𝑖 of movement (𝑖, 𝑗).
• Binary feature indicates whether the vehicle’s HOP is stopping and waiting at the intersection or not.
• Binary feature indicates whether the vehicle’s platoon can pass the intersection in the next time step or not, assuming that the

corresponding signal phase turns green. We can easily estimate this feature considering the current position and speed of the
vehicle, as well as the maximum capacity 𝜇𝑖,𝑗 .

.1. 4 × 4 grid network with separated CEM for each network scenario

As shown in Fig. 1, we utilize a grid 4 × 4 grid network with a total of 16 intersections. Each intersection has four phases as
hown in Fig. 1c. Each link in the network consists of two lanes, and the rightmost lane is dedicated to right turns only. The speed
imit is set to 13.89 m∕s (50 km∕h).

In this part, we set the two traffic demand scenarios: balanced traffic between East-West and North-South directions (scenario

), and traffic demand originating from the North/South links higher than the East/West links (i.e. scenario 2 with imbalanced

8 
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Fig. 1. Network topology flow split setting and signal configuration.

Table 3
Scenario 2 - Imbalanced traffic demand settings in low, medium, and high demand.
High/Medium/Low
demands (veh/s)

North East South West

North – 0.208
0.169
0.13

0.347
0.282
0.217

0.139
0.113
0.087

East 0.083
0.068
0.052

– 0.125
0.102
0.078

0.208
0.169
0.13

South 0.347
0.282
0.217

0.139
0.113
0.087

– 0.208
0.169
0.13

West 0.125
0.102
0.078

0.208
0.169
0.13

0.083
0.068
0.052

–

traffic demand). We also consider three traffic scenarios: light, medium and high traffic. Finally, as described in Fig. 1b, traffic flow
originating from any direction will be split as follow: 50% of flow goes straight, 30% turns left, and 20% turns right. The detailed
settings for all scenarios are presented in Tables 2 and 3. In those tables, the demands are shown in 𝑣𝑒ℎ∕𝑠𝑒𝑐 unit and last for one
hour.

Note that we describe the CEM learning algorithm for a single intersection in Algorithm 1. If we optimize the same set of 𝜽(𝑖,𝑗)
for all intersections, then there will be only four parameters (𝜽(𝑖,𝑗)∈J ∈ R4) and referred to as LOMW-4. For comparison, we also
let each intersection have its own 𝜽 set. Hence, the set 𝜽(𝑖,𝑗)∈J ∈ R64 is optimized, and we refer to as LOMW-64.

Fig. 2 provides the convergence curves of CEM for all traffic scenarios. The existing algorithms serving as benchmarks are
presented by horizontal lines in this figure. Each data point for LOMW-4 and LOMW-64 is the mean value of average vehicle delay
over 72 simulations. The average vehicle delay is initially significant in all three traffic demand scenarios. It is because we initialize
9 
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Fig. 2. Delay-CEM.

𝜽 from a random mean and covariance value. However, the average vehicle delay converged quickly. Both LOMW-4 and LOMW-64
algorithms start to perform better than QBP, DBP and DMW after 25 iteration runs.

After finishing the cross entropy process, we pick the simulation results from the best set of parameters, then compare them
with QBP and DBP. Note that we provide all the parameter sets resulting from the CEM in this numerical experiments section in
Appendix D. Figs. 3 and 4 show the number of running vehicles in the network and vehicle mean speed during the simulation for all
algorithms. It is easy to observe that for all cases, LOMW-4 and LOMW-64 outperform both QBP and DBP. Our proposed algorithms
can deal with more vehicles in the network while keeping a better mean speed.

Note on computational complexity: in our CEM process, LOMW-64 requires more simulations per iteration compared to LOMW-
4. Therefore LOMW-64 needs more computational power than LOMW-4. However, by running simulations in parallel, we can achieve
a similar run time between CEM for LOMW-4 and LOMW-64. The CEM process in our experiment took place in Monash MASSIVE
Super Cloud Computing.

4.2. 4 × 4 grid network aggregated CEM

Note that for all compared metrics, a significant finding is that LOMW-64 does not perform better than LOMW-4. It is a significant
finding because we may only need a single set of 𝜽(𝑖,𝑗) for the whole network to obtain optimal results. In this section, we further
exploit a single CEM procedure to find a single set of parameters that are suitable for all traffic scenarios. The modified CEM
algorithm is then described in Algorithm 2.

Fig. 5 provides the average delay between all algorithms under different traffic experiments. For every single experiment, we
observe that the aggregated LOMW-4 performs slightly worse than each separated LOMW-4 and LOMW-64. However, the aggregated
LOMW-4 still outperforms QBP, DBP, and DMW. Therefore, this section provides that LOMW-4 is versatile and can perform well
under different traffic scenarios by using a single set of parameters.

Moreover, Fig. 6 provides the average time–space density of upstream and downstream links at intersection 1. For QBP and DBP,
there are several occasions when the density of the whole upstream links is high. In contrast, LOMW-4 and LOMW-64 can keep the
low density for the whole simulation time.

Finally, we will test the effectiveness of aggregated LOMW-4 by applying the optimized parameters in the large-scale Melbourne
CBD network in the next section (see Fig. 7).

4.3. Melbourne CBD network

As provided in Fig. 8, Melbourne CBD network consists of 38 intersections. All of the roads are bi-directional. Noticeably, King
Street and Russell Street, as highlighted in blue color in Fig. 8, have three lanes in each direction. All other roads have two lanes in
10 
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Fig. 3. Number of vehicles in the network for QBP, DBP, LOMW-4, LOMW-64.

Fig. 4. Mean speed for QBP, DBP, LOMW-4, LOMW-64.

each direction. The signal phase configuration remains the same as the one provided in Fig. 1c. We simulate the peak-hour traffic
for 4 h from 6AM to 10AM. There are a total of 70 400 trips in our simulation and the second hour is the one with most traffic.
We generated the trips based on the OD demand data collected from Victoria’s SCATS dataset (DATAVIC, 2019). This dataset was
thoroughly calibrated based on the work in Dantsuji et al. (2022).

Looking at the number of vehicles in the network (Fig. 9), in the first hour, when travel demand is moderate, all control schemes
still perform well. However, when getting sudden high demands in the second hour, LOMW-4 remains the lowest number of vehicles
compared to other algorithms. Noticeably, DMW cannot stabilize the traffic when it comes to the second hour. We observe that
11 
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Algorithm 2: Modified Cross Entropy Method for Aggregated LOMW
Initializing:

• 𝑀0 =
[

0 0 0 0
]

, 𝛴0 = 𝐼4, 𝑁 = 16, 𝜌 = 0.25,
𝛼 = 0.75

• Iteration 𝑖 = 0

Sample: Generate 𝜽1, ...,𝜽𝑁 with mean 𝑀𝑖 and covariance 𝛴𝑖
While 𝑉 𝑎𝑟[𝐷(𝜽(1)), ..., 𝐷(𝜽(𝑁))] ≥ 1(𝑠∕𝑣𝑒ℎ), do:

• Simulate the proposed Max Weight algorithm for each network traffic scenario and for each of the parameter set
𝜽𝑛, 𝑛 = 1, ..., 𝑁

• Let the delay 𝐷𝑛, 𝑛 = 1, ..., 𝑁 is the total vehicle’s average delay of all scenarios of the 𝑛𝑡ℎ sample
• Order the sample 𝜽(1), ...,𝜽(𝑁) so 𝐷(𝜽(1)) ≤ 𝐷(𝜽(2)) ≤ ... ≤ 𝐷(𝜽(𝑁))
• Let 𝜽′ = 𝜽(1), ...,𝜽(𝜌𝑁), 𝑀 ′ = 𝑀𝑒𝑎𝑛(𝜽′), 𝛴′ = 𝐶𝑜𝑣(𝜽′)
• 𝑀𝑖+1 = (1 − 𝛼)𝑀𝑖 + 𝛼𝑀 ′, and
𝛴𝑖+1 = (1 − 𝛼)𝛴𝑖 + 𝛼𝛴′

• 𝑖 = 𝑖 + 1

Fig. 5. Average vehicle delay (seconds) with different algorithms under different traffic scenarios.

the algorithm causes several gridlocks in the network, which surges the number of running vehicles. Consequently, LOMW-4 also
outperforms other schemes in terms of vehicle delay, which is provided in Fig. 10.

5. Conclusion

This paper proposed a stable, optimal Max Weight platoon pressure-based network signal control algorithm under a connected
vehicle environment. Compared to Back Pressure, the Max Weight-based signal control algorithm has advantages in terms of
simplicity while still providing proven stability. Our proposed Max Weight signal control algorithm residing in the individual
intersection controller leverages the V2X-based connectivity to collect information of the approaching vehicles such as their position
and speed before (virtually) forming them into platoons for the purpose of managing traffic at intersections. The simulation results
in SUMO showed the ability of the cross-entropy method to optimize and achieve a set of parameters for a large-scale network which
is generic for all the intersections in that network and remains applicable across various traffic conditions. Our results showed that
the proposed algorithm outperformed other well-known pressure-based algorithms which can be achieved with a single small set
of parameters optimized by the proposed CEM learning algorithm. The results hold not only in the trained network environments
but also in the large-scale Melbourne CBD test network. It is thus encouraging that learning is transferred between junctions of
the network to improve performance. From a theoretical perspective, we provided proof of the stability of our proposed algorithm.
In terms of practical application, it is evident that incorporating a small amount of learning into state-of-the-art algorithms can
substantially improve network delays and overall performance.
12 
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Fig. 6. Average time-space density at upstream and downstream links at intersection 1 under scenario 1 with high demand.

Fig. 7. Average time-space density at upstream and downstream links at intersection 1 under scenario 2 with high demand.
13 
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Fig. 8. Simulation network in Melbourne CBD.

Fig. 9. Number of vehicles in the network.

Fig. 10. Delay histogram (with the red vertical lines provide the average vehicle delay in the network).

Furthermore, mixed traffic with partial connectivity has been investigated by Liu and Gayah (2022), where the authors provided
a comprehensive work to prove the effectiveness of a pressure-based algorithm under mixed traffic conditions with at least 30%
14 
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V2I connectivity. Their findings are also applicable to our proposed platoon-based scheme in a similar mixed traffic environment
utilizing standard traffic state estimation methods as in Liu and Gayah (2022). Also note that in the case of partial V2V connectivity,
the network will have more platoons with shorter lengths, which does not affect our method or change our conclusion.

There are several directions to improve the algorithms in future work. Firstly, this proposed algorithm can comprise several ve-
icle/platoon characteristics to calculate the movement pressure. Therefore, it is necessary to thoroughly study those characteristics
n order to choose the significant ones. Secondly, the algorithm will be more practical if the output is the time of each phase within

cycle (Le et al., 2015). Finally, another possible direction is to design a framework that integrates the perimeter control at the
etwork’s boundary and the proposed algorithm for the internal signals.

RediT authorship contribution statement

The Anh Hoang: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Methodol-
gy, Investigation, Formal analysis, Data curation, Conceptualization. Neil Walton:Writing – review & editing, Methodology, Formal

analysis, Conceptualization. Hai L. Vu: Writing – review & editing, Writing – original draft, Validation, Supervision, Methodology,
Data curation, Conceptualization.

Acknowledgments

This work was supported by the Australian Research Council (ARC) Discovery Grant DP190102134 and Industrial Transformation
Research Hub IH180100010 (SPARC Hub). The financial and in-kind support of Austroads and Monash University, Australia are also
gratefully acknowledged.

Appendix A. Convergence to fluid models

We derive the fluid model equations, given in Section 3.1.1, from scaled limits of the queueing network equations of switched
queueing networks, operating under the Max Weight with Featurized Jobs. Our approach follows the standard fluid limit approach
in Bramson (2008). A similar fluid limit proof for Max Weight is given in Bramson et al. (2021) and we adapt elements of that proof
to the case of proposed Max Weight.

We consider a Max Weight queueing network with features as described in Section 2 with 𝑐 jobs in the system initially. That is
𝑐 = |𝑸𝑐 (0)| =

∑

𝑗∈J 𝑄𝑐
𝑗 (0). (Here note that we apply a superscipt to 𝑸 = 𝑸𝑐 not make the dependence on 𝑐 explicit.) We employ

otation 𝐴𝑐
𝑗 , 𝐷

𝑐
𝑗 , 𝐸

𝑐
𝑗 , 𝑄𝑐

𝑗 , 𝑆
𝑐
𝑗 , 𝛷𝑐

𝑗,𝑗′ and 𝛱𝑐
𝑗 , for 𝑗, 𝑗′ ∈ J , analogous to that introduced in Section 2. We place these processes on

he same probability space so that, regardless of the initial queue size 𝑐, they have the same external arrival, job size, and routing
rocesses:

𝐸𝑐
𝑗 (𝑡) = 𝐸𝑗 (𝑡), 𝑆𝑐

𝑗 (𝑡) = 𝑆𝑗 (𝑡), and 𝛷𝑐
𝑗,𝑗′ (𝑡) = 𝛷𝑗,𝑗′ (𝑡), 𝑗, 𝑗′ ∈ J , 𝑐 ∈ N.

For 𝑗, 𝑗′ ∈ J , we introduce the scaled processes

𝑎𝑐𝑗 (𝑡) =𝐴
𝑐
𝑗 (𝑐𝑡)∕𝑐, 𝑑𝑐𝑗 (𝑡) = 𝐷𝑐

𝑗 (𝑐𝑡)∕𝑐, 𝑒𝑐𝑗 (𝑡) = 𝐸𝑐
𝑗 (𝑐𝑡)∕𝑐, 𝑞𝑐𝑗 (𝑡) = 𝑄𝑐

𝑗 (𝑐𝑡)∕𝑐 , (20a)

𝑠𝑐𝑗 (𝑡) = 𝑆𝑐
𝑗 (𝑐𝑡)∕𝑐, 𝜙𝑐

𝑗,𝑗′ (𝑡) = 𝛷𝑐
𝑗,𝑗′ (𝑐𝑡)∕𝑐, (20b)

for 𝑡 ∈ {0, 𝑐−1, 2𝑐−1, 3𝑐−1,…}, and we interpolate linearly for other values of 𝑡 ∈ R+.
As 𝑐 → ∞, these scaled processes converge to the fluid model Eqs. (17)–(19) in the following sense:

Proposition 2. There exists a set 𝐺 with P(𝐺) = 1 such that, for all 𝜔 ∈ 𝐺, any scaled subsequence (𝑎𝑐𝑖𝑗 , 𝑑
𝑐𝑖
𝑗 , 𝑒

𝑐𝑖
𝑗 , 𝑞

𝑐𝑖
𝑗 , 𝑠

𝑐𝑖
𝑗 , 𝜙

𝑐𝑖
𝑗,𝑗′ , 𝜋

𝑐𝑖
𝑗 ∶ 𝑗, 𝑗′ ∈

J ), 𝑐1 < 𝑐2 < ⋯, of switched networks under the weighted Max Weight policy, contains a further subsequence that converges uniformly on
compact time intervals. Moreover, any such limit (𝑎𝑗 , 𝑑𝑗 , 𝑒𝑗 , 𝑞𝑗 , 𝑠𝑗 , 𝜙𝑗,𝑗′ ∶ 𝑗, 𝑗′ ∈ J ) is a Lipschitz continuous process satisfying the weighted
Max Weight fluid model Eqs. (17)–(19).

Note that, since almost sure convergence implies convergence in distribution, Proposition 2 implies tightness/relative com-
pactness and characterizes the weak convergent limits of the sequence {(𝑎𝑐𝑗 , 𝑑

𝑐
𝑗 , 𝑒

𝑐
𝑗 , 𝑞

𝑐
𝑗 , 𝑠

𝑐
𝑗 , 𝜙

𝑐
𝑗,𝑗′ , 𝜋

𝑐
𝑗 ∶ 𝑗, 𝑗′ ∈ J )}𝑐∈N. The proof of

Proposition 2 is straightforward but somewhat technical. We provide a short proof.

Proof of Proposition 2. In order to demonstrate Proposition 2, we recall that, for each 𝑗, 𝑗′ ∈ J ,

(𝐸𝑗 (𝑡) − 𝐸𝑗 (𝑡 − 1) ∶ 𝑡 ∈ N), (𝑆𝑗 (𝑡) − 𝑆𝑗 (𝑡 − 1) ∶ 𝑡 ∈ N) , and (𝛷𝑗,𝑗′ (𝑡) −𝛷𝑗,𝑗′ (𝑡 − 1) ∶ 𝑡 ∈ N)

are collections of i.i.d. random variables with respective means 𝑎𝑗 , 𝑝−1𝑗 and 𝑃𝑗,𝑗′ . Therefore, by the (Functional) Strong Law of Large
Numbers, on a set 𝐺1 with P(𝐺1) = 1,

𝑒𝑐𝑗 (𝑡) → 𝑎𝑗 𝑡 , 𝑠𝑐𝑗 (𝑡) → 𝑝𝑗 𝑡 , and 𝜙𝑐
𝑗,𝑗′ (𝑡) → 𝑃𝑗,𝑗′ 𝑡 (21)

′
as 𝑐 → ∞, for 𝑗, 𝑗 ∈ J , with convergence being uniform on compact time intervals.
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By the Arzelà-Ascoli Theorem, any sequence of equicontinuous functions �̄�𝑐𝑖 (𝑡) on [0, 𝑇 ], 𝑇 ∈ (0,∞), with sup𝑐𝑖 |�̄�
𝑐𝑖 (0)| < ∞, has

a converging subsequence with respect to the uniform norm. We will show that the sequences {(𝑎𝑐𝑗 , 𝑑
𝑐
𝑗 , 𝑒

𝑐
𝑗 , 𝑞

𝑐
𝑗 , 𝑠

𝑐
𝑗 , 𝜙

𝑐
𝑗,𝑗′ ∶ 𝑗, 𝑗′ ∈ J )}𝑐∈N

satisfy both conditions for any 𝜔 ∈ 𝐺1.
Since |�̄�𝑐𝑖 (0)| = 1 and the other functions are initially 0, the supremum is clearly bounded. In order to show equicontinuity, we

first note that the sequences 𝑒𝑐𝑗 , 𝑠
𝑐
𝑗 , 𝜙

𝑐
𝑗,𝑗′ converge uniformly on compact sets by the Functional Strong Law, and so these functions

are equicontinuous.
To show equicontinuity for the remaining functions, note that 𝐷𝑐

𝑗 has bounded increments, and so their rescaled analogs are
uniformly Lipschitz continuous; this implies equicontinuity of the corresponding sequences. Since 𝑞𝑐𝑗 and 𝑎𝑐𝑗 are the sum of a bounded
number of such equicontinuous functions, they too are equicontinuous. Therefore, since the conditions of the Arzelà-Ascoli Theorem
are met for 𝜔 ∈ 𝐺1, every subsequence {(𝑎𝑐𝑖𝑗 , 𝑑

𝑐𝑖
𝑗 , 𝑒

𝑐𝑖
𝑗 , 𝑞

𝑐𝑖
𝑗 , 𝑠

𝑐𝑖
𝑗 , 𝜙

𝑐𝑖
𝑗,𝑗′ ∶ 𝑗, 𝑗′ ∈ J )}𝑐 has a further subsequence that converges uniformly

on [0, 𝑇 ]. Moreover, since these sequences of functions are uniformly Lipschitz, so are their limits.
We need to show that the fluid model equations in (17)–(19) are satisfied for all such limits. The equations in (17) follows

directly from the queueing network equations in (2) and from (21). Similarly (18) follows directly from (4).
In order to show that (19) holds, take 𝜔 ∈ 𝐺1 and consider a sequence (𝒅𝑐𝑖 , 𝒒𝑐𝑖 ) that converges uniformly on compact sets to

(𝒅, 𝒒). Notice that the proposed Max Weight objective converges uniformly to the weighted Max Weight objective (19). To see this
notice that the weights in the proposed Max Weights are given by:

𝑊 𝑐
𝑗 (𝑡) = 𝑤𝑗

𝑄𝑐
𝑗 (𝑡)
∑

𝑘=1
𝜎(𝜽⊤𝑗 𝒙

𝑐,(𝑘)) .

For any queue such that 𝑞𝑐𝑗 (𝑡) = 𝑄𝑐
𝑗 (𝑡)∕𝑐 → 𝑞𝑗 (𝑡) with 𝑞𝑗 (𝑡) it must be that the first feature (which is the position of the vehicle in the

queue) tends to infinity while all other features are assumed bounded. We know that for the sigmoid function 𝜎(𝑧) → 1 as 𝑧 → ∞
and so we have that

𝑊 𝑐
𝑗 (𝑡)

𝑐
=

𝑤𝑗

𝑐

𝑄𝑐
𝑗 (𝑡)
∑

𝑘=1
𝜎(𝜽⊤𝑗 𝒙

𝑐,(𝑘)) ←←←←←←←←←←←←←←←←←←←←←→
𝑐→∞

𝑤𝑗𝑞𝑗 (𝑡) .

(Notice if 𝑞𝑗 (𝑡) = 0 the above limit is also zero.) From this, we see that in the limit the rate of service allocated to each junction is
given by a weighted Max Weight allocation and so (19) holds. □

Appendix B. Proof of Theorem 1

The proof of the stability of the fluid model follows a Lyapunov stability argument. Here we consider the Lyapunov function

𝐿(𝑞) = 1
2

∑

𝑗∈J

𝑤𝑗

𝜇𝑗
𝑞2𝑗 .

Also, we note that in the case of single-hop networks the fluid model (17)–(19) satisfies the following differential equation
𝑑𝑞𝑗
𝑑𝑡

= 𝑎𝑗 − 𝑑′𝑗 (𝑡) ,

for 𝑗 ∈ J .
Further we note that since 𝑎 ∈ C = ⟨S ⟩

◦, there exists a positive constant 𝜀 such that

𝜀 = max
𝒔∈S

min
𝑗∈J

𝑤𝑗
(

𝑠𝑗 − 𝜌𝑗
)

= max
𝒔∈S

min
𝒒∶

∑

𝑗 𝑞𝑗=1

∑

𝑗∈J

𝑤𝑗𝑞𝑗
(

𝑠𝑗 − 𝜌𝑗
)

≤ min
𝒒∶

∑

𝑗 𝑞𝑗=1
max
𝒔∈⟨S ⟩

∑

𝑗∈J

𝑤𝑗𝑞𝑗
(

𝑠𝑗 − 𝜌𝑗
)

= min
𝒒∶

∑

𝑗 𝑞𝑗=1
max
𝒔∈S

∑

𝑗∈J

𝑤𝑗𝑞𝑗𝑠𝑗 −
∑

𝑗∈J

𝑤𝑗𝑞𝑗𝜌𝑗 . (22)

The inequality above uses the Minimax Theorem. Also in the final equality, we note that the maximum of a linear optimization over
⟨S ⟩ and S achieve the same value since linear programs achieve their optimum on an extreme point.

Thus applying the chain rule:

𝑑𝐿
𝑑𝑡

=
∑

𝑗∈J

𝜕𝐿
𝜕𝑞𝑗

𝑑𝑞𝑗
𝑑𝑡

=
∑

𝑗∈J

𝑤𝑗

𝜇𝑗
𝑞𝑗 (𝑡)(𝑎𝑗 − 𝑑′𝑗 (𝑡))

=
∑

𝑤𝑗𝑞𝑗 (𝑡)

(

𝜌𝑗 −
𝑑′𝑗 (𝑡)

𝜇

)

𝑗∈J 𝑗
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=
∑

𝑗∈J

𝑤𝑗𝑞𝑗 (𝑡)𝜌𝑗 − max
𝑠∈S

∑

𝑗∈J

𝑤𝑗𝑞𝑗 (𝑡)𝑠𝑗

≤ − 𝜀
∑

𝑗∈J

𝑞𝑗 (𝑡)

≤ − 𝜀
√

∑

𝑗∈J

1
𝑤𝑗

√

∑

𝑗∈J

𝑤𝑗𝑞𝑗 (𝑡)2

= − 𝜀′𝐿(𝒒(𝑡))
1
2 .

in the above expression, in the 4th equality, we apply the fluid model condition (19); we apply (22) in the first inequality, and
then Cauchy–Schwartz in the second inequality. In the final equality we take 𝜀′ = 𝜀

√

∑

𝑗∈J 1∕𝑤𝑗 and apply the definition of 𝐿(𝒒).
From the above expression, we can see that if 𝒒(𝑡) ≠ 0 then 𝐿(𝒒(𝑡)) is decreasing. This also implies that if 𝒒(𝑡0) = 0 for some 𝑡0 then
(𝑡) = 0 for all 𝑡 ≥ 𝑡0.

Now integrating the above expression gives

2𝐿(𝒒(𝑇 ))
1
2 − 2𝐿(𝒒(0))

1
2 = ∫

𝑇

0

1

𝐿(𝒒(𝑡))
1
2

𝑑𝐿(𝒒(𝑡))
𝑑𝑡

𝑑𝑡 ≤ −∫

𝑇

0
𝜀′𝑑𝑡 = −𝜀′𝑇 .

Thus

𝐿(𝒒(𝑇 )) ≤
(

𝐿(𝒒(0))
1
2 − 𝜀′𝑇

)2

+

rom this we see that 𝒒(𝑡0) = 0 for some 𝑡0 = 𝐿(𝒒(0))
1
2 ∕𝜀′ and thus 𝒒(𝑡) = 0 for all 𝑡 ≥ 𝑡0.

We have now proved that the fluid model is stable for all 𝜌 ∈ C . By Proposition 2, we know that the fluid model is the limit of
the underlying queueing model, and thus by Proposition 1 the stability of the fluid model implies stability of the queueing model
for 𝜌 ∈ C , as required. □

ppendix C. Proof of Theorem 2

roof. By Proposition 1 above we employ the fluid model equations. Specifically we analyze the fluid model equations (17)–(19).
e focus on a specific parameter choice where 𝑤𝑗 = 1∕𝜌𝑗 for each 𝑗. Thus the fluid model condition (19) becomes:

(

𝑑′𝑗 (𝑡)∕𝜇𝑗 ∶ 𝑗 ∈ J
)

∈ argmax
∑

𝑗∈J

𝑞𝑗 (𝑡)
𝜎𝑗
𝜌𝑗

over 𝝈 ∈ 𝑆 .

For thus we define the following Lyapunov function

𝐿(𝒒(𝑡)) ∶= max
𝝈∈S

∑

𝑗∈J

𝑞𝑗 (𝑡)
(𝜎𝑗
𝜌𝑗

− 1
)

=
∑

𝑗∈J

𝑞𝑗 (𝑡)

(

𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

)

.

he final equality holds by the fluid model condition above.
Observe that since 𝝆 ∈ ⟨S ⟩

◦ the above Lyapunov function is positive whenever 𝑞(𝑡) ≠ 0. We will show that this Lyapunov
unction converges to zero.

Now, notice that for 𝛿 < 0 it holds that

𝐿(𝒒(𝑡 + 𝛿)) − 𝐿(𝒒(𝑡))
𝛿

≤
∑

𝑗∈J

𝑞𝑗 (𝑡 + 𝛿) − 𝑞𝑗 (𝑡)
𝛿

(

𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

)

This is hold because (𝑑′𝑗 (𝑡 + 𝛿) ∶ 𝑗 ∈ J ) is optimal for queue sizes (𝑞𝑗 (𝑡 + 𝛿) ∶∈ J ) whereas (𝑑′𝑗 (𝑡) ∶ 𝑗 ∈ J ) is suboptimal. Letting
𝛿 ↗ 0, gives the first inequality below, which we then expand over a sequence of inequalities (each of which we discuss below):

𝑑𝐿
𝑑𝑡

≤
∑

𝑗∈J

𝑞′𝑗 (𝑡)

(

𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

)

=
∑

𝑗∈J

(

𝑎𝑗 +
∑

𝑗′∈J

𝑑′𝑗′ (𝑡)𝑃𝑗′𝑗 − 𝑑′𝑗 (𝑡)
)

(

𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

)

=
∑

𝑗∈J

𝑎𝑗
𝑑′𝑗 (𝑡)

𝜆𝑗
−

∑

𝑗∈J

𝜆𝑗

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

+
∑

𝑗,𝑗′∈J

𝜆𝑗𝑃𝑗,𝑗′

[

𝑑′𝑗 (𝑡)

𝜆𝑗
⋅
𝑑′𝑗′ (𝑡)

𝜆𝑗′

]

−
∑

𝑗∈J

(

𝑎𝑗 +
∑

𝑗′∈J

𝑑′𝑗′ (𝑡)𝑃𝑗′𝑗 − 𝑑′𝑗 (𝑡)
)

=
∑

𝑎𝑗
𝑑′𝑗 (𝑡)

𝜆
−

∑

𝜆𝑗

(

𝑑′𝑗 (𝑡)

𝜆

)2
𝑗∈J 𝑗 𝑗∈J 𝑗
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+
∑

𝑗,𝑗′∈J

𝜆𝑗𝑃𝑗,𝑗′

⎡

⎢

⎢

⎣

−1
2

(

𝑑′𝑗 (𝑡)

𝜆𝑗
−

𝑑′𝑗′ (𝑡)

𝜆𝑗′

)2

+ 1
2

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

+ 1
2

(𝑑′𝑗′ (𝑡)

𝜆𝑗′

)2
⎤

⎥

⎥

⎦

.

−
⎛

⎜

⎜

⎝

∑

𝑗∈J

𝑎𝑗 −
∑

𝑗∈J

𝑑′𝑗 (𝑡)𝑃𝑗𝜔

⎞

⎟

⎟

⎠

=
∑

𝑗∈J

𝑎𝑗
𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

2
∑

𝑗,𝑗′∈J

𝜆𝑗𝑃𝑗,𝑗′

(

𝑑′𝑗 (𝑡)

𝜆𝑗
−

𝑑′𝑗′ (𝑡)

𝜆𝑗′

)2

− 1
2

∑

𝑗∈J

𝑎𝑗

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

− 1
2

∑

𝑗∈J

𝜆𝑗𝑃𝑗𝜔

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

+ 1
2

∑

𝑗∈J

⎧

⎪

⎨

⎪

⎩

−𝜆𝑗 +
∑

𝑗′∈J

𝜆𝑗′𝑃𝑗′ ,𝑗 + 𝑎𝑗

⎫

⎪

⎬

⎪

⎭

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

−
⎛

⎜

⎜

⎝

1
2

∑

𝑗∈J

𝑎𝑗 +
1
2

∑

𝑗∈J

𝜆𝑗𝑃𝑗𝜔 −
∑

𝑗∈J

𝑑′𝑗 (𝑡)𝑃𝑗𝜔

⎞

⎟

⎟

⎠

=
∑

𝑗∈J

𝑎𝑗
𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

2
∑

𝑗,𝑗′∈J

𝜆𝑗𝑃𝑗,𝑗′

(

𝑑′𝑗 (𝑡)

𝜆𝑗
−

𝑑′𝑗′ (𝑡)

𝜆𝑗′

)2

− 1
2

∑

𝑗∈J

𝑎𝑗

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

− 1
2

∑

𝑗∈J

𝜆𝑗𝑃𝑗𝜔

(

𝑑′𝑗 (𝑡)

𝜆𝑗

)2

−
⎛

⎜

⎜

⎝

1
2

∑

𝑗∈J

𝑎𝑗 +
1
2

∑

𝑗∈J

𝜆𝑗𝑃𝑗𝜔 −
∑

𝑗∈J

𝑑′𝑗 (𝑡)𝑃𝑗𝜔

⎞

⎟

⎟

⎠

= − 1
2

∑

𝑗,𝑗′∈J

𝜆𝑗𝑃𝑗,𝑗′

(

𝑑′𝑗 (𝑡)

𝜆𝑗
−

𝑑′𝑗′ (𝑡)

𝜆𝑗′

)2

− 1
2

∑

𝑗∈J

𝑎𝑗

(

𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

)2

(23)

− 1
2

∑

𝑗∈J

𝜆𝑗𝑃𝑗𝜔

(

𝑑′𝑗 (𝑡)

𝜆𝑗
− 1

)2

. (24)

he first equality above applied the fluid model Eq. (17). The 2nd equality simply rearranges terms. The third equality applies the
dentity 𝑥 𝑦 = [𝑥2 + 𝑦2 − (𝑥− 𝑦)2]∕2 for 𝑥 = 𝑑′𝑗 (𝑡)∕𝜆𝑗 and 𝑦 = 𝑑′𝑗′ (𝑡)∕𝜆𝑗′ . For the 4th equality we rearrange terms, and add and subtract
1
2
∑

𝑗∈J 𝑎𝑗
(

𝑑′𝑗 (𝑡)∕𝜆𝑗
)2, and we note that ∑

𝑗∈J 𝑎𝑗 +
∑

𝑗∈J 𝜆𝑗𝑃𝑗𝜔 follows from the traffic equations, (3). For the 5th equality, we
observe that the term in curly brackets is zero by the traffic Eqs. (3). In the final equality, we notice that terms can be collected
together as quadratics.

Since (𝑑𝑗 (𝑡)∕𝜇𝑗 ∶ 𝑗 ∈ J ) belongs to the boundary of ⟨S ⟩ and 𝝆 = (𝜆𝑗∕𝜇𝑗 ∶ 𝑗 ∈ J ) belongs to the interior of ⟨S ⟩. There exists a
fixed 𝜀 (depending only on 𝝆 and S ) and there exists 𝑗∗ such that

𝑑′𝑗∗ (𝑡)

𝜆𝑗∗
− 1 > 𝜀 . (25)

Now consider a path 𝑗1,… , 𝑗𝐿 = 𝑗∗, with 𝐿 ≤ |J | and satisfying 𝑎𝑗1 > 0 and 𝑃𝑗𝓁 𝑗𝓁+1 > 0 for 𝓁 = 1,… , 𝐿 − 1. Consequently, by
(25), it either holds that

|

|

|

|

|

|

𝐷′
𝑗𝓁∗−1

(𝑡)

𝜆𝑗𝓁∗−1
−

𝐷′
𝑗𝓁∗

(𝑡)

𝜆𝑗𝓁∗

|

|

|

|

|

|

> 𝜀
|J |

for some 𝓁∗ ∈ {2,… , 𝐿} , or
|

|

|

|

|

|

𝐷′
𝑗1
(𝑡)

𝜆𝑗1
− 1

|

|

|

|

|

|

> 𝜀
|J |

. (26)

(Notice that if (26) did not hold then by applying the triangle inequality to (25), then we would see that (26) could not hold. Thus
leading to a contradiction.)

Applying this to (24) gives that,
𝑑𝐿
𝑑𝑡

≤ −𝑐 𝜀2

|J |

2
. (27)

all 𝑡 satisfying 𝒒(𝑡) ≠ 0, where 𝑐 > 0 is an appropriate constant.
Notice that, 𝐿(𝑞(0)) is uniformly bounded for all 𝒒(0) satisfying ∑

𝑗 𝑞𝑗 (0) = 1. For such 𝒒(0), (27) implies a uniform bound 𝑡0 exists
with 𝐿(𝒒(𝑡)) = 0 for all 𝑡 ≥ 𝑡0. Consequently, 𝒒(𝑡) = 0 for all 𝑡 ≥ 𝑡0. Thus the fluid model is stable. By Proposition 1, the proposed
Max Weight queueing network is therefore positive recurrent. □

Appendix D. LOMW-4 and LOMW-64 parameter sets resulting from the cross entropy method for balanced and imbalanced
traffic demand, i.e. scenarios 1 and 2, respectively.

D.1. LOMW-4

D.1.1. Scenario 1

See Table 4.
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Table 4
LOMW-4 Scenario 1.

High traffic demand Medium traffic demand Low traffic demand
[

−2.743 0.806 0.092 0.012
] [

−4.242 4.161 3.72 −4.752
] [

−4.987 3.171 0.646 −2.616
]

Table 5
LOMW-4 Scenario 2.

High traffic demand Medium traffic demand Low traffic demand
[

−3.513 1.581 2.219 −1.711
] [

−2.322 2.942 0.54 −3.659
] [

−3.567 4.24 0.209 −6.064
]

Table 6
LOMW-64 Scenario 1.

High traffic demand Medium traffic demand Low traffic demand

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2.974 2.882 −1.839 −1.933
−1.33 2.177 0.453 −0.046
−4.29 1.126 −0.603 0.988
−1.582 1.529 1.98 −2.81
−2.475 0.815 −0.904 0.778
2.282 1.24 2.773 −5.176
−3.441 1.987 −1.413 −4.575
0.236 1.276 3.011 −3.431
−3.138 1.113 0.330 −2.144
−1.04 0.043 1.568 −0.282
−4.48 0.683 2.75 −1.08
−3.036 0.303 0.172 0.648
−1.238 2.536 −0.409 −2.184
3.684 2.508 3.981 −0.985
−1.96 0.872 −1.644 −0.034
−1.523 0.93 −1.166 −1.741

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.502 1.324 −1.237 −3.015
−3.227 1.49 3.238 0.078
−1.59 2.13 −0.819 −1.692
−1.615 3.21 −1.489 −4.134
0.909 1.422 3.233 −4.063
−1.049 0.479 −0.87 −1.853
−2.232 0.992 1.519 −2.328
−2.328 2.592 −1.872 −3.455
−2.037 1.697 3.166 −2.193
0.045 0.977 0.779 −3.117
−1.372 1.818 0.702 −1.934
0.577 1.957 1.484 −4.746
−2.399 1.735 3.327 −1.97
0.256 1.346 2.234 −3.001
−4.281 0.894 1.648 −0.05
−1.445 0.301 0.714 −1.669

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3.746 0.793 0.611 −0.690
−0.874 1.029 0.079 −2.125
−0.342 1.147 1.052 −2.920
−0.527 1.319 1.310 −3.859
−3.658 1.176 −0.032 0.073
−2.621 2.132 0.426 −2.666
−5.216 2.465 −0.620 −0.649
−1.379 0.847 1.875 −1.352
−3.647 1.286 2.502 −0.839
−2.054 1.669 2.214 −2.214
−2.766 1.934 −0.680 −0.887
−5.712 1.870 2.234 0.088
0.58 1.467 −0.573 −4.262

−4.493 2.289 2.803 −1.037
−1.135 2.030 −0.825 −4.249
−1.955 2.602 0.274 −3.497

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

D.1.2. Scenario 2
See Table 5.

.1.3. Aggregated LOMW-4

[

−3.686 1.703 2.151 −1.463
]

.2. LOMW-64 (Each row represents the parameter set applied to the corresponding intersection)

.2.1. Scenario 1
See Table 6.

.2.2. Scenario 2
See Table 7.
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D
D
E

G

G

H
K
L
L

L
L

L
L
L
L
L

M
M

M
N

P

P

S

T

U

V
W
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Table 7
LOMW-64 Scenario 2.

High traffic demand Medium traffic demand Low traffic demand

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−4.245 1.591 1.201 −0.157
−1.041 1.467 1.715 −5.094
−3.329 2.240 −0.563 −0.609
1.413 1.618 2.286 1.817
−2.964 0.781 0.026 0.881
−3.305 0.507 1.509 −1.571
−2.809 1.838 −1.071 −1.362
−1.670 0.311 0.774 −0.330
0.170 1.761 3.183 −3.08
−4.783 1.991 0.844 −2.101
1.055 0.403 0.730 −3.848
−3.767 0.585 0.373 1.219
−2.624 0.810 1.463 −2.671
−2.791 0.921 3.872 −0.829
−3.511 2.377 −4.813 −0.868
−2.759 0.934 −0.090 −0.583

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3.152 0.481 4.783 0.273
−3.110 1.593 −1.288 −0.833
−2.982 2.038 2.582 −3.480
−2.909 0.787 1.502 0.727
−1.104 1.038 0.480 −1.143
−1.444 0.08 2.494 −1.287
−1.563 1.876 1.731 −2.904
−6.890 2.095 0.710 1.943
−1.453 1.336 −1.859 −1.229
−4.733 1.827 0.001 −0.078
0.312 1.226 −0.799 −3.756
−1.330 0.767 2.748 −2.612
−2.162 0.711 0.162 −0.391
−1.765 1.122 2.049 −2.147
−1.574 1.464 3.041 −2.355
−4.598 0.760 2.816 0.473

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1.613 1.562 0.214 −2.327
−3.962 1.785 2.331 −0.326
−3.232 0.852 2.912 −1.313
−0.625 1.022 0.946 −2.472
−2.886 0.972 3.043 −0.268
−3.372 1.867 1.448 −1.096
−3.192 2.131 −0.912 −1.352
−3.415 2.365 0.274 −1.858
−2.902 2.006 0.932 −1.986
−1.104 1.823 1.057 −4.23
−4.518 2.376 −0.443 −0.708
1.699 1.941 3.159 −6.443
−1.309 0.956 0.668 −1.450
−5.329 2.001 0.486 0.241
−1.427 3.322 −0.143 −5.251
−1.224 0.541 3.278 −2.661

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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