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Abstract

Landscape evolution models (LEMs) have the capability to characterize key aspects

of geomorphological and hydrological processes. However, their usefulness is hin-

dered by model equifinality and paucity of available calibration data. Estimating

uncertainty in the parameter space and resultant model predictions is rarely achieved

as this is computationally intensive and the uncertainties inherent in the observed

data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach

was adopted in this study to assess the value of uncertain hydrological and geomor-

phic data. These were used to constrain simulations of catchment responses and to

explore the parameter uncertainty in model predictions. We applied this approach to

the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood.

Results show that the model was generally able to produce behavioural simulations

within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4%

to 41.2% and captured the high-magnitude low-frequency sediment events. Since

different sets of behavioural simulations were found across different parts of the

catchment, evaluating LEM performance, in quantifying and assessing both at-a-point

behaviour and spatial catchment response, remains a challenge. Our results show

that evaluating LEMs within uncertainty analyses framework while taking into

account the varying quality of different observations constrains behavioural simula-

tions and parameter distributions and is a step towards a full-ensemble uncertainty

evaluation of such models. We believe that this approach will have benefits for

reflecting uncertainties in flooding events where channel morphological changes are

occurring and various diverse (and yet often sparse) data have been collected over

such events.
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1 | INTRODUCTION

In most landscapes, processes of weathering, erosion and deposi-

tion are highly integrated with hydrological processes and river

flow. For several decades, research has tried to unravel the com-

plexity of this behaviour using various methods, increasingly

depending on the descriptive and predictive capabilities of numeri-

cal models to do this (Owens & Collins, 2006). A part of this
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research effort has been focused on developing LEMs to simulate

and visualize various geomorphological and hydrological process

dynamics simultaneously and examine potential short-term and

long-term process linkages. As a result, LEMs are increasingly used

in a wide range of applications characterizing various aspects of

geomorphological change, such as: (1) testing hypotheses about

landform process dynamics (e.g. Densmore et al., 1998; Gioia &

Lazzari, 2019; Tucker & Slingerland, 1994); (2) evaluating the effect

of changing climate on river morphology (e.g. Coulthard

et al., 2000; Coulthard & Macklin, 2001; Hancock, 2009; Hancock

et al., 2017; Temme et al., 2009); (3) as a management tool for

environmental problems (e.g. Coulthard & Macklin, 2003; Hancock

et al., 2000, 2016); and (4) assessing the effects of digital

elevation model (DEM) resolution on model simulated outputs

(e.g. Claessens et al., 2005; Schoorl et al., 2000) and vegetation

effects (e.g. Bastola et al., 2018; Collins et al., 2004; Hooke

et al., 2005).

The landscape evolution modelling community has made signifi-

cant advances in understanding model complexity and component

interactions (Van de Wiel et al., 2011), but validation and uncertainty

investigations have been limited (Skinner et al., 2018; Tucker &

Hancock, 2010). However, to ensure effective use of LEMs, quantify-

ing the magnitude and sources of uncertainty associated with

observed constraining data and model simulations is essential as this

can increase the reliability of the model predictions and effectively

define realistic values that should be used in subsequent assessments.

This paper addresses this important issue by exploring the parameter

and predictive uncertainty of a LEM by assessing the ability of hydro-

logical and geomorphic uncertain observations to constrain model

simulations.

Uncertainty in LEMs is currently acknowledged as an issue, as

it is for all environmental modelling, but has rarely been quantified

(Skinner et al., 2018; Van de Wiel et al., 2011). Whilst the initial

form of the landscape and external driving conditions are often

interpolated or extrapolated due to the paucity of available data,

the model structure, choice of geomorphic processes, processes

formulations and parameterization are strongly affected by a lack

of prior knowledge and the difficulty in deciding whether to

include or neglect certain processes. These epistemic (knowledge)

uncertainties are inherent in the model calculations in terms of cell

grid structure and time step (Temme et al., 2011). Whatever the

uncertainties, most LEMs have a large number of possible parame-

ters, and each can combine many different ranges of acceptable

values. Past studies have mainly focused on LEM sensitivity to

changes in climate variability and precipitation characteristic

(Armitage et al., 2018; Coulthard & Skinner, 2016; Skinner

et al., 2020), and variations in initial conditions (Hancock

et al., 2016; Ijjaszvasquez et al., 1992; Kwang & Parker, 2019).

Hancock (2009) provided limited evaluation of the sensitivity of

model outputs to different perturbations and changes in grain size

distributions, whereas Ziliani et al. (2013) examined model sensitiv-

ity to 12 input factors as a pre-screening before model calibration

was applied. Similarly, Temme et al. (2009) explored different levels

of parameter uncertainty and how this affected the ability of the

LEM to differentiate between future landscape change under a sta-

ble climate and under human-induced climate change. Research

conducted by Skinner et al. (2018) explored model sensitivity to

parameters and parameter changes of a LEM by using the Morris

method for sensitivity analysis. However, a number of questions

regarding the effects of LEM uncertainty remain unanswered, for

instance, how to identify realistic changes simulated by the LEMs

given the parameter and data uncertainties, and how the uncer-

tainty in LEMs propagates when the results of LEMs are used for

subsequent analysis. For example, LEM results could be used as

inputs in flood inundation models to account for how morphologi-

cal change impacts on flood risk. By identifying realistic simulations

by the LEMs and uncertainty propagation, this is, therefore, a

crucial first step in quantifying the parameter uncertainty in LEMs

so as to improve their reliability as physically based numerical

models.

In common with other types of environmental model applica-

tions, LEMs suffer from equifinality (Beven, 1996; Hancock

et al., 2016) such that there can be several or many

combinations of parameter sets which result in equally acceptable

simulations when the model is evaluated against observed data.

Numerous approaches (e.g. standard Bayesian approaches

(Krzysztofowicz, 2002; Kuczera & Parent, 1998), Bayesian model

averaging (BMA) (Ajami et al., 2007; Duan et al., 2007; Vrugt

et al., 2006), generalized likelihood uncertainty estimation (GLUE)

(Beven & Binley, 1992) and others) have been proposed on the

basis of accepting multiple acceptable parameter sets and treating

each as a scenario of uncertain conditions that describes a simu-

lated system. In most of the real applications, since a residual time

series is neither available nor independent of uncertain observed

data (Winsemius et al., 2009), the justification for making strong

statistical assumptions about the nature of likelihood functions is

rather weak. It will be difficult to apply formal statistical parameter

inference which involves updating a prior distribution of model

parameters based on statistical likelihood measures and requires an

explicit account of errors in the model structure, parameters and

the input data (Mantovan & Todini, 2006). Given the fact that the

residual error characteristics are not fully known and the issues

with a lack of commensurability between the limited observed data

and the model, GLUE is a more suitable approach to reveal uncer-

tainties in LEMs from which a probabilistic prediction can be made

at the expense of relaxing certain statistical assumptions of the

formal Bayesian approach (Beven, 2009).

Since there is no objective method to choose the threshold for

some informal likelihood measures (Mantovan & Todini, 2006;

Montanari, 2005), GLUE has been criticized for its subjective distinc-

tion between behavioural and non-behavioural model. In response, an

approach to model evaluation on the basis of limits of acceptability

(LoA) for use within the GLUE methodology was outlined by

Beven (2006) and first demonstrated by Liu et al. (2009). This

approach suggested that, before simulating any model runs, the LoA

should first be defined based on a range of ‘effective observational

error’ that incorporates observation error in the measurements given

the availability of information and allows for the effects of commensu-

rability error and input error. The Monte Carlo model runs that pro-

vide predictions that all fall within the LoA are then classified as

behavioural, and each model is associated with a performance score

that summarizes how well the model simulates the observed. Since

different error uncertainties are often inherent within different types

of data, interpretation of the model results could be biased because

1982 WONG ET AL.
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the errors from various sources (i.e. input data, model structure, model

parameters and observations for calibration and validation) could

compensate each other (McMillan et al., 2012). The LoA approach

thus pays attention to different sources of uncertainty and allows dif-

ferent limits to be set for individual observations in the calibration

process such that the modelling exercise is fit for purpose. Liu

et al. (2009) demonstrated the use of the LoA approach in GLUE for

identifying behavioural models whilst allowing for uncertainties in

observational data. Other studies which focused on the calibration of

hydrological models have adopted this approach in building their LoA

for: (i) uncertainties in the stage–discharge relationship and evaluation

points in a flow–duration curve (Van Hoey et al., 2015; Westerberg

et al., 2011b); (ii) flood frequency estimation (Blazkova &

Beven, 2009); (iii) evaluation of model structure, parameter and data

uncertainties (Krueger et al., 2010; Mackay et al., 2018; Teweldebrhan

et al., 2018); (iv) calibration of models incorporating both hard and

soft information (Winsemius et al., 2009); and (v) uncertainties in

hydrological and water quality data (Coxon et al., 2015; Hollaway

et al., 2018; McMillan et al., 2012). It is therefore expected that this

approach will be equally applicable in other environmental modelling

frameworks such as LEMs.

The aim of this paper is to apply an LoA uncertainty analysis

approach to evaluate LEM simulations: (1) to quantify and assess the

value of uncertain hydrological and geomorphic data in constraining

the catchment response, and (2) to identify the uncertainty of parame-

ters for predictions of observed and uncertain hydrological and geo-

morphic behaviours and dynamics. The River Derwent and Cocker

catchment in North West England, UK provides a good test of the

methodology because of the availability of stage–discharge and

suspended sediment load data, which are both highly uncertain and so

require the quantification of the expected observational errors (see

Table 1 for data summary). Also, the locations of the gauges and the

monitoring sites provide an opportunity to assess not only the model

performance at the catchment outlet but also the model ability in cap-

turing the internal catchment response. Such an evaluation is uncom-

mon in most LEM applications.

2 | STUDY AREA AND DATA AVAILABILITY

2.1 | Catchment characteristics

Located in North West England, the River Derwent catchment covers

an area of 663 km2 (Environment Agency, 2009) (Figure 1). The River

Derwent rises in the high peaks of the Lake District, flows through

Derwent Water and Keswick and continues into Bassenthwaite Lake

and down to Cockermouth before draining into the Irish Sea at Work-

ington. Key tributaries include the River Cocker (catchment area

117 km2), which rises at Gatesgarthdale Beck, flows through the lakes

of Buttermere and Crummock Water and joins the River Derwent at

Cockermouth. The River Greta, formed by St Johns Beck and the

River Glenderamackin, has its confluence with the River Derwent just

downstream of Keswick. The combined catchment area for the River

Greta and St Johns Beck is 143 km2.

The catchment is very steep in its upstream sections, which con-

tain some of the highest peaks in England (over 900 m). The catch-

ment geology is dominated by the Skiddaw Slate Group, which the

River Cocker and most of the River Derwent upstream of

Cockermouth (including Bassenthwaite Lake and Derwent Water)

flow over, while the upper reaches of the River Derwent, Naddle Beck

and St Johns Beck lie on the Borrowdale Volcanic Group (Hatfield &

Maher, 2008, 2009). The remainder of the Derwent lies on Carbonif-

erous limestone, milestone grit and coal measures (Moseley, 1979;

Wilson, 2010). Holocene (post-glacial) alluvium (river sediments) occur

along many of the main valleys in the catchment, which are dominated

by loamy soils. The watercourses within the catchment comprise

steep bedrock channels with step-pool sequences in the headwaters

and boulder/gravel-bed channels in valley reaches. Sediment sizes

range from sand to boulders but are dominated by gravel and cobbles.

Vegetation within the catchment is dominated by grassland

(Environment Agency, 2009). The average annual rainfall is 2,408 mm

but can be as high as 4,175 mm on the mountaintops (Environment

Agency, 2009). In the upper headwaters, the rivers have a very flashy

flow regime due to topography, geology and soils. However, this

flashy response of the upstream reaches is attenuated by the lakes in

the downstream sections of the River Derwent (Hatfield &

Maher, 2008). The River Cocker has a more flashy response than the

River Derwent. Combined with the impermeable underlying geology

and waterlogged upland soils, large amounts of runoff are produced,

and this can cause significant downstream flooding (Chiverrell

et al., 2019).

2.2 | Data

To improve the understanding of the catchment dynamics, a

NEXTMap DEM at 50 m resolution of the entire catchment was used.

This DEM was provided by Intermap Ltd. based on an airborne inter-

ferometric synthetic-aperture radar (IFSAR) survey with a vertical

accuracy of 1 m. Rainfall data were provided by the Environmental

Agency of England and Wales (EA) during the period from December

1990 to September 2012. To account for the spatial and altitudinal

effect, rainfall data from 21 tipping-bucket rain gauges located within

and 6 km around the catchment (see Figure 1 for spatial distribution)

were obtained to produce an areal average rainfall (AAR) for both the

River Derwent and Cocker catchments. Stage–discharge measure-

ments at five flow gauging stations (Figure 1 and Table 1) were

obtained from the EA, with two main gauges (Derwent catchment at

Ouse Bridge and Cocker catchment at Southwaite Bridge) and three

sub-catchment gauges (Derwent at Portinscale, Glenderamackin at

Threlkeld and St Johns Beck at Thirlmere Reservoir) in the River Der-

went catchment.

For suspended sediment, the data reported in the study of

Warburton (2010) in which fluvial sediment flux monitoring was

undertaken in the Derwent catchment from 1 April to 30 November

2006 were used (Table 1). River stage (m) and turbidity (measured in

nephelometric turbidity units using an Analite 395 nephelometric tur-

bidity probe) were recorded continuously and logged at 15-min inter-

vals on a Campbell CR200 data logger at two monitoring sites

(Derwent at Portinscale and Newland Beck at Braithwaite). The

15-min interval data were re-grouped to hourly time intervals and

processed by Warburton (2010) to provide the suspended sediment

data. While no primary field data were collected during this study, the

grain size distribution (GSD) characteristics of the Eden catchment, a

WONG ET AL. 1983
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neighbouring catchment north east to the River Derwent and Cocker,

were used as the input of the model in this study. The Eden catch-

ment was a suitable substitute because: (1) it shared similar upland

setting; (2) Holocene alluvium is present along much of the main val-

leys in the catchment; (3) catchment soils, particularly those in river

valleys, are composed principally of loams with different percentage

of clay content; and (4) rivers are dominated by gravels and pebbles

with occasional boulders and bedrock outcrops. The grain size distri-

butions of the six sub-catchments of the Eden were estimated using a

photo analysis technique in which 173 photographs were taken on

channel edge at 40 sites along the rivers (personal communication

with Jorge Ramirez).

T AB L E 1 Summary of the available hydrological and geomorphic information. The rainfall and flow data are provided by EA

Variable Description Data source
Number of
stations

Observation
interval Start End

Rainfall Tipping-bucket EA 21 15 min December 1990a September 2012a

Flow Stage and discharge EA 5 15 min June 1966a May 2012a

Suspended sediment Stage and turbidity Warburton (2010) 2 15 min April 2006 November 2006

aThe start and end times represent the earliest and latest dates, respectively, for the rain gauge and the flow gauging stations.

F I GU R E 1 DEM of River Derwent and Cocker catchment extracted from LiDAR data at 50 m resolution. Red dots are gauging station points:
River Derwent at Ouse Bridge for River Derwent catchment and River Cocker at Southwaite Bridge for Cocker catchment. Yellow points indicate
the rain gauges within and 6 km around the catchment. Number of each point is numerical code of the gauge (refer to Table 1 for details) [Color
figure can be viewed at wileyonlinelibrary.com]

1984 WONG ET AL.
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2.3 | Pre-processing

The DEM was first rescaled from 50 m to 200 m and 100 m spatial

resolutions using bi-linear interpolation; there are 8,916 and 2,945

grid cells for the River Derwent and Cocker catchments, respectively.

The purposes of rescaling are to increase the computational efficiency

and enable multiple simulations to be run. Summary statistics of the

elevation and slope of the DEMs at 50 m, 100 m and 200 m resolu-

tions were computed and their comparison showed that the elevation

and slope at coarser resolutions provided similar values at different

percentiles to those at 50 m resolution (see Table A1 and A2). There-

fore, the 200 m and 100 m DEMs were able to capture the dominant

topographic features and provide enough detail to reflect the domi-

nant catchment-scale topographic spatial heterogeneities with a feasi-

ble simulation time. Given the presence of six lakes in the catchment

and the fact that the DEM could only capture their water surface ele-

vation, the DEM was modified to provide a better representation of

the lake topography. The bottom topography of four of the lakes

(Bassenthwaite Lake, Derwent Water, Buttermere and Crummock

Water) was based on the bathymetrical surveys of Mill (1895). Mill’s

survey maps were geo-referenced (with an average root-mean-square

error (RMSE) of 5.30 m), and the contour lines were digitized manu-

ally, and converted into 100 m and 200 m raster DEMs using the

ArcMap 10.1 raster interpolation and the kriging algorithm.

The resulting DEMs were integrated into the NEXTMap 100 m and

200 m DEMs by subtracting the lake depths from the water surface

elevation. Since no survey data were available in literature for the

remaining two lakes (Thirlmere and Loweswater), their bathymetry

was configured using their mean depths such that the model lake stor-

age matched the actual capacity measured by the EA (Environment

Agency, 2006).

The 15-min interval rainfall data were first re-grouped to hourly

time intervals before screening. The following criteria were applied to

the screening procedure: (1) compute the percentage of missing

values in each of the rainfall series on a yearly basis and eliminate any

years for which the percentage of missing values exceeds 10%;

(2) maximize the numbers of years so that the rainfall data series are

of reasonable length, ca. 10 years; (3) retain as many rain gauges

within the catchment as possible even though their percentage of

missing values in some years exceeds 10%; and (4) evaluate the rain

gauge consistency against the three nearest neighbours by correlation

analysis. Accordingly, the hourly rainfall series of the rain gauges

(except rain gauges 1, 18, 19 and 20, Figure 1) from 1999 to 2011

were used and regarded as the observed rainfall period. The hourly

rainfall data of the 17 rain gauges were interpolated using the ordi-

nary kriging method, which preserves the pattern of spatial depen-

dency (see e.g. Goovaerts, 2000; Mair & Fares, 2011) to estimate the

spatial precipitation field of both catchments at an hourly time step.

The total gridded spatial rainfall within the catchment was divided by

the catchment area to produce the hourly homogeneous AAR. This

was done separately for the River Derwent and River Cocker catch-

ments. To assess the robustness of the time series, the AARs of both

catchments were aggregated into daily values, and its spatial field and

temporal variability were compared with daily 1 km-gridded rainfall

data, which is a composite of radar data and rain gauge data provided

by the EA. In general, the AARs showed similar rainfall characteristics

(with coefficient of determination, R2, of 0.61 and 0.57 for the River

Derwent and River Cocker catchments, respectively) and were com-

patible with daily 1 km-gridded rainfall data.

3 | THE CAESAR-LISFLOOD MODEL

CAESAR-Lisflood is an LEM that simulates the evolution of landforms

by directing water over a regular grid of cells and modifying elevations

based on erosion and deposition caused by fluvial and slope processes

(Coulthard et al., 2013). CAESAR-Lisflood integrates the LISFLOOD-

FP 2D hydrodynamic flow model (Bates et al., 2010) with the CAESAR

geomorphic model (Coulthard et al., 2000, 2002, 2005; Coulthard &

Van De Wiel, 2007; Van De Wiel et al., 2007) to dynamically simulate

both erosion and deposition and flood inundation extent and depth

simultaneously in river catchments and reaches over a range of

temporal scales. There are four main components in CAESAR-Lisflood,

featuring hydrological processes, multidirectional routing of river flow,

fluvial erosion and deposition over a range of different grain

sizes, and slope processes (soil creep, mass movement). These

components are described briefly below, but for a full description see

Coulthard et al. (2002), Van De Wiel et al. (2007) and

Coulthard et al. (2013).

CAESAR-Lisflood can be run in two modes: a catchment mode,

with no external influxes other than rainfall; and a reach mode, with

one or more points where discharge and sediment enter the system.

When running in catchment mode, hourly rainfall data are used to

drive an adapted version of TOPMODEL (Beven & Kirkby, 1979)

to calculate runoff, which is then routed using the flow model. In

reach mode, sources of discharge (both water and sediment) can be

added at user-defined points. Surface water routing is then carried

out using the 2D hydrodynamic LISFLOOD-FP model (Bates

et al., 2010). The hydraulic model time step is controlled by the

shallow-water Courant–Friedrichs–Lewy condition to maintain

numerical stability. The flow depth and flow velocity are used to cal-

culate shear stress, which in turn determines the erosion, transport

and deposition of sediment. CAESAR-Lisflood can simulate erosion

and deposition over nine sediment fractions, with one fraction treated

as suspended sediment. As the study channels are largely gravel and

sand, sediment transport is calculated using the Wilcock

and Crowe (2003) equations, which are based on field and laboratory

data from a coarser bed gravel–sand mix. Deposition of sediments dif-

fers between bed load and suspended load, with bed load being

moved directly from cell to cell, whereas suspended load is deposited

according to fall velocities and concentrations for the suspended sedi-

ment fraction. Erosion within the channel is controlled by the in-

channel lateral erosion rate, which represents how cohesive or not

the sediment is.

Slope processes are also included, with mass movement and soil

creep. Mass movement (landslides) is represented as an instantaneous

movement process. When a critical slope threshold is exceeded by

the slope between adjacent cells, material is moved from the uphill

cell to the one below until the angle is lower than the threshold.

Movement upslope may be triggered by a small slide in a cell at the

base of the slope, and the adjacent cells are checked iteratively until

there is no more movement (Coulthard et al., 2002). Soil creep (per

year) is calculated between each cell using a simple diffusion equation

which is linearly proportional to slope angle. After the fluvial erosion/

WONG ET AL. 1985
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deposition and slope process amounts are calculated, the elevations

and grain-size properties of the cells are updated simultaneously. In

this study, CAESAR-Lisflood version 1.2x was used.

4 | METHODOLOGY

4.1 | Model setup

CAESAR-Lisflood was set up in catchment mode, and its main data

sources were a DEM as the landscape, hourly rainfall inputs and grain

size distribution (GSD). The river channel and floodplain and lake

topography in the model were described using the modified DEM as

above (i.e. 200 m and 100 m DEM for the River Derwent and Cocker

catchments, respectively). Bedrock can afford an important control

on channel incision – especially in upland areas and over long

(e.g. millennial) timescales. However, mapping the bedrock depth and

any locations where it is at the surface is a considerable task for such

a large catchment. Furthermore, for this study, many parts of the

simulated basin were low gradient and lacustrine, where the impact

of bedrock will be less than in an entirely upland basin. Therefore,

the simulations were run without a bedrock layer present.

Many numerical models require a spin-up period for the results

to become stable. In the case of CAESAR-Lisflood, the model pro-

duces extremely high sediment transport rates in early simulations as

surface roughness in the digital elevation is removed and smoothed

and the particle size distribution is sorted across the catchment

according to the topography and hydrology. In this case, the model

was usually run using repeated rainfall data for years of simulation

(e.g. Hancock (2009) allowed two cycles of the rainfall data) and the

resultant DEM and GSD data were then used for analysis. To avoid

the repeated stochastic nature of the rainfall series, the 13-year

hourly AAR series was extended to reproduce a new series by using

the cumulative density function and generalized Pareto distribution

model, a stochastic rainfall generator as described in Cameron

et al. (1999). The generated rainfall series was added in front of the

observed AAR to form a 26-year-long time series extending from

January 1986 to December 2011. The years 1986–1998 were used

as a spin-up period for the model, thus no model evaluations were

made in this period. The 26-year hourly AAR time series was then

applied uniformly across each catchment.

Since the river channels are dominated by gravel and cobbles with

sediment sizes ranging from sand to boulders, it is important to reflect

the sediment variability of the catchment in order to examine the

effects of GSD on model performance and the hydrological and geo-

morphic behaviour of the model during floods. In this regard, the grain

size data were classified into nine size ranges to suit CAESAR-Lisflood

(Table 2). Since grain sizes smaller than 0.3 mm were not observable

using the photo analysis technique, the GSDs were adjusted by

assuming a 20% proportion of fine sediments for each sub-catchment

(personal communication with Jorge Ramirez). Figure 2 shows the

uncertainty bound (grey) from 0.5 mm (+1ϕ) to 128 mm (�7ϕ) based

on the variability (5th and 95th percentile) of the field measurements

of all sub-catchments, while the envelope less than 0.5 mm is typical

of upland soils described in Wilson (1993). The black line (case 1 in

Table 2) represents the mean GSD characteristic of all sub-

catchments. To provide a basis for varying the GSD, the mean GSD

was first described by four grain-size parameters which are based on

Folk and Ward (1957) method: (a) the average size (mean), (b) the

spread (sorting) of the sizes around the mean, (c) the symmetry or

preferential spread (skewness) to one side of the mean and (d) the

degree of concentration of the grains relative to the mean (kurtosis).

Only variations in mean and kurtosis were of interest in this study,

thus cases 2 to 5 (Figure 2 and Table 2) were selected by changing the

mean and kurtosis of the distribution while maintaining the skewness

and sorting of the distribution to fall into the same description. One

grain size parameter is changed in each case to further reduce the

numbers of cases that need to be simulated. In general, case 2 can be

described as ‘peaky’, case 3 as ‘less peaky’, case 4 as ‘coarser’ and
case 5 as ‘finer’, relative to case 1, to reflect different distribution

characteristics.

4.2 | Model parameters and sampling range

There are a total of 24 parameters in the CAESAR-Lisflood model that

must be specified and are normally treated as being homogeneous

across the model domain. To reduce the dimensionality of the

T AB L E 2 Grain size proportions in different cases

Case 1 Case 2 Case 3 Case 4 Case 5

Adjusted size (mm) Proportion (%)

0.063 10.0 7.3 12.0 6.2 12.3

0.25 10.0 8.7 12.1 8.8 12.5

1 12.0 9.7 12.5 6.4 17.9

2 24.0 28.2 19.4 19.4 26.1

4 21.0 27.0 18.2 25.1 18.6

8 13.0 11.6 17.5 18.2 7.5

16 6.0 5.0 7.4 10.0 2.6

32 2.0 1.5 0.4 3.5 1.9

128 2.0 1.0 0.5 2.4 0.6

Case 1 represents the mean grain size distribution characteristic of all sub-catchments of the Eden. Cases 2 to 5 are selected by changing the skewness

and kurtosis of the distribution while maintaining the mean and sorting of the distribution to fall into the same description. One grain size parameter is

changed in each case. In general, case 2 can be described as ‘peaky’, case 3 as ‘less peaky’, case 4 as ‘coarser’ and case 5 as ‘finer’, relative to case 1

1986 WONG ET AL.
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parameter space, five parameters of the model were kept at their

‘default’ values due to the model’s lack of sensitivity to variations in

these factors in previous studies (Skinner et al., 2018; Ziliani

et al., 2013). Also, five parameters (two for bedrock lowering and

three for physical weathering) in the soil development component of

the model were not included to further reduce the model complexity.

We acknowledge that the bedrock might have an impact on the model

simulations, but since the focus of the current modelling is on the

hydrological and geomorphic behaviour of the model during floods,

we assume that the bedrock lowering and physical weathering play a

minor role as compared with other factors. As a result, this study iden-

tified 14 parameters, which include one hydrologic parameter, three

hydraulic parameters, five sediment parameters, two slope parameters

and three vegetation parameters, plus the GSD cases as one of the

parameters sampled within the GLUE analysis (Table 3). We assumed

a priori that parameter distributions were uniform due to a lack of evi-

dence of what the effective model parameter distributions should

be. This means that posterior parameter distributions are constrained

by quantifying model performance to uncertain observed data using

the LoA criteria (see Section 4.3 for details).

To improve the sampling of such a high-dimensional parameter

space in computationally expensive models such as LEMs, Latin

hypercube sampling was employed. This technique ensures that

Monte Carlo samples more efficiently cover the parameter interac-

tions in n dimensions for a given sparse sample size and so generate

minimally correlated parameter sets (Beven & Freer, 2001). Accord-

ingly, a sparse population of 1,500 parameter sets was generated for

each catchment given the computational burdens that each simulation

took 6 days to 2 weeks to complete (the variability being due to the

model dynamics under different parameterizations taking considerably

different simulation run times). The ranges of these parameters are

assigned based on their physically feasible ranges and from literature

values (Table 3). If no values were reported in literature, a default

value was set based on expert knowledge and allowed to vary either

by �50% from the default or by a range suggested by previous model-

ling experience. Alternatively, parameters were allowed to vary within

the 95% confidence intervals obtained from observations if available.

The practice of specifying the ranges of parameter values by a certain

percentage has been seen in previous studies (e.g. Pappenberger

et al., 2007) and therefore has some precedence. A summary of these

parameters and their sampling ranges is given in Table 3.

4.3 | Quantification of observational error

The starting point for setting LoA is to assess the uncertainty in the

observed data that are being used for model evaluation. Uncertainties

in input data (e.g. rainfall) could certainly be included to define a set of

ensemble simulations. However, making an assessment of input error

is limited by the simple representation of the rainfall in the model

which could not fully account for the spatial aspects of the rainfall

uncertainty. This study therefore focused on the errors in discharge

and suspended sediment data arising from uncertainty in the stage–

discharge rating curve and sediment load duration curve respectively,

where clear evidence was available to quantify these data.

4.3.1 | Stage–discharge rating curve and
observational uncertainty

Numerous methods (e.g. log–log linear regressions (Liu et al., 2009),

envelope curves (Krueger et al., 2010; McMillan et al., 2010), Bayesian

statistics (Moyeed & Clarke, 2005) and fuzzy rating curves

(Pappenberger et al., 2006; Westerberg et al., 2011a)) have previously

been used to estimate discharge rating curve errors (Kiang

et al., 2018). Applying the most commonly used power function

F I G U R E 2 Grain size distribution used
for input into CAESAR-Lisflood. The
uncertainty bound (grey) from 0.5 mm
(+1ϕ) to 128 mm (�7ϕ) is based on the
variability of the field measurements of all
sub-catchments, while the envelope less
than 0.5 mm is indicated by the ranges
described in Wilson (1993). Case 1 (black
line) represents the mean grain size
distribution characteristic of all sub-
catchments of the Eden. Cases 2 to 5 are
selected by changing the mean and kurtosis
of the distribution while maintaining the
skewness and sorting of the distribution to
fall into the same description. One grain
size parameter is changed in each case. In
general, case 2 can be described as ‘peaky’,
case 3 as ‘less peaky’, case 4 as ‘coarser’
and case 5 as ‘finer’, relative to case 1
[Color figure can be viewed at
wileyonlinelibrary.com]
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relationships in the River Derwent and Cocker catchments did not

give satisfactory results because the assumptions of normality and

homoscedasticity of the residuals are not met, thus a non-parametric

framework is adopted in this study, similar to the method of Coxon

et al. (2015).

The stage–discharge gauging data and observed uncertainty

ranges estimated were fitted with the locally weighted scattering

smoothing (LOWESS) method of Cleveland (1979). The LOWESS

method provides an objective and empirical approach to curve estima-

tion and associated uncertainties that requires no a priori assumption

as to the form of the relationship. It is preferred in cases, such as

those in this study, where the log–log relationship is non-linear and

exhibits curvature (e.g. Hicks et al., 2000). The stage–discharge gaug-

ing data were first transformed to obtain a linear relationship through

a log transform of gauge-height data and a Box–Cox transform of dis-

charge data, corresponding to a more empirical form of the usually

log-transformed stage–discharge power-law function (Moyeed &

Clarke, 2005). The lambda parameter in the Box–Cox transformation

was optimized to achieve the highest degree of linearity. The trans-

formed stage–discharge data were then fit with LOWESS, where the

LoA uncertainty bounds are computed from how well the estimated

curve fits the population of stage–discharge gaugings.

Since the maximum stages in the observation period

(1999–2011) are higher than those in the historical records at all

gauging stations, extrapolation from the above LOWESS curves and

uncertainty estimate fittings were needed. This was quantified by

assuming a linear relationship from the upper tail of the LOWESS fit-

tings with the same level of uncertainties in the log–log-transformed

space. Whilst we recognize that such uncertainties might become rel-

atively larger as discharge magnitudes are increased, we have no evi-

dence to justify a different approach, so this simple extension

approach was used. The extended LOWESS rating curves (Figure 3)

were then used for the estimate of discharge in the observation

period, and the resulting uncertainty bounds consequently defined

the maximum and minimum discharge intervals for given stages. As a

result, the percentages of the total time series in the observation

period that were extrapolated in this form ranged from 3.5% to 17.5%

for different gauging stations (Figure 3).

4.3.2 | Sediment load–duration curve

Similar to the stage–discharge measurements, a log transform of

suspended sediment concentration and discharge data (Q–C

F I GU R E 3 Uncertain rating curves for the five flow gauging stations in the River Derwent and Cocker catchment derived from the stage–
discharge measurements. The black crosses represent the measured values, and the black solid lines indicate the fitted rating curve, while red and
blue dashed lines represent the uncertainty limits for the fitted rating curve and the extrapolated part, respectively. The rating curve from the EA

is also plotted in each flow gauging station for reference [Color figure can be viewed at wileyonlinelibrary.com]
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relationship) was first applied to find a linearized relationship, but this

proved negative. This could be due to a number of well-documented

reasons, for instance hysteresis effects, seasonal effects, antecedent

conditions in the catchment and temporal change in vegetation cover

(Asselman, 2000; Ferguson, 1987; Walling, 1977). In this regard, the

sediment load–duration curve was developed to estimate the errors in

the suspended sediment data. This adapts the concept of the flow–

duration curve that is commonly applied in hydrology and engineering

fields, but in this case it indicates the percentage of time that given

suspended sediment loads are likely to be exceeded. Suspended sedi-

ment loads (tonnes) were calculated by multiplying discharge data by

suspended sediment concentrations. Since the sediment outputs in

CAESAR-Lisflood were in m3, a further unit conversion was under-

taken from tonnes to cubic metres by assuming the dry bulk density

at source to be 1.3 tonnes/m3 (Verstraeten & Poesen, 2001). Exceed-

ance percentages from the sorted suspended sediment load values

were then calculated based on the percentile values 100(0.5/n), 100

(1.5/n),…, 100([n�0.5]/n), where n is the number of suspended sedi-

ment load values.

The accuracy of the sediment load–duration curve was limited by

the availability and representativeness of the data, hence a bootstrap

technique (Efron, 1979) was employed here to account for the uncer-

tainty of the sediment load–duration curve induced by the concentra-

tion data. A total of 10,000 bootstrap samples were taken in this

study, and the 95% confidence intervals of the set of samples defined

the upper and lower observed LoA for the sediment load–duration

curve. In general, the uncertainty bounds were the largest at the high-

load part of the sediment load duration curve but were progressively

smaller towards low load (Figure 4).

4.4 | Evaluation of model performance

Time-step-based performance measures (Krueger et al., 2010) were

used as a means of evaluating the model’s hydrological behaviour to

reproduce the timing and magnitude of hourly flood events and the

model’s geomorphic behaviour to replicate the cumulative

suspended sediment load. To focus on the catchments’ behaviour in
producing flood events, the model performance to flood peaks for

behavioural simulations was tested against 14 flood events (10 flood

events for Glenderamackin at Threlkeld and St Johns Beck at

Thirlmere Reservoir sites), with upper and lower limits of acceptabil-

ity per time step during the flood event periods being given by the

observed discharge uncertainty interval outline in section 4.3. The

flood events included the six major flood events (December 2003,

January 2005, October 2005, December 2006, October 2008 and

November 2009) and the annual maximum flood events for the

remaining years.

Similarly, to cover the catchments’ behaviour in generating

suspended sediment loads, the time steps of interest would be the

evaluation points from the sediment load–duration curve. Since

the high-load part of the sediment load–duration curve contains most

of the information about the dynamic response of the catchment to

the effective discharge events, points chosen were equally spaced by

magnitude rather than equal fractions of total time. This was achieved

by using an approach similar to that applied in Westerberg

et al. (2011b), where the suspended sediment load values, rather than

exceedance percentages, were divided into N equal classes, with

N=21 intervals being used for this study (see Figure 4). The maxi-

mum and minimum values of the entire sediment load–duration curve

were excluded, and the remaining N�1 suspended sediment class

boundary values were used to identify the corresponding 20 evalua-

tion points. The evaluation points in terms of exceedance percentages

for the suspended sediment class boundary values were calculated by

linear interpolation between the sorted suspended sediment load

values.

A scaled score (S) was calculated to define the deviation of the

simulated results from both the observed discharge and sediment load

data. The scaled score was calculated relative to the observed uncer-

tainty from the LoA at each evaluated time step, given as

F I GU R E 4 Sediment load–duration
curve (LDC) for Derwent at Portinscale
(left) and Newlands Beck at Braithwaite
(right). The black solid crosses indicate the
evaluation points using equal intervals of
suspended sediment load. The lower and
upper acceptability limits at these
evaluation points were determined by
using a bootstrap resampling of the
observed suspended sediment load data
and the exceedance percentages [Color
figure can be viewed at wileyonlinelibrary.

com]

1990 WONG ET AL.

 10969837, 2021, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5140 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [24/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fesp.5140&mode=


SQ tð Þ¼ Qsim,t�Qobs,tð Þ= Qobs,t�Qmin,tð Þ if Qsim,t <Qobs,t

Qsim,t�Qobs,tð Þ= Qmax,t�Qobs,tð Þ if Qsim,t ≥Qobs,t

�
ð7Þ

SSS tð Þ¼ SSsim,t�SSobs,tð Þ= SSobs,t�SSmin,tð Þ if SSsim,t < SSobs,t
SSsim,t�SSobs,tð Þ= SSmax,t�SSobs,tð Þ if SSsim,t ≥ SSobs,t

�
ð8Þ

where Q and SS are discharge and suspended sediment load, sim is

the simulated model result, obs is the observed time series and min

and max are the lower and upper LoA uncertainty bounds calcu-

lated in section 4.3, respectively, for the time step t. The deviation

of the simulated results from the observed series were the smallest

when the score was 0 (perfect simulation), �1 at the limits of the

calculated observational uncertainty and the largest when �∞.

Therefore, if the simulated prediction is within the calculated LoA

of the observation, then the score for that time point will be

within the range from 0 to �1. If the simulation is beyond the

LoA, the score will be greater than �1. This resulted in a distribu-

tion of scores over the time steps for each model simulation so

one can evaluate periods of over- or under-prediction. We use the

mean of the absolute scores for all time steps of the selected

storm events for SQ and all time steps during the monitoring

period for SSS reported above as our core model simulation perfor-

mance metric. The top 10% of the best (lowest) mean absolute

score were classified as behavioural simulations, and the 5th and

95th percentiles of the behavioural simulations were extracted and

presented as the uncertainty bounds of the simulations. These

behavioural models were further assigned a conditional probability

(CP), given the vector of observations (obs) as

CP Rj θð Þ Obsj Þ ¼ S�1
meanL Rj θð Þ� �

PJ
j¼1S

�1
meanL Rj θð Þ� �

 
ð9Þ

with Rj being one of the j=1,…, J accepted models with parameter set

θ. The conditional probability was used to assess the model parameter

identifiability and uncertainty.

To account for the ability of the model to capture the uncertainty

limits of observed discharge and cumulative suspended sediment load,

two measures were used to evaluate against the resulting 5th and

95th simulation bounds for each time step from the behavioural simu-

lations. The first one is reliability (RM) (Equations 10 and 11), which

calculates the overlap between the observed and simulated uncer-

tainty bounds (Westerberg et al., 2011b). RM is calculated as the

mean of the percentage of the overlapping range between the obser-

vation and simulation relative to the observation and relative to the

simulation range, given as

RMQ ¼
PT

t¼1 mean QRoverlap

QRobs
, QRoverlap

QRsim

� �� �
T

ð10Þ

RMSS ¼
PT

t¼1 mean SSRoverlap
SSRobs

, SSRoverlapSSRsim

� �� �
T

ð11Þ

where Q and SS are discharge and suspended sediment load, Roverlap

is the intersection between the simulated and observed ranges, Robs

is the observed range and Rsim is the simulated range, and T is the

number of time steps.

The second one is precision (PM) (Equations 12 and 13), which

calculates the average percentage of the width of the overlapping

range between the observed and simulated uncertainty bounds to the

width of the simulated bounds for all time steps (Guerrero

et al., 2013), given as

PMQ ¼
PT

t¼1
QRoverlap

QRsim

� �
T

ð12Þ

PMSS ¼
PT

t¼1
SSRoverlap
SSRsim

� �
T

ð13Þ

The range for both measures is 0–100%. Guidance on a threshold of

acceptable values for RM and PM is subjective, so we use these as a

diagnostic tool to assess model performance in light of observational

uncertainties. However, in general, higher RM values indicate more

time on average where the simulated uncertainty bounds overlap with

the observational uncertainties, whereas higher PM values mean more

time on average where the simulated and observed have similar

uncertainty ranges.

5 | RESULTS

5.1 | Model performance to replicate hydrological
behaviour

The evaluation on how the behavioural ensemble is able to capture

catchment dynamics in reproducing the timing and magnitude of the

14 flood events (10 flood events for Glenderamackin at Threlkeld and

St Johns Beck at Thirlmere Reservoir sites) is presented in Figure 5.

Note that only the six major flood events, which were representative

of the typical range of events, are plotted in the figure for illustration.

Regarding the main gauges of the catchments, the behavioural

simulations in Cocker at Southwaite Bridge (Figure 5a) were seen to

satisfactorily capture the overall dynamics of the catchment compared

with other flow gauging stations, especially for the smaller flood

events. However, for most of the major flood events, the ensemble of

the behavioural simulations often under-predicted the magnitude

of the peaks and did not capture well the recession periods. This was

worse for the period of the October 2008 and November 2009 flood

events, in which the peaks were under-predicted by about 50% in the

Cocker. On the other hand, the behavioural simulations in Derwent at

Ouse Bridge (Figure 5b) consistently over-predicted the magnitude of

the peaks for the major flood events. The rising limbs of most of the

flood events were also consistently over-predicted, with the observed

discharge closer to the lower bound of the simulations whereas the

recession periods were often the least well captured.

Referring to the gauges within the River Derwent catchment, the

ensemble of the behavioural simulations in Derwent at Portinscale

(Figure 5c) and in Glendermackin at Threlkeld (Figure 5d) were gener-

ally able to capture the timing and magnitude of the peaks, with the

observed discharge lying close to the upper bound of the simulations.

In the upper part of the catchment in St Johns Beck at Thirlmere

WONG ET AL. 1991
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Reservoir, the behavioural simulations completely under-predicted

the larger events (January 2005, December 2006, October 2008 and

November 2009). The major reason why there might be a decline in

model performance is the rainfall data being applied uniformly across

the whole catchments (see ‘Discussion’ for further explanation).

Another reason might be the artificial regulation of flow from

Thirlmere Reservoir because this will particularly affect the magnitude

of flood peaks, which is dependent on the reservoir level. The flow

measured at the station 1 km downstream of the reservoir is affected

by public water supply abstraction and also flood release regulation.

5.2 | Model performance to reproduce sediment
yields

Figure 6 illustrates how the behavioural ensemble is able to capture

the sediment dynamics at the two monitoring sites. In addition, the

cumulative suspended sediment loads were plotted (Figure 7) to

examine whether the behavioural models were able to capture the

timing and magnitude of the whole time series in terms of

accumulation.

At both monitoring sites, the majority of the sediment loads at

the low-load evaluation points were totally under-predicted at or

greater than 10% exceedance (Figure 6, left panel) and at or greater

than 1% exceedance (Figure 6, right panel) for the Derwent at

Portinscale and for Newlands Beck at Braithwaite, respectively. This

shows that the behavioural simulations did not generate any

suspended sediment loads for ≥95% of the time but were able to cap-

ture the high-load part of the sediment load–duration curve during

effective discharge events.

In Figure 7, the cumulative suspended sediment load in Derwent

at Portinscale lies within the wider range of the 5th and 95th percen-

tiles of the simulations before November, whereas the behavioural

simulations in Newlands Beck at Braithwaite totally under-predicted

the cumulative suspended sediment load, especially during the indi-

vidual events before August. This reveals that the behavioural simula-

tions in Derwent at Portinscale were highly variable and inconsistent

among each other because the high-load events were produced at dif-

ferent times during the monitoring period. Similar sediment yields sim-

ulated at the gauge location could be results of very different

behaviours within the catchment. On the other hand, the behavioural

simulations in Newlands Beck at Braithwaite were more consistent

F I GU R E 5 Discharge for the 14 flood events at five flow gauging stations. The observed discharge is indicated by black solid line and its
uncertainty bounds by grey dashed lines, while the behavioural simulations (5th and 95th percentiles of the simulated discharge) are shown as
grey shaded regions. Note that only the six major flood events are plotted in this figure for illustration. The columns indicate the six major flood
events, whereas the rows show the five flow gauging stations [Color figure can be viewed at wileyonlinelibrary.com]

1992 WONG ET AL.
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F I GU R E 6 Sediment load–duration curve for the two monitoring sites in Derwent at Portinscale (left) and in Newlands Beck at Braithwaite
(right). The observed sediment load–duration curve is indicated by black solid line and its uncertainty limits by grey dashed lines, whereas the
behavioural simulations (5th and 95th percentiles of the simulated suspended sediment load) are shown as grey shaded regions. Top panel: the
whole range of exceedance percentage; bottom panel: zoom-in image at or greater than 20% (left) and at or greater than 10% (right) exceedance
percentages

F I G U R E 7 Cumulative suspended
sediment load (m3) for the two monitoring
sites in Derwent at Portinscale (left) and in
Newlands Beck at Braithwaite (right) during
the period of 1 April to 30 November
2006. The observed cumulative suspended
sediment load is indicated by black solid
line and its uncertainty bounds by grey
dashed lines, whereas the behavioural
simulations (5th and 95th percentiles of the
simulated cumulative suspended sediment
load) are shown as grey shaded regions

WONG ET AL. 1993
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than those in Derwent at Portinscale, generating the suspended sedi-

ment loads mainly after September. In general, the accumulation of

the suspended sediment loads produced by the behavioural simula-

tions at both monitoring sites was under-estimated by the end of the

monitoring period.

5.3 | Behavioural ensembles for different
diagnostics

Based on the behavioural simulations, the reliability (RM) and preci-

sion measures (PM) for the hydrological response were calculated and

are summarized in Table 4. These reveal the overall ability of the

behavioural simulations to capture the uncertainty limits of observed

discharge for all 14 flood events (10 flood events for Glenderamackin

at Threlkeld and St Johns Beck at Thirlmere Reservoir).

For the Cocker catchment, the simulations at this gauging station

performed consistently for RM and PM because the three highest RM

(51.1%, 42.7% and 52.2%) were associated with the three highest PM

(20.2%, 18.4% and 17.6%) in 2001, 2006 and 2011, respectively. This

was also the case with the three lowest RMs (31.5%, 24.0% and

19.6%) being associated with the three lowest PMs (10.5%, 10.8%

and 7.7%) in 2002, October 2005 and 2008, respectively. For the

River Derwent catchment, the RM and PM showed an interesting pat-

tern in terms of spatial variability. The overall RM increased generally

from the lower catchment (Derwent at Ouse Bridge: 25.0%) to the

upper catchment (Glenderamackin at Threlkeld: 41.2%), with a

decreasing average PM (from 8.4% to 2.6%). Although St Johns Beck

at Thirlmere Reservoir is located at the upper part of the River Der-

went catchment, the simulations at this gauging station had the

poorest performance: the overall lowest RM (24.4%) and the second

lowest average PM (3.7%). Such spatial variability could be attributed

to the fact that a wider range of simulation bounds provided higher

chance of overlapping with the observation uncertainty limits with

less precision.

The overall ability of the behavioural simulations to replicate the

uncertainty bounds of the sediment load–duration curve is also

summarized by the RM and PM. The 5th and 95th behavioural

simulations in Derwent at Portinscale were seen to better match with

the uncertainty limits of the observations compared with those

produced in Newlands Beck at Braithwaite, as shown by both

higher RM and PM of the former (2.8%; 12.7%) than the latter

(0.8%; 6.5%).

In general, the behavioural simulations were better in overlapping

with the uncertainty limits of the streamflow than those of the

suspended sediment loads. However, care must be taken because

the time step-based performance measures could be affected by the

sampling errors. Due to the heavy computational demand of the

model, only 1,500 simulations were run, and these simulations did not

represent a dense sample when sampling a model space of 15

parameters. The measures were also susceptible to the effects of

observation errors. It was, therefore, not surprising that all model

simulations did not fall within the observed uncertainty limits for all

time steps.

5.4 | Assessing model parameter uncertainty and
equifinality

Figures 8 and 9 show the dotty plots for each sampled parameter for

the behavioural simulations based on the conditional probability in

the River Derwent and Cocker catchments, respectively. Three of the

T AB L E 4 RM and PM for hydrological metrics in each flood event at five flow gauging stations

Gauge number 75,004 75,003 75,005 75,007 75,001
River Cocker Derwent Derwent Glenderamackin St Johns Beck

Gauge station
Southwaite bridge Ouse bridge Portinscale Threlkeld Thirlmere reservoir

Measure (%) RM PM RM PM RM PM RM PM RM PM

Flood event 1999 35.1 13.7 10.7 2.6 12.3 1.7 -- -- -- --

2000 38.8 14.4 34.8 12.2 38.1 5.0 -- -- -- --

2001 51.1 20.2 25.1 8.8 44.1 5.9 -- -- -- --

2002 31.5 10.5 56.1 14.7 30.5 4.4 -- -- -- --

2003* 41.2 13.6 35.4 6.3 44.0 6.0 45.7 2.1 50.3 0.7

2004 32.5 14.1 19.7 5.2 30.0 3.7 45.7 2.2 45.0 9.4

Jan 2005* 39.1 13.4 28.9 8.6 9.5 1.4 38.4 2.1 19.6 8.1

Oct 2005* 24.0 10.8 28.1 8.7 51.7 7.0 48.8 1.5 17.4 0.4

2006* 42.7 18.4 22.5 8.1 9.8 1.5 40.6 2.1 45.6 10.9

2007 32.3 13.1 42.7 10.3 29.3 4.0 45.8 1.5 51.8 11.2

2008* 19.6 7.7 22.3 7.2 11.1 1.6 44.6 1.2 36.5 11.2

2009* 33.5 12.8 29.4 9.2 12.4 1.9 36.8 2.7 12.3 5.5

2010 41.4 10.9 33.4 7.5 40.3 5.5 43.8 1.2 52.8 5.6

2011 52.2 17.6 27.5 5.7 41.2 5.5 44.0 1.0 50.7 1.4

Overall 33.0 16.2 25.0 8.4 34.6 5.0 41.2 2.6 24.4 3.7

*Six major flood events that happened in the catchment during the observation period. The three highest RM and PM in each flow gauging station are

indicated in italic, whereas the three lowest are underlined

1994 WONG ET AL.
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parameters (m, n and Veg CriShear) have been shown to be more iden-

tifiable relative to the original range sampled. The hydrologic parame-

ter m was the most identifiable parameter for both catchments. This

parameter is an important variable in catchment-mode CAESAR-

Lisflood as it controls the peak and duration of the hydrograph gener-

ated by a rainfall event. A low value means higher and flashier peaks,

and vice versa. More favourable results were found in higher values

(0.018–0.019) of the parameter space in River Derwent and lower

values (0.008–0.009) in Cocker. This could be explained by the fact

that the River Cocker has a more flashy response than the River Der-

went and the effect of Bassenthwaite Lake, in which the flashy

response of the upstream reaches is attenuated by the lake in the

downstream sections of the River Derwent. The Manning friction

coefficient n was shown to have favourable results found in a range

of values between 0.031 to 0.036 in both catchments, probably

because of the friction coefficient being a lumped value for both

channel and floodplain friction. Also, the vegetation parameter

Veg_CriShear was identified to have values less than 16, with a ten-

dency for more favourable results found with values less than 5. The

behavioural simulations of the remaining parameters were distributed

across the original parameter ranges, thus they were considered as

non-identifiable parameters. This suggests the possible presence of

equifinality, which could originate from parameter correlations and

interactions, imperfect knowledge of the system under consideration,

and different sources of error (e.g. input errors, model structural errors

and observational errors) that interacted in a non-linear way.

6 | DISCUSSION

The purpose of this modelling exercise is to examine the capability of

CAESAR-Lisflood in capturing the hydrological and geomorphic

dynamics of the River Derwent and Cocker catchments during floods,

with the consideration of different observational uncertainties within

the stage–discharge and suspended sediment load data. Given the dif-

ferent nature and level of uncertainties in the observed data, a decline

in model performance was shown from the lower to upper part of the

catchment. This could be mainly because the rainfall data were

applied uniformly across the whole study area, even though some

improvements were made by calculating the areal average rainfall of

the catchment and by reproducing the stochastic nature of the rainfall

series for the spin-up period. The homogeneity of spatial rainfall distri-

bution in the model could have significant effects on runoff genera-

tion, especially in the upper part of the catchment where orographic

effects occur. It could be expected that the locally intense storm

events and subsequent runoff events would be under-represented by

F I GU R E 8 Dotty plots of behavioural parameter sets for the 15 CAESAR-LISFLOOD parameters (the parameter names are explained in
Table 3) in the River Derwent catchment. The conditional probability was calculated using equation 9

WONG ET AL. 1995
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the homogeneous rainfall. The spatial rainfall aspects of the model

were only evaluated recently, and their impact remains uncertain.

Coulthard and Skinner (2016) demonstrated that the temporal and

spatial resolutions of the rainfall data had a small impact on basin

hydrology but generated larger changes in basin geomorphology.

Though subsequent simulations showed CAESAR-Lisflood simulations

were sensitive to the choice of rainfall products, where hydrological

changes were linear but non-linear differences were seen in sediment

yields (Skinner et al., 2020). Therefore, the impacts of spatial rainfall

input on basin discharge in larger basins like ours remains as a hypoth-

esis to be tested. More in-depth analyses could be done to further

investigate the impacts of rainfall input on model performance, but

this is not within the scope of this study and future work could be

done, for instance, to fully account for the rainfall uncertainties arising

from the measurement errors and the spatial representation of the

rain gauges.

The model performance in representing the hydrological and geo-

morphic behaviours of the catchments could also be affected by miss-

ing/simplification of process representation. As both catchments have

several lakes, the lakes were treated as large depressions in the DEM,

where sediments were deposited at the entrance and piled up further

in the lower part of the depressions over time. Water was routed

through these depressions, which filled up until the flow found its

way to the exit. The lack of lake dynamic processes in the model

would particularly affect the simulations in Derwent at Ouse Bridge

(downstream of Bassenthwaite Lake) and St Johns Beck at Thirlmere

Reservoir. Similarly, bank erosion was identified as the significant

component of the overall observed sediment load, of which part of

the loads was supplemented by temporary in-channel storage of fine

sediment that was re-entrained during high flow (Warburton, 2010).

The simplified representation of lateral erosion processes (four param-

eters related to bank failure) in the model and the coarse cell resolu-

tion (200 m in the River Derwent and 100 m in the River Cocker) in

which sub-grid scale processes could not be fully represented (e.g. the

exact characteristics of river channels) could have impacts on the abil-

ity of the model in capturing smaller local events (e.g. bank failure). A

comparison of the geomorphic statistics (area–slope relationship and

hypsometric curve and integral) showed that there were limited

differences among the DEMs with different resolutions, especially

given the uncertainty spread in some of these relationships

(Figures A1 and A2). However, the behavioural simulations were still

able to capture the high-magnitude low-frequency sediment events,

which were possibly in terms of effective geographic events such as

landslides or hydrological events such as flooding (Warburton

et al., 2008). With the current focus on the model ability in simulating

hydrological and geomorphic dynamics of the catchments during

F I GU R E 9 Dotty plots of behavioural parameters for the 15 CAESAR-LISFLOOD parameters (the parameter names are explained in Table 3)
in the Cocker catchment. The conditional probability was calculated using equation 9

1996 WONG ET AL.
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floods, we argue that the model was able to provide realistic simula-

tions and their associated uncertainties for subsequent analysis

(e.g. as inputs for downstream flood analysis), given the model perfor-

mance at catchment outlets showing better behaviours.

It is acknowledged that different sets of behavioural simulations

were found when evaluating the model performance with different

gauges within the catchment, different flood events and

different types of observed data. There was no single behavioural sim-

ulation that could adequately and simultaneously reproduce both

hydrological and sedimentological behaviours across different parts of

the catchment. In many ways, this is not surprising because of the

highly non-linear relationship between rainfall and discharge/sedi-

ment yield. This non-linear hydrology–sediment delivery response is

fundamentally embedded into the sediment transport formulae in the

model, such that the shear stress is proportional to the square of the

flow velocity, and the flow velocity is non-linearly related to discharge

as well (Coulthard & Van De Wiel, 2007). Given the uncertainties

within the suspended sediment measurements and the stage–

discharge rating curves, it remains a challenge to evaluate LEM perfor-

mance in quantifying and assessing both at-a-point behaviour

(e.g. sediment yield) and areal catchment response (e.g. streamflow).

We believe that addressing these uncertainties directly in model per-

formance metrics is necessary, particularly as each type of data has its

own error characteristics. Instead of assuming a good degree of data

quality and using standard objective functions, we should be more

explicit about quantifying data uncertainties when evaluating the

model performance. While there are increasing numbers of research

papers in the hydrological modelling literature considering observa-

tional uncertainties in model assessments, we advocate that similar

awareness is needed in assessing the LEMs, and our study could be

regarded as the beginning of a dialogue to deal with data uncertainties

in LEM evaluation.

The LoA approach adopted in this study provided a flexible way

to explore the interactions between observational uncertainty and

parameter uncertainty. This is an important step looking at the uncer-

tainty of the model performance rather than the sensitivity. Given the

different nature and level of uncertainties in the observed data,

the hydrologic parameter (m), Manning friction coefficient (n) and veg-

etation critical shear stress (Veg CriShear) were shown to be more

identifiable for both catchments in this study, which aligned with the

findings concluded by previous studies (Skinner et al., 2018; Welsh

et al., 2009). Similar model performance by different behavioural

parameter sets revealed that simulated results at a specific location

could be driven by similar or totally different dynamics within the

catchment (i.e. equifinality due to parameter uncertainties). This also

implies that simulated results at a specific location of the catchment

(e.g. catchment outlet) could only reflect the catchment behaviour of

that specific location but do not necessarily provide the relevant infor-

mation on other parts of the catchment (Skinner et al., 2018). Even

with a large amount of available multi-proxy data, the reliability of the

LEM was evaluated with the assumption of a good degree of data

quality and low impact of other error sources (Gioia & Lazzari, 2019).

In this regard, our study applied for the first time the LoA approach

within a GLUE uncertainty analysis framework to assess the reliability

of a LEM with the consideration of observational and parameter

uncertainties. This highlights a high potential of using such an

approach in assessing different sources of uncertainty in LEMs.

7 | CONCLUSIONS

Despite their proven capabilities, the success of LEMs has been ham-

pered by the lack of uncertainty investigations, in most cases because

of the paucity of available data. Even when detailed evaluation data

are available, the uncertainties inherent in observed data (e.g. discharge

and suspended sediment load) could be largely owing to the

unpredictability of the environmental time series and errors in collec-

tion techniques. Thus, a framework of the LoA approach in GLUE was

adopted in this study, which enables parameter conditioning under

the circumstances of highly uncertain data. This also allows for inte-

gration of different types of data in the parameter conditioning pro-

cess by reflecting their quality. Here, we assessed the ability of

hydrological and geomorphic uncertain observations in constraining

catchment response and to explore the parameter identifiability in a

landscape evolution model, CAESAR-Lisflood, using the River Der-

went and Cocker catchments in the UK as an example.

The evaluation of the model performance in different locations of

River Derwent catchment provides an opportunity to reveal the spa-

tially heterogeneous responses of different flood events. Given the

limitations in the rainfall inputs, simplified process representation and

coarse resolution of the model, the resultant 5th and 95th simulation

bounds of the behavioural models are still able to provide consider-

able overlap with the observation uncertainty limits (24.4–41.2% of

reliability measures). However, the ability of the model simulations to

reproduce observations is dependent on which constraints are applied

to the model by the user and how well the model users define the

effective observation errors. It is more likely that the rainfall uncer-

tainty and the spatial representation of rainfall fields could have a

larger impact on the model performance and on acceptable effective

parameter values (i.e. Skinner et al., 2020).

Given the incomplete understanding of the data uncertainties and

inherent limitations in the model setting, future work should be

undertaken to focus on quantifying the rainfall input uncertainty as

part of the model evaluation and examining the effects of spatially dis-

tributed rainfall input on the capability of model to produce realistic

simulations and catchment behaviour. This is important to investigate

how all these uncertainties in upstream propagate to downstream

when the results are subsequently used for later analysis of flood pre-

dictions at Cockermouth, where the channel undergoes geomorphic

change during large floods (Wong et al., 2015). Finally, although the

sophistication of landscape evolution models is rapidly evolving, eval-

uating their performance is often limited by the availability of long-

duration, high-resolution field datasets and spatial data. This paper is

a first step to full-ensemble uncertainty evaluation of such models

that reflects the challenges of constraining simulations with uncertain

observations.
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APPENDIX

T AB L E A 1 Summary statistics of the DEM elevation at 50 m, 100 m and 200 m resolutions, respectively

Percentile

Elevation (m) 5th 25th 50th 75th 95th

River Derwent

Resolution 50 m 74.0 177.5 308.4 474.7 672.9

100 m 74.0 177.5 303.3 469.3 667.4

200 m 74.0 177.5 301.4 467.3 668.7

Cocker

Resolution 50 m 82.0 132.2 262.4 425.1 626.3

100 m 81.3 131.8 260.2 421.9 623.2

200 m 81.4 130.8 257.5 418.4 623.7

T AB L E A 2 Summary statistics of the slope at 50 m, 100 m and 200 m resolutions, respectively

Percentile

Slope (�) 5th 25th 50th 75th 95th

River Derwent

Resolution 50 m 0.4 4.6 11.7 21.6 33.7

100 m 0.4 4.3 11.0 20.2 31.6

200 m 0.5 4.2 10.3 18.1 27.9

Cocker

Resolution 50 m 0.8 5.6 14.0 24.2 35.6

100 m 0.9 5.5 13.2 22.8 33.9

200 m 1.1 5.4 11.9 20.4 30.6
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F I GU R E A 1 Area–slope relationship estimated on the River Derwent (left) and the River Cocker (right) based on DEM of 50 m (black hollow
circle), 100 m (red hollow circle) and 200 m (blue hollow circle) resolutions. Green solid triangles represent the mean values estimated on
50 circles, whereas green solid lines are the regression line fitted on those green solid triangles [Color figure can be viewed at wileyonlinelibrary.
com]

2002 WONG ET AL.
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F I GU R E A 2 Hypsometric curve and integral estimated on the River Derwent (left) and the River cocker (right) based on DEM of 50 m
(black), 100 m (red) and 200 m (blue) resolutions. The values in brackets in the legend indicate the hypsometric integrals [Color figure can be
viewed at wileyonlinelibrary.com]

WONG ET AL. 2003
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