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Abstract. In this paper, we investigate the problem of eliciting informa-
tion from an expert, where the assumed uncertainty model is a coherent
upper prevision (or equivalently a closed convex set of probabilities).
The goal is to solve a decision problem under the maximality decision
rule, with as few queries to the expert as possible. To address this, we
study the range of coherent upper bounds an expert may give on a given
query. In doing so, we provide new results and characterisations for this
range. We then use these results to provide an algorithm of elicitation.
We illustrate the algorithm on an example.
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1 Introduction

In many applications, to support effective decision making under uncertainty,
expert elicitation is critical. Elicitation faces several important challenges [16].
These include how to ask queries to experts to avoid psychological biases [9],
how to elicit beliefs in addition to payments to eliminate hedging opportunities
[4], how to translate communicated information into mathematical models, and
how to elicit both preferences and beliefs about decision problems [11, 15].

While the existing literature on the topic is very rich, most authors focus
on modelling expert knowledge in terms of precise probabilities (see for example
Renooij [18] and Gartwaithe et al. [8]). This includes situations where the expert
only provides partial information, as for instance in [14, Sec. 6.]. However, in case
of severe uncertainty, it has been argued by many authors [27, 2, 22] that allow-
ing the experts to provide bounded probability assessments rather than precise
probabilities is more reasonable. Indeed, by allowing experts to provide bounded
probability assessments, they can more honestly represent their uncertainty, es-
pecially in the face of severe uncertainty [27]. In this paper too, we will consider
eliciting bounded probabilities.
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Additionally, most existing elicitation procedures do not directly consider
the decision problem for which the elicitation is eventually needed. This means
that the elicitation procedure may be sub-optimal, i.e., we may ask the expert
for information that is not needed to solve the decision problem at hand. While
often elicitation of uncertainty is of interest by itself regardless of any decision
problem, there are plenty of situations where uncertainties are elicited to solve
a specific decision problem known at the time of elicitation. One aim of this
paper is to explicitly consider the decision problem to more effectively target
the elicitation, and thereby reduce the cognitive burden on the expert.

The problem of eliciting bounded probabilities has been studied extensively [21,
26], including elicitation in related uncertainty theories such as evidence the-
ory [29] and possibility theory [20]. Applications include environmental mod-
elling [19] and medical diagnosis [6]. However, here too, most of these approaches
focus on eliciting the models without considering a possible underlying decision
problem. Two exceptions are the work of Jansen et al. [10] and T’Joens [23]. How-
ever, these works differ from ours in several aspects. Jansen et al. [10] aim to find
a preference system as efficiently as possible, whilst we aim at finding an optimal
solution to the decision problem as efficiently as possible. T’Joens [23] frames
the problem within the framework of desirability whilst we use upper previsions,
and additionally makes the strong assumption that the unknown uncertainty
model elicited from the expert leads to a unique optimal recommendation which
we do not assume.

In this paper, we study the problem of elicitation in the context of a given (but
arbitrary) decision problem: what are the best questions we can ask an expert, to
identify the best possible actions for a specific decision problem? To tackle this,
we treat the elicitation problem as an optimization problem, similarly to what
is sometimes done when eliciting multi-criteria preferences [5, 3, 1]. Specifically,
we solve the following problem:

Given current expert assessments, and a set of potential queries that we
can ask the expert, which query should we present next to gain the most
useful information for solving the decision problem?

The questions we ask, called queries, are in the form of uncertain rewards, also
called gambles, and the expert answers us by giving us their upper bound on
the expectation of such a gamble; such upper bound is sometimes also called an
upper prevision [28, 27, 25].

To determine which query is most useful, we use an objective that directly
relates to the decision problem: which query has the most potential for reducing
the set of so-called maximal [24] actions? To determine this, we need to know
in advance the range of upper bounds on the expectation that the expert might
provide. For this purpose, we develop the theory concerning the range of coherent
extensions, expanding on some results from Walley [27, §3.1.6, p. 126]. We note
that verification of coherence of conditional probability bounds was also studied
in [6].

The rest of the paper is organised as follows. Section 2 reviews the theory of
upper previsions and the concept of maximality in decision making. Section 3,
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proposes a new algorithm for elicitation, along with a fully worked example.
Section 4 concludes the paper.

2 Preliminaries

2.1 Upper previsions

We denote by Ω a set of possible states. For simplicity, throughout this paper,
we assume Ω is finite. We consider a decision problem where a decision maker
can choose a finite number of acts from a set of acts A. For each a ∈ A, if ω ∈ Ω
happens to be the true state of nature, then a(ω) represents the reward to the
decision maker, expressed as a real value on a utility scale. In this way, each act a
is modelled as a real-valued function on a set of possible states. Such a function,
representing an uncertain reward, is called a gamble [27]. Following [27], we will
assume gambles are bounded, and L will denote the set of all gambles.

If a probability mass function p on Ω is available, the decision maker can
simply pick an act that maximizes expected utility, i.e. a∗ = argmaxa∈A Ep(a),
where Ep(a) :=

∑
ω∈Ω p(ω)a(ω). However, a complete probability mass function

may not be available. In that case, the decision maker may ask an expert to
state their knowledge about the unknown true value of ω ∈ Ω. We assume here
that we can elicit some information in terms of an upper prevision P which is
a real-valued function defined on some subset domP of L. Specifically, for each
gamble f ∈ domP , the value P (f) represents the expert’s infimum selling price
for f . So, by specifying P , the expert declares that P (f) − f + ϵ is acceptable
uncertain reward for all ϵ > 0 and f ∈ domP . As we shall see, P (f) can also
be interpreted as an upper bound on the expectation of f . Note that upper
previsions generalize a very wide range of uncertainty models used in practical
problems, including belief functions and possibility distributions [25].

In this study, we are interested in iteratively making queries to the expert
in order to learn their uncertainty in the form of upper previsions, so that the
decision maker can solve the underlying decision problem. To do so, we must
first state some properties and consistency conditions for upper previsions.

We say that P
′
dominates P , and write P

′ ≤ P , when domP
′ ⊇ domP and

P
′
(f) ≤ P (f) for all f ∈ domP . When P

′
dominates P , all selling prices implied

by P are also implied by P
′
, and so P

′
is more informative compared to P .

Definition 1 ([27, §3.3.1, p. 133]). The credal set of P is the set of probability
mass functions on Ω whose expectations dominate P , that is

M(P ) :=
{
p : ∀f ∈ L, Ep(f) ≤ P (f)

}
(1)

Note that M(P ) is convex and closed. By K ⋐ domP we mean that K is a
finite subset of domP . We also define R+ := {x ∈ R : x ≥ 0}.
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Definition 2 ([27, §3.1.3(d)], [25, Cor. 8.38(ii)]). The natural extension of
P is the upper prevision E defined on every f ′ ∈ L by

E(f ′) := inf
K⋐domP
λ : K→R+

sup

f ′ +
∑
f∈K

λf (P (f)− f)

 (2)

= max
p∈M(P )

Ep(f
′) (3)

In eq. (3), ifM(P ) = ∅, the maximum is taken to be −∞. Equation (3) follows
from eq. (2) by duality [27, §3.3.3, p. 134], but it also has an obvious direct
interpretation as the upper expectation induced by the credal set of P .

Definition 3 ([27, §2.4.4, p. 69] and [25, Cor. 8.38(i)]). We say that P
avoids sure loss when E(0) = 0, i.e. when

inf
K⋐domP
λ : K→R+

sup

∑
f∈K

λf (P (f)− f)

 ≥ 0. (4)

or equivalently, when M(P ) ̸= ∅.

Definition 4 ([27, §2.5.4, p. 75], [25, Cor. 8.38(iii)]). We say that P is
coherent when E(f ′) = P (f ′) for all f ′ ∈ domP , i.e.

inf
f ′∈domP,K⋐domP
λ′∈R+, λ : K→R+

sup

∑
f∈K

λf (P (f)− f)− λ′(P (f ′)− f ′)

 ≥ 0. (5)

or equivalently, when for every f ′ ∈ domP there is a p ∈ M(P ) such that
P (f ′) = Ep(f

′).

We assume that the decision maker remains coherent throughout the process of
elicitation, i.e. that their P is a coherent upper prevision. Otherwise, P must be
fixed through natural extension.

As we shall see next, the natural extension is also an important tool for
solving decision problems.

2.2 Decision making

To select the best possible acts in A, there are many decision criteria that can
be used with upper previsions [24]. Here, we will consider maximality :

opt(P ,A) := {a ∈ A : ∀a′ ∈ A, E(a− a′) ≥ 0} (6)

The next property of maximality will be very useful later when we do elici-
tation.
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Theorem 1 ([24]). If P
′
dominates P then opt(P

′
,A) = opt(P

′
, opt(P ,A)).

Example 1. Consider a situation where we want to invest money in a stock fund.
The return depends on the inflation rate across the next year. Suppose that next
year’s inflation rate could be either low (L), moderate (M) or high (H), that is,
Ω = {L,M,H}. There are six stock funds available, so A = {1, . . . , 6}. The net
profit under each fund and inflation rate is presented in table 1. Suppose that,
prior to investment, we elicit an expert’s information about next year’s inflation
rate. The expert states:

– L is at least as probable as M .
– L is at least as probable as H.

This information can be phrased in terms of an upper prevision:

P (IM − IL) = 0 and P (IH − IL) = 0, (7)

Here, we use the notation Iω′ to denote the gamble formed by the indicator
function of the event {ω′}, i.e. Iω′(ω) = 1 if ω′ = ω, else 0. For every pair of acts
a and a′ in A, we can calculate E(a− a′). These values are listed in table 2. We
can see that the set of maximal acts is opt(P ,A) = {3, 4, 5, 6} since these acts
have corresponding rows in table 2 with no negative entries.

stock fund L M H

1 2 5 7
2 3 7 3
3 5 2 7
4 7 4 2
5 5 6 5
6 3 8 4

Table 1. Total net profit of investing
money under each stock fund and infla-
tion rate for Example 1.

a
a′

1 2 3 4 5 6

1 0.0 1.5 0.0 0.33 −0.5 1.0
2 1.5 0.0 1.5 0.0 −.5 0.0
3 3.0 3.0 0.0 1.5 1.0 2.5
4 5.0 4.0 2.0 0.0 2.0 4.0
5 3.0 2.0 2.0 1.0 0.0 2.0
6 2.0 0.67 2.0 0.67 0.0 0.0

Table 2. Values of E(a−a′) in Example 1.

As we can see in example 1 the information from the expert allow us to
suppress two non-maximal acts and leave us with four remaining maximal acts.
Suppose we want to draw additional information from the expert by asking them
to state an upper prevision of additional gambles which we will call queries. This
new information may reduce the values of E(a − a′) and therefore the number
of maximal acts (see theorem 1). Specifically, we would like to optimally pick
an additional query that maximize our chances to suppress as many additional
acts as possible. To do so, we must first study the range of possible coherent
extensions.
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2.3 Range of coherent extensions

We will aim to extend the domain of an expert’s coherent upper prevision by
one gamble at a time. To do so, we introduce the following notation. Given any
coherent upper prevision P , g ∈ L, and β ∈ R we define P g,β on domP ∪ {g}
as follows:

P g,β(f) :=

{
P (f) if f ∈ domP \ {g},
β if f = g.

(8)

By Eg,β we denote the natural extension of P g,β .
We are interested in knowing, for a given g ̸∈ domP , the range of β for

which P g,β is coherent. A formula for this was given in [27, §3.1.6, p. 126]. The
next theorem provides new formulas for the lower bound of this range, which
are more concise and easier to interpret compared to [27, §3.1.6, p. 126].

Theorem 2. Let g ̸∈ domP and β ∈ R. Then P g,β is coherent if and only if

Ẽ(g) ≤ β ≤ E(g), (9)

where

Ẽ(g) := sup
f ′∈domP

−E−f ′,−P (f ′)(−g) (10)

= sup
f ′∈domP

min
µ∈M(P )

Eµ(f
′)=P (f ′)

Eµ(g). (11)

Note that P−f ′,−P (f ′) is not necessarily coherent, but it avoids sure loss due
to the coherence of P [27, p. 123]. So, for any given g ̸∈ domP , any P g,β is
coherent only for β ∈ [Ẽ(g),E(g)]. Therefore, this is the range of coherent value
that an expert can provide, assuming the expert is coherent (an assumption we
make here). If the bounds coincide, then we already have full knowledge about
the upper prevision of g, and querying it would be useless.

Note that the upper bound E(g) does not add any information to what we
already know since E = Eg,E(g) [25, Cor. 4.32], whilst the lower bound Ẽ(g) is the
most informative value a subject could give if questioned about g, by lemma 1.

Lemma 1. Eg,β ≥ Eg,α for all β ≥ α.

Proof. P g,α dominates P g,β whenever β ≥ α. So, by [25, Prop. 4.27], Eg,α must
also dominate Eg,β .

3 Elicitation for decision problems

This section introduces and analyzes a new procedure to perform elicitation for
decision problems under severe uncertainty. Unlike most elicitation procedures,
this procedure tries to gain as much information as quickly as possible that is
relevant to the decision problem at hand.
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Algorithm 1 Elicitation
Require: A, P , Q
Ensure: opt(P ,A)
1: while Q ≠ ∅ do
2: A ← opt(P ,A)
3: for all q ∈ Q do
4: Compute Ẽ(q) and E(q)
5: Remove q from Q if Ẽ(q) = E(q)
6: Otherwise, calculate opt(P q,Ẽ(q),A)
7: end for
8: q∗ ← argmin |opt(P q,Ẽ(q),A)|
9: Present q∗ to the expert, who returns its upper prevision value, β

10: P ← P q∗,β

11: Remove q∗ from Q
12: end while
13: return opt(P ,A)

3.1 Elicitation procedure

The proposed procedure is given in algorithm 1.
We used theorem 1 in line 2 of the algorithm. Specifically, since all upper pre-

visions considered later in the process will always dominate P , all non-maximal
acts from A with respect to P can be removed because these can never become
maximal at any later stage of the elicitation process. This can significantly re-
duce the number of pairs a and a′ for which we have to calculate E(a−a′) (each
E(a− a′) requires solving a linear program).

By coherence, the expert will never give a value for β that is less than Ẽ(q).
Consequently, by using P q,Ẽ(q) to pick q∗, we adopt the most optimistic attitude
towards the expert’s possible answers, leading to the largest potential reduction
in the number of maximal acts. Interestingly, such an optimistic view is at work
in other selection settings such as racing algorithms [12].

To reduce cognitive burden on the expert, the condition Q ̸= ∅ could be
further expanded, for instance, by simply limiting the total number of queries
to be asked, or by considering that having almost indifferent options in A ←
opt(P ,A) is sufficient to stop the procedure. As there are many sensible ways
to do this, we have omitted this from the algorithm description.

Another aspect that is important is the set of queries Q. One could for
instance query the expert on the upper and lower probabilities of events A ⊆ Ω,
which correspond to indicator functions IA in terms of gambles. For instance,
asking about the lower probability of A is equivalent to asking about the upper
prevision of −IA, and of IA if one is interested in the upper probability. Other
common queries include comparative ones between events A and B, e.g. IA −
IB [13, 7], or the direct comparisons of two alternatives within A. There is clearly
a balance to find between the expressivity of Q, and the cognitive accessibility
of the queries for the decision maker. However, exploring such a question is out
of the scope of the current initial study.
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Regarding the complexity of algorithm 1, computing eq. (11) in line 4 re-
quires solving one linear program per item in domP , and this for each remain-
ing item in Q, meaning that the number of linear programs to solve roughly
increases quadratically as we collect queries. We also assume that we can com-
pute opt(P ,A) and opt(P q,Ẽ(q),A), meaning that we are assuming that we can
enumerate acts explicitly, and that those remain in reasonable number (say, less
than 100). Of course, a lot of those computations can be parallelised to en-
sure scalability, yet considering combinatorial optimisation problems would still
require some adaptations.

3.2 Fully worked example

We now demonstrate algorithm 1 through examples 2 to 4, where we iteratively
make queries to the expert.

Example 2. Recall the situation from example 1 where we elicited an expert’s
knowledge about next year’s inflection rate through an upper prevision P . Based
on this information, the maximal acts were 3, 4, 5 and 6. Consider the set of
gambles Q = {−IL,−IM ,−IH}. We want to elicit the expert’s upper prevision
of one of these queries; this is equivalent to asking about lower probability of
each atom. For each query, we can compute the coherent range using eqs. (3)
and (11):

Ẽ(−IL) = −0.5 E(−IL) = −0.33 (12)

Ẽ(−IM ) = −0.33 E(−IM ) = 0.0 (13)

Ẽ(−IH) = −0.33 E(−IH) = 0.0 (14)

So, for each question q ∈ Q = {−IL,−IM ,−IH}, we assume that the expert will
state a value β ∈ [Ẽ(q),E(q)] as their upper prevision for q. For example, for
the atom L, any coherent lower probability must be between 0.33 and 0.5. If the
expert’s answer is not in this range, then the expert is incoherent. If they avoid
sure loss, we may adjust the expert’s answer through natural extension to make
them coherent. If they do not avoid sure loss, we must ask the expert to revise
their answer until they do avoid sure loss.

Here are two extreme cases. If the expert gives β = E(q), then E = Eq,β ,
then no information is gained to assist the decision maker. For the other extreme
case, if the expert gives β = Ẽ(q), then this is the most informative case that
reduces as much as possible the credal set while still being coherent.

We can see from table 3 that for −IL, all rows remain positive. Consequently,
regardless of the expert answer, as long as the expert remains coherent, asking
for their upper prevision of −IL will not change the number of maximal elements.
On the other hand, −IM has more potential: table 4 shows that stock fund 3
may no longer be maximal since there is a negative value in the corresponding
row. Finally, −IH has the most potential: table 4 shows that stock funds 4 and
6 may no longer be maximal.
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a
a′

3 4 5 6

3 0.0 1.5 1.0 2.5
4 2.0 0.0 2.0 4.0
5 2.0 0.5 0.0 2.0
6 2.0 0.0 0.0 0.0

Table 3. Values of
E−IL,−0.5(a−a′) in Exam-
ple 2.

a
a′

3 4 5 6

3 0.0 0.33 −0.67 −0.33
4 2.0 0.0 0.67 1.33
5 2.0 1.0 0.0 0.67
6 2.0 0.67 0.0 0.0

Table 4. Values of
E−IM ,−0.33(a − a′) in
Example 2.

a
a′

3 4 5 6

3 0.0 1.5 1.0 2.5
4 −0.33 0.0 0.33 2.0
5 0.67 1.0 0.0 1.67
6 0.33 0.67 −0.33 0.0

Table 5. Values of
E−IH ,−0.33(a − a′) in
Example 2.

In conclusion, it is not worth asking about −IL, but asking about −IM or
−IH can potentially reduce the number of maximal acts. Since adding −IH to
the domain has the potentially largest reduction in the number of maximal acts,
we will ask the expert for their upper prevision of −IH .

Suppose the expert specifies a value β = −0.2 for the upper prevision of −IH
(so a lower probability of 0.2 for H). So, we now have domP = {IM − IL, IH −
IL,−IH} with

P (IM − IL) = 0, P (IH − IL) = 0, P (−IH) = −0.2 (15)

Next, we can calculate E(a − a′) based on this updated P ; see table 6. As we
can see from table 6, the maximal acts are stock funds 3, 4, and 5.

a
a′

3 4 5 6

3 0.0 1.5 1.0 2.5
4 0.6 0.0 1.0 2.8
5 1.2 1.0 0.0 1.8
6 1.0 0.67 −0.2 0.0

Table 6. Values of E(a− a′) after adding −IH to domP in example 2.

Example 3. We can now continue the process by considering the remaining
queries, that is, Q = {−IL,−IM}. As before, we first compute the range of
coherent extensions for these queries:

Ẽ(−IL) = −0.4 E(−IL) = −0.33 (16)

Ẽ(−IM ) = −0.33 E(−IM ) = 0.0 (17)

Again, for each q ∈ Q, suppose that the expert will provide a value β ∈
[Ẽ(q),E(q)]. As before, we use the most optimistic case where β = Ẽ(q) to
choose a query. We compute the values for Eq,Ẽ(q)(a − a′), where q = −IL and
q = −IM and present results in tables 7 and 8. Since all rows in table 7 are
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non-negative, it is not worth asking the expert about −IL. However, as there is
a strictly negative number in table 8, asking about −IM might make stock fund
4 non-maximal.

Suppose that the expert says P (−IM ) = −0.2. So, we now have domP =
{IM − IL, IH − IL,−IH ,−IM} with

P (IM − IL) = 0, P (IH − IL) = 0, P (−IH) = −0.2, P (−IM ) = −0.2. (18)

We then can calculate E(a − a′) for the remaining acts and present them in
table 9. Unfortunately, all entries in table 9 are non-negative, so the maximal
acts remain the same.

a
a′

3 4 5

3 0.0 1.5 1.0
4 0.6 0.0 1.0
5 1.2 0.8 0.0

Table 7. Values of E−L,−0.4(a− a′) in
example 3.

a
a′

3 4 5

3 0.0 0.33 −0.67
4 0.6 0.0 −0.33
5 1.2 1.0 0.0

Table 8. Values of E−M,−0.33(a − a′)
in example 3.

a
a′

3 4 5

3 0.0 0.8 0.0
4 0.6 0.0 0.2
5 1.2 1.0 0.0

Table 9. Values of E(a − a′) after
adding −M to domP in example 3.

a
a′

3 4 5

3 0.0 0.8 0.0
4 0.6 0.0 0.2
5 1.2 0.8 0.0

Table 10. Values of E−L,−0.4(a − a′)
in example 4.

Example 4. Finally, we consider the last query −IL and compute its range of
coherent extensions:

Ẽ(−IL) = −0.4 E(−IL) = −0.33. (19)

A coherent expert will give a value β ∈ [Ẽ(−IL),E(−IL)]. Again, we consider the
most optimistic case where β = Ẽ(−IL) and compute the values for E−IL,−0.4(a−
a′); see table 10. Since all entries in table 10 are non-negative, no answer from
the expert about −IL will change the number of maximal elements. Therefore,
we can stop the elicitation process here.

4 Conclusion

In this paper, we studied the problem of elicitation in the context of decision
making. We aimed to gain the most useful information to efficiently identify
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queries for a specific decision problem. To do so, we treated the expert’s infor-
mation as an upper prevision and proposed a new algorithm to most effectively
pick a query to present to an expert. Assuming the expert remains coherent at
all times, we used the lower bound of the coherent range to select the query
that has most potential to reduce the number of maximal acts. A fully worked
example demonstrated the algorithm.

In future work, we might explore additional stopping criteria to terminate
elicitation. For example, we may consider to terminate the elicitation process
when we can no longer remove any non-maximal acts regardless of the next
query. This could save cognitive burden on the expert since we can present fewer
queries. Moreover, instead of using the lower bound of the coherent range, we can
look at other values, such for instance a mixture between the upper and lower
bounds. Similarly, it would be desirable to test the impact of choosing different
sets of possible queries, both in terms of convergence to the desired numerical
outcome, and in terms of easiness for the decision maker. Such comparisons
would necessitate extensive experiments.

Finally, it would be interesting to test the procedure on an actual decision
problem with an actual expert, for instance to see if our assumption of coherence
of the expert is reasonable in practice. In order to do this, we could take inspira-
tion from previous experimental campaigns aiming at eliciting actual imprecise
probabilities [17].
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