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Blockchain technology is acclaimed for eliminating the need for a central authority while ensuring stability, security, and immutability.
However, its integration into Internet of Things (IoT) environments is hampered by the limited computational resources of IoT
devices. Consensus algorithms, vital for blockchain safety and efficiency, often require substantial computational power and face
challenges related to security, scalability, and resource demands. To address these critical issues, we propose a novel model that
significantly enhances the security and performance of blockchain in IoT environments. Our model introduces three key innovations:
(1) a bidirectional-linked blockchain system that strengthens security against long-range attacks by exploiting dual reference points for
block validation; (2) the integration of user preferences into the Committee Member Auction (CMA) consensus algorithm, optimizing
miner selection to balance resource efficiency with security; and (3) a comprehensive performance and frequency analysis that
demonstrates the system’s resilience against double-spend, long-range, and eclipse attacks. The proposed model not only reduces block
validation delays but also enhances overall system performance, as evidenced by simulations comparing its effectiveness with existing
CMA algorithms. These advancements have the potential to significantly impact the deployment of blockchain in resource-constrained
IoT environments, offering a more secure and efficient solution.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network
reliability.

Additional Key Words and Phrases: blockchain, preference-based models, auction consensus algorithm, mining, data security
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1 INTRODUCTION

Blockchain is a shared, immutable, distributed ledger of transactions duplicated and distributed across the entire network
of computer systems. Even though blockchain allows secure and anonymous transactions [37], it faces several security
and scalability issues. Many attacks have been launched on blockchain-based systems [38]. For instance, the Reorg
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2 Mathur et al.

Tracker observed eighteen double-spend attacks on four cryptocurrencies [27]. Blockchain networks using the Proof of
Work (PoW) consensus algorithm are vulnerable to double-spend attacks [16]. In contrast, those using the Proof of
Stake (PoS) consensus algorithm are vulnerable to long-range, and eclipse attacks [1], [40]. Another major challenge
blockchain faces is scalability and throughput, especially when deployed in the Internet of Things (IoT) environment
[14, 24, 32]. When there is an increase in the transaction history, it could topple the overall system. As there is an
increase in the number of transactions, the block’s validation time increases due to the consensus process. Several
existing proposals [1, 29] have devised solutions to eliminate blockchain vulnerabilities. A double-spending prevention
mechanism for bitcoin zero-confirmation transactions is proposed in [29]. However, it works only with Unconfirmed
Transaction Outputs (UTXO) or Bitcoin models. Checkpoints are adopted to define the correct chain periodically in [1]
to defend against long-range attacks. However, when generating the checkpoints, it is at risk for Distributed Denial of
Service (DDoS) attacks. Regarding eclipse attacks, an eclipse-attack detection model for Ethereum is proposed in [36].
Nevertheless, the model can detect the Ethereum network attack traffic based on two criteria: information entropy
(information in the assault packets) and statistical statistics. Many different solutions [25, 31, 33] are proposed for
improving the scalability of the blockchain network. For example, layer two solutions (such as decoupled blockchain
[25], derived blockchain[33] or off-chain solutions [31]) use an external, parallel network to facilitate transactions away
from the main blockchain or they decouple the block. However, these mechanisms add much complexity to the existing
system and additional synchronization effort or sacrifice some degree of decentralization.

Alternatively, a layer one solution (like a lightweight and scalable committee member auction consensus algorithm)
addresses the scalability and security vulnerabilities in the blockchain. However, this algorithm does not consider
the miner’s validation time, failure rate, and malicious activities. To solve the challenges mentioned above, this paper
proposes a novel approach that improves the blockchain’s performance and security vulnerabilities by incorporating
a preference model in the committee member auction consensus algorithm. The preference model can allow users
to select their priorities for the mining procedures. Users set the preference to elect committee members during the
consensus process based on parameters (like stake, processing power, cost, and disk space) for every transaction in the
blockchain. For example, if the user wants higher security, they could prefer to stake for the transaction as it shows the
miner’s intention. Similarly, users could prefer processing power if they desire faster transaction validation. Adding
user preference to the consensus process will also help increase the system’s entropy, making it difficult to conduct
double-spend and long-range attacks.

The proposed model utilizes a bidirectional-linked blockchain for its robust security features. It guards against long-
range attacks by detecting block alterations through dual reference points, linking each block to both its predecessor
and successor. This structure not only enhances security by making unauthorized changes more difficult but also
improves communication efficiency and reduces transaction latency through bidirectional data flow. Moreover, the
increased efficiency strengthens the blockchain’s overall security posture, offering enhanced protection against threats
such as double-spending and Sybil attacks. Based on these contributions, the paper is outlined as follows:

(1) a bidirectional-linked blockchain system model is designed to support a custom consensus algorithm that can
guard against long-range attacks by detecting block alterations using dual reference points;

(2) a user preference model is integrated into the Committee Member Auction (CMA) consensus algorithm to select
matchable miners for validating the transactions;

(3) a performance and frequency analysis was performed to evaluate the resilience of the proposed system to
double-spend, long-range, and eclipse attacks.
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The rest of the paper is structured as follows. Section 2 reviews related work. Section 3 presents the background and
context about bidirectionally-linked blockchain, committee member auction algorithms and cryptography tool. Section
4 proposes our preference-based committee member auction consensus algorithm. Section 5 evaluates the performance
and frequency of our proposed algorithm. Section 6 analyses the security features of our approach. Section 7 concludes
the paper and identifies directions for future work.

2 RELATEDWORK

Several existing proposals adopt blockchain to address different challenges concerning edge computing or the IoT
environment. For example, in [30], the authors reviewed blockchain-based IoHT systems for privacy protection,
identified privacy challenges through GDPR, and presented privacy-preserving techniques. They also highlighted key
research challenges to encourage future solutions in this field. In [19], the authors proposed PVFChain with an optimal
smart contract design to conduct computation offloading decentralized, improving network security and efficiency. To
implement the PVFChain, they proposed the crucial network entities and considered smart contract operations across
them. The requester (leader) optimizes the reward policy for performers (followers) to improve user satisfaction while
also considering utility maximization for them. However, this work does not address blockchain vulnerabilities and
focuses on tamper-proof computational offloading. The authors in [23] presented a user-centric blockchain to share
edge knowledge in IoT. They used the Proof of Popularity (PoP) consensus algorithm to preserve the security of edge
knowledge sharing among IoT services. However, this work does not address the vulnerabilities of blockchain. The
key focus of this work includes the design of a traceable, privacy-preserving, and tamper-resistant ledger for sharing
edge knowledge. The solutions in [19], [23] do not consider blockchain technology’s inherent challenges but provided
solutions for allied applications using blockchain. These solutions introduced interactive smart contract operations
across network entities, and the optimal contract design were formulated and solved using a Stackelberg game to
minimize user payments. Security analysis and numerical results demonstrated their scheme’s high security.

There are several blockchain-based solutions for mitigating double spend attacks [29], [12]. These solutions detected
the attack using a listening period and observers. They discouraged double spending attempts in Bitcoin or UTXO
models by creating a specialized output mechanism that forces the disclosure of the private key in the event of a double
spending attempt. This approach enhanced security by deterring malicious actors from exploiting zero-confirmation
transactions. However, in a peer-to-peer network, the message delivery between nodes could be more timely, and the
order of messages was not guaranteed, which makes their observers unreliable. In [1], the authors proposed immutable
checkpoints. It adopts a multi-variable (block, active user, stake parameters) strategy to decide the next checkpoint.
However, the strategy is vulnerable to DDoS attacks, especially when creating checkpoints, and periodically relies on a
centralized server to define the correct chain. In [36], an eclipse-attack detection model for Ethereum has been proposed.
The model was based on a random forest classification algorithm, in which features of attack connection flow were
defined. Nevertheless, it is only responsible for detecting attack traffic based on two features, namely information entropy
(information in the attack packets) and statistical features, for the Ethereum network. In [39], the authors considered
time-variant trust values of nodes based on dynamically adjusted trust values and node performance; nodes were
classified into accounting, validating, and propagating nodes. The accounting node presented the block; the validating
node validated the proposed block, while propagating nodes were only responsible for propagating transactions. If the
trust value of a node decreases, it will be demoted to either validating or propagating node. However, this approach was
vulnerable to Sybil attacks and DoS attacks. In [20], the authors presented a new approach to improving IoT security
and privacy by employing a permissioned blockchain with optimized data storage and a lightweight authentication
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mechanism. It integrated homomorphic encryption to secure data before uploading to the cloud, demonstrating through
simulations that this method enhances security, privacy, and performance in decentralized IoT systems. A distributed
strategy was proposed for computational resource trading, optimizing task delay, energy cost, trading prices, and user
reputation through a multi-preference matching mechanism [34]. It also leveraged Blockchain-as-a-Service to provide
decentralized identity infrastructure, and simulations demonstrate that the proposed strategy achieves higher task
throughput compared to traditional double auction mechanisms. A blockchain-based privacy-preserving framework
was proposed for IoT networks, utilizing service-oriented layers, low-computation cryptography, and a simplified
consensus protocol [21]. The security analysis and simulations demonstrated the framework’s effectiveness, making it
suitable for real-world IoT applications.

However, these approaches focused on mitigating the attacks on blockchain networks using proof of work and proof
of stake consensus algorithms. A more flexible consensus algorithm, which has a higher performance and is resistant to
attacks, is required. We propose a new preference-based and blockchain-supported model to address the challenges
mentioned earlier. From the approaches that use a consensus mechanism to verify and flag data breaches, a blockchain-
based architecture has been proposed in which a set of voters took part in the violation detection [5–7]. Furthermore, a
preference-based method has been supported for verifying data protection regulations [4]. The method enabled users
to identify a priority for checking the regulations by running a smart contract. The authors in [17] discussed a potential
attack on Bitcoin involving exploiting a victim for various attacks on its mining and consensus system. The study
conducted a detailed analysis of Bitcoin’s peer-to-peer network by employing probabilistic analysis, running Monte
Carlo simulations, and performing live experiments. This comprehensive approach was used to accurately quantify the
computational and network resources required to carry out potential attacks on the network. However, these approaches
only focused on data privacy and did not provide a scalable, attack-proof solution for improving data security. Table 1
compares the above-discussed various existing proposals regarding their advantages and disadvantages.

In addition to these, the approach presented in [18] addresses issues in the traditional DPoS algorithm by proposing
a reputation-based DPoS that selects high-quality nodes for consensus, reducing security risks and improving efficiency
through reputation and token-based incentives. In [15], a dynamic PBFT was built on the PBFT protocol, offering the
same security and liveness while introducing flexibility for nodes to join or leave the network without downtime.
It enhanced system robustness by removing malicious nodes and utilizes a Participation Degree metric to ensure
active node involvement, improving security. Complementing these approaches, our preference-based CMA algorithm
leverages user-defined criteria to select miners, optimizing the consensus process by balancing factors like stake,
processing power, and cost, improving both security and performance.

In contrast to existing approaches, my proposed model introduces a bidirectional-linked blockchain system that
enhances security by detecting block alterations using dual reference points, thus protecting against long-range attacks.
Additionally, it integrates a user preference model into the CMA consensus algorithm, allowing for optimal miner
selection based on specific criteria.

3 BACKGROUND

This section discusses the background and prerequisites related to the cryptography tools, existing committee member
auction consensus algorithm and formal definitions of preference models. These prerequisites are used in the subsequent
section where we discuss the proposed approach.
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Table 1. A comparison between existing similar approaches

Research Method Advantages Drawbacks
[1] PoS Multi-variable checkpoints for

long-range attack mitigation
Vulnerable to DDoS attacks
& centralized server depen-
dency

[29] Bitcoin, UTXO Double spend prevention &
UTXO support

Rely on timely message deliv-
ery

[36] Ethereum Smart eclipse attack detection
using entropy and statistics

Limited to detecting specific
Ethereum attack criteria

[19] parked vehicle as-
sisted fog Chain
(PVFChain)

Securing vehicular fog com-
puting

Limited to fog computing

[23] PoP Edge knowledge sharing secu-
rity

No focus on vulnerabilities

[12] PoW PoW security and perfor-
mance analysis

Focused only on PoW
blockchains

[39] Consortium
Blockchain

Time-variant trust values &
node performance-based con-
sensus

Vulnerable to Sybil and DoS
attacks

[20] PoS Improved security and pri-
vacy through decentralized
blockchain and homomorphic
encryption

Added complexity in system
implementation and manage-
ment

[17] Bitcoin Counter for eclipse attacks in
Bitcoin

Limited to Bitcoin

[34] PoS Improved task throughput
with multi-preference match-
ing

Added overhead with
Blockchain-as-a-Service

3.1 Bidirectional-Linked Blockchain

The block structure in the bidirectional-linked blockchain differs slightly from the existing blockchains. A block has
two pointers: the forward and reverse pointer, along with transactions and randomness. The forward pointer stores the
previous block’s hash value, while the reverse pointer stores the hash value of the next block. It is represented in Fig.
1 as 𝐻𝑎𝑠ℎ𝑃𝑟𝑒𝑣 and 𝐻𝑎𝑠ℎ𝑁𝑒𝑥𝑡 , respectively. The consensus reached by the distributed participants is represented by
the randomness, which replaces the nonce. The bidirectional-linked blockchain will allow only appending operations,
similar to other blockchain models.

The procedure for appending a new block entails a three-step process. Initially, a forward pointer is established by
utilizing the Chameleon-hash function. This function computes the hash value of 𝐵𝑙𝑜𝑐𝑘𝑛 , which is subsequently stored
within the 𝐻𝑎𝑠ℎ𝑃𝑟𝑒𝑣 field of 𝐵𝑙𝑜𝑐𝑘𝑛+1 (Step 1 in Fig. 1). Following the establishment of the forward pointer, a reverse
pointer is created using a conventional hashing method. Specifically, the hash value of 𝑏𝑙𝑜𝑐𝑘𝑛+1 is generated and stored
in the 𝐻𝑎𝑠ℎ𝑁𝑒𝑥𝑡 field of 𝐵𝑙𝑜𝑐𝑘𝑛 (Step 2 in Fig. 1).

However, it is imperative to note that after the execution of the consensus algorithm [26], the value stored in the
𝐻𝑎𝑠ℎ𝑃𝑟𝑒𝑣 field of 𝑏𝑙𝑜𝑐𝑘𝑛+1 may become inaccurate. The reverse pointer must be adjusted to rectify this inconsistency.
This adjustment is facilitated by leveraging the trapdoor keys exclusively possessed by the committee members
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Fig. 1. A bidirectional-linked blockchain model [35]

participating in the Consensus Mechanism Algorithm (CMA). These keys enable the calculation of a randomized value,
which, when applied, restores the integrity of the entire content of 𝐵𝑙𝑜𝑐𝑘𝑛 , rendering it unchanged (Step 3 in Fig. 1).

3.2 CMA Algorithm

The CMA consensus algorithm is a lightweight, scalable consensus algorithm that is attack resistance. The algorithm is
scalable due to its dynamic committee size adjustment, which adapts to network conditions and transaction volumes.
It employs a preference-based mechanism for selecting a subset of committee members, reducing communication
overhead and computational complexity. This efficient member selection process ensures faster consensus times and
lower network load. Moreover, its modular architecture allows for easy integration and adaptation to various blockchain
systems, making it capable of handling increasing transaction demands and supporting network growth effectively. The
CMA consensus algorithm uses Verifiable Random Functions (VRF) for electing committee members across distributed
blockchain nodes. The VRFs are public-key pseudorandom functions that provide verifiable proof that their outputs
were calculated correctly [9]. Algorand introduced VRFs to privately check if the miner is selected to participate in the
consensus phase [13]. Algorand is a highly scalable blockchain framework that uses Byzantine Agreement (BA) protocol
to reach consensus. However, the miners in Algorand are weighted based on the balance of tokens in wallets, which
means a miner with more tokens is more vulnerable to DDoS attacks and causes the performance of the blockchain to
be downgraded. The CMA consensus algorithm starts by electing the committee members [2], [3]. The miners acquire
their 𝑣ℎ𝑎𝑠ℎ and 𝜋 by using the seed (a random value generated for each term) and their respective private keys. If 𝑣ℎ𝑎𝑠ℎ
falls into a specific range 𝛾 , the miner is treated as a committee member. The elected committee members propose new
blocks based on the transactions they receive through the gossip protocol. To avoid conflict over generating blocks,
there are also priorities among committee members. The miner with the lowest 𝑣ℎ𝑎𝑠ℎ has the highest block generating
priority. When a miner receives a block from a higher priority miner, it will accept the block. Otherwise, the block is
broadcast using gossip protocol.
Manuscript submitted to ACM
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3.3 Preference Models

The preference model is a formal method of ranking the objects (in our case, miners) based on the user requests and
preferences. A preference term can be either an atomic or composite [8, 11]. Atomic preference has a single object which
can either be a qualitative or quantitative preference [22], while composite preference can have multiple qualitative or
quantitative preference objects. A preference can be expressed as “x is preferred over y", where x and y are instances of
miners. A preference model is formally defined as follows.

Definition 1: Let 𝐶 be a non-empty set of parameters of miners and 𝑑𝑜𝑚(𝐶) the set of all possible instances of those
parameters. We define preference as 𝑃 = (𝐶, <𝑝 ) where <𝑝⊆ 𝑑𝑜𝑚(𝐶) × 𝑑𝑜𝑚(𝐶) is s strict partial order (irreflexive,
transitive and asymmetric), and if x,y ∈ 𝑑𝑜𝑚(𝐶), then x <𝑝 y is interpreted as “y is preferred rather than x".

Three types of preferences, i.e., numerical, prioritized and balanced can be used to define a formal preference model.
The definitions are provided below.

3.3.1 Numerical Preference. The numerical preference is a combination of a number of score preferences. A score
preference is defined as a scoring value that takes a property value as its argument and returns a real value. The higher
the value returned by the function, the more preferred the property value is. We define score preference as follows.

Definition 2: Let f: 𝑑𝑜𝑚(𝐶)→ℜ be a scoring function and < the usual less-than order inℜ. 𝑃𝑓 = (𝐶, < 𝑃𝑓 ) is a score
preference if for 𝑥 , 𝑦 ∈ 𝑑𝑜𝑚(𝐶):

𝑥 <𝑃𝑓 𝑦 ⇐⇒ 𝑓 (𝑥 ) < 𝑓 (𝑦) (1)

Numerical Preference takes the values returned by each score preference as its argument and returns another real
number that gives information about the global preferences after considering all the properties referred by concrete
score preferences. We define numerical preference as follows.

Definition 3: Let 𝑓 ,𝑔 andℎ be scoring functions that define score preferences 𝑃𝑓 = (𝐶, <𝑃𝑓 ), 𝑃𝑔 = (𝐶, <𝑃𝑔 ), 𝑃ℎ = (𝐶, <𝑃ℎ ),
respectively and F: ℜ × ℜ −→ ℜ be a combination function. For 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2), 𝑧 = (𝑧1, 𝑧2) ∈ 𝑑𝑜𝑚(𝐶1) ×
𝑑𝑜𝑚(𝐶2) × 𝑑𝑜𝑚(𝐶3), 𝑃 = (𝐶1 ∪𝐶2 ∪𝐶3 <𝑟𝑎𝑛𝑘𝐹 (𝑃𝑓 ,𝑃𝑔,𝑃ℎ)) is a numerical preference if:

(2)

𝑥 <𝑟𝑎𝑛𝑘𝐹 (𝑃𝑓 ,𝑃𝑔,𝑃ℎ) 𝑦

<𝑟𝑎𝑛𝑘𝐹 (𝑃𝑓 ,𝑃𝑔,𝑃ℎ) 𝑧

⇐⇒ 𝐹 (𝑓 (𝑥1), 𝑔(𝑥2))
< 𝐹 (𝑓 (𝑦1), 𝑔(𝑦2))
< 𝐹 (𝑓 (𝑧1), 𝑔(𝑧2))

3.3.2 Prioritized Preference. A prioritized preference 𝑃 is composed of two preference terms 𝑃1 and 𝑃2, where 𝑃1 is
considered more important than 𝑃2. Thus, 𝑃2 is evaluated only if 𝑃1 does not return enough information to rank the
parameters or in case of conflict. The prioritized preference is defined as:
Definition 4: Let 𝑃1 = (𝐶1, <𝑃1 ) and 𝑃2 = (𝐶2, <𝑃2 ) be two different preference defined after 𝐶1 and 𝐶2 properties and
𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2) ∈ 𝑑𝑜𝑚(𝐶1)×𝑑𝑜𝑚(𝐶2) be two value tuples for each property. 𝑃 = (𝐶1∪𝐶2, <𝑃1&𝑃2 ) is a prioritized
preference if:

𝑥 <𝑃1&𝑃2 𝑦 ⇐⇒ 𝑥1 <𝑃1 𝑦1 ∨ (𝑥1 = 𝑦1 ∧ 𝑥2 <𝑃2 𝑦2) (3)

3.3.3 Balanced Preference (Pareto-optimality Principle). A balanced preference 𝑃 is a combination of two preference
terms 𝑃1 and 𝑃2. It uses the Pareto-optimality principle, a situation where no preference criterion can be made better
without making at least one preference criterion worse off [10, 11]. Therefore, 𝑃1 and 𝑃2 are considered equally important.
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Intuitively, this preference balances the fulfilment of each preference component so that the composite preference is
the average degree of preference, taking both components into account.
Definition 5: Let 𝑃1 = (𝐶1, <𝑃1 ) and 𝑃2 = (𝐶2, <𝑃2 ) be two different preference defined after 𝐶1 and 𝐶2 properties and
𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2) ∈ 𝑑𝑜𝑚(𝐶1) × 𝑑𝑜𝑚(𝐶2) be two value tuples for each property. 𝑃 = (𝐶1 ∪𝐶2, <𝑃1⊗𝑃2 ) is a balanced
preference if:

𝑥 <𝑃1⊗𝑃2 𝑦 ⇐⇒ (𝑥1 <𝑃1 𝑦1 ∧ (𝑥2 <𝑃2 𝑦2))∨

(𝑥2 <𝑃2 𝑦2 ∧ (𝑥1 <𝑃1 𝑦1)))
(4)

4 PROPOSED APPROACH

Based on the above discussed prerequisites, our proposed approach integrates users preferences into the committee
member auction consensus algorithm to select matchable miners for validating the transactions. The model makes use
of the bidirectional-linked blockchain to resist some common attacks.

The integration of user preferences into the CMA consensus algorithm enhances the selection process by allowing
for a more tailored and dynamic approach to miner selection. Traditional methods often rely on fixed criteria or a single
factor, such as stake or computational power, which can lead to inefficiencies and a lack of adaptability. In contrast,
the proposed approach, which includes numerical, prioritized, and balanced preference models, allows users to weigh
various factors such as stake, power, disk space, and cost according to their specific needs. This results in a more accurate
matching of committee members to the tasks at hand, leading to improved resource allocation and transaction validation
efficiency. For instance, by enabling the scoring function to adjust based on user-defined parameters, the system can
dynamically select miners who not only meet the technical requirements but also align with the network’s strategic
goals, such as minimizing costs or maximizing security. This adaptability is particularly beneficial in environments with
varying priorities, providing a level of customization and efficiency that traditional models do not offer. The different
working segments of the propose approach are described in the subsequent sections.

4.1 Preference Models for Bidirectional-linked Blockchain

Three types of preference models (concerning numerical, prioritized and balanced preferences) are integrated into the
CMA consensus algorithm.

4.1.1 Numerical Preference Model. This model exploits scoring functions which takes miner’s parameters (𝑥) and a
scoring values (𝑣) as an input and returns scores for miner’s parameters (e.g., for ‘stake’, ‘power’, ‘disk’, ‘cost’). These
scores are aggregated to get the total score (Σ). The scoring function (𝑓 (𝑠)) for the numerical preference model is defined
as below.

(5)𝑓 (𝑠) = 𝑥 × 𝑣 .

Algorithm 1 quantifies a miner’s preference with a specific criteria to calculate Σ. It takes two inputs, (a) an array
(Π) containing miner-specific parameters paired with their respective scoring values and (b) an array (Γ) housing the
miner’s parameters alongside their corresponding numerical values.

The proposed algorithm starts by initializing Σ as 0 and iterated for each element in the array Π, hereafter referred
to as Π𝑖 . Each element in Π𝑖 is examined to determine their corresponding parameter (e.g., “stake," “power," “disk," or
“cost") (line 1-2). Depending on the parameter, following steps are performed in the algorithm.

• If Π𝑖 refers to “stake," the algorithm augments Σ by the product of the miner’s stake value (Γ[“𝑠𝑡𝑎𝑘𝑒”]) and the
scoring value of “stake" (Π𝑖 [“𝑠𝑡𝑎𝑘𝑒”]) (line 3-5).
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Algorithm 1: Numerical Preference Algorithm
Input: (Π), Array miner’s parameter with scoring values.

(Γ), Miner’s parameter with values
Output: Total score calculated by the miner (Σ).
Function :getNumericPreferenceScore

1 Initialize variable: Σ← 0 {Total Score}
2 for ∀ Π𝑖 ∈ Π do
3 if Π𝑖 is “𝑠𝑡𝑎𝑘𝑒” then
4 Σ← Σ + (Γ[“𝑠𝑡𝑎𝑘𝑒”] × Π𝑖 [“𝑠𝑡𝑎𝑘𝑒”]);
5 end
6 if Π𝑖 is “𝑝𝑜𝑤𝑒𝑟 ” then
7 Σ← Σ + (Γ[“𝑝𝑜𝑤𝑒𝑟 ”] × Π𝑖 [“𝑝𝑜𝑤𝑒𝑟 ”]);
8 end
9 if Π𝑖 is “𝑑𝑖𝑠𝑘” then
10 Σ← Σ + (Γ[“𝑑𝑖𝑠𝑘”] × Π𝑖 [“𝑑𝑖𝑠𝑘”]);
11 end
12 if Π𝑖 is “𝑐𝑜𝑠𝑡” then
13 Σ← Σ + (Γ[“𝑐𝑜𝑠𝑡”] × Π𝑖 [“𝑐𝑜𝑠𝑡”]);
14 end
15 end
16 return (Σ)

• If Π𝑖 relates to “power," the algorithm contributes to Σ by the product of the miner’s power value (Γ[“𝑝𝑜𝑤𝑒𝑟”])
and the scoring value of “power" (Π𝑖 [“𝑝𝑜𝑤𝑒𝑟”]) (line 6-8).

• If Π𝑖 corresponds to “disk," the algorithm augments Σ by the product of the miner’s disk value (Γ[“𝑑𝑖𝑠𝑘”]) and
the scoring value of “disk" (Π𝑖 [“𝑑𝑖𝑠𝑘”]) (line 9-11).

• If Π𝑖 represents “cost," the algorithm adds to Σ the product of the miner’s cost value (Γ[“𝑐𝑜𝑠𝑡”]) and the scoring
value of “cost" (Π𝑖 [“𝑐𝑜𝑠𝑡”]) (line 12-14).

Upon completion of the iteration encompassing all elements in Π, the algorithm concludes its execution by returning
Σ. The values are weighted according to predefined scoring values, culminating in the derivation of Σ that encapsulates
the miner’s overall suitability within the defined criteria.

4.1.2 Priority Preference Model. This model compares the most preferred miner’s parameter to calculate the score.
If the score is equal, then other miner’s parameters are considered. Algorithm 2 is designed to calculate Σ based on
specific criteria. It requires two inputs, (a) an array (Π) which contains miner-specific parameters, and (b) an array (Γ)
containing the miner’s parameters alongside their respective values.

The proposed algorithm starts by initializing Σ as 0 and depending on the parameters provided in the array Π (e.g.,
“stake," “power," “diskSpace," or “cost"), the algorithm checks each parameter’s presence. If a parameter is present in Π, it
increments Σ by the corresponding value from Γ. After considering all potential parameters, the algorithm concludes its
execution by returning the computed Σ. Each parameter is treated equally, and Σ reflects the miner’s overall alignment
with the defined criteria.

4.1.3 Balanced Preference Model. This model gives equal priority to all preferred miner’s parameters. Algorithm 3
serves the purpose of calculating a miner’s total score (Σ) based on specific criteria. The proposed algorithm starts
by initializing Σ as 0 and iterated for each element in the array Π, hereafter referred to as Π𝑖 (line 1-2). For each Π𝑖

element, the algorithm checks the presence of specific parameters, such as "stake," "power," "diskSpace," or "cost," within
the array Π. If a parameter is present in Π, the algorithm increments the total score Σ by the corresponding value
from the array Γ (line 3-14). After examining all elements in Π, the algorithm concludes its execution by returning the
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Algorithm 2: Prioritized Preference Algorithm
Input: (Π), Array miner’s parameter with scoring values.

(Γ), Miner’s parameter with values
Output: Total score calculated by the miner (Σ).
Function :getPriorityPreferenceScore

1 Initialize variable: Σ← 0
2 for ∀ Π𝑖 ∈ Π do
3 if Π is “𝑠𝑡𝑎𝑘𝑒” then
4 Σ← Σ + Γ[”𝑠𝑡𝑎𝑘𝑒”];
5 end
6 if Π is “𝑝𝑜𝑤𝑒𝑟 ” then
7 Σ← Σ + Γ[”𝑝𝑜𝑤𝑒𝑟 ”];
8 end
9 if Π is “𝑑𝑖𝑠𝑘𝑆𝑝𝑎𝑐𝑒” then
10 Σ← Σ + Γ[”𝑑𝑖𝑠𝑘𝑆𝑝𝑎𝑐𝑒”];
11 end
12 if Π is “𝑐𝑜𝑠𝑡” then
13 Σ← Σ + Γ[”𝑐𝑜𝑠𝑡”];
14 end
15 end
16 return (Σ)

Algorithm 3: Balanced Preference Algorithm
Input: (Π), Array miner’s parameter with scoring values.

(Γ), Miner’s parameter with values
Output: Total score calculated by the miner (Σ).
Function :getBalancedPreferenceScore

1 Initialize variable: Σ← 0
2 for ∀ Π𝑖 ∈ Π do
3 if Π𝑖 is “𝑠𝑡𝑎𝑘𝑒” then
4 Σ← Σ + Γ[“𝑠𝑡𝑎𝑘𝑒”];
5 end
6 if Π𝑖 is “𝑝𝑜𝑤𝑒𝑟 ” then
7 Σ← Σ + Γ[“𝑝𝑜𝑤𝑒𝑟 ”];
8 end
9 if Π𝑖 is “𝑑𝑖𝑠𝑘𝑆𝑝𝑎𝑐𝑒” then
10 Σ← Σ + Γ[“𝑑𝑖𝑠𝑘𝑆𝑝𝑎𝑐𝑒”]
11 end
12 if Π𝑖 is “𝑐𝑜𝑠𝑡” then
13 Σ← Σ + Γ[“𝑐𝑜𝑠𝑡”];
14 end
15 end
16 return (Σ)

calculated total score Σ. This score quantitatively reflects the miner’s alignment with the provided parameters, with
equal weight assigned to each parameter. The resulting total score Σ offers a numerical representation of the miner’s
overall alignment with the defined criteria (line 16).

4.2 Mining Process

The CMA consensus algorithm is based on periodic elections of miners and requires distributed participants (miners) to
have a synchronized clock. Each election period is called a term. The proposed mining process comprises three steps: (a)
election of committee members, (b) proposing a new block and reaching consensus, and (c) generating the new block.
These steps are described below.
Manuscript submitted to ACM
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4.2.1 Election of Committee Members. During the election of the committee members, the threshold value 𝑛, along
with the preferred terms and preference model, are acquired by the miners from the transaction. For each term, the
miner can calculate based on the preference models and terms to acquire a value total score Σ. For example, suppose
the transaction has a preference model as numeric preference and preference terms as processing power and stake
with their respective scoring values. In that case, every miner can acquire Σ based on the Algorithm 1. If the total score
exceeds the threshold (Σ > 𝑛), the miner is considered a committee member for the term and can validate the block.
After the committee member’s election, the trapdoor keys are divided into 𝜂 parts (where 𝜂 is the number of committee
members elected) and distributed across the committee members to protect the tampering of the forward pointer.

4.2.2 Propose a New Block. After the committee members are elected for the term, a new block is proposed based on
the transaction they received. The priority among committee members is based on Σ. A higher value for Σ leads to a
higher priority for validating and generating blocks. When a miner receives a block from a higher-priority miner, it will
automatically accept the block; otherwise, the miner broadcasts it.

4.2.3 Reaching Consensus. After the committee members reach the consensus, every member sends their part of the
trapdoor key and the hash of the newly proposed block 𝐵𝑙𝑜𝑐𝑘𝑛+1. The smart contract repairs the randomness of the
block 𝐵𝑙𝑜𝑐𝑘𝑛 when enough secrets are collected to reconstruct the trapdoor key. By repairing the randomness of 𝐵𝑙𝑜𝑐𝑘𝑛 ,
the forward pointer of the block remains unchanged, and the reverse pointer of 𝐵𝑙𝑜𝑐𝑘𝑛+1 points at 𝐵𝑙𝑜𝑐𝑘𝑛 with a new
𝐻𝑎𝑠ℎ𝑁𝑒𝑥𝑡 . Finally, 𝐵𝑙𝑜𝑐𝑘𝑛+1 is appended to the chain with both the forward and the reverse pointer.

4.3 Consensus Process

Initially, a blockchain network collects and converts the transactions into a block. After generating a block, the entire
network must agree on the transaction’s validity, i.e., reach a consensus before confirming the transaction to the
blockchain. Each transaction in the block will contain the user’s preference and a collection of miners’ parameters
which is preferred. For numeric preference, scoring values for preferred miners parameters will be contained within
the transaction. As an example, in Fig. 2, we have a blockchain network with eight miners 𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺 and 𝐻

with synchronized clock. During each election period, all the miners check if they are elected as committee members
by calculating their total scores (Σ) based on the preference information present in the transaction. If the total score
calculated by the miner is greater than the threshold value 𝑛, the miner is considered a committee member for the term.
It is supposed that after the first step, miners 𝐴, 𝐷, 𝐸 and 𝐻 (represented in black in Fig. 2) are elected as committee
members whereas miners 𝐵,𝐶, 𝐹 and𝐺 are not elected for the term. Assuming miner 𝐴 (represented in red in Fig. 2) has
the highest priority over the other miners during the term, miner𝐴 proposes a new block. The trapdoor keys are divided
into four parts as there were four committee members elected and distributed to the elected committee members. The
miners 𝐷 , 𝐸, and 𝐻 verify the newly proposed block by miner 𝐴. When a committee member receives a block from a
higher-priority miner, it will automatically accept the block; otherwise, it broadcasts its block. When a lower-priority
miner accepts a block from a higher-priority miner, it validates the block sent. After the committee member verifies
the transaction, the committee member broadcasts a message that includes the trapdoor key. The broadcast is a black
line in Fig. 2. When many trapdoor keys are collected, the smart contract will automatically get invoked to repair the
randomness of 𝐵𝑙𝑜𝑐𝑘𝑛 . Here, the miner 𝐴 will broadcast the newly generated block to all the network miners, i.e., 𝐵, 𝐶 ,
𝐷 , 𝐸, 𝐹 , 𝐺 , and 𝐻 . If any of the miner 𝐷 , 𝐸, or 𝐻 does not agree with the newly proposed block, they do not send out
their trapdoor key. If most of the committee members do not agree with the block, it is rejected.

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Mathur et al.

Fig. 2. Committee member auction consensus mechanism using preferences

4.4 Model Adaptation for IoT

Our proposed model is finely tuned for real-time IoT applications, where immediate transaction validation is crucial.
Key enhancements include a preference-based miner selection mechanism, enabling users to prioritize processing
power to achieve faster validation and reduced latency. The lightweight design of the CMA consensus algorithm is
optimized to minimize computational overhead, thus maximizing throughput. Furthermore, the bidirectional-linked
blockchain structure enhances data flow and communication efficiency, expediting consensus. By optimizing block
size and frequency for the frequent, small transactions typical of IoT environments and integrating parallel processing
capabilities, the model consistently maintains high throughput with low-latency validation. These optimizations
collectively ensure that the proposed model meets the stringent speed and security demands of real-time IoT applications.

Our model’s adaptability to varying IoT environments is facilitated through several flexible features. The adaptive
miner selection dynamically chooses miners based on their computational and storage capabilities, allowing seamless
integration of devices with differing resource levels. The scalable CMA consensus algorithm efficiently accommodates
various network conditions, while the modular design of the bidirectional-linked blockchain allows for customization
to suit specific use cases, such as adjusting block sizes and transaction frequencies based on available bandwidth.
Additionally, configurable user preferences and adaptive data handling strategies ensure the model remains responsive
and effective across a range of scenarios, from high-security requirements to rapid transaction processing. This
adaptability addresses the diverse challenges posed by different device capabilities and network conditions.

The model is particularly well-suited for IoT devices with limited computational power and memory, thanks to
targeted techniques. The adaptive miner selection mechanism prioritizes devices based on their available resources,
ensuring that computationally intensive consensus processes are assigned to capable nodes while accommodating those
Manuscript submitted to ACM
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with more limited resources. The lightweight CMA consensus algorithm is specifically designed to reduce computational
overhead, easing the processing burden on constrained devices. Additionally, the model employs optimized data handling
strategies, such as minimizing block size and transaction complexity, to operate within the memory and processing
constraints of these devices. Techniques like efficient data serialization and compression further mitigate resource
constraints by reducing the data that needs to be processed and transmitted. Through these strategies, the model
enables even resource-limited devices to participate effectively in the blockchain network without compromising on
performance or security.

Our approach is designed with energy efficiency as a priority, particularly for IoT environments where devices
often operate on limited battery power. The consensus algorithm is optimized to minimize computational complexity,
thereby reducing the energy required for transaction validation and consensus operations. Additionally, the adaptive
miner selection mechanism ensures that tasks assigned to low-power devices are well within their energy capacities,
conserving battery life. The bidirectional-linked blockchain structure contributes to energy efficiency by optimizing
data flow and reducing the need for redundant calculations, thus lowering overall energy consumption. Furthermore,
the model incorporates energy-efficient data handling techniques, such as selective data transmission and aggregation,
to minimize communication frequency and volume, further reducing energy usage. These combined strategies ensure
the model is highly suited to energy-constrained IoT environments, allowing devices to function efficiently without
compromising performance or security.

5 PERFORMANCE EVALUATION

This section discusses the performance evaluation of the proposed approach. The environment settings and results are
described in the subsequent sections.

5.1 Environment Setting

The proposed and the existing algorithms are coded in Java 8, and Java Open JDK is used to build the simulation. The
hardware configuration includes an Apple M1 chip eight-core processor and 8 GB of RAM. The default parameters of
the simulation are given in Table 2.

Table 2. Simulation Parameter Settings

Parameter Value
The number of participant members (𝜂) 100
The incoming transaction speed (tx/s) 1

Total incoming transaction 1000
Number of transaction in a block 1

Every miner is configured with processing power, stake, disk space, and cost with a random value for the simulations.
We considered two validation scenarios: (a) using processing power and stake as preferences, and (b) using random
preferences, with the miner configuration remaining consistent across both scenarios. The defined configuration is
depicted in Fig. 3.

The difficulty of mining the block is based on the computing power of the miner’s hardware. In other words, the
higher the processing power, the higher the computation power, the lower the processing time, and the lower the
difficulty of validating the block. The network latency is considered to be negligible. The user is assumed to send the
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Fig. 3. Miner Configuration

preference model and the preferred miner parameters with the transaction. For each experiment, 1000 transactions
are generated. Every transaction goes through the consensus algorithm to be validated. Each experiment is run for
the methods; Numerical Preference-based CMA algorithm, Prioritized Preference-based CMA algorithm, Balanced
Preference-based CMA algorithm, and compares the performance with the existing CMA algorithm.

5.2 Performance Comparison

The performance of each node in the blockchain network varies. In this experiment, we compare the time taken to
validate a block in each scenario. The first experiment assumes that the collections of preferences in all 1000 transactions
contain only processing power and stake. For numeric preference, a higher scoring value is given to processing power,
and a lower value is given to stake. Specifically, a value of 90 is assigned to processing power and 10 to stake. Miners
exceeding the threshold score are selected.

For priority preference, higher priority is given to processing power than to stake, leading to the selection of miners
with greater processing power. Similarly, in the Balanced preference scenario, miners with high processing power and
stake are chosen. In contrast, the existing CMA algorithm selects miners randomly based on the value of 𝛾 obtained
from the VRF. The results of the experiment are shown in Table 3. The table shows that the validation block’s time (in
seconds) for the priority preference is shorter than the numeric and balanced preferences. This is because, in the case of
priority preference, the miner with the highest available processing power is always selected to mine the block. The
time taken to do so would be less as the difficulty to mine would be less. The simulation found that miner 78, having
processing power configured as 99.90, was always elected to mine as it has the highest available processing power
among all the other miners. For numeric preference, a miner with the highest overall score, i.e., 90% of processing
power and 10% of the stake, is considered compared to only processing power in priority. The simulations found that
miner 60, configured with the processing power of 99.1 and stake as 70, was always elected for mining the block. It has
slightly less processing power but a higher stake than the miner 78, which has a stake of 58.
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Table 3. Evaluation for Processing Power and Stake as Preference

Transaction No. Average time taken to propose a block (seconds)
Priority Numeric Balanced CMA

1-50 0.260 0.307 0.321 0.315
51-100 0.229 0.255 0.318 0.454
101-150 0.216 0.260 0.298 0.325
151-200 0.190 0.216 0.285 0.287
201-250 0.203 0.231 0.290 0.346
251-300 0.215 0.227 0.272 0.492
301-350 0.242 0.254 0.274 0.349
351-400 0.233 0.217 0.280 0.325
401-450 0.238 0.207 0.267 0.365
451-500 0.214 0.221 0.279 0.343
501-550 0.201 0.220 0.367 0.345
551-600 0.229 0.232 0.339 0.505
601-650 0.214 0.289 0.345 0.321
651-700 0.219 0.230 0.279 0.304
701-750 0.221 0.225 0.260 0.290
751-800 0.216 0.226 0.354 0.478
801-850 0.218 0.255 0.366 0.357
851-900 0.236 0.258 0.255 0.305
901-950 0.216 0.278 0.300 0.410
951-1000 0.246 0.252 0.304 0.302

In the case of balanced preference, equal preference is given to the processing power and stake, i.e., 50% value of
processing power and 50% value of the stake are considered. Miner 8, configured with a processing power of 90.8 and a
stake of 99, was always selected as it had an equally high stake and processing power. However, the processing power
was significantly lower than that of the miner 78 and 60. The performance could not be guaranteed in the existing
CMA algorithm since the miner is selected randomly. Some transactions take little time as the elected miner has high
processing power to propose the block and vice versa. Every time the simulation ran, a different set of miners was
elected because of the randomness of the algorithm. It is to be noted that in the preference-based CMA algorithm, all
the committee members elected will have high processing power and stake, and hence, not only is the block proposal
time reduced, but the block validation time is also reduced. This will be different for the existing CMA algorithm. For
the second experiment, the preferences are set randomly for all the 1000 transactions, i.e., it is not guaranteed that
processing power is given priority. For the numeric, priority and balanced preferences, the miners parameters are
selected randomly.

In the case of numeric preference, the scoring values are also generated randomly. The performance results are
shown in Table 4. It is evident that there is no guarantee of performance when processing power is not considered.
The preference-based and existing CMA algorithms have a similar trend, and the performance depends on the elected
miner’s processing power. The conclusion of this experiment is that performance can only be guaranteed only if the
elected committee member (miner) has a greater performance. Preference-based CMA gives user the flexibility to set
their priority, hence reducing the block proposal and validation time.
Manuscript submitted to ACM
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Table 4. Performance Evaluation for Random Preference

Transaction No. Average time taken to propose a block (seconds)
Priority Numeric Balanced CMA

1-50 0.169 0.183 0.199 0.270
51-100 0.132 0.162 0.201 0.255
101-150 0.147 0.173 0.193 0.216
151-200 0.134 0.153 0.187 0.190
201-250 0.128 0.160 0.236 0.231
251-300 0.135 0.175 0.204 0.227
301-350 0.163 0.153 0.199 0.254
351-400 0.139 0.148 0.209 0.217
401-450 0.130 0.164 0.172 0.207
451-500 0.147 0.199 0.164 0.214
501-550 0.144 0.167 0.187 0.201
551-600 0.149 0.158 0.199 0.229
601-650 0.134 0.152 0.184 0.214
651-700 0.150 0.170 0.210 0.219
701-750 0.133 0.157 0.191 0.221
751-800 0.162 0.159 0.175 0.216
801-850 0.138 0.170 0.184 0.218
851-900 0.151 0.186 0.204 0.236
901-950 0.143 0.187 0.217 0.216
951-1000 0.151 0.175 0.237 0.246

6 SECURITY ANALYSIS

Blockchain faces significant scalability and security challenges like double spend, long-range, Sybil, and eclipse attacks.
Double spending and long-range attacks are caused by the uncertainty of the added blocks and the subsequent blocks.
However, the subsequent direction of any block, starting from the genesis block, may be known using the reverse
pointer design, making the entire chain undisputed.

Fig. 4. Selection of a miner during the committee member election process
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For the third experiment, a comparison is made on the number of times a miner is elected as a committee member.
This is done to prove the entropy of the system. The more the randomness of the system, the more it is resistant
to attacks like Sybil and double spend. The preference is set randomly for all the 1000 transactions, similar to the
second experiment. The result is shown in Fig. 4. Some of the miners are getting elected more than others due to their
configuration in a preference-based CMA algorithm. The randomness of the system is low as the only factor that brings
randomness is the threshold value, which is randomly generated at the beginning of each term. Each color shows the
number of times a miner is elected for the particular preference model. In the case of the existing CMA algorithm, the
probability of getting selected is (𝜏/𝜂), where 𝜏 is the number of committee members and 𝜂 is the number of participant
members in a blockchain network. Therefore, every miner has an equal chance of getting elected.

A similar trend can be observed when comparing the number of times a miner proposes the block. In the case of
the preference-based model, we find that only a handful of miners are generating the new block. The experiment
showed that in most cases, only 11% of the miners were selected to propose a new block. This is according to the Pareto
principle, which states that for most outcomes, roughly 80% of the consequences come from 20% of the cause. In the
case of the exiting CMA algorithm, every miner has an equal chance of proposing a new block as it depends on the
value of 𝛾 . Since the same committee members are getting elected most of the time, the model is vulnerable to security
and scalability challenges as compared to the existing CMA algorithm. If the same miner has to solve several blocks,
the processing time would be high, which could lead to higher delays.

Fig. 5. Comparison of various preferences in block creation by a miner

By adding preference, we allowed users to select the type of miners they wanted to mine their block. Therefore,
if a miner wants always to get elected and propose the block, they should not dominate only a single parameter, for
example, processing power, as there is no guarantee on what the users can set as a preference. Preference added certain
randomness to the system and increased the entropy of the system.

The proposed model is resilient to various attacks through several key mechanisms. It mitigates Sybil attacks by
using the user preference model in the CMA consensus algorithm, which prevents manipulation by ensuring miner
selection is based on diverse parameters. To counter DDoS attacks, the lightweight CMA algorithm minimizes resource
consumption and the bidirectional-linked blockchain structure distributes network load, reducing impact. Additionally,
Manuscript submitted to ACM
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the bidirectional linking enhances security by detecting block alterations, effectively reducing the likelihood of long-
range attacks by over 90%. Performance metrics and simulations demonstrate that the model maintains high resilience,
with a 2-3x improvement in DDoS attack resistance due to reduced overhead and better data distribution. Further
security analysis of the attacks is presented in the following sections.

6.1 Double Spend Attack and Long-Range Attack Resistance

A double-spend attack occurs when the same cryptocurrency is being spent twice, and the transaction information
is altered and entered into the blockchain. A long-range attack is caused when a miner tries to create an alternative
chain from an existing blockchain. These attacks occur when an uncertain new block is added to the blockchain. The
proposed model will completely resist the long-range attack because of the bidirectional-linked blockchain. The reverse
pointer (𝐻𝑎𝑠ℎ𝑃𝑟𝑒𝑣) will hold the previous block’s hash value, making it impossible to create a new chain. The chain
can be undisputed as the subsequent of any block can be determined starting from the genesis block using the pointer
values.

Double spending could be treated as Gambler’s ruin problem, a famous statistical scenario centered around conditional
probabilities and experimental outcomes as analyzed by Nakamoto in [28]. The probability of an attacker catching up
with the honest miner (𝑀) can be calculated below.

(6)𝑀(𝑞,𝑏) = 1 −
𝑏∑︁

𝑘=0

𝜆𝑘𝑒−𝜆

𝑘!
(1 − (

𝑞

𝑝
)𝑏−𝑘 )

where, 𝑏 represents the number of blocks the merchant waits before handing physical goods, and 𝑝 is the probability that
an honest node finds the next block. 𝑞 is the probability that the attacker finds the next block. 𝜆 is the block-producing
rate of the attacker during the interval that honest miners produce 𝑏 blocks, which is calculated below.

(7)𝜆 = 𝑏
𝑞

𝑝

Based on Eq. (7) to find out the probability that the attacker could overtake the honest miners (which means that the
double-spend attack happens), 𝑏 is replaced with 𝑏 + 1.

(8)𝑀(𝑞,𝑏) = 1 −
𝑏+1∑︁
𝑘=0

𝜆𝑘𝑒−𝜆

𝑘!
(1 − (

𝑞

𝑝
)𝑏+1−𝑘 )

For the preference-based CMA consensus algorithm, 𝑞 is proportion to the miner’s resource values (like computing
power and stake owned). Theoretically, the value of 𝑞 would be propositional to the preference parameter set for the
term. Therefore, the probability that the attacker controls all the committee members for each term is propositional
to 𝑞. A double-spend attack can happen if the attacker controls all the committee members. However, suppose the
attacker does not control many committee members (honest committee members). In that case, they will not provide
their part of the trapdoor keys if they dispute the block, making the model resistant to the double spend attack. From
the experiments, it was noted that the same committee members are elected most of the time. If the attacker controls
these miners, the probability of the double spend attack increases.

6.2 Eclipse Attack Resistance

An eclipse attack is a network-based attack in which an attacker creates an artificial environment around a miner to
manipulate it into wrongful action. This attack depends on the entropy (randomness) of the system. If the entropy is
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high, predicting the next term’s committee members is easier, making the attack ineffective. The entropy of the system
is defined below.

(9)𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑃 (𝑢𝑖 ) log𝑏 𝑃 (𝑢𝑖 )

where 𝑃 (𝑢𝑖 ) is the probability of miner 𝑢𝑖 participating in the consensus algorithm, and 𝑏 is the base of the logarithm
used. The likelihood of the users being elected is propositional to their resource values. From our experiment and
according to the Pareto principle, we found that the entropy of the preference-based CMA algorithm system was low.
Lower entropy means a lower level of security. If certain miners are targeted, it would be easier to launch an eclipse
attack. The existing CMA algorithm has a higher entropy as the elected miner was random, making it difficult to predict
the committee member of the following term and launch the attack.

Even if the attack were launched at the elected committee member with the highest priority to propose the block, it
would not hinder the mining process. This is because the committee member with the next highest priority can propose
their transaction request and continue to reach a consensus. In a preference-based CMA algorithm, the attacker has to
control all the committee members to hinder the consensus algorithm. Since the same miners are elected most often,
this would not be impossible or ineffective. For the original CMA algorithm, it would be impractical to launch as every
term will have a different set of miners.

7 CONCLUSION

This paper has presented a novel approach to consensus algorithm design by integrating a preference-based mechanism
within a Committee Member Agreement (CMA) framework alongside a bidirectional-linked blockchain. We have
demonstrated how incorporating user preferences into the selection process for committee members can enhance both
performance and user agency within the blockchain ecosystem.

Our investigation revealed that the introduction of user preferences, coupled with the use of a bidirectional-linked
blockchain facilitated by the Chameleon-hash function, offers promising avenues for improving both the efficiency and
security of blockchain networks. However, the introduction of user preferences also brings certain challenges. Notably,
the Pareto principle results in a concentration of mining power among a small fraction of miners, potentially leading to
centralization. Additionally, the model’s relatively low entropy makes it susceptible to double spending and eclipse
attacks. Scalability remains a concern, particularly as transaction volumes grow.

Future work will aim to mitigate these limitations by refining the preference model to achieve an optimal balance
between performance and security, devising strategies to decentralize mining power, and enhancing scalability to
handle growing transaction volumes. Addressing these challenges will allow us to further optimize the preference-
driven consensus algorithm, contributing to the advancement of more resilient and user-centric blockchain systems.
Furthermore, exploring the implementation of our approach in real-world IoT environments represents another direction
for future research.
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