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Abstract
Informal advice relations across units in an organization are beneficial for knowledge sharing and problem 
solving. Prior research suggests that despite their benefits, there are costs to informal advice relations 
across units. However, the mechanisms by which these costs are mitigated remain unclear. We theorize 
that this lack of clarity is because work factors have not been sufficiently considered. We examine one 
such work factor, specifically time pressure, and develop a cost-based explanation for how time pressure 
influences cross-unit advice relationships. We investigate two time-pressure levels. In the first, work is 
conducted under lower time pressure, and there is less likelihood of a negative outcome. In the second, 
work is conducted under higher time-pressure conditions, and there is a greater likelihood of a negative 
outcome. We theorize that under lower time-pressure conditions, the costs of advice relations across units 
are mitigated by reciprocal advice relationships. However, under higher time pressure, the cost of informal 
advice relations across units is higher owing to the need for quick coordination of advice, and these costs are 
mitigated by reciprocal advice relationships in conjunction with cross-unit formal workflow relationships. To 
test our hypotheses, we examine the informal advice network and formal workflow network in lower and 
higher time-pressure conditions among 118 members of the Information Technology and Systems division 
of a Formula One racing team. Our results indicate that under lower time-pressure conditions, reciprocal 
advice ties are sufficient to overcome costs. However, under higher time-pressure conditions, cross-unit 
advice ties are facilitated by reciprocal advice ties embedded in the workflow ties between units. Thus, our 
findings have implications for how knowledge is managed and how problems are solved in organizations.
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Introduction

Informal advice relations across units in an organization help incorporate knowledge that can assist 
individuals in solving problems (Cross & Sproull, 2004; Hansen, 1999; Tsai, 2002). Advice rela-
tions and the exchange of knowledge that they entail have been linked to enhanced productivity 
and effectiveness of units, teams, and individuals (Argote, McEvily, & Reagans, 2003; Hansen, 
1999; Reagans & Zuckerman, 2001; Tortoriello & Krackhardt, 2010), and can create competitive 
advantage (Eisenhardt & Martin, 2000; Grant, 1996). Despite their benefits, research suggests that 
informal advice relationships across units are difficult to build and maintain (Lomi, Lusher, 
Pattison, & Robins, 2014).

Individuals incur costs, such as time and energy, in building and maintaining advice relation-
ships (Hansen, 1999; Nebus, 2006; Tsai, 2002). However, there is limited agreement on how these 
costs can be overcome, especially for advice relations across units within an organization. The 
numerous relational explanations include lower search costs for individuals who seek knowledge 
content related to their own knowledge (Hansen, 2002); reciprocal ties that reduce information 
asymmetry and decrease uncertainty of the value of the advice (Caimo & Lomi, 2015); strong ties 
such as those among individuals that interact frequently or are emotionally close, increasing the 
time and energy committed to advice sharing (Tortoriello, Reagans, & McEvily, 2012); and entrain-
ment, where formal relationships between teams or units increase the likelihood of informal indi-
vidual-level advice relations (Brennecke & Rank, 2017). We suggest that multiple explanations for 
informal advice relationships across units may be the result of previous studies not accounting for 
differences in work factors.

In this study, we examine how one type of work factor, specifically time pressure (Ordóñez & 
Benson III, 1997)—that is, the need to complete tasks by a deadline—affects the occurrence of 
informal advice relations across units. Time pressure is an important consideration because it can 
change the costs of cross-unit advice relations and, hence, the underlying explanation of why they 
occur. The importance of time pressure (Bronner, 1982) aligns with numerous examples in the 
organizational literature on how time pressure changes individuals’ work-related actions; however, 
this research is fairly fragmented. For example, Weick (1993) compares the actions of firefighters 
after they initially parachuted into the Mann Gulch region (a high time-pressure situation) with the 
extreme time pressure during the forest fire. The extreme time-pressure situation led to the aban-
donment of routines that had been developed in training (low time pressure), and the team mem-
bers stopped working as a team and instead became a group of individuals whose interpersonal 
work-related actions differed greatly from those taken when they initially parachuted into the 
Mann Gulch region (high but not extreme time pressure). Other studies have examined high time-
pressure situations including management team processes where planning, monitoring progress, 
and conflict management increased as a deadline approached (Larson, McLarnon, & O’Neill, 
2020), covert improvisation processes of firefighters in time-limited situations (Macpherson, 
Breslin, & Akinci, 2022), and novel events in fast-response medical trauma centers, resulting in the 
breaking of protocols and the need for coordination practices such as joint sensemaking and cross-
boundary intervention (Faraj & Xiao, 2006). These examples highlight the effects of time pressure 
on work practices and raise the question of whether advice relations across units are also contin-
gent on time pressure.
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In our explanation of advice relations across units under different levels of time pressure, we 
argue that under lower time pressure, the costs can be mitigated through ties that reduce search 
costs and the uncertain value of advice, notably reciprocal advice ties (Gulati, Dialdin, & Wang, 
2002; Tortoriello & Krackhardt, 2010). However, under higher time pressure, the cost includes the 
need for immediate coordination of advice, and reciprocal ties in conjunction with the formal task 
structure, specifically the way in which workflow is organized across units in an organization, 
enable advice relations across units (Ben-Menahem, von Krogh, Erden, & Schneider, 2016; Koçak, 
Levinthal, & Puranam, 2023; McEvily, Soda, & Tortoriello, 2014; Puranam, 2018; Soda & Zaheer, 
2012). Workflow relationships help limit the coordination costs of diverse advice from different 
organizational units. In summary, we suggest that under higher time pressure, the additional costs 
necessitated by the need for fast coordination are mitigated by reciprocal advice ties embedded in 
cross-unit formal workflow relationships.

To substantiate our arguments, we examine how network configurations of informal advice ties 
and formal workflow ties between organizational units vary across two different time-pressure 
conditions among members of the Information Technology and Systems (ITS) division of a promi-
nent Formula One (F1) racing team. Specifically, we examine time pressure on non-race days and 
race weekends. On non-race days, the time pressure is considerably lower, as is the risk of failure. 
Race weekends entail higher time-pressure conditions as work is done rapidly given the limited 
time to make decisions, and there is a high likelihood of a negative outcome. Importantly, given our 
research design, the tasks of the ITS division of the F1 team are comparable across time-pressure 
conditions, and the formal task structure does not change. We observe workflow relations among 
the 25 organizational units that comprise the ITS division and informal advice relations among the 
118 employees within the division. We use a multilevel exponential random graph model (MERGM) 
to test our theory as it allows us to control for alternate network configurations within and between 
levels—that is, configurations that incorporate the individual-level advice network, the affiliation 
network of people to units, and the unit-level workflow network (Lomi, Robins, & Tranmer, 2016; 
Wang, Robins, Pattison, & Lazega, 2013). We believe that our study makes a novel and significant 
contribution to the literature on the relationship between time pressure, formal organizational 
structure, and informal social networks in organizations.

Theoretical Background

Advice relations within organizations provide a clear example of a social relation that is “influen-
tial in explaining knowledge creation, transfer, and adoption” (Phelps, Heidl, & Wadhwa, 2012, p. 
1155). Networks of advice relations are generally considered the main social infrastructure through 
which knowledge flows within organizations (Caimo & Lomi, 2015; Podolny & Baron, 1997). 
Networks of advice relations are important because they relate directly to fundamental and recur-
rent activities of organizational knowledge sharing (Cross, Borgatti, & Parker, 2001). We focus on 
advice relationships under different levels of time pressure. Time pressure is important because it 
affects the actions that individuals take as well as work processes and outcomes (e.g., Faraj & 
Xiao, 2006; Khedhaouria, Montani, & Thurik, 2017; Larson et al., 2020; Macpherson et al., 2022; 
Weick, 1993). However, time pressure has rarely been examined with respect to advice relation-
ships, although research has examined time pressure and communication networks (Brown & 
Miller, 2000).

Although informal networks have been shown to facilitate the transfer of advice and knowledge 
(e.g., Currie & White, 2012; Hansen, 1999; Tasselli, 2015), it is usually the formal structure of an 
organization that impacts coordination (Lawrence & Lorsch, 1967; Thompson, 1967). Formal 
structures include systems designed to ensure and enforce coordinated behavior among 
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differentiated elements of an organization and to provide organizational control (Thompson, 1967). 
Organizational activities are divided into smaller components that induce and sustain a system of 
differentiated roles, departments, and organizational units that must be coordinated to perform 
work activities efficiently and effectively (cf., Lawrence & Lorsch, 1967). Coordination is accom-
plished through the design and implementation of interdependent task structures (Ben-Menahem 
et al., 2016; Clement & Puranam, 2018; Koçak et al., 2023; March & Simon, 1958; Puranam, 2018; 
Thompson, 1967). It is important to note that organizational structure incorporates both interde-
pendence and influence. Interdependence is the division of labor between components of the 
organization, whereas influence is based on the power or authority of one component over another 
(Puranam, 2018). We only examine the interdependence of formal structures. In our theorization, 
influence is accounted for by advice relations, which are part of the organization’s informal 
structure.

In the next section, we illustrate the role of informal networks in facilitating advice relations 
across units under two different time-pressure conditions. We theorize that under lower time pres-
sure, reciprocal ties within the informal network facilitate cross-unit advice relationships. Under 
higher time pressure, we theorize that reciprocal ties within the informal network combine with 
workflow relationships within the formal task structure to facilitate cross-unit advice relationships. 
Figure 1 details the theoretical conceptual framework.

Lower time pressure and cross-unit ties

Individuals in organizations are often tasked with developing novel solutions to problems 
(Decreton, Tippmann, Nell, & Parker, 2023). Because individuals do not necessarily have all the 
necessary expertise to solve problems, they often draw on advice from others (Eisenhardt, 1989). 
Individuals in organizations tend to have relationships with people in the same unit or department 
(Caimo & Lomi, 2015). However, the most valuable advice—that is, advice that can promote the 
development of novel solutions—is frequently found in different units (Hansen, 1999, 2002; 
Parker, Tippmann, & Kratochvil, 2019). Accessing advice in different units entails additional costs 
(Nebus, 2006) due to search time, greater uncertainty in the value of the advice (Borgatti & Cross, 
2003), and time taken to coordinate the advice with existing knowledge and processes (Carlile, 
2004). In situations of lower time pressure, we theorize that cross-unit advice relationships occur 
because the benefits of the advice outweigh the search, value uncertainty, and coordination costs.

Under lower time-pressure conditions, search, value uncertainty, and coordination costs are not 
negligible, because time is still limited. Therefore, organizational members are selective in whom 
they reach out to for advice outside their own units. Building on Uzzi (1997), Caimo and Lomi 

Figure 1. Conceptual Framework.
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(2015) highlight the role of cross-unit reciprocal ties—that is, colleagues in different units giving 
and taking advice. The reciprocal exchange of advice implies that the advice given by one indi-
vidual will result in an obligation for the other individual to give advice in return (Blau, 1964). This 
expectation decreases advice search costs because an individual knows in advance that there is a 
high likelihood of a response to an advice request. However, this results in a future obligation that 
entails a time cost.

Reciprocal ties across units initially occur because an individual seeks out advice from a col-
league to whom they give advice, or because the focal individual gives advice to someone from 
whom they seek advice. Whichever way the tie becomes reciprocal, its costs are lower for each 
individual because giving and taking advice creates a trust-based understanding between individu-
als over time (Blau, 1964; Molm, 2010). Trust results in low levels of uncertainty regarding advice 
quality and timeliness. In addition, reciprocal relationships have been shown to improve the likeli-
hood of solving complex problems (Tortoriello & Krackhardt, 2010), facilitate access to critical 
advice (Gulati et al., 2002), and alleviate problems associated with information asymmetry (Fehr 
& Gächter, 2000). Knowledge embedded in advice ties has been shown to be sticky (Szulanski, 
1996), especially across units (Caimo & Lomi, 2015; Hansen, 1999), and reciprocal informal rela-
tionships can help overcome this stickiness. Furthermore, because reciprocal ties incorporate a 
level of trust between individuals, they are likely to have greater permanency than unreciprocated 
ties, given that both individuals have a greater incentive to maintain the tie. This suggests that 
alongside the strategic cost explanation for why cross-unit ties are more likely to be reciprocal ties, 
there is an ecological explanation (Doehne, McFarland, & Moody, 2024).

In summary, under lower time-pressure conditions, there is a benefit in accessing diverse advice 
from individuals in other units, but there is a cost. Reciprocal ties between individuals are suffi-
cient to mitigate the associated costs of advice relations across units. This leads to our first hypoth-
esis, which specifies the tie configuration that enables cross-unit advice ties under lower time 
pressure conditions (Figure 2(a)).

(a)
Lower levels of time pressure. Reciprocal 
advice ties across organizational units
(Cross-unit reciprocal ties)

(b)
Higher levels of time pressure. Reciprocal 
advice ties across organizational units 
coupled with sequential task interdependence 
ties between units
(Unit level sequential interdependence 
coupled with cross-unit reciprocal ties)

Figure 2. Different Forms of Cross-Unit Tiesa.
aWhite circles represent individuals. Gray squares indicate organizational units in which individuals are members. Black 
lines represent reciprocal advice ties between individuals. The dashed black lines represent the sequential interdepen-
dent ties between organizational units. The gray lines represent the affiliation ties of individuals to units.



1446 Organization Studies 45(10)

Hypothesis 1: Under lower levels of time pressure, informal advice relations across units are 
more likely to be observed when informal relationships are reciprocal.

Higher time pressure and cross-unit ties

For the same reasons leading to Hypothesis 1, we expect that under conditions of higher time pres-
sure, reciprocal ties would affect cross-unit advice relations. However, under higher time-pressure 
conditions, individuals face a dilemma when they address complex problems. Not only do people 
need diverse advice, but they also need it quickly. In addition, under higher time pressure, diverse 
advice from many different sources is not necessarily useful, as it can take time to integrate it into 
existing work practices; therefore, there is a need for advice that can be easily coordinated (Faraj 
& Xiao, 2006; Gittell, 2000). Formal structures have been shown to be beneficial for coordination 
when combined with informal ones (Ben-Menahem et al., 2016; Clement & Puranam, 2018; Koçak 
et al., 2023; Puranam, 2018). Therefore, we argue that under higher time pressure, reciprocal 
advice ties are not sufficient to offset search, uncertainty, and coordination costs; rather, support 
from the formal structure is also important.

We theorize that under higher time pressure, when there are benefits to acquiring diverse advice, 
but the costs of coordinating the diverse advice are high, people will perform a limited search out-
side their unit. Thus, individuals limit their cross-unit advice search to colleagues in units with 
existing workflow relationships. Existing research indicates that cross-unit formal workflow rela-
tionships tend to facilitate advice flow across connected organizational units (Lomi et al., 2014; 
Soda & Zaheer, 2012). Activities in complex organizations are characterized by sequential and 
reciprocal workflow interdependence (Thompson, 1967). In sequential interdependence, one unit 
passes the work to another, whereas in reciprocal interdependence the output of one unit is the 
input of another and vice versa (Soda & Zaheer, 2012). Reciprocal interdependencies require 
mutual adjustments and joint decision-making for tasks to be successfully executed (Soda & 
Zaheer, 2012), thus demanding extra attention. Moreover, reciprocal interdependencies ensure 
enhanced coordination and collaboration across units, and an intense exchange of information, 
which is unlikely to call for informal ties. Indeed, the presence of reciprocal workflow ties at the 
unit level may reduce the need for advice relations at the interpersonal level because they would 
provide redundant information (Gulati & Puranam, 2009).1 By contrast, sequential interdependen-
cies create task asymmetries among units and their members, whereby the members of one unit 
depend on members of another unit for work-related information (Raveendran, Silvestri, & Gulati, 
2020). Sequential interdependence is deemed suitable for stable work contexts, but, under higher 
time pressure, organizations are confronted with a dilemma between the need for tight structuring 
and hierarchical decision-making that promotes timely action and the need for flexible structuring 
and on-the-spot decisions for rapid action (Mathieu, Hollenbeck, van Knippenberg, & Ilgen, 2017). 
This suggests the importance of unit-level sequential interdependence to supplement advice ties at 
the individual level (Brennecke, Sofka, Wang, & Rank, 2021; Caimo & Lomi, 2015).

Under higher time pressure, task asymmetry between members of sequentially interdependent 
units may prompt members of dependent units to invest time and energy into developing advice 
relations for access to additional knowledge (Giebels, De Dreu, & Van De Vliert, 2000). More 
importantly, when two units are connected by a sequential task interdependence relationship, the 
overall cost of the individual-level advice relationship decreases. First, search costs are lower 
because individuals are more likely to know each other and have greater awareness of the type of 
knowledge held by colleagues in interdependent units. In addition, costs are reduced because of the 
lower uncertainty in the quality, accessibility, and usability of advice from task-interdependent 
units (Borgatti & Cross, 2003). Furthermore, advice from individual relationships aligned with 
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sequential interdependence is more easily coordinated, which can be critical under higher time 
pressure, where the loss of time can make the difference between success and failure. Overall, the 
sequential task interdependence relationship facilitates cross-unit informal advice relations because 
it mitigates the costs of cross-unit ties.

In summary, under higher time pressure, reciprocal advice ties are not sufficient to counter 
search, value uncertainty, and coordination costs; however, when they occur in conjunction with 
sequential interdependence between two units, they increase the likelihood of cross-unit advice 
ties. This leads to our second hypothesis, detailing the tie configuration that enables cross-unit 
advice ties under higher time-pressure conditions (Figure 2(b)).

Hypothesis 2: Under higher levels of time pressure, informal advice relations across units are 
more likely to be observed when informal relationships are reciprocal and units are linked by 
sequential interdependence.

Methods

Research setting

We tested our hypotheses by investigating informal advice relationships across units within the ITS 
division of an F1 racing team. The ITS division manages the information systems, electronic com-
ponents, and circuitry of F1 cars; therefore, it is integral to the success of the F1 team. Overall, in 
F1 racing, there is emphasis on high tech, high speed, high pressure, design, and innovation. 
However, this emphasis varies throughout the year. Design and innovation, including that of the 
car’s electronic components and circuitry which is overseen by the ITS division, takes place mostly 
in the off-season or toward the latter half of the racing season. There are stringent rules regarding 
changes that can be made to cars during the race season (Francks, 2023). During the race season, 
particularly in the first half, the focus is on fine-tuning and maximizing the performance of the F1 
car. The F1 season typically runs from March to November, consisting of approximately 20 race 
weekends (Friday–Sunday) per year. A race weekend consists of testing the car on the track, quali-
fying laps that determine the car’s starting position on the race grid, and the race itself. During race 
weekends, approximately 35% of the members of the ITS division are on the track, whereas the 
other 65% remain at the headquarters and coordinate remotely with on-track staff. There are typi-
cally 4–11 days between races, which includes the time taken to move cars from one race circuit to 
another, which, in some cases, requires transportation between continents.

Members of the ITS division record, process, and analyze real-time data generated by the cars 
(George, Haas, & Pentland, 2014). These data are included in simulation models to ensure that cars 
perform at their maximum capacity and that all electronic systems operate effectively. As track 
layouts differ from race to race, simulation models are used to develop race strategy (Aversa, 
Cabantous, & Haefliger, 2018). In addition, the ITS division fine-tunes the ITS system to address 
various issues raised by drivers and both ITS and non-ITS engineers. Overall, the tasks of the ITS 
division are comparable between race weekends and non-race days.

To further understand the tasks of the ITS division throughout the race season and the relevance 
of time pressure, we administered an anonymous online survey to 45 ITS software and electronic 
engineers employed in various F1 teams. Participants were selected and contacted using LinkedIn.2 
Those who responded (15.6%)3 had an average experience of 4.3 years in F1 teams and were asso-
ciated with four major teams, including the one that we examined. The online survey consisted of 
open-ended questions asking respondents to: (a) describe the activities performed during race 
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weekends and on non-race days; and (b) illustrate which work characteristics (e.g., time pressure) 
were similar or different between race weekends and non-race days.

Our survey respondents confirmed that for the ITS division, innovation is mostly concentrated 
in the off-season: “Off-season is when we do all the big changes, build new tools, collect feedback, 
and start long-term projects” (software engineer). During the racing season examined in this study, 
the activities of the ITS division are punctuated by and culminate in weekend racing events. As 
noted by our respondents, during both race weekends and non-race days, work mostly involves 
implementing incremental changes upon user request. Specifically, one respondent stated: “During 
the entire event we get a lot of queries from the engineers to check if anything is not working prop-
erly or they would like to change any tool’s behavior.” Regarding non-race days, the software 
engineer stated: “[We] do small changes (usually requests from the users) and fix issues.” 
Furthermore, other respondents outlined the emphasis on data handling and analysis on both race 
weekends (“Engineers constantly enquire if they can have any available data”—software engineer) 
and non-race days (“On non-race days, [we] analyze data”—software reliability team leader). 
Another respondent who works remotely during the race weekends observed that even the time 
schedules are aligned: “We operate on the same time schedule as the track operations, regardless 
of where the race is, meaning we typically start shifting our working hours in the week leading to 
the event” (software reliability team leader). Overall, the online survey responses suggested that 
the ITS division members conducted comparable tasks on race weekends as they did on non-race 
days. It is worth acknowledging that the comparability of activities between race weekends and 
non-race days is not constant throughout the race season. F1 teams, in general, and software engi-
neers, specifically, are mostly focused on fine-tuning the current car systems during the initial and 
mid-parts of the season; therefore, the activities performed during the race weekends and non-race 
days are largely comparable. Comparability decreases toward the end of the season, when the F1 
teams intensify preparation for the following season and progressively allocate more time and 
resources during non-race days to design, develop, and assemble the new car (Cleeren & Chinchero, 
2023).4

Survey respondents also confirmed that the level of time pressure is the work condition that 
differs the most between race weekends and non-race days. One respondent stated: “Definitely 
time is of the essence when working on a race weekend” (software engineering manager). Another 
respondent noted: “I believe work under pressure is quite usual for us. Usually race weekends and 
the race related events on [the] software side are intense” (system engineer). During weekend rac-
ing events, testing, adjusting, fine-tuning, and improvement activities are performed at a faster 
pace by ITS engineers than on non-race days because of the strict timeline with which teams are 
required to comply, increased competitive intensity, and absence of any margin for error or delay 
(Aversa et al., 2018). One respondent noted: “Non-race days have deadlines obviously, but race 
event deadlines are far more structured and rigid. No option to be late!” (senior simulation engi-
neer). Another respondent further clarified: “During an F1 session, decisions need to be made 
fast. . . In non-race events, there is usually more time to consider other things and test hypotheses” 
(software reliability team leader). Finally, one senior simulation engineer observed: “If time does 
not allow [to fix an issue] then we put it off to a post event day to include in a future race event.” 
Another respondent, a software engineering manager, provided a similar answer, thus underlining 
the difference in time pressure, as well as continuity in terms of activities, between race weekends 
and non-race days.

The different levels of time pressure experienced by ITS division members unambiguously 
highlight that the operating conditions for ITS divisions differ considerably between race week-
ends and non-race days (Marino, Aversa, Mesquita, & Anand, 2015; Piezunka, Lee, Haynes, & 
Bothner, 2018). Race weekends and non-race days represent two clearly discrete and qualitatively 
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distinct situations characterized by different time pressures (Walker, 2019). We qualify these as 
lower and higher time pressures, respectively. This allows us to replicate the design proposed by 
Brown and Miller (2000) to measure time pressure by treating it as a “situational variable” (p. 132) 
and allowing us to examine lower and higher levels—hence, the non-race days and the race 
weekends.

Network data

We collected detailed data on advice relationships among the ITS division members of the F1 team. 
Data were collected in the first half of the racing season (i.e., May–June). The ITS division consists 
of 126 project managers, software engineers, and technicians involved in the F1 championship. 
The ITS division is a multi-unit organization, which is a standard practice within F1 teams. Only 
11% of the members were affiliated with the corporate entity that owned the team. The other mem-
bers of the ITS division were distributed across 24 partner companies and functioned as full-time 
consultants, mostly based at the company’s corporate headquarters, and were highly integrated and 
interdependent. In the remainder of this paper, when we discuss the ITS division, we refer to the 
corporate entity and 24 external companies as “organizational units.”

We used an online roster questionnaire (McCulloh, Armstrong, & Johnson, 2013) to collect 
advice relationships on non-race days and on race weekends. We surveyed all 126 members of the 
ITS division (response rate: 93.7%, number of respondents: 118). To test for non-response bias, we 
examined the differences between the respondents and non-respondents. A t-test showed no sig-
nificant differences (p > .05) between the two groups based on a variety of personal and work-
related characteristics.

First, we collected data on advice relations in the two time-pressure conditions. Each member 
of the ITS division was presented with a list of colleagues working in the ITS division and asked 
to name whom they typically went to for advice on non-race days, our lower time-pressure condi-
tion. The same approach was adopted for the higher time-pressure condition. We converted the 
answers to both questions into a network format, assuming that a tie exists between member i and 
j when i turns to j for advice. The resulting networks, A1 and A2, had dimensions (118 × 118).

We then collected data on the mandated workflow interdependencies connecting the units 
through their members. Workflow interdependencies are elements of the formal organizational 
structure. They relate to tasks and technology assigned to the ITS division from an organizational 
design perspective and capture the extent to which employees in one unit depend on employees in 
another unit for information, instructions, and resources to perform their work. Workflow interde-
pendencies are centered on the technology within the car, which is the same on non-race and race 
days. Therefore, workflow interdependencies are expected to remain unchanged across time-pres-
sure conditions. This was confirmed by the ITS managers who supervised the data collection. 
Following previous studies (Brennecke et al., 2021; Hansen, 1999), we specified workflow as a 
directed relationship between a unit that provides and another that receives information, instruc-
tions, and resources. Examples of workflow interdependencies include procedures that are per-
formed in phases by two or more units. For instance, the simulated data were collected by one unit 
and transferred to another unit for analysis. To perform its task (i.e., analyze the simulated data), 
the second unit depends on the information (i.e., the simulated data) provided by the first unit. This 
relationship is directed because the second unit depends on the first unit, but the opposite does not 
hold true. This is a case of sequential interdependence. People affiliated with the same unit are 
likely to have access to similar information and can be perceived as interchangeable by colleagues 
in other units. However, it is important that individual members are able to identify the presence of 
this relationship. Hence, to collect data on the workflow interdependencies between pairs of units 
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we presented each member with a list of colleagues and asked them to indicate which individuals 
“conducted tasks upon which their own work typically depended” (Hansen, 2002) regardless of the 
time pressure experienced. Network B, sized 25 × 25 and representing units and ties, has bhk = 1 if 
at least one member in unit h depends on one colleague in unit k to perform their tasks, and 0 oth-
erwise (Kim & Anand, 2018). See Appendix 1 for a robustness check of the alternative calculations 
of bhk.

We used archival data to collect the affiliations to the units. In the member-by-unit network X, 
size 118 × 25, xil = 1 if member i belongs to unit l, and 0 otherwise. We complemented the survey 
data with secondary data sources, such as the LinkedIn public profiles of our respondents.

Measures

The methodological approach we use to test our hypotheses requires examining the extent to which 
the structure of the advice network that we observe is characterized by the tie configurations 
implied by Hypotheses 1 and 2, and by other tie configurations and characteristics of respondents 
and units that we control for.5 In this methodological framework, the variables were defined as 
follows.

Advice tie variable. This is the probability of observing an advice tie (Aij) from ITS division member 
i to j. Aij = 1 if i seeks advice from j and Aij = 0 otherwise. Advice ties under conditions of lower 
versus higher work-specific time pressures are represented as A1ij and A2ij, respectively, and are 
entered into two distinct models.

Hypothesized variables. Hypothesis 1 was tested using cross-unit reciprocal ties—that is, a network 
configuration consisting of a reciprocal advice tie between individuals in two units (Figure 2(a)). 
Hypothesis 2 was specified as unit level sequential interdependence coupled with cross-unit recip-
rocal ties, consisting of a directed workflow tie between two units and a reciprocal advice tie 
between individuals in the two units (Figure 2(b)).

Control variables. We include covariates testing for alternative explanations of advice relations 
within and across units (Lomi et al., 2014; Sosa, Gargiulo, & Rowles, 2015). These covariates are 
arranged into three subgroups: (a) variables that capture advice ties; (b) variables that capture unit 
affiliation with regard to advice ties; and (c) variables that capture the interactions between cross-
unit workflow interdependencies and cross-unit advice ties.

For the variables classified into subgroup 1, we first controlled for the tendency of advice ties 
between similar colleagues (McPherson, Smith-Lovin, & Cook, 2001) in relevant work-related 
characteristics (Gulati & Puranam, 2009; He, von Krogh, & Sirén, 2022). Educational background 
had three levels ranging from secondary school (38%) to postgraduate education (15.2%). Expertise 
records the organizational processes in which team members are involved. It had three values: 
software development (70%), project management (13%), and support activities (17%). 
Organizational role differentiates team members in higher hierarchical positions—that is, unit 
heads and senior managers (20.4%). Tenure has 4 levels, ranging from less than 1 year (17.8%) to 
more than 10 years in the organization (14.4%). For all these variables, we specified the same 
covariate effect, which takes the value of 1 if the respondent and their colleague have the same 
value for a salient characteristic, and 0 otherwise. In total, 35.6% of the ITS division members, 
evenly distributed across units, were on track during racing events, whereas the others were based 
at headquarters. The entire ITS division participates in race activities; however, members on track 
are likely to experience a higher level of time pressure and greater need for coordination than those 
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working remotely. Race location was coded as 1 if a team member is on the racing track during 
racing weekends, and 0 otherwise. Likewise, day-to-day location was codified as 1 if a team mem-
ber was based at the corporate headquarters during non-race days (85%), and 0 otherwise. For both 
location variables we specified the same covariate effect and for race location we specified a 
sender effect. Because previous contact may influence social interaction, we combined informa-
tion on tenure with the publicly available curricula vitae (CVs) of ITS division members to recon-
struct career paths. Same previous membership takes a value of 1 if two respondents were previously 
members of the same organization at the same time, and 0 otherwise. Given that organizations are 
of moderate size, individuals who were members of an organization at the same time have a high 
probability of having known each other.

Next, we included variables that capture the structure of the advice networks. Reciprocity cap-
tures the tendency to reciprocate in social relations (Blau, 1964), regardless of unit membership. 
Isolates captures the presence of team members who are not connected through advice ties. 
Tendencies toward centralization are captured by popularity, the presence of individuals who 
receive advice from many colleagues, and activity, the presence of individuals who seek advice 
from many colleagues (Barabási & Albert, 1999). Transitive closure captures the tendency of indi-
viduals connected to colleagues to be directly connected (Coleman, 1988), whereas cyclic closure 
is the tendency toward generalized exchange (Bearman, 1997). Multiconnectivity captures the 
absence of densely connected subgroups, with team members linked to one another indirectly by 
several others (Robins, Pattison, & Wang, 2009).

For the control variables classified in subgroup 2, cross-unit ties captured the baseline tendency 
toward building cross-unit ties. It equals 1 if two individuals connected by an advice tie are mem-
bers of different units, and 0 if they are members of the same unit. Moreover, this variable is a 
prerequisite for cross-unit reciprocal ties (Hypothesis 1). Unit size difference controls for the likeli-
hood of advice ties between members of units which differ in size (Alexiev, Volberda, Jansen, & 
Van Den Bosch, 2020). Unit size difference was defined as the absolute difference between the unit 
size of the sender and that of the receiver in each dyad of individuals who were members of differ-
ent units. This variable accounts for the likelihood that the superior managerial and financial 
resources of larger units enable the unit to develop new knowledge (Tsai, 2002), and therefore 
make the unit’s members more sought after for advice from members of other units (Sosa et al., 
2015). Unit task difference controls for the likelihood of advice ties between members of units that 
differ in the number of activities they perform; hence, it is a measure of internal work complexity 
(Sosa et al., 2015). We operationalized unit task difference as the absolute difference between the 
number of tasks of the sender and receiver units for each dyad of individuals who were members 
of different units.

For the control variables classified in subgroup 3, unit level sequential interdependence coupled 
with cross-unit aligned ties accounts for the tendency to form ties when there is a workflow tie 
between two units and an advice tie between individuals in the two units (Brennecke et al., 2021). 
Both cross-unit sequential interdependence and cross-unit advice ties are directed and in the same 
direction. Unit level sequential interdependence coupled with cross-unit aligned ties provides a 
direct control for Hypothesis 2. Finally, multilevel popularity captures the possibility that being 
sought for advice by many others is the result of membership in units that many others depend 
on—that is, units with high knowledge provision (Podolny, 2001). Multilevel activity captures the 
possibility that seeking many others for advice is the result of membership in units that depend on 
many others for provision of knowledge (Zappa & Lomi, 2016). All the variables are summarized 
in Table 1.
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Table 1. Advice and Workflow Network Variables: Qualitative Representations.a

Configuration Pattern Qualitative interpretation

Cross-unit reciprocal ties [H1] Reciprocal advice relations occur between 
colleagues affiliated to different units

Unit-level sequential 
interdependence coupled with 
cross-unit reciprocal ties [H2]

Reciprocal advice relations occur between 
colleagues in sequentially interdependent units

Characteristics of advice ties
Sender covariate (Sender) Advice relations occur when the sender has a 

specific value of a covariate
Same covariate (Similarity) Advice relations occur between colleagues with the 

same value of a covariate
Same previous membership 
(Similarity, dyadic)

Advice relations occur between colleagues 
previously affiliated to the same organization

Reciprocity (Mutuality) Advice relations occur when they are reciprocal

Isolates (No ties) Members neither receive nor send advice relations

Popularity (Centralization incoming 
ties)

Variation in the extent members receive multiple 
advice relations

Activity (Centralization outgoing ties) Variation in the extent members send multiple 
advice relations

Transitive closure (Transitivity) Advice relations occur between colleagues of 
colleagues

Cyclic closure (Generalized 
exchange)

Advice relations occur between colleagues in small 
informal groups

Multiconnectivity (Brokerage) Advice relations occur through brokers, connecting 
colleagues that would be otherwise disconnected

Advice ties within and across units
Cross-unit ties Advice relations occur between colleagues affiliated 

to different units
Unit covariate difference Advice relations occur between colleagues affiliated 

to another unit and with a different value of a 
covariate

Advice ties and interunit ties
Multilevel popularity Popular members in the advice relations network 

are affiliated to popular units in the interunit 
network

Multilevel activity Active members in the advice relations network are 
affiliated to active units in the interunit network

Unit-level sequential 
interdependence coupled with 
cross-unit aligned ties

Advice relations occur between colleagues in 
sequentially interdependent units. Same direction 
(aligned) for both levels

aThe explanation of the configurations is based on the assumption that the estimates of the corresponding parameters 
are positive and significant. Black circles indicate members with a relevant value of a binary or categorical covariate. 
The gray curved line indicates a dyadic covariate (for a categorical attribute, such as previous membership, the variable 
captures similarity).
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Models

We tested our hypotheses using exponential random graph models (ERGMs). This framework is being 
increasingly used in studies on inter- and intra-organizational relations (Lomi et al., 2014; Sosa et al., 
2015), where observations are not independent. Indeed, ERGMs are the only modeling framework that 
specifies the types of interactions between interpersonal and interunit ties that test our hypotheses. 
ERGMs may be understood as logit models for network data (Amati, Lomi, & Mira, 2018; Paruchuri, 
Goossen, & Phelps, 2019). The dependent variable is the probability of observing a binary tie between 
two individuals i and j—as the smallest component of the observed network—which is modeled as a 
linear function of the covariates computed for i and j. These covariates may include the attributes of i 
and j and the network variables, including i and j. The network variables are the local configurations 
of ties, such as those listed above, as independent and control variables. We tested our hypotheses 
using a specific class of ERGMs, namely MERGMs (Wang et al., 2013). Formally:

Pr A a X x B b Y y exp z a x b y
Q

Q Q� � � �� �� �
�
�

�
�
� � �

�

�

�
�

�

�

�
��| , , , , ,

1

�
�  (1)

A is the set of all possible informal advice networks (118 × 118) and a is the observed advice net-
work. The generic element of A is Aij, with Aij = 1 if i has an advice relation with j, and Aij = 0 oth-
erwise. Following the same logic, X is the set of all possible networks of affiliation ties of team 
members to units and B is the set of all possible networks of workflow ties between units. Y is a set 
of vectors of individual and unit attribute variables, and y is the observed set. The advice ties Aij are 
a function of the statistics zQ , each corresponding to a configuration of ties of types A, X and B 
and of unit and member attributes Y. The statistics count, for each individual i, the number of con-
figurations of each type in which i is involved. θQ  is the parameter corresponding to configuration 
Q. Finally, κ is a normalizing constant included to ensure that (1) is a probability distribution.

Parameter estimates may be interpreted similarly to the log odds of the presence of a tie (Amati 
et al., 2018). A parameter is equal to zero if the number of corresponding configurations in the 
observed network is equal to the number that would be expected by chance—that is, the configura-
tion does not affect the probability of i having an advice relation with j. A positive (negative) and 
statistically significant parameter estimate indicates a greater (smaller) number of configurations 
in the observed network than expected by chance alone. The configuration positively (negatively) 
affects the probability that i has an advice relation with j. Following this logic, each hypothesis is 
supported if the corresponding configuration is positive and significant in the relevant advice net-
work (i.e., the time-pressure condition).

We estimated the ERGM parameters using Monte Carlo Markov chain maximum likelihood 
estimation, a simulation-based technique implemented in MPNET (Wang, Robins, & Pattison, 
2009). This was used to minimize multicollinearity among the variables included in our models. 
ERGMs identify the specified configuration of ties and count their instances; hence, if i and j are 
linked by a reciprocal tie, this tie enters the count of the reciprocity configuration but is not included 
in the count of the directed ties from i to j and from j to i.

Results

Descriptive statistics

The descriptive network statistics in Table 2 indicate that the workflow structure is highly con-
nected (mean in/out degree of 6.40 ties per unit). Team members relied on fewer colleagues for 
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advice during race weekends (M = 2.13) than on non-race days (M = 4.48). Table 3 presents the 
descriptive statistics and Pearson’s correlations for the variables included in the models.

Hypotheses testing

In Tables 4 and 5, we present the results of lower time-pressure and higher time-pressure condi-
tions, respectively. We estimate the same models for both conditions and include the effects in 
increasing order of complexity. We use the ERGM-specific goodness-of-fit procedure to fine-tune 
the variable specifications and verify that our final model (Model 5 in Tables 4 and 5) reproduces 
the features of the observed networks better than any alternate model (Hunter, Goodreau, & 
Handcock, 2008). Appendix 1 details the goodness-of-fit procedure and outcomes. The fit of our 
model ensured that we could comment on the ERGM results. The discussion of results in Tables 4 
and 5 are restricted to Model 5, which is our full model.

We begin by analyzing the advice network under conditions of lower time pressure and detail 
the results in Table 4. In Table 4 (Model 5), the parameter estimate of cross-unit reciprocal ties is 
positive and significant (3.225, p < .05). Therefore, the odds of observing reciprocal ties between 
members of different units are exp[3.225] = 25.154. This is much greater than predicted by chance, 
thus supporting Hypothesis 1 that organizational members display a significant propensity to recip-
rocal advice relationships across units under conditions of lower time pressure.

As explained in the Methodology section, the rationale for ERGMs implies that the configura-
tions of interest in the observed network are compared with what we would expect by chance 
alone. However, it is beneficial to confirm these results (Gelman & Stern, 2006) by comparing the 
configuration testing Hypothesis 1 with configurations suggesting alternative, yet similar, ways of 
spanning units. The first configuration was cross-unit ties (non-reciprocal ties across units). This is 
a prerequisite for Hypothesis 1 as it captures the baseline propensity to build cross-unit advice rela-
tions. In Table 4 (Model 5), we find that the parameter estimate for cross-unit ties is negative and 
significant (−1.523, p < .05). This result indicates that the likelihood of observing non-reciprocal 
ties between units is lower than would be predicted by chance, and in line with the assumption that 

Table 2. Descriptive Statistics of the Advice and Workflow Networks.

Statistics Advice network lower 
time pressure

Advice network higher 
time pressure

Workflow

Density 0.04 0.02 0.27
Number of ties 528 251 160
Mean in/out-degree 4.48 2.13 6.40
Standard deviation (in) 4.92 4.30 4.22
Standard deviation (out) 4.26 3.67 5.11
Reciprocity 0.17 0.16 0.60
Reciprocity across unitsa 0.68 0.35  
Reciprocity across units coupled 
with workflow tiesb

0.10 0.51  

Clustering 0.20 0.26 0.47

aComputed as the ratio of reciprocal ties across units to the total number of reciprocal ties in the advice network.
bComputed as the ratio of reciprocally aligned tie configurations to the total number of aligned tie configurations in a 
multilevel network.
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individuals are unlikely to build cross-unit advice ties because of cost implications (Reagans & 
McEvily, 2003). The coefficients for cross-unit ties and cross-unit reciprocal ties can be directly 
compared by computing the Wald statistic, which confirms that they are significantly different 
(z-score = −21.10, p < .001). The second configuration is unit-level sequential interdependence 

Table 4. Multilevel Exponential Random Graph Model (MERGM) Maximum Likelihood Estimates of 
Advice Relations under Conditions of Lower Time Pressure. 

Model 1 
coefficient (SE)

Model 2 
coefficient (SE)

Model 3 
coefficient (SE)

Model 4 
coefficient (SE)

Model 5 
coefficient (SE)

Characteristics of advice ties
Same educational 
background

−0.134 (0.094) −0.116 (0.099) −0.086 (0.083) −0.049 (0.097) −0.038 (0.084)

Same expertise 0.528 (0.057)* 0.462 (0.050)* 0.684 (0.070)* 0.589 (0.063)* 0.557 (0.060)*
Same 
organizational 
role

0.132 (0.069) 0.012 (0.065) −0.006 (0.088) 0.050 (0.075) 0.061 (0.074)

Same tenure 0.131 (0.086) 0.059 (0.093) 0.034 (0.092) 0.106 (0.085) 0.082 (0.081)
Same day-to-day 
location

0.220 (0.061)* 0.211 (0.065)* 0.268 (0.067)* 0.268 (0.062)* 0.290 (0.062)*

Sender race 
location

−0.175 (0.093) −0.199 (0.094)* −0.171 (0.106) −0.116 (0.097) −0.140 (0.095)

Same race 
location

0.275 (0.086)* 0.300 (0.085)* 0.331 (0.098)* 0.287 (0.084)* 0.298 (0.082)*

Same previous 
membership

0.754 (0.073)* 0.690 (0.077)* 0.821 (0.110)* 0.678 (0.095)* 0.681 (0.092)*

Reciprocity 1.241 (0.269)* −0.009 (0.325) 0.098 (0.345) 0.105 (0.336) 0.022 (0.340)
Isolates 0.092 (0.797) −0.076 (0.801) 0.093 (0.811) −0.495 (0.712) −0.530 (0.789)
Popularity 0.098 (0.127) 0.122 (0.127) 0.079 (0.134) 0.037 (0.129) 0.028 (0.138)
Activity −0.236 (0.131) −0.241 (0.146) −0.368 (0.153)* −0.452 (0.149)* −0.396 (0.157)*
Transitive closure 1.403 (0.076)* 1.413 (0.076)* 1.360 (0.082)* 1.344 (0.074)* 1.368 (0.079)*
Cyclic closure −0.270 (0.059)* −0.263 (0.055)* −0.290 (0.054)* −0.257 (0.050)* −0.246 (0.052)*
Multiconnectivity −0.081 (0.013)* −0.078 (0.013)* −0.082 (0.013)* −0.088 (0.013)* −0.088 (0.013)*
Advice ties within and across units
Cross-unit ties 
(nonreciprocal 
ties across units)

−0.659 (0.090)* −0.343 (0.120)* −2.577 (0.377)* −1.523 (0.216)*

Cross-unit reciprocal ties 
(reciprocal ties across units) [H1]

1.809 (0.314)* 1.759 (0.324)* 1.573 (0.343)* 3.225 (0.063)*

Unit size difference −0.009 (0.021) −0.002 (0.024) 0.003 (0.023)
Unit task difference 0.273 (0.076)* 0.344 (0.082)* 0.348 (0.081)*
Advice ties and cross-unit ties
Multilevel popularity 0.012 (0.003)* 0.002 (0.003) −0.001 (0.004)
Multilevel activity 0.018 (0.003)* 0.009 (0.003)* 0.005 (0.004)
Unit-level sequential interdependence coupled with 
cross-unit aligned ties

2.262 (0.353)* 0.283 (0.190)

Unit-level sequential interdependence coupled with 
cross-unit reciprocal ties

−0.249 (0.148)

Coefficients with * are significant at p < .05. The usual set of p values cannot be used in the exponential random graph 
models (ERGM) framework. Statistical significance of coefficients can only be assessed at p < .05 level.
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coupled with cross-unit aligned ties which controls for the likelihood of observing cross-unit 
directed ties, not reciprocal ones, supported by workflow ties across units. In Table 4 (Model 5), 
this configuration is not significant (0.283, p = .61); hence, the corresponding behavior is unlikely 
to be observed. Finally, the parameter estimate for unit-level sequential interdependence coupled 

Table 5. Multilevel Exponential Random Graph Model (MERGM) Maximum Likelihood Estimates of 
Advice Relations under Conditions of Higher Time Pressure. 

Model 1 
coefficient (SE)

Model 2 
coefficient (SE)

Model 3 
coefficient (SE)

Model 4 
coefficient (SE)

Model 5 
coefficient (SE)

Characteristics of advice ties
Same educational 
background

−0.197 (0.131) −0.152 (0.132) −0.139 (0.155) −0.131 (0.133) −0.130 (0.138)

Same expertise 0.302 (0.087)* 0.269 (0.076)* 0.548 (0.107)* 0.486 (0.110)* 0.475 (0.104)*
Same 
organizational 
role

0.129 (0.112) 0.028 (0.112) 0.024 (0.127) 0.021 (0.125) 0.019 (0.125)

Same tenure 0.219 (0.104)* 0.186 (0.097)* 0.236 (0.106)* 0.230 (0.114)* 0.217 (0.115)
Same day-to-day 
location

0.167 (0.083)* 0.203 (0.077)* 0.327 (0.092)* 0.346 (0.105)* 0.432 (0.100)*

Sender race 
location

0.383 (0.244) 0.409 (0.201)* 0.470 (0.234)* 0.532 (0.259)* 0.527 (0.253)*

Same race 
location

0.518 (0.150)* 0.568 (0.158)* 0.758 (0.178)* 0.713 (0.177)* 0.706 (0.167)*

Same previous 
membership

0.669 (0.141)* 0.331 (0.190) 0.353 (0.196) 0.327 (0.210) 0.332 (0.194)

Reciprocity 1.079 (0.371)* 0.367 (0.542) 0.510 (0.537) 0.648 (0.547) 0.727 (0.532)
Isolates 1.313 (0.442)* 1.248 (0.446)* 1.193 (0.434)* 1.156 (0.434)* 1.108 (0.446)*
Popularity 0.473 (0.202)* 0.483 (0.203)* 0.454 (0.195)* 0.409 (0.209) 0.402 (0.203)
Activity 0.257 (0.210) 0.249 (0.215) 0.149 (0.220) 0.080 (0.219) 0.086 (0.225)
Transitive closure 1.115 (0.125)* 1.118 (0.127)* 0.842 (0.126)* 0.740 (0.132)* 0.651 (0.134)*
Cyclic closure −0.465 (0.081)* −0.463 (0.081)* −0.472 (0.081)* −0.291 (0.080)* −0.381 (0.078)*
Multiconnectivity −0.096 (0.026)* −0.097 (0.026)* −0.101 (0.027)* −0.100 (0.026)* −0.100 (0.027)*
Advice ties within and across units
Cross-unit ties 
(nonreciprocal 
ties across units)

−0.816 (0.199)* −0.375 (0.232) −1.350 (0.375)* −1.588 (0.524)*

Cross-unit reciprocal ties 
(reciprocal ties across units)

0.874 (0.498) 0.881 (0.510) 0.640 (0.266)* 0.355 (0.232)

Unit size difference 0.015 (0.018) 0.027 (0.020) 0.027 (0.019)
Unit task difference 0.180 (0.090)* 0.260 (0.088)* 0.264 (0.090)*
Advice ties and 
cross-unit ties

 

Multilevel popularity 0.024 (0.005)* 0.012 (0.006)* 0.012 (0.006)*
Multilevel activity 0.029 (0.005)* 0.018 (0.006)* 0.017 (0.006)*
Unit-level sequential interdependence coupled with 
cross-unit aligned ties

0.602 (0.292)* 0.311 (0.244)

Unit-level sequential interdependence coupled with 
cross-unit reciprocal ties [H2]

0.949 (0.253)*

Coefficients with an * are significant at p < .05. 
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with cross-unit reciprocal ties is negative, but not significant (−0.249, p = .60). Hence, individuals 
do not display a significant tendency toward reciprocal advice ties when affiliated with units con-
nected by directed workflow ties, thus confirming our prediction that cross-unit advice relations 
under lower time pressure are enabled by a different tie configuration from the one we predict for 
higher time pressure.

We then analyzed the advice network under conditions of higher time pressure, the results of 
which are detailed in Table 5. In Table 5 (Model 5), the parameter estimate for unit-level sequen-
tial interdependence coupled with cross-unit reciprocal ties is positive and significant (0.949, 
p < .05). The odds of observing reciprocal ties between members of connected units were 
exp[0.949] = 2.583. In line with Hypothesis 2, under higher time-pressure conditions, ITS divi-
sion members display a significant propensity toward reciprocal advice relationships across 
units when they are affiliated with units connected by directed workflow ties. To further confirm 
this result, we performed the same analyses as those for the network under lower time-pressure 
conditions. As mentioned above, the prerequisite for our hypotheses is that individuals are 
unlikely to build cross-unit advice ties because of their cost implications. In Table 5 (Model 5), 
we find that the parameter estimate for cross-unit ties (non-reciprocal ties across units) is nega-
tive and significant (−1.588, p < .05). This result indicates that the likelihood of observing non-
reciprocal ties between units in the higher time-pressure condition is less likely than would be 
predicted by chance. In Table 5 (Model 5), the parameter estimate for unit-level sequential inter-
dependence coupled with cross-unit aligned ties is non-significant, albeit positive (0.311, 
p = .62). Again, these coefficients can be compared by computing the Wald test statistic, which 
shows that there is a significant difference between this coefficient and unit-level sequential 
interdependence coupled with cross-unit reciprocal ties (z-score = −1.82, p < .10). This confirms 
that in higher time-pressure conditions workflow ties across units support reciprocal but not 
directed advice ties. Finally, the parameter estimate for cross-unit reciprocal ties is positive, but 
not significant (0.355, p = .64), indicating that reciprocity between individuals is not sufficient to 
create cross-unit ties under higher time pressure. This further supports our prediction that cross-
unit advice relations under higher time pressure are enabled by a different tie configuration from 
the one we observed for lower time pressure (mirroring the evidence we reported above for 
Hypothesis 1).

The behavior of the other control variables in Tables 4 and 5 (Model 5) is in line with expecta-
tions. Physical proximity and similar areas of expertise promoted advice relations under both 
conditions. For lower time pressure, Table 4 (Model 5), long-lasting relationships owing to 
shared past affiliations promoted advice relations. In addition, the results in Tables 4 and 5 
(Model 5), indicate that advice relations were embedded in local transitive subgroups (a combi-
nation of significantly positive transitive closure and significantly negative cyclic closure). For 
higher time pressure, Table 5 (Model 5), working on the track makes team members more likely 
to have advice relationships with colleagues during race events (i.e., a positive and significant 
sender race location). In Tables 4 and 5 (Model 5) cross-unit ties are more likely to occur 
between members of units that differ in the number of tasks performed under both time-pressure 
conditions (i.e., a positive and significant unit task difference), an effect that warrants further 
attention in a replication study. Finally, for higher time-pressure conditions, Table 5 (Model 5), 
multilevel activity and multilevel popularity are positive and significant, indicating that sending 
advice ties to many colleagues is linked to membership in units that depend on many others for 
the provision of knowledge, and receiving advice ties by many colleagues is linked to member-
ship in units on which many others depend. These effects were not significant under lower time-
pressure conditions in Table 4 (Model 5).
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Discussion and Conclusions

We designed our study to address the specific question: how does time pressure affect advice rela-
tionships across units? Due to the costs of advice ties in organizations, informal advice relations 
tend to occur within units (Caimo & Lomi, 2015; Lomi et al., 2014). Our study builds on existing 
research on advice relations across boundaries, such as units, in organizations (Caimo & Lomi, 
2015; Hansen, 1999; Lomi et al., 2014; Parker et al., 2019). We developed a cost-based explanation 
for advice relations (Nebus, 2006) and examined it under two different time-pressure conditions. 
We show that in situations of lower time pressure, reciprocal advice ties are sufficient to overcome 
search and value uncertainty costs across units. However, under higher time-pressure conditions, 
which require faster search and coordination, cross-unit advice ties are facilitated by reciprocal 
advice ties embedded in the workflow ties between units. We contribute to the literature by show-
ing that when work oscillates between different time-pressure conditions, employees’ underlying 
network choices change because of the underlying costs. This has implications for how knowledge 
is managed and how problems are solved in organizations (Carlile, 2002, 2004; Parker et al., 2019).

In addition, we add to the literature on the relationship between formal and informal structures 
within organizations (McEvily et al., 2014)—specifically, the role that formal structures play in 
supporting informal structures when there is need for coordination (Ben-Menahem et al., 2016; 
Clement & Puranam, 2018; Koçak et al., 2023; Puranam, 2018). Furthermore, we add to the litera-
ture on multilevel networks by jointly examining formal and informal organizational networks 
(Brennecke & Rank, 2017; Brennecke et al., 2021; Dagnino, Levanti, & Mocciaro Li Destri, 2016; 
Zappa & Lomi, 2016). Our empirical analysis of the ITS division of an F1 team supports the argu-
ment that under higher time pressure, both the organizational structure of workflow relations and 
the social structure of advice relations are required to facilitate intra-organizational advice sharing 
(Zappa & Lomi, 2016). By contrast, under lower time pressure, reciprocal ties between individuals 
are sufficient to support the sharing of advice across units.

Finally, we contribute to the literature on time pressure within work (Day, Gordon, & Fink, 
2012; Faraj & Xiao, 2006; Weick, 1993) and how this relates to social networks in organizations. 
Our findings indicate that employees’ network choices vary across different levels of time pres-
sure. In doing so, we extend the explanation of coordination and advice relationships under time 
pressure. Our study highlights that when work oscillates between different time-pressure condi-
tions, the structure of advice relations across units and their relationship with the formal structure 
are different in each condition.

The limitations of the study indicate clear opportunities for future research. One opportunity 
arises from the inherent drawbacks of our single-organization design. A detailed analysis of one 
specific, and to some extent idiosyncratic, case study is insufficient to fully generalize our theory. 
A growing body of research uses the sports industry as an empirical setting for organizational and 
management studies (Day et al., 2012; Jenkins & Floyd, 2001). F1 shares similarities with other 
technology-based industries—intense competition and an emphasis on change—which might 
facilitate extending the results of our study to teams operating in those industries (Marino et al., 
2015). The empirical setting we examined may seem idiosyncratic; however, the “performative” 
aspects of our setting make the empirical scope of our study broader than it might seem at first. Fire 
fighters (Macpherson et al., 2022; Weick, 1993), medical teams (Benn, Healey, & Hollnagel, 2008; 
Faraj & Xiao, 2006), and management teams (Larson et al, 2020; Weick, 2007) represent adjacent 
empirical settings to which our results extend naturally. In all these cases, similar work was per-
formed by the same people under widely varying time-pressure conditions.

In conclusion, we believe that our study makes a novel and significant contribution to the litera-
ture on the relationship among time pressure, formal organizational structure, and informal social 
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networks in organizations. We propose a cost-based explanation of advice relations across units 
and show that when there are high costs related to advice relations—that is, in higher time-pressure 
situations—a combination of formal task structure and informal reciprocal ties mitigates the costs, 
but when costs are primarily related to search and value uncertainty—that is, in lower time-pres-
sure situations—informal reciprocal ties are sufficient to mitigate the costs.
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Notes

1. We recognize the importance of reciprocal interdependence, and we test to see how it affects our models 
in the supplementary analysis (see Appendix 1).

2. We selected individuals whose job title or job description included the words “software engineer” or 
“electronic engineer,” and were directly employed by an F1 team and had at least a one-year tenure in 
their current F1 team, to ensure that they would have a clear understanding of the team dynamics. We 
excluded individuals who had past experience in F1 racing but were not currently employed by any F1 
teams.

3. We acknowledge that the response rate is relatively low, but not unexpected given the sensitivity and 
secrecy of F1 teams’ activities as well as the period when the survey was administered (during the race 
season). Nonetheless, the responses were consistent.

4. Given the complexity of an F1 car, the production cycle of various components follows a different 
design, development, testing, and fine-tuning time frame and pace. Hence, F1 teams start developing 
some components earlier than others (Mercedes-AMG PETRONAS F1, 2023).

5. From a modeling perspective, this implies that advice ties are present on both sides of the ERGM equa-
tion (Zappa & Lomi, 2015).
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Appendix 1

Goodness of fit

The goodness-of-fit procedure simulates the distribution of graphs implied by the model, using 
parameter estimates as initial values. Then, a number of network features (i.e., exponential random 
graph model (ERGM) effects not included in our model and structural properties of the observed 
graph, such as the number of ties sent/received and clustering coefficients) are selected, and t-ratio 
statistics are computed to compare their observed values to the estimated value implied by the 
model (Hunter et al., 2008; Lusher, Koskinen, & Robins, 2013). T-ratio absolute values of larger 
than two suggest that the observed graph differs from the distribution implied by the model in the 
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corresponding feature. Hence, the model is not capable of capturing these features. Indeed, the 
closer the t-ratio values are to zero, the better the fit. The goodness-of-fit procedure is used itera-
tively to fine-tune the model. This consists of finding the value of the weighting parameter λ that 
provides the most accurate representation of the ERGM configurations in the observed network. 
The λ parameter (with λ ⩾ 1) is included in the formula of each ERGM covariate and is specifically 
relevant for “higher order” configurations—closure and multilevel configurations—because they 
consist of a combination of nested ties where more complex combinations are more or less likely 
to be observed than less complex combinations. By default, λ is set to 2 but can typically vary in 
the range of 0.5 to 6. Our goodness-of-fit tests indicate that our complete model (Model 5 in Tables 
4 and 5) reproduces more network features than any of the intermediate models. The results of the 
goodness-of-fit tests are available from the authors.

Testing alternative thresholds of the interunit network

The workflow network is based on the interaction behaviors of the survey respondents. To rule out 
the risk of a potentially biased assessment of formal interdependence, we conduct a sensitivity 
analysis on the interunit network. We replicate the analysis by setting the threshold for the exist-
ence of a tie between units equal to at least (a) the median value and (b) the mean value of inter-
personal ties per unit. The patterns of the results remain unchanged (results are available upon 
request from the authors).

Testing reciprocal task interdependence

For theoretical reasons, we focus solely on sequential interdependence (cf. Soda & Zaheer, 2012; 
Thompson, 1967). However, because the F1 team’s workflow structure included a high percentage 
of reciprocal interdependencies (Table 2), we also controlled for the coexistence of unit-level 
reciprocal interdependence with (a) cross-unit aligned ties and (b) cross-unit reciprocal ties. For the 
lower time-pressure condition, the effects were non-significant (0.170 (SE = 0.089) and −1.284 
(SE = 5.762)), nor did they affect the patterns of our results. This confirms that reciprocal workflow 
interdependencies do not support advice ties between formally connected units (Soda & Zaheer, 
2012). For the higher time-pressure condition, the number of such configurations was so small that 
the model did not converge. This finding indirectly confirms our prediction that reciprocal work-
flow interdependencies are unlikely to support cross-unit advice ties.




