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Simple Summary: Cotton is a crucial economic crop, but it is often threatened by various pests and
diseases during its growth, significantly impacting its yield and quality. Earlier image classification
methods often suffer from low accuracy and struggle to perform effectively in complex real-world
environments. This paper proposes a novel image classification network named SpemNet, specifically
designed for cotton pest and disease recognition. By introducing the Efficient Multi-Scale Attention
(EMA) module and the Stacking Patch Embedding (SPE) module, the network enhances the ability
to learn local features and integrate multi-scale information, thereby significantly improving the
accuracy and efficiency of cotton pest and disease recognition. Extensive experiments conducted
on the publicly available CottonInsect and IP102 datasets, as well as a self-collected cotton leaf
disease dataset, demonstrate that SpemNet exhibits significant advantages in key metrics such as
precision, recall, and F1 score, confirming its effectiveness and superiority in the task of cotton pest
and disease recognition.

Abstract: We propose a cotton pest and disease recognition method, SpemNet, based on efficient
multi-scale attention and stacking patch embedding. By introducing the SPE module and the EMA
module, we successfully solve the problems of local feature learning difficulty and insufficient multi-
scale feature integration in the traditional Vision Transformer model, which significantly improve
the performance and efficiency of the model. In our experiments, we comprehensively validate
the SpemNet model on the CottonInsect dataset, and the results show that SpemNet performs well
in the cotton pest recognition task, with significant effectiveness and superiority. The SpemNet
model excels in key metrics such as precision and F1 score, demonstrating significant potential and
superiority in the cotton pest and disease recognition task. This study provides an efficient and
reliable solution in the field of cotton pest and disease identification, which is of great theoretical and
applied significance.

Keywords: cotton pest recognition; image classification; attention mechanism; transformer; efficient
multi-scale attention; feature fusion; deep learning

1. Introduction

Cotton, as one of the world’s major crops, is often attacked by a variety of pests and
diseases during its growth cycle, which seriously affects yield [1]. Xinjiang, with its unique
geographical location and climatic conditions, produces high-quality cotton. Pests and diseases
are among the key factors restricting the yield and quality of cotton, and the limitations of

Insects 2024, 15, 667. https://doi.org/10.3390/insects15090667 https://www.mdpi.com/journal/insects

https://doi.org/10.3390/insects15090667
https://doi.org/10.3390/insects15090667
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0009-0005-6613-5711
https://orcid.org/0000-0003-0659-5060
https://doi.org/10.3390/insects15090667
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects15090667?type=check_update&version=1


Insects 2024, 15, 667 2 of 22

traditional control methods require effective scientific detection and management methods [2,3].
Utilizing image recognition and artificial intelligence technology combined with deep learning
methods to accurately detect cotton pests and beneficial insects [4–7] can improve yield and
quality and promote regional economic development.

In recent years, with the continuous development and application of deep learning
technology, models based on the transformer architecture have made remarkable achieve-
ments in many fields [8–11]. Among them, Vision Transformer (ViT) [12], as an innovative
model that introduces the self-attention mechanism into image processing, has demon-
strated powerful performance in tasks such as image classification, target detection, and
semantic segmentation. However, the traditional ViT model still faces certain challenges in
dealing with local feature learning and multi-scale information integration.

In order to solve these problems, this study proposes a cotton pest and disease recog-
nition method based on efficient multi-scale attention [13] and stacking patch embedding
named SpemNet. This method effectively improves the model’s ability to learn local fea-
tures and multi-scale information, achieving excellent performance in the cotton pest and
disease recognition task.

In this paper, we first introduce the structure and key modules of the SpemNet model,
then evaluate it performance and conduct comparative experiments on cotton pest and
disease identification tasks. In addition, we conduct ablation experiments to verify the
effectiveness of the SPE module and the EMA module in improving model performance.
Finally, we discuss the limitations of the model and future directions for improvement.

The main contributions of this paper are summarized as follows:

1. By introducing the SPE module, we address the problems of inter-block information
loss and difficulty in learning local features in the traditional Vision Transformer
model and adopt the method of adding biases of different directions to the image and
stacking them before patch embedding, which effectively enhances the model’s ability
to learn local features, in addition to improving information transfer efficiency.

2. By introducing the EMA module, we successfully solve the problem of insufficient inte-
gration ability of the ViT model for multi-scale and local features when processing images
and significantly enhance the model’s ability to focus on and integrate local details.

3. We conduct a series of comprehensive experiments based on the CottonInsect, IP102,
and cotton leaf disease datasets and validate the SpemNet model. The experiments
prove that the SpemNet model shows significant effectiveness and superiority in cotton
pest and disease identification and has obvious advantages over other strong networks.

2. Related Works

Current crop disease recognition methods utilize image processing techniques to extract
features; then, the extracted features are used as model inputs for classification using machine
learning models. Depending on whether the extraction of features requires manual design of
feature engineering, crop disease recognition methods can be categorized into (1) methods
based on traditional machine learning and (2) methods based on deep learning.

Traditional machine learning methods need to manually design disease features, such
as spectral index, color, texture, etc., then feed them into a classifier for recognition. Rumpf
et al. [14] classified healthy and diseased sugar beet leaves based on the spectral index
using support vector machine with 97% accuracy. Al et al. [15] proposed a four-phase
disease recognition method that includes color preprocessing, cluster segmentation, feature
extraction, and shallow neural network classification. These methods perform well in the
laboratory, but the accuracy tends to decrease in the natural environment.

In contrast, deep learning-based methods learn features directly from images for
classification without the need for manual design. Too et al. [16] compared various deep
convolutional neural network (DCNN) models and found that DenseNet121 performed
best in terms of accuracy and computational efficiency, reaching 99.75%. Zeng et al. [17]
proposed a higher-order residual DCNN, which is more robust to noise and environmental
factors. Song et al. [18] proposed a multilevel augmented spatial pyramid network, which
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achieved 88.4% accuracy on 61 types of pests. Lee et al. [19] compared different DCNNs
and achieved 88.4% accuracy on 61 types of pests.

Although these DCNN models are effective, they are limited by local perception and
difficult-to-capture high-level semantic features. Therefore, transformer-based visual mod-
els (e.g., ViT) have received attention and can better learn long-distance information and
semantic information. However, the standard ViT model exhibits poor learning perfor-
mance from zero on small datasets and needs further optimization. The main optimization
methods include (1) image serialization diversification, such as Swin Transformer [20] to
introduce hierarchical structures, and (2) attention diversification, such as the introduction
of a re-attention mechanism [21]. Although these methods improve performance, they
increase the computational requirements. In order to allow the standard ViT model to
learn from zero efficiently on small datasets, Lee et al. [22] proposed the rotating chun-
ked sequence (SPT) method, which achieved a performance improvement of 2.96% on
Tiny-ImageNet and provided new ideas for crop disease recognition based on transformers.

3. Methodology
3.1. Overall Network Structure

The structure of the SpemNet model is shown in Figure 1, including the following
six main parts: an input layer, SPE module, transformer module [22], EMA module [13],
head layer, and output layer.In the input layer, the insect images on the original cotton
are received. In the SPE module, patch features that make it easier to learn local features
are obtained by adding biases in different directions, and they are stacked before patch
embedding with class tokens and positional encoding. The transformer module uses
the standard transformer architecture to process the information obtained from the SPE
module. The feature embedding is efficiently extracted and integrated into the global scope
to capture the global information and advanced features of local features in the image.

Figure 1. SpemNet receives the original insect images on cotton as input; then, the SPE module
extracts local features and adds positional coding. The transformer module processes global and local
features, and the EMA module further extracts multi-scale features. Finally, the head layer generates
the recognition results of cotton pests and diseases.

The EMA module introduces the multi-scale feature and parallel sub-network structure
to perform multi-scale feature extraction and integrate of the features output from the
transformer to obtain feature representations with attention to local details and a stronger
integration capability. In the head layer, the feature information output from the EMA
module is further integrated, and the feature representation is optimized for the final
classification task through the fully connected layer. The final output layer generates the
pest and disease recognition results for the input cotton images as specific classification
labels indicating the presence or absence of pests on the cotton and the species of pests.
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3.2. Stacking Patch Embedding

The structure of the Stacking Patch Embedding (SPE) module is shown in Figure 2.
The key role of the Stacking patch embedding module is to solve the problem of loss of
inter-block information and difficulty in local feature learning that exist in the traditional
Vision Transformer model. Directly dividing the image into patches destroys the spatial
relationship between pixels, resulting in the model not being able to fully utilize the local
information. The standard ViT model is difficult to mine for a priori knowledge of local
spatial relationships in global feature modeling, making it more difficult for the model
to learn local features. By introducing the stacking patch embedding module, we are
able to effectively improve the model’s ability to learn local features and the efficiency of
information transfer so as to better capture the local details in the image and improve the
model’s performance.

Figure 2. The SPE module first introduces biases in different directions through augmented stacking
and enhances the image information through stacking, then uses patch embedding to convert the
image features into compact 2D representations through convolution operations and spreading.
Finally, the SPE module performs layer normalization on the spread feature maps through token
encoding and adds the class token and position encoding.

The stacking patch embedding module consists of the following three key components:
augmented stacking, patch embedding, and token encoding. Augmented Stacking enhances
the image information by introducing biases in different directions and stacking them, patch
embedding transforms image features into compact 2D representations via convolutional
operations and spreading, and token encoding performs layer normalization on the spread
feature maps and adds class tokens and position encodings.

3.2.1. Augmented Stacking

The purpose of augmented stacking is to enhance the information retention ability of
the original image by introducing biases in different directions. Specifically, we construct
multiple viewpoints with different orientation biases and supplement the original image
information with these differently biased images.

Let the insect image on the original cotton be X ∈ RH×W×C, where H, W, and C
denote the height, width, and number of channels of the image, respectively. We define
K bias functions ({Tk}K

k=1) for different directions, such as up–down bias, left–right bias,
oblique bias, etc. By applying these bias functions to the original image (X), we can obtain
K biased images ({Xk}K

k=1) as follows:

Xk = Tk(X), k = 1, 2, . . . , K (1)

Simply put, the specific form of the K-bias function is represented symbolically as
Tdirection. The direction can be divided into different directions, such as up–down, left–right,
and diagonal. Each bias function shifts the image by a fixed pixel value (d) along the
specified direction (k). It can be specifically represented as follows:

Tk(X) = X + dk (2)
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where dk is a bias matrix that enhances the information retention capability of an image by
introducing biases in specific directions. Specifically, the bias matrix can be implemented
by adding displacements in different directions.

dup-down(i, j) =

{
X(i ± k, j) if 0 ≤ i ± k ≤ H
0 if i ± k < 0 or i ± k > H

(3)

dleft-right(i, j) =

{
X(i, j ± k) if 0 ≤ j ± k ≤ W
0 if j ± k < 0 or j ± k > W

(4)

ddiagonal(i, j) =

{
X(i ± k, j ± k) if 0 ≤ i ± k ≤ H and 0 ≤ j ± k ≤ W
0 otherwise

(5)

After applying the above operations to the original image (X), the biased image is
obtained. Stacking the original image (X) and the K biased images (Xk}K

k=1), we can obtain
the enhanced image (X

′ ∈ RH×W×(C·(K+1))) as follows:

X
′
= Concat(X, X1, X2, . . . , XK). (6)

3.2.2. Patch Embedding

The main purpose of the patch embedding module is to transform the enhanced image
(X

′
) into a 2D feature representation suitable for input to the transformer model.

For the enhanced image (X′ ∈ RH×W×(C×N), where H = h × P, W = w × P, and
M = h × w), X′ is divided into M × M patches, each with dimensions of P × P × (C × N).

For the ith patch (X′
i ∈ RP×P×(C×N)), a convolutional layer (ϕ) is used for feature

extraction to obtain the D-dimensional feature vector (zi ∈ RD) as follows:

zi = ϕ(X′
i) (7)

Then, all M2 eigenvectors ({zi}M2

i=1) are into an eigenmatrix (Z ∈ RM2×D) as follows:

Z = [z1, z2, ..., zM2 ]⊤ (8)

Subsequently, layer normalization is applied to the feature matrix (Z) as follows:

Ẑ = LayerNorm(Z) (9)

In this way, the patch embedding module transforms the original augmented im-
age (X′) into a compact 2D feature representation (Ẑ), providing suitable inputs for the
subsequent token encoding and transformer modules.

3.2.3. Token Encoding

The the main purpose of the token encoding module is to add category encoding and
location encoding information to the feature matrix ẑ obtained by the patch embedding
module to make the output more suitable for input into the transformer model.

Then, a category encoding (ci ∈ RC, where C is the number of categories) is added to
the feature vector (ẑi ∈ RD) of each patch. Splicing the category encoding with the feature
vector (ẑi) yields the augmented feature vector (xi ∈ RD+C):

xi = [ẑi, ci] (10)

Subsequently, a position encoding (pi ∈ RD+C) is added to the augmented feature
vector (xi ∈ RD+C) for each patch, where P is the position encoding dimension.
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The position encoding is summed with the augmented feature vector (xi) to obtain the
final token representation (ti ∈ RD+C+P) as follows:

ti = xi + pi (11)

3.3. Transformer Block

The transformer block [22] is the main part of the SpemNet model and is responsible
for global feature extraction and synthesis of the feature embeddings obtained from the
SPE module. This module adopts the standard transformer architecture and contains
multiple transformer encoder layers, which are designed to efficiently capture global
information and complex high-level features from the input features through the self-
attention mechanism and feed-forward neural networks. Compared with traditional
convolutional neural network, the transformer architecture has stronger modeling ability
and can better learn the long-range dependencies in the image. In SpemNet, we use
12 stacked transformer encoder layers, which enables the model to learn richer and more
abstract feature representations in a deeper network structure. Through the stacking of
multiple transformer layers, the model can gradually extract multi-scale features from local
to global, providing more effective feature inputs for the subsequent EMA module and
classification tasks.

Each transformer contains self-attention mechanisms, feed-forward neural networks,
and layer normalization, and these components work together to progressively map the
encoded features to the final output.

Self-attention mechanism: By calculating the attention weights between features, the
model is able to understand the interrelationships between points and, thus, globally
optimize the feature representation. The computation of the self-attention mechanism can
be expressed as follows:

SelfAttention(Qself, Kself, Vself) = softmax

(
QselfKT

self√
dk

)
Vself (12)

In the self-attention mechanism, the query matrix (Q), key matrix (K), and value
matrix (V) all come from the same sequence of feature representations, where Qself = XWQ;
Kself = XWK; Vself = XWV ; X is the input feature representation; and WQ, WK, and WV are
learnable weight matrices.

The cross-attention mechanism is similar to self-attention, with the difference being
that it deals with the relationship between two different sequences. In this mechanism,
elements of one sequence (e.g., a query) are used to pay attention to elements of another
sequence (e.g., keys and values), enabling the model to capture correlations between
different data sources. The formula is expressed as follows:

CrossAttention(Qtarget, Ksource, Vsource) = softmax

(
QtargetKT

source√
dk

)
Vsource (13)

In the cross-attention mechanism, the query matrix (Q) comes from one sequence
(usually the target sequence) of feature representations, while the key matrix (K) and
value matrix (V) come from another sequence (usually the source sequence) of feature
representations, where Qtarget = YWQ; Ksource = ZWK; Vsource = ZWV ; Y is the input
feature representation of the target sequence; Z is the input feature representation of the
source sequence; and WQ, WK, and WV are learnable weight matrices.

A feed-forward neural network (FFN) is a component within a transformer that
typically consists of two layers of linear transformations and a nonlinear activation function.
The FFN processes features independently for each location, increasing the model’s ability
to handle different feature representations. The formula is expressed as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (14)
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where W1, W2, b1, and b2 are network parameters and ReLU(max(0, x)) is the nonlinear
activation function.

Layer normalization is the process of normalizing each sample over all features, aiming
to reduce the internal covariate bias during training and stabilize the learning of the deep
network. In the transformer, it is usually applied after self-attention and FFN. The formula
is expressed as follows:

LayerNorm(x) = γ

(
x − µ√
σ2 + ϵ

)
+ β (15)

where x is the input; µ and σ2 are the mean and variance of the input, respectively; γ and β
are learnable parameters; and ϵ is a small constant added for numerical stability.

Residual concatenation allows the inputs of a model to be added directly to its outputs,
helping to mitigate the problem of vanishing gradients during deep network training. In
the transformer, the output of each sublayer (self-attention layer or FFN) is added to the
input of that sublayer, which is then layer normalized.

3.4. Efficient Multi-Scale Attention Block

The Efficient Multi-Scale Attention (EMA) block [13] is shown in Figure 3, which
is another key component in the SpemNet model designed to solve the problem of the
Vision Transformer model’s insufficient ability to integrate multi-scale and local features
when processing images. In the traditional ViT model, due to the adoption of a single
self-attention mechanism, it is difficult to effectively capture and integrate features at
different scales in an image, resulting in the model’s insufficient ability to pay attention
to and integrate local detailed features. To overcome this problem, we introduce the EMA
module in SpemNet. This module adopts the multi-scale feature and parallel sub-network
structure, which significantly enhances the model’s ability to focus on and integrate local
details by simultaneously extracting and fusing features of different scales.

Imagine you are looking at an image with many details, such as a complex photo of a
cotton field. You not only need to pay attention to the overall layout (e.g., the panorama of
the cotton field) but also focus on smaller details (e.g., pests on a single cotton leaf). The
EMA module is like a magnifying glass that can handle both the overall and local details of
the image, allowing the model to better identify important features in the image.

Specifically, the EMA module contains multiple parallel attention sub-networks, each
focusing on different scales of feature extraction. In the feature fusion stage, the EMA mod-
ule integrates these different scales of features through weighted summation to generate
the final feature representation. This multi-scale feature fusion approach enables the model
to better focus on the key regions and detailed features in the image, providing richer and
more effective feature inputs for the subsequent classification task.

The EMA module consists of the following three main components: feature grouping,
a parallel sub-network, and cross-space learning. In the feature grouping stage, the feature
representations obtained from the transformer block are divided into multiple groups,
and the features in each group undergo different processing paths. In the parallel sub-
network stage, each group of features undergoes average pooling in the X and Y directions;
3 × 3 convolution operations; and, finally, splicing and convolution to generate a new
feature representation. The cross-space learning stage performs GroupNorm processing on
the features, generates a weight map through average pooling and softmax operations, and
achieves cross-space weight assignment through matrix multiplication.
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Figure 3. First, the EMA processes the input features in groups. Subsequently, new features are
generated through parallel sub-networks by processing each group of features through different
paths. In the cross-space learning stage, the features are integrated using weight assignment to
effectively integrate cross-space information.

In the efficient multi-scale attention (EMA) module, the feature grouping stage first
divides the feature representations (F ∈ RC×H×W) from the transformer block into G
groups, with the size of each group being Fg ∈ R( C

G )×H×W . Next, each group of features
goes through three different processing paths.

The first two paths perform average pooling operations on each group of features
in the horizontal and vertical directions, respectively, to obtain Fxavg ∈ R( C

G )×1×W and

Fyavg ∈ R( C
G )×H×1. These two feature maps are processed by a 1 × 1 convolutional layer

and Sigmoid activation function, respectively, to obtain weighted feature representations of
Wx ∈ R( C

G )×1×W and Wy ∈ R( C
G )×H×1.

The third path performs a 3 × 3 convolution operation on each set of features to obtain
another feature map (Fconv ∈ R( C

G )×H×W).
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The output feature maps of these three paths are spliced and passed through a
1 × 1 convolutional layer to obtain a new feature representation (Fnew ∈ R( C

G )×H×W).
In the cross-space learning phase, a group normalization operation is first performed

on the new feature representation (Fnew) to obtain the normalized features (Fnorm ∈
R( C

G )×H×W). Next, an average pooling operation in the X and Y directions is performed on
Fnorm to obtain Fxpool ∈ R( C

G )×1×W and Fypool ∈ R( C
G )×H×1, respectively. These two feature

maps are subjected to a softmax operation to obtain weight maps of Wx ∈ R( C
G )×1×W and

Wy ∈ R( C
G )×H×1, respectively.

Finally, Wx and Wy are multiplied by Fnorm to obtain the weighted feature represen-

tation (Fweighted ∈ R( C
G )×H×W). A Re-weighting operation is performed by a Sigmoid

activation function to obtain the final multi-scale feature representation (Ff inal ∈ RC×H×W),
which is passed to the head layer for further processing and classification tasks.

3.5. Classification Head

The classification head module receives multi-scale feature representations from the
EMA block and processes these features for dimensionality reduction and integration
through a fully connected layer to achieve better feature representation and differentiation
capabilities. The role of the full connectivity layer is to establish the global connection
between different features, which helps to realize the nonlinear combination of features,
thereby highlighting the important features.

Subsequently, the features passing through the fully connected layer are mapped
to a new feature space, and the nonlinear representation of the features is enhanced by
activation functions to further optimize the feature representation.

Finally, after softmax processing in the classification decision layer, the optimized
features are transformed into probability distributions for each category, thereby achieving
recognition of insect images or cotton leaf disease images on input cotton. By selecting the
category with the highest probability as the final prediction, the classification head module
generates the corresponding classification labels, indicating the presence of pests on cotton
and the species of the pests.

3.6. Loss Function

In the SpemNet cotton pest and disease recognition network, the loss function uses
multi-class cross-entropy loss to measure the difference between the model output and
the actual labels, guiding the optimization of the network parameters to achieve accurate
disease recognition. Since the goal of SpemNet is cotton pest and disease recognition,
targeting both cotton pests and diseases of cotton leaves, the multi-class cross-entropy loss
for each classification head can be expressed as follows:

Losspest = − 1
Npest

N

∑
i=1

Cpest

∑
c=1

yi,c log(pi,c) (16)

Lossdisease = − 1
Ndisease

N

∑
i=1

Cdisease

∑
c=1

yi,c log(pi,c) (17)

Total Loss = α · Losspest + β · Lossdisease (18)

where N is the number of samples, C is the number of classes, yi,c is the true label of the
i-th sample for class c (one-hot encoded), pi,c is the predicted probability of the i-th sample
for class c, and α and β can be assigned different weights according to the needs of the task.
If the insect identification task is more complex than the plant disease identification task,
you might want to assign a larger weight to the insect identification task to ensure that the
model pays more attention to this more complex task during training. This can be achieved
by adjusting the weight parameters in the loss function.
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4. Experiments
4.1. Experimental Datasets

In order to verify the superiority of the SpemNet model in the field of pest recognition,
image data provided in the publicly available CottonInsect dataset [22,23] were used in
this experiment. This dataset is specially designed for the problem of classifying and
recognizing insects in cotton fields and contains images of a variety of common pests, such
as cotton bollworm, polyisopteranladybug beetle, and alfalfa blind stink bug. It contains a
total of 3225 high-quality images, each containing one or more insects of the same species
type, showing the characteristics of these pests in different states of growth and activity.
Figure 4 shows some examples of common cotton field insects in the CottonInsect dataset.

Due to the diversity of pest species in agricultural fields, it is not sufficient to discuss
specific pests in isolation. Farmlands can be infested not only by specific pests but also
by many common pests; therefore, a wide range of possible pests needs to be identified
and classified. IP102 [24] is a more extensive insect image dataset than the CottonInsect
dataset, containing 75,820 high-quality images covering 102 different insect classes, includ-
ing common pests and beneficial insects in agriculture and forestry. Experiments were
conducted to extract 13 classes from the dataset based on common pests in cotton fields,
totaling 5314 images. Figure 5 shows some examples of common leaf diseases of cotton in
reality.

The above dataset is primarily used for insect identification in cotton fields. However,
to achieve integrated identification of cotton pests and diseases, in this study, we further
identified cotton diseases. To this end, we collected a large amount of cotton disease image
data in actual cotton fields and combined them with web-crawled data to construct the
dataset. This dataset covers six common categories of cotton leaf diseases, totaling 5348
high-quality images and providing rich sample data for model validation.

The distribution of dataset categories is shown in Figures 6–8, with the training set,
validation set, and test set divided in a ratio of 7:1:2.

Figure 4. Examples of common cotton field insects.
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Figure 5. Images of cotton leaf disease samples.

Figure 6. Distribution of CottonInsect dataset categories.
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Figure 7. Distribution of IP102 dataset categories.

Figure 8. Distribution of cotton leaf disease dataset categories.
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4.2. Evaluation Indicators

In order to comprehensively reflect the performance improvement of the SpemNet
method in the cotton pest and disease recognition task, several evaluation metrics are
introduced in this study. Given that the identification method used in this study is a
classification task, three commonly used regression metrics were used in this study, namely
precision, recall, and F1 score.

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1 = 2 × Precision × Recall
Precision + Recall,

(21)

where TP (True Positive) represents the number of samples that are actually in the positive
category and predicted by the model to be in the positive category, TN (True Negative)
represents the number of samples that are actually in the negative category and predicted
by the model to be in the negative category, FP (False Positive) represents the number
of samples that are actually in the negative category but predicted by the model to be in
the positive category, and FN (False Negative) is the number of samples that are actually
negative but predicted to be positive by the model.

4.3. Experimental Settings

The experimental setup of this paper includes the experimental environment and
parameter settings, as shown in Tables 1 and 2:

The model was trained using the AdamW optimizer with a training batch size of 8 and
a test batch size of 32. The initial learning rate was set to 0.00001, and the weights decayed
to 0.01. A learning rate tuning strategy with warm-up was used, whereby the learning rate
was gradually increased in the first few epochs to reach 0.0001, then progressively decayed
at a rate of 0.8, (but not lower than 0.00001).

Table 1. Configuration of the experimental environment.

Experimental Environment Environmental Configuration

System Linux
GPU RTX 4090

CPU 16 vCPU Intel(R)
Xeon(R) Platinum 8352V

Pytorch 1.11.0
Python 3.8
Cuda 11.3

The input image is resized to 224 × 224 pixels; then, the resized image is divided
into multiple 16 × 16 pixel patches. Each patch corresponds to a small block of the image,
and these small blocks are fed into the model for further processing. A patch_bias of 6
indicates that in the SPE module, each patch is shifted by six pixels in different directions.
An in_c value of 3 indicates that the model expects the input image to be an RGB image
with three channels.

The model has an embedding dimension of 768, meaning each patch is converted into
a 768-dimensional vector after passing through the embedding layer. It uses a transformer
encoder with 12 layers to progressively extract and integrate image features. The multi-head
self-attention mechanism has eight heads.
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Table 2. Model parameters and settings.

Parameter Parameter Setting

Epoch 300
Learning_Rate 0.00001

Optimizer AdamW
Dropout 0.5

weight_decay 0.01
Train_batch_size 8
Test_batch_size 32

img_size 224
patch_size 16
patch_bias 6

in_c 3
embed_dim 768

Transformer_Block_Layers 12
EMA_Layers 1

num_multi_heads 8

4.4. Comparison Experiment

In this section, we compare the performance of the SpemNet model with several popu-
lar benchmark methods, including SVM [25], VGG [26], ResNet [27], EfficientNet_v2 [28,29],
ConvNeXt [30], MobileViT_v2 [31,32], ShuffleNet_v2 [33,34], Swin Transformer [35], and
Vision Transformer [12]. We evaluated the pest recognition performance of each method on
three datasets and quantitatively assessed it by calculating precision, recall, and F1 score.
Tables 3 and 4 list the performance of each method in the pest recognition task.

On the CottonInsect dataset, SpemNet significantly outperforms other models. It
achieves a precision of 99.03%, a recall of 98.67%, and an F1 score of 0.9885. In comparison,
the Swin_transformer model, while slightly higher in precision, at 99.45%, has a lower
recall of 97.59% and an F1 score of 0.9851. Other models, such as Vision_transformer and
Convnext, also exhibit high precision and recall but do not surpass the overall performance
of our model.

Table 3. Experimental results of pest identification with different models.

Model
CottonInsect IP102

Precision Recall F1 Precision Recall F1

SVM 53.37 69.10 0.6022 50.02 70.38 0.5854
VGG 79.61 76.80 0.7818 80.34 76.47 0.7834
ResNet 85.66 87.47 0.8656 85.56 83.12 0.8427
Efficientnet_v2 89.36 96.66 0.9287 87.72 92.13 0.8982
Convnext 94.61 88.27 0.9133 90.31 85.29 0.8770
Mobilevit_v2 90.22 97.63 0.9378 88.47 80.24 0.8415
ShuffleNet_v2 97.43 94.58 0.9598 90.12 90.47 0.9029
Swin_transformer 99.45 97.59 0.9851 93.29 94.01 0.9365
Vision_transformer 93.19 96.36 0.9475 93.43 94.70 0.9406
Ours 99.03 98.67 0.9885 95.35 95.68 0.9551
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Table 4. Experimental results of different models for the identification of six classes of leaf pests and
diseases on cotton leaves.

Model Precision Recall F1

SVM 64.61 75.52 0.6953
VGG 82.50 86.39 0.8433
ResNet 87.55 90.63 0.8906
Efficientnet_v2 82.25 83.55 0.8276
Convnext 87.50 85.16 0.8617
Mobilevit_v2 88.11 90.90 0.9006
ShuffleNet_v2 90.31 87.74 0.8894
Swin_transformer 91.96 91.41 0.9168
Vision_transformer 92.08 91.73 0.9190
Ours 94.87 94.70 0.9479

On the IP102 dataset, SpemNet, again, demonstrates superior performance, with
a precision of 95.35%, a recall of 95.68%, and an F1 score of 0.9551. In contrast, the
Swin_transformer model shows a precision of 93.29%, a recall of 94.01%, and an F1 score of
0.9365. The Vision_transformer model achieves a precision of 93.43% and a recall of 94.70%,
with an F1 value of 0.9406. Other models, like ShuffleNet_v2, while performing well, fall
short in precision, recall, and F1 score compared to SpemNet, indicating that SpemNet
achieves the best overall performance on this dataset.

The confusion matrix in Figures 9 and 10 shows the classification results of the Spem-
Net model on the CottonInsect dataset and the IP102 dataset, and the results of the confusion
matrix show that SpemNet performs satisfactorily and achieves excellent results on all the
classified data.

Table 4 demonstrates the performance of the SpemNet model on cotton leaf disease
data. The SpemNet model excels in three main metrics. Its precision is 94.87%, which
is significantly higher than that of Vision_transformer (92.08%) and Swin_transformer
(91.96%). In terms of recall, SpemNet’s 94.70% is higher than Vision_transformer’s 91.73%
and Swin_transformer’s 91.41%. SpemNet has high F1 score of 0.9479, which is well ahead
of that of Vision_transformer (0.9190) and Swin_transformer (0.9168).

The confusion matrix in Figure 11 demonstrates the classification results of the Spem-
Net model in recognizing cotton leaf diseases. The precision of cotton leaf disease classifi-
cation is decreased compared to pest classification, possibly due to the distinctive features
of pests compared to the less distinctive features of cotton leaf diseases. In pest picture clas-
sification, morphological, color, and structural features of pests are usually very distinctive
and can be identified and classified more easily by the model. However, the symptoms of
cotton leaf diseases are more subtle in the early stages and in cases of mild infections; spots,
discoloration, and shape changes on the leaves are often not obvious; and the symptoms
of different diseases can be easily confused owing to their similarities. For example, leaf
curl virus and healthy leaves may show similar leaf curling and color changes in some
cases, early symptoms of bacterial spots and other diseases such as watery spots may be
difficult to distinguish, and spot characteristics of powdery mildew and target spot may
not be obvious under different light conditions or in the early stages of infection, further
increasing the difficulty of classification.
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Figure 9. SpemNet confusion matrix results on the CottonInsect dataset.

Figure 10. SpemNet confusion matrix results on the IP102 dataset.
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Figure 11. Confusion matrix results of SpemNet on cotton leaf disease data.

Comprehensive evaluation shows a high level of overall performance of SpemNet.SpemNet
shows great potential and superiority in coping with the task of cotton leaf pest and disease
identification, making it worthy of further in-depth research and application.

4.5. Ablation Experiments
4.5.1. Overall Ablation Experiment

In order to validate the effectiveness of individual modules in the SpemNet model,
we conducted detailed ablation experiments. By gradually removing or replacing specific
modules in the model, we evaluated the impact of each module on model performance.
The results of the experiments are shown in Figure 12.

We conducted ablation experiments on the CottonInsect dataset, testing each of the
following model configurations:

1. Baseline: the original ViT model;
2. Pb6: introducing the SPE module in the ViT model, with patch bias set to 6 px;
3. EMA1: introducing the EMA module in the ViT model using one EMA attention layer

after the transformer block;
4. Pb6+EMA1: introducing both the SPE module (with patch bias set to 6 px) and the

EMA module (one EMA attention layer) in the ViT model.
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Figure 12. Results of ablation experiment.

The experimental results presented in Figure 12 show that the baseline methodology
provides a solid foundation across all datasets, while the introduction of the Pb6 module
significantly improves accuracy and F1 scores. This suggests that the Pb6 module effectively
enhances the capabilities of the model in specific aspects. In addition, the implementation
of the EMA1 module resulted in significant improvements in all metrics, with peak F1
scores of 0.9873, 0.9498, and 0.9374 on the CottonInsect, IP102, and cotton leaf disease
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datasets, respectively, highlighting the module’s important role in enhancing the integra-
tion of multiscale and localized features. The combination of Pb6 and EMA1 modules,
represented by the Pb6+EMA1 method, achieved the best performance on key metrics
such as precision, recall, and F1 score across all datasets, with scores as high as 0.9885,
0.9551, and 0.9479, respectively. These findings confirm the strong enhancement capabilities
of the Pb6 and EMA1 modules, which make them useful for improving performance in
different agricultural environments in the context of identification tasks (e.g., cotton pest
and disease identification).

4.5.2. Patch Bias Ablation Experiment

In order to evaluate the effect of different orientations of bias in the SPE module on
model performance, we conducted an ablation experiment to specifically analyze the effect
of different patch bias offsets on model performance on three datasets. In this ablation
experiment, we set up different experimental groups with patch bias offsets of 0, 1, 2, 4, 6,
and 8 and performed model training and testing on the three datasets. The experimental
results are shown in Figure 13.

Figure 13. Results of patch bias ablation experiment.

The experimental results show that patch bias has a significant effect on model perfor-
mance. With a patch bias of 0, the model’s precision, recall, and F1 score perform poorly,
pointing out that the model has challenges in learning local features. With an increase in
patch bias, the model performance gradually improves, with peak performance reached at
a patch bias of 6, indicating that a moderate bias helps to improve the model’s learning
of local features, as well as its information transfer efficiency. However, too of large a bias
(e.g., patch bias of 8) leads to performance degradation and may introduce noise, affecting
the feature learning ability of the model. Based on the experimental results, we suggest
choosing a moderate patch bias offset to balance the relationship between local feature
learning and noise introduction in practical applications.

4.5.3. EMA Layer Ablation Experiment

In order to evaluate the effect of the number of EMA module layers on the perfor-
mance of the SpemNet model, we conducted an ablation experiment in the cotton pest
identification task. In this experiment, we set up 0, 1, 3, 6, 9, and 12 layers of EMA modules
and conducted comprehensive tests on three datasets. The experimental results are shown
in Figure 14.
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Figure 14. Results of the EMA layer ablation experiment.

The figure clearly demonstrates that as the number of EMA layers increases, the F1
scores for the CottonInsect, IP102, and cotton leaf disease datasets show different trends.
For the CottonInsect dataset, increasing the number of EMA layers significantly improves
the F1 score compared to the initial setting of 0 layers, especially at 1 and 6 layers, where
the scores approach their highest values of 98.85 and 98.41 respectively. Similarly, the
IP102 dataset also shows an improvement in F1 score with an increase in the number
of EMA layers, peaking at one layer, with a score of 96.34. However, for the cotton leaf
disease dataset, while increasing the number of EMA layers also enhances the F1 score,
the overall gain is relatively steady, with the highest point also occurring with one layer,
with a score of 96.70. Overall, increasing the number of EMA layers positively affects
model performance, as appropriately increasing the number of EMA layers can effectively
enhance the model’s recognition accuracy. However, too many EMA layers lead to resource
consumption without substantial improvements, possibly due to the insufficient complexity
of the datasets. If the datasets were more complex, perhaps better performance could
be observed.

5. Conclusions

In this study, we propose a cotton pest and disease recognition method, SpemNet,
based on efficient multi-scale attention and stacking patch embedding. By introducing the
SPE module and the EMA module, we successfully solve the problems of difficult local
feature learning and insufficient multi-scale feature integration in the traditional Vision
Transformer model and significantly improve the performance and efficiency of the model.
In experiments, we comprehensively validated the SpemNet model using the CottonIn-
sect and IP102 datasets, as well as our own collected dataset. The experimental results
demonstrate that SpemNet performs excellently in the task of cotton pest identification,
showing significant effectiveness and superiority. Compared to a variety of strong baseline
methods, SpemNet exhibits advantages in key metrics such as precision, recall, and F1
score, demonstrating its great potential in practical applications. However, SpemNet still
has some shortcomings, which are summarized as follows:

(1) In actual field environments, the identification of cotton pests and diseases faces
challenges far more complex than those in laboratory settings. For example, field
lighting conditions, background interference, and weather factors such as rain and
fog can significantly affect the quality of images and the accuracy of identification.
Additionally, the manifestations of pests and diseases can vary due to geographic
location, cultivation methods, and cotton varieties, necessitating a model with higher
adaptability and robustness.

(2) In practical applications such as multi-output classification tasks, the SpemNet model
often faces challenges more complex than in single-output classification tasks. For
instance, an image may contain multiple objects simultaneously, and the limitations of
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the SpemNet model may lead it to favor the most prominent feature in an image with
multiple objects. This bias can restrict the model’s ability to recognize, causing it to
fail to comprehensively reflect all target categories in the image at once.

In response to the aforementioned deficiencies, future research will consider inte-
grating multi-source data to enhance the model’s generalization capabilities across dif-
ferent geographic locations, cultivation methods, and cotton varieties (https://github.
com/Xnightwish/Cotton-Leaf-Pest-Disease-Recognition (accessed on 6 August 2024)). In
addition, there are future plans to improve the existing SpemNet model for multi-label
recognition, e.g., by combining migration learning and multi-task learning or by utilizing
target detection frameworks such as YOLO to deal with the task of handling multiple
target categories in an image so as to ensure its effectiveness and stability in real-world
applications.
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