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Abstract

A rare and unusual large solitary discoidal fossil has been discovered on a paving slab quarried from the cyclothems of the Central
Clare Group (Kinderscoutian, Pennsylvanian, Carboniferous), western Ireland. The fossil impression consists of a smooth raised inner
discoidal area, surrounded by a slightly lower relief outer ring, ca. 130-135 mm in diameter, with eight prominent equidistant ovoid
raised nodes towards the outermost margin. The octoradial body plan of this enigmatic specimen suggests a cnidarian connection
and, as it is preserved as a positive hyporelief cast, it is tentatively interpreted as the resting trace of a large benthic anemone, which
was either partially or fully infaunal. The discoidal fossil is interesting palaeoecologically; it occurs within the well-known Liscannor flag-
stone, which consists of thinly bedded, fine-grained sandstone that is extensively covered by prominent, sinuous to meandering, horizon-
tal grazing trails attributed to Psammichnites plummeri. This sedimentary facies likely represents mouth-bar sedimentation on a delta
front of a river-dominated delta. The discoidal impression occurs on a portion of the slab where these trace fossils are relatively scarce.
Uncertainty surrounds the classification and interpretation of the disc due to its relatively simple morphological form, coupled with a
lack of unequivocally diagnostic features — a problem commonly encountered in studies of discoidal fossils from both the Ediacaran
and the Phanerozoic.
© 2023 Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. This is an open access article under the CC BY license (http:/
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Discoidal, unmineralised fossils preserved as casts in sili-
ciclastic sediments are a conspicuous component of Edi-
acaran fossil assemblages (e.g., Gehling et al., 2000;
MacGabhann, 2007; Hofmann et al., 2008; Gehling and
Droser, 2013; Burzynski et al., 2017), with older discs
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reported from the Cryogenian (e.g.,, Hofmann et al.,
1990; Bertrand-Sarfati et al., 1995; Burzynski et al.,
2020). Radial symmetry is a feature of several animal
groups, including some of the simplest metazoans. Molec-
ular clock estimates suggest a deep-time origin for crown-
group cnidarians at around 700 Ma (Erwin et al., 2011;
Van Iten et al., 2016) and there are suggestions that dis-
coidal animal morphologies were present in even older
strata (Rasmussen et al., 2002; Bengtson et al., 2007),
although the cnidarian affinities of these records have been
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questioned (Grazhdankin and Gerdes, 2007). Ediacaran
discs were initially interpreted as pelagic medusae (e.g.,
Sprigg, 1947, 1949; Glaessner and Wade, 1966; Wade,
1972); however, more recent interpretations have suggested
a range of benthic ecologies, such as deposit feeders, graz-
ers and osmotrophs (e.g., Clapham et al., 2003;
MacGabhann, 2007; Xiao and Laflamme, 2009;
Burzynski and Narbonne, 2015).

Discoidal unmineralised fossils also occur as casts in
younger Phanerozoic strata (e.g., Crimes and Mcllroy,
1999; Hagadorn et al., 2000), however, their perceived
prevalence in palacocommunities is noticeably diminished
and records are more sporadic. This may be a taphonomic
artefact, due in part to the requirement for soft-part preser-
vation coupled with the rise in bioturbation and disappear-
ance of matground environments (e.g., Seilacher et al.,
2005; Mangano and Buatois, 2014; Gougeon et al., 2018;
see also MacGabhann et al., 2019).

This paper describes a rare and unusual large solitary
discoidal fossil from the Carboniferous cyclothems of the
Central Clare Group (Bashkirian, Pennsylvanian) of
County Clare in western Ireland (Fig. 1). The specimen
in question was discovered on a paving slab which had
been laid at the Cliffs of Moher Visitor Centre, before it
was removed for safe keeping from the pathway in 2009.
The slab had been sourced locally from one of several quar-
ries producing ‘Liscannor flagstone’ for paving and clad-
ding purposes. This sedimentary facies features distinctive
horizontal sinuous grazing trails attributed to Psammich-
nites plummeri, and it has been commercially quarried from
the local area since at least the 19" Century. Despite this
long history of extraction, discoidal fossils have not been
recorded before from this particular facies. Even though
the new Irish Carboniferous discoidal specimen is just a
single find, its distinctive morphology warrants morpholog-

ical description and preliminary evaluation of potential
biological affinity and palaeoecology, which are the aims
of this contribution.

2. Stratigraphic context of the find

The Carboniferous Shannon Basin in western Ireland
was a long-lived intracratonic depocentre, with carbonate
sedimentation dominant during the Tournaisian and
Viséan (Strogen, 1988; Somerville and Strogen, 1992;
Strogen et al., 1996; Sevastopulo and Wyse Jackson,
2009; Murray, 2010). Sedimentary cyclicity is apparent in
upper Viséan (Asbian and Brigantian regional substages)
strata on the adjacent Burren Platform, which lay north
of the Shannon Basin proper (Gallagher et al., 2006). This
cyclicity is also observed regionally elsewhere and has been
interpreted as glacioeustatically driven, associated with the
onset of the Late Paleozoic Ice Age (e.g., Soreghan and
Giles, 1999; Wright and Vanstone, 2001; Fielding et al.,
2008; Barham et al., 2012).

Carbonate sedimentation ceased during the Serpukho-
vian and Bashkirian in the Shannon Basin, and this transi-
tion is marked by the widespread deposition of organic-
rich marine dark shales (Barham et al., 2015; O’Sullivan
et al., 2021). These are collectively termed the Clare Shale
Formation and are interpreted as representing deep and
quiet, anoxic to dysoxic bottom water conditions
(Hodson and Lewarne, 1961; Sevastopulo, 2009; Fallon
and Murray, 2015).

The Clare Shale Formation is relatively thin in north
County Clare and is overlain by the Gull Island Forma-
tion, a series of basin-slope siltstones and fine- to very
fine-grained sandstones which commonly display high
levels of slumping and soft sediment deformation, espe-
cially in the lower part of the unit (Rider, 1974;
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Fig. 1. Geographic location and geological context of the Liscannor fossil disc. (A) Location in western Ireland (highlighted by yellow box) of main
geological map compilation in (B). (B) Geological map of Carboniferous strata in north County Clare, also showing location of Cliffs of Moher (red star)
and several surrounding flagstone quarries (adapted from MacDermot et al., 2003). (C) Field photograph of the Cliffs of Moher with O’Brien’s Tower in
the background; strata exposed above the main sandstone ledge belong to the Cyclothem II (Kilkee) of the Central Clare Group, below that level the top
of Cyclothem I (Tullig) is exposed (see Fig. 2).
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Martinsen, 1989; Doyle and Hoey, 2022). The overlying
cyclothems of the Central Clare Group reflect subsequent
delta progradation into the Shannon Basin. At least five
large-scale coarsening-upwards cycles are recognised (I-
V), and these are interpreted as reflecting repeated phases
of shallowing in what was a fluvial-dominated deltaic sys-
tem (Rider, 1974; Gill, 1979; Pulham, 1989; Wignall and
Best, 2000).

The Liscannor flagstone facies occurs towards the top of
the Kilkee Cyclothem (Cyclothem II) in the Central Clare
Group, above the strata exposed along the Atlantic coast
at the Cliffs of Moher (Fig. 1C), between the Reticuloceras
aff. stubblefieldi (R1b) and Reticuloceras reticulatum (R1c)
ammonoid marine bands, indicative of a Kinderscoutian
age (Fig. 2). This distinct sedimentary facies is generally
interpreted as representing mouth-bar sedimentation on a
delta front (Wignall and Best, 2000), consisting of thinly-
bedded, fine-grained sandstone, which is extensively
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covered by prominent, sinuous to meandering horizontal
grazing trails assigned to Psammichnites plummeri (ca. 10—
20 mm in width). Psammichnites is a backfilled trace fossil
representing the feeding activities of a subsurface vagile ani-
mal that used a siphon-like device to connect back to the
seafloor surface above (Mdngano et al., 2002; see also
Mangano et al., 2022 for an updated ichnotaxonomic dis-
cussion). This ichnogenus has provided key evidence for
marine conditions in Carboniferous sedimentary succes-
sions elsewhere (e.g., Maples and Suttner, 1990; Mangano
et al., 2003; Mdangano and Buatois, 2004). In particular,
P. plummeri has been commonly recorded in marginal mar-
ine settings affected by fluvial discharge, most notably deltas
and estuaries. Specifically, this ichnospecies is a common
component of delta front deposits (including in some cases
mouth bars) of late Paleozoic river-dominated deltas (e.g.,
Eagar et al., 1985; Martino, 1989; Maples and Suttner,
1990; Buckman, 1992; Mangano et al., 2003).

North Clare Lithostratigraphy
?

Fig. 2. Carboniferous stratigraphy of north Clare showing Liscannor Flagstone facies occurring in the upper part of Cyclothem II of the Central Clare
Group. The Burren and Slievenaglasha formations are both limestone dominant and are biostratigraphically dated (grey dashed lines) using calcareous
microfossils (principally foraminiferans) and rugose corals. The overlying Pendleian to Kinderscoutian lithostratigraphy is dated using condensed
ammonoid horizons (those relevant to North Clare are shown as red lines). The more significant ammonoid horizons are highlighted in darker red and key
species summarised thus: Hbey — Homoceras beyrichianum; Horn — Hudsonoceras ornatum; Rstb — Reticuloceras aff. stubblefieldi; Rret — Reticuloceras
reticulatum. Other abbreviations: Penns. = Pennsylvanian, Gr. = Group. Adapted from Rider (1974), Gallagher et al. (2006), and Sevastopulo (2009).
Colour coding of global chronostratigraphic boundaries is that prescribed by the Commission for the Geological Map of the World, Paris.
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Fig. 3. Section through the discoidal fossil-bearing Liscannor slab showing detail of Psammichnites plummeri and (somewhat diffuse) internal lamination.

Liscannor sandstone is typically parallel-laminated, but
may also display cross-lamination in the upper parts of
beds due to the development of linguoid ripples
(Wignall and Best, 2004). Abundant, thin darker laminae,
rich in organic debris, also occur. The sedimentary rock
hosting the discoidal fossil comprises ~50% clay matrix,
which includes fine-grained chlorite, calcite, biotite, clay
minerals and carbonaceous material. Quartz is the domi-
nant framework mineral, and grains commonly display
syntaxial overgrowths. Feldspar grains represent a minor
component (< 5% of the framework). Compositionally,
the sedimentary rock can be classified as a quartzwacke
(Pettijohn, 1975). In textural terms, the framework is
dominated by relatively coarse-grained silt and fine sand,
which is well-mixed and shows no evidence of grading.
Thorough bioturbation, represented by P. plummeri, most
likely obliterated much of the primary sedimentary fabric
(Fig. 3).

3. Material and methods

The single discoidal fossil specimen was discovered on a
paving stone of Liscannor flagstone measuring 69.5 cm by
53 cm (Fig. 4; see Supplementary data for short film com-
pilation of high-resolution images of the slab illuminated
from different directions) from the pathway at the Cliffs
of Moher Visitor Centre in County Clare, western Ireland.
The paving stones were supplied by two local quarry own-
ers, including the quarry on the Doolin side of the Cliffs of
Moher at Lough. A more definitive provenance for the slab
with the discoidal impression cannot be established. It
should be noted that these local quarries are active and pri-
vately owned and are not open to the public. The slab has
been curated by the National Museum of Ireland — Natural
History (NMING: F34747).

The specimen was subject to visual examination and
photography with a Canon EOS 500D (18-55 mm lens),
using a variety of high- and low-angle lighting. Approxi-
mately 1 cm was trimmed from one edge of the slab using
a rock saw, and several polished sections and thin sections
were made from the offcut portion for petrographic analy-
sis, but no destructive testing was conducted on the speci-
men itself due to the rare nature of the find.

4. The enigmatic discoidal structure

The unique fossil specimen is discoidal in overall mor-
phology, approximately circular in shape, with the disc
130-135 mm in diameter (Fig. 5). There is no evidence of
mineralisation, nor any discolouration to suggest authi-
genic mineralisation. The disc margin is defined by a
groove, which varies from well-defined and narrow on
one side of the disc, to broader and more poorly defined
on the other side (Fig. 5B).

The most prominent feature of the disc is a conspicu-
ous inner boss, with ca. 4 mm of relief, about 80 mm in
diameter. The surface of this protuberance is smooth
and flat, save for an area which has suffered percussive
damage. The edge of this feature is sloped, rather than
cylindrical, and it is surrounded by a shallow groove
where the sloped sides meet the outer area of the disc.
The inner boss is not centred with respect to the full disc
but is ca. 5 mm closer to the side of the disc on which the
marginal groove is well defined. The sloped margin of the
inner boss is also steeper on this side of the disc. This
slightly offset radial symmetry, coupled with concentric
wrinkling towards the outer edge of the boss, suggests
some degree of compaction or perhaps partial collapse/de-
flation of the structure on one side.

The remainder of the disc forms an outer annulus,
slightly wider on the side of the disc where the marginal
groove is poorly defined as a result of the off-central place-
ment of the inner boss, tapering into the grooves at both
inner and outer margins. The surface of this outer annulus
is generally smooth with generally negligible relief from the
surrounding bedding plane, but is interrupted by eight
raised nodes, spaced equiangularly around the disc margin.
These nodes are broadly irregular ovoid in shape (some are
nearly circular), with long axes approximately half the
width of the outer annulus, approximately 15-20 mm,
and relief in the order of 2 mm. An obvious 7 cm by 4
cm elliptical depression, ca. 5 mm deep, occurs on the
obverse side of the ca. 22 mm thick fine-grained sandstone
slab, and it corresponds closely with the position of the
inner discoidal area of the fossil on the opposite side.

In addition to the discoidal fossil, the Liscannor slab
(NMING: F34747) also displays a dense, monospecific
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trails
absent

Fig. 4. View of complete Liscannor sandstone slab showing position of the discoidal fossil (labelled in white as disc) surrounded by numerous
Psammichnites plummeri. Note that in certain areas, close to the discoidal impression itself, the trails are noticeably absent or reduced in concentration. In
a few instances (marked with white arrows), P. plummeri appear to turn away (perhaps) from the larger disc structure. Fine menisci present at the top of P.
plummeri towards the left side of the slab (as viewed, one specimen is indicated with a white asterisk) are preserved in negative hyporelief indicating that
this slab surface is the base of the bed. Slab measures 69.5 cm by 53 cm. A short film compilation of several images of the slab, illuminated from different
angles and without labelling, is available in Supplementary data.
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Fig. 5. Detailed morphology of the fossil disc (specimen NMING: F34747) on the slab of Liscannor flagstone. (A) Detailed photograph of the discoidal
fossil, with strong oblique lighting to highlight relief of fine detail on the specimen. (B) Outline sketch interpretation of discoidal fossil in (A). A
topographic profile (X-Y) taken across the surface of the specimen is shown at the top of the image and was drawn using a contour gauge. Horizontal and
vertical scales are the same and horizontal scale is applicable to both plan and profile views.

association of Psammichnites plummeri, with traces
preserved as semireliefs and full reliefs at the bed bound-
ary, recording a variety of morphologies, including nega-
tive and positive reliefs (Fig. 4; see also Supplementary
data). A delicate, tightly laminated backfill is only locally
well preserved. Interestingly, P. plummeri is scarce or
absent in a discrete zone immediately adjacent to the larger
discoidal impression.

5. Discussion
5.1. The question of orientation: top or base?

Way-up was not recorded when the slab was initially
extracted during quarrying, and no bedforms (e.g., ripples)
are present to help decipher polarity of the bed. Attempts
to identify grading in polished sections (Fig. 3) have proven
inconclusive. Despite this, several critical observations
strongly suggest that the Liscannor disc is preserved at a
bed sole:

e The marginal groove is reminiscent of similar features in
other unmineralised discoidal fossils and ichnofossils
preserved in positive hyporelief, including paropsone-
mids, where it has been related to post-mortem shrink-
age of a carcass in situ (MacGabhann, 2012).

e The depression on the obverse side of the slab above the
central boss may have been produced due to sediment
collapse and downward advection under the force of
gravity, following decay of the buried or partially infau-
nal organism.

e Psammichnites is typically preserved in a wide variety of
morphologies on bed surfaces within the Liscannor flag-
stones, both as negative (concave) hyporeliefs displaying
an axial structure or as full reliefs displaying the delicate,
crenulated backfill (Fig. 4). The presence of a dorsal
axial structure in negative semireliefs suggests that the
slab surface bearing the discoidal impression is the base
of a bed.

Based on all features observed, the most parsimonious
interpretation is that preservation of the disc is in convex
relief at the bed base and the animal was probably present
at the time of entombment.

5.2. Discoidal body fossil or trace fossil?

Interpretation of the Liscannor disc as a positive
hyporelief impression then raises the further question of
whether the specimen should be considered as a trace fossil
(representing either domichnia or cubichnia) or as a body
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fossil. This fundamental difference in interpretation is also
mirrored in broader evaluations of discoidal fossils: in
rocks of Ediacaran age, unmineralised discoidal positive
hyporelief casts are typically considered as body fossils,
whereas in Phanerozoic strata plug-shaped and discoidal
structures are often described as either domichnia (display-
ing lining suggestive of permanent burrows) or cubichnia
(transient resting structures) produced by actiniarians (cf.
Pemberton et al., 1988). The hypothesis that an organism
was present and decayed in situ post-burial may suggest
that the specimen is a direct cast of the lower surface of
an organism, and so should be considered as a body fossil.
Evidence for active movement of the organism (horizon-
tally or vertically) in the sediment is admittedly lacking.
However, the presence of the discoidal specimen as a pos-
itive hyporelief cast on a heavily bioturbated interfacial
surface of Liscannor sandstone (Fig. 4) suggests that the
animal responsible for producing the impression may itself
have been at least partially infaunal in life. This would
imply that the organism was able to burrow into (most
likely using features of its hydrostatic skeleton) and live
at least partially within the sediment. Whether these bio-
genic structures were permanent domiciles (i.e., domichnia)
or temporary resting traces (i.e., cubichnia) is difficult to
assess based on a single specimen.

Moreover, in the case of other Phanerozoic discoidal
traces, the physical presence of an organism on burial has
not previously been regarded as sufficient grounds to reject
a trace fossil interpretation. For example, both Arai and
McGugan (1968) and Alpert (1973) noted slump structures
above Bergaueria specimens, interpreting these as indicat-
ing a body decayed in situ post burial, and still considered
the specimens to be trace fossils.

The consensus definition of a trace fossil by Bertling
et al. (2006, p. 266) specifies: “a morphologically recurrent
structure resulting from the life activity of an individual
organism (or homotypic organisms) modifying the
substrate”.

Given the rarity of the find, it cannot be stated with any
confidence that the Liscannor disc is a morphologically
recurrent structure. However, it does appear to have been
created through active modification of the substrate; and
while this may have preserved a shape mimicking some sur-
ficial anatomical elements of the original organism, no
unequivocally distinct body parts are preserved.

Relatively large diameter (ca. 20-40 mm) vertical plug-
shaped burrows have also recently been observed in Lis-
cannor flagstone facies (Fig. 6). These are also quite rare
in terms of occurrence; however, their scale, shape and
form are similar to several reported anemone burrows else-
where, for example Conichnus described from Cambrian
strata by Mata et al. (2012, figs. 7, 10). However, the ani-
mal responsible for producing the Liscannor disc would
have been clearly too large to have been the maker of these
particular vertical burrows. Aside from the overlying sedi-
ment depression feature, there is no evidence of the disc
structure on the opposite side of the slab (which is ca. 22

mm thick), suggesting either negligible vertical continua-
tion (i.e., implying the inability to escape moving upwards)
or erosion of the upper part of the structure due to the
dynamics of sedimentation in a mouth bar setting.

5.3. Biological affinity of the maker of the discoidal
impression

The prominent raised central boss of the Liscannor disc
(Fig. 5) is reminiscent of discoidal holdfasts of some
Ediacaran-aged frondose arboreomorph taxa (e.g.,
Laflamme et al., 2018), as well as some isolated Ediacaran
discoidal fossils interpreted as likely holdfasts (e.g.,
Burzynski et al., 2017). In such cases, the central boss is
interpreted as the attachment point of the stem, and is
regarded as less compressible than the outer area of the
disc. The potential presence of an overlying stem in the Lis-
cannor disc cannot be definitively rejected; however, the
surface of the depression on the obverse side of the slab
is generally smooth and lacks any structures indicative of
the former presence or removal of a stem (e.g., see
Tarhan et al., 2010).

Eoporpita has both a central boss and lobes, but speci-
mens from Canada (Burzynski et al., 2017) demonstrate
the lobes to be an internal structure extending from the
central boss. Specimens assigned to FEoporpita from
Ukraine (Dzik and Martyshyn, 2017) have quite different
lobes, emanating from the margin of the outer disc; these
serve to increase the surface area (and stabilisation capac-
ity) of the basal support structure (like tree roots). This is
clearly not the case with the Liscannor disc — it is difficult
to reconcile how the eight nodes would have served to sta-
bilize the discoidal structure, or indeed a vertical stem
structure above this. Perhaps more significantly, Eoporpita
lobes do not display the conspicuous octoradial symmetry
of the Liscannor disc. The Ediacaran taxon Eoandromeda
does have octoradial symmetry (Zhu et al., 2008), but has
a very different morphology. In any case, the > 200 million
year gap separating these Ediacaran-aged discoidal forms
and the Carboniferous Liscannor specimen makes any sug-
gestion of a direct biological relationship highly unlikely;
any perceived similarities may be merely be analogous
and a reflection of the relatively simple morphologies
concerned.

Several groups of organisms are known to have dis-
coidal fossil morphologies in the Phanerozoic and they
commonly prove difficult to unequivocally classify (e.g.,
MacGabhann et al., 2007; Kirkland et al., 2016;
Lieberman et al., 2017). Proposed cnidarian affinities for
these structures feature prominently in interpretations,
and include scyphozoan and hydrozoan medusae, cubo-
zoans and porpitids (‘chondrophorines’). These pelagic
groups have been identified in strata ranging from the
Cambrian to the Jurassic, generally as shoreline strandings
in Konservat-Lagerstitten settings (see Young and
Hagadorn, 2010, 2020). An extensive list of fossil occur-
rences is tabulated in Young and Hagadorn (2010). How-
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Fig. 6. Relatively large (2-4 cm) diameter vertical plug-shaped burrows from Liscannor sandstone facies, possibly ascribable to the activities of burrowing
anemones. These specimens were photographed in a working quarry located farther south from the probable source of the Liscannor disc, exposing
broadly the same stratigraphical level. (A) Cross-sectional view of sandstone slab showing domed positive hyporelief impression on bed sole, with
corresponding sunken negative epirelief depression on bed top; the boundary between burrow and host matrix is diffuse and indistinct; however,
downward deflected laminae are evident (white arrow); black scale bar is 3 cm. (B) Cross-sectional view of another specimen showing vertical burrow
penetrating two sandstone beds; note more sharply defined conical internal fill in comparison to (A); white scale bar is 1 cm. (C) Large diameter vertical
burrow on bed top; note more sharply defined boundary with surrounding matrix and also the presence of an adjacent horizontal trail (white arrow). (D)
Same vertical burrow as (C) photographed on underside of bed — this burrow crosses into the underlying horizon. (E) Bed top view of large diameter

vertical burrow. Scale at bottom of photographs (C-E) is in mm divisions.

ever, evidence for periodic emergence has not previously
been recorded in Liscannor sandstone facies (e.g.,
Wignall and Best, 2004; Sevastopulo, 2009) making inter-
pretation of the discoidal fossil as a medusan shoreline
stranding problematic.

An alternative non-biomineralising animal group
responsible for producing discoidal fossils in Cambrian to
Devonian strata is the paropsonemids. Representatives
from this enigmatic group have been variously determined
as scyphozoan medusae, benthic actiniarians, or porpitid
hydrozoans (e.g., Scrutton, 1979; Stanley, 1986); however,
they are clearly triploblastic in nature and not radially sym-
metric. They have also been interpreted as lophophorate-

grade organisms (Sun and Hou, 1987; Dzik et al., 1997),
but are best considered as stem-group deuterostomes
(Friend, 1995; Caron et al., 2010; MacGabhann and
Murray, 2010; MacGabhann, 2012; Hagadorn and
Allmon, 2019; MacGabhann et al., 2019).

The conspicuous octoradial symmetry of the Liscannor
disc, due to the presence of eight prominent raised nodes
towards the outer margin (Fig. 5), is not a feature of known
paropsonemid groups, and none of the characteristic fea-
tures of the paropsonemids (MacGabhann, 2012) are pre-
sent. Despite the comparable size, an interpretation as a
member of that particular clade is discounted. There is thus
no requirement to extend the range of paropsonemids into
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the Carboniferous. The octoradial symmetry of the Liscan-
nor disc does, however, suggest possible affinities with
either the ctenophores or cnidarians.

Ctenophore symmetry is a function of a biradial body
plan, with each ‘hemisphere’ hosting four distinctive ctene
rows or ‘comb plates’ (Martindale, 1986; Martindale and
Henry, 1998). The main body axis of the ctenophore is
organised with a mouth at one end and an apical sensory
organ at the opposite end (Pang and Martindale, 2008).
The aboral view of the living ctenophore Pleurobrachia
pileus presented by Manuel (2009, see fig. SE) clearly dis-
plays all of these features: a combination of biradial and
octoradial symmetry with a centrally placed apical sensory
organ. It is superficially similar in some respects to the Lis-
cannor disc, particularly with regards to the arrangement
of the eight comb structures around the outer margin. A
ctenophore interpretation is, however, not favoured here
as there is clearly no evidence for either an apical sensory
organ or a mouth in the centre of the Liscannor specimen.
Due to their soft, delicate, gelatinous bodies, ctenophores
are very rare as fossils (e.g., Conway Morris and Collins,
1996; Dunn et al., 2015). Additionally, the vast majority
of ctenophores are pelagic which would not readily fit with
the inferred sedimentological and taphonomic setting of
the Liscannor fossil specimen (see discussion in subsection
5.4). Interestingly, living benthic and semi-benthic cteno-
phores are known, but they tend to lose their characteristic
ciliary comb rows (Whelan et al., 2017).

The general morphology of the Liscannor disc is simi-
lar to Cnidaria bauplans, and octoradial symmetry
(Fig. 5) is viewed as an important feature of several
cnidarian groups (e.g., Park et al.,, 2011; Dzik et al.,
2017). Octocoral polyps (class Anthozoa, subclass Octo-
corallia) very clearly display this feature: they possess
eight tentacles, arranged radially, but they are exclusively
colonial (Bayer, 1973). The colonial mode of life for the
octocoral group precludes it as a candidate for accommo-
dating the maker of the Liscannor disc, which was clearly
a large solitary organism, considerably larger than the
typical size of octocoral polyps (e.g., Baker et al., 2015;
Rossi et al., 2018). Scyphomedusans are also known to
display regular octoradiate bell symmetry (Holst, 2012);
however, a jellyfish interpretation is discounted for similar
reasons as the ctenophores (above): their pelagic lifestyle
and soft-bodied construction make them unlikely candi-
dates for preservation.

Benthic anemones (class Anthozoa, order Actiniaria;
Rodriguez et al., 2014) provide an alternative and perhaps
more suitable analogue for interpreting the Liscannor spec-
imen. They are solitary, can grow relatively large, have
muscular hydrostatic skeletons and several extant forms
are known to actively burrow (e.g., Ansell and Trueman,
1968; Mangum, 1970; Sassaman and Mangum, 1972).

Actiniarians typically display hexaradial symmetry;
however, they (along with several representatives from
the broader subclass Zooantharia) transiently display eight
first cycle mesenteries during their larval stages (the

‘Edwardsia stage’; Malakhov, 2016; see also Finnerty
et al., 2004; Manuel, 2009). One anemone group, the family
Edwardsiidae, retains eight mesenteries into adulthood;
these small anemones are quite elongate (vermiform), they
lack a pedal disc, and they are infaunal in habit (Daly et al.,
2002; Bocharova and Kozevich, 2011; Izumi et al., 2018). A
second (non-actiniarian) anthozoan group, the cerianthar-
ians, also lives benthically as solitary anemones and live
infaunally in tubes (Stampar et al., 2016).

Solitary benthic cnidarians have been proposed as trace-
makers of discoidal fossils, in particular partially infaunal
anemones (actiniarians) which produced plug-shaped bur-
rows (e.g., Arai and McGugan, 1968; Alpert, 1973;
Orlowski and Radwanski, 1986; Pemberton and Jones,
1988; Pemberton et al., 1988; Pemberton and Magwood,
1990). The ichnogenus Bergaueria is a common and partic-
ularly well-known example of an actiniarian burrow, and it
ranges from the Cambrian to Holocene. Bergaueria radiata
Alpert, 1973 is particularly pertinent to discussion about
the general morphology of the Liscannor disc. The base
of this ichnospecies displays eight to ten ‘lobes’ or radial
ridges that emanate from the centre of the disc. B. radiata
varies in diameter from 19 mm to 35 mm in the type mate-
rial (Alpert, 1973), which again is considerably smaller
than the Liscannor specimen; however, size per se is not
considered a strong ichnotaxobase (Bertling et al., 2006).
Most importantly, the radial ornamentation of B. radiata
differs significantly from the marginal nodes of the Liscan-
nor disc which displays diverse axial orientation. Bergaue-
ria sucta is the only ichnospecies of Bergaueria that
displays a conspicuously flat discoidal morphology
(Seilacher, 1990; Hofmann et al., 2012), and in this respect,
it is more relevant to the Liscannor specimen. B. sucta
characteristically displays laterally repeated crescent-
shaped impressions on the disc, which are interpreted as
evidence of lateral movement by an actinarian or ceri-
antharian cnidarian (e.g., Seilacher, 1990; Seilacher et al.,
2005; de Gibert et al., 2011; Hofmann et al., 2012). No evi-
dence of lateral movement, however, is evident in the Irish
specimen, which is also significantly larger than the size
range of B. sucta.

Dense concentrations of anemone burrows (Bergaueria
perata, but recorded as Alpertia sanctacrucensis in its orig-
inal description) were described by Orlowski and
Radwanski (1986) from Devonian tempestites in the Holy
Cross Mountains of Poland (see Pemberton et al., 1988
for ichnotaxonomic revision). These ichnofossils range in
diameter from ca. 11-26.5 mm and their smaller size, gen-
eral morphology and the inferred gregarious nature of the
original burrow-makers are all quite distinct from the Lis-
cannor disc. However, certain aspects of the inferred
taphonomic history of the Polish burrows are comparable
to the Irish specimen: the Devonian anemones were rapidly
buried by episodic and pulsed sedimentation, which caused
them to contract their bodies markedly. Following death
and decay of the anemone, sediment infill of the resulting
void space led to casting and preservation of only the lower
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parts of the anemone burrow (see fig. 2 of Ortowski and
Radwanski, 1986). Gibson et al. (2018) ran decay experi-
ments on recent sea anemones and found that the internal
musculature, particularly around the pedal disc was least
susceptible to decay; however, the tentacles (at the opposite
end) were the most labile, which would support the pro-
posed taphonomic model of Ortowski and Radwanski
(1986).

Buckman (1992) recorded Bergaueria perata from the
Viséan-aged Mullaghmore Sandstone Formation in north-
west Ireland. This clastic unit is interpreted as the result of
a regional lowstand (e.g., Graham, 2017; Anders et al.,
2022). Like the Liscannor disc, the Mullaghmore B. perata
co-occurs in the same unit in the formation with paschich-
nia such as P. plummeri and other cubichnia with a conical
shape tentatively assigned to Conostichus (Buckman, 1992).
However, these B. perata reach only 35 mm in width, and
display faint concentric laminae and radial ornamentation,
quite distinct from the Liscannor disc’s larger size and gen-
erally smooth surface. The Liscannor disc is morphologi-
cally distinct from other reported Carboniferous
cnidarian trace or body fossils. For example, Lech (1986,
2009) described Palaeoanemone marcusi, an elongate bur-
rowing actiniarian anemone from the Carboniferous Leon-
cito Formation of Argentina. The aboral end of this taxon
is simply described as rounded, and it is considerably smal-
ler in diameter than the Irish specimen.

A range of cnidarian taxa have been recorded from the
Middle Pennsylvanian (Moscovian) Francis Creek Shale
Member of the Mazon Creek Lagerstitte in Illinois
(Foster, 1979; Sroka, 1997; Clements et al., 2019). They
dominate what has been termed the ‘Essex Fauna’, and
the closest comparable discoidal form from that assem-
blage is Octomedusa piekorum, which may represent either
a coronate scyphozoan or a narcomedusan hydrozoan
(Young and Hagadorn, 2010). This fossil medusa has eight
tentacles and displays prominent octoradial symmetry
(Johnson and Richardson, 1968). Its octagonal outline is
typically scalloped, with a cruciform mouth evident in the
middle of the bell, and it is also considerably smaller than
the Irish discoidal specimen (bell diameter ranges from ca.
3-21 mm). Plotnick et al. (in press) recently redescribed
Essexella asherae as an infaunal or semi-infaunal actinian
anemone from the Mazon Creek Lagerstétte and suggested
that it might be a producer of Conostichus. Specimens of E.
asherae preserved vertically (i.e., displaying the oral or abo-
ral ends; see ‘Taphonomic Variant IV’ of Plotnick et al., in
press, fig. 8) are discoidal in form, with distinction between
an inner and outer discoidal area sometimes apparent;
however, this taxon displays hexamerous symmetry and
is smaller than the Liscannor disc.

The scyphomedusan Prothysanostoma eleanorae, pre-
served as carbon films in the Upper Pennsylvanian Wea
Shale of Iowa, also displays octoradial symmetry (eight
arms and 16 lappets around the margin of the bell;
Ossian, 1973). This reflects an underlying tetraradial body

plan, but it clearly lacks the arrangement of nodes in the
Liscannor disc.

Precise interpretation of the anatomy of the organism
responsible for creating the Liscannor disc is difficult: its
most conspicuous morphological element is the eight raised
nodes towards the outer periphery of the disc (Fig. 5).
These must reflect morphological features on one side of
an anemone-like organism; however, the precise function
of these structures remains speculative — they might reflect
(internal) mesenteries, or they could be related to reproduc-
tion (gonads). The latter structures are, however, typically
carried internally in living anemones. If the Liscannor disc
is, in fact, a medusan body fossil, these could be sensory
structures connected with the nervous system (e.g., rhopal-
ium), or perhaps tentacular structures, as interpreted for
similar node-like features in the Cambrian pentaradial
medusozoan Hanagyroia orientalis Wang et al., 2020.
Unlike H. orientalis, though, there is no clear evidence
for either a mouth or anus in the Irish specimen, suggesting
that the discoidal impression may in fact reflect features on
the aboral surface of the organism — in the case of a ben-
thic actinian-cerianthid anemone this could reflect morpho-
logical features of the pedal or basal disc.

The relatively simple morphology and paucity of addi-
tional key diagnostic features precludes a more precise
assignment of the Liscannor disc. Similar limitations have
commonly led to uncertainty in classification of both Neo-
proterozoic and Phanerozoic discoidal fossils elsewhere
(e.g., MacGabhann, 2007).

5.4. Palaeoecological considerations

Ross et al. (2013) interpreted the sheeted and well-
bedded nature of Liscannor sedimentary facies as a reflec-
tion of pulsed depositional cycles in the mouth bar of a
prograding river in flood. Bioturbation took place in the
quieter intervals between successive flood events. As Psam-
michnites prominently features in the Liscannor deposits,
marine conditions presumably prevailed, at least during
the periods of low fluvial discharge. The close association
of the discoidal fossil and P. plummeri on the Liscannor
slab also requires consideration in terms of potential
palaeoecologic relationships. The relatively pristine surface
of the larger disc (Figs. 4, 5), with no bioturbation over-
print by P. plummeri suggests either:

1. avoidance of the larger sessile animal by the active graz-
ers (i.e., co-existence and ecological interaction as mem-
bers of the same colonisation window),

2. a later colonisation of the substrate by the larger dis-
coidal animal, crosscutting and obliterating the previous
bioturbated fabric (i.e., two successive events not
recording ecological interaction), or

3. merely serendipitous preservation: intense bioturbation
by the P. plummeri producer would normally obliterate
other plug-shaped impressions, with the studied speci-
men being by chance the only one preserved.
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In scenario 2 above, if the larger discoidal animal moved
downwards in the sediment sometime after the P. plummeri
producers (thus enhancing its preservation potential), it
would be reasonable to expect examples of this ichnofossil
elsewhere in Liscannor flagstone; however, to-date, this has
not proven the case. Close inspection of the area around
the discoidal fossil reveals that more than half of the imme-
diate adjacent region around the perimeter is essentially
non-bioturbated. A small area of the slab is conspicuously
unbioturbated (Fig. 4), but the rest of the surface is pro-
fusely bioturbated with common overcrossing Psammich-
nites trails. Two meandering trails (white arrows in
Fig. 4) turn away from the larger disc; although no direct
contact and inflexion is recorded, there is close proximity
suggesting avoidance. Other trails approach more closely
to the discoidal structure without disturbing it.

Based on this available evidence, the co-existence of the
discoidal organism and P. plummeri seems plausible; how-
ever, the possibility of a subsequent colonisation by the for-
mer cannot be fully discarded.

6. Conclusions

A novel type of discoidal fossil is described from Penn-
sylvanian cyclothem facies in County Clare, Ireland. It is
not clear precisely what organism was responsible for mak-
ing the impression, but the octoradial symmetry tentatively
suggests some form of cnidarian, possibly a very large
diameter anemone. Vertical burrows observed elsewhere
in Liscannor flagstone facies (Fig. 6) suggest that other
anemones may possibly have been present during and
immediately after sediment deposition; however, these
plug-shaped structures are much too small to have been
created by the organism responsible for the Liscannor disc,
and they are also much simpler in terms of morphology.

This find is important for a number of reasons: the Lis-
cannor disc is morphologically very distinct, but addition-
ally large discoidal fossil impressions are uncommon in
Carboniferous strata. Moreover, due to the relatively sim-
ple morphology, it remains unclear how this enigmatic
Carboniferous fossil should be classified. It could readily
be interpreted as an anemone dwelling trace (domichnia),
principally on the basis of the sedimentological, ichnologi-
cal and taphonomic context of the find. Alternatively, it
could equally be considered the direct impression of the
underside of the organism and, thus, a body fossil. Similar
conflicting approaches are routinely taken in the interpre-
tation of discoidal fossils from both the Ediacaran and
the Phanerozoic, and this matter admittedly requires
urgent clarification.
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