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Abstract 

Background  Depersonalization-Derealization Disorder (DPD), a prevalent psychiatric disorder, fundamentally dis-
rupts self-consciousness and could significantly impact the quality of life of those affected. While existing research 
has provided foundational insights for this disorder, the limited exploration of brain dynamics in DPD hinders a deeper 
understanding of its mechanisms. It restricts the advancement of diagnosis and treatment strategies. To address this, 
our study aimed to explore the brain dynamics of DPD.

Methods  In our study, we recruited 84 right-handed DPD patients and 67 healthy controls (HCs), assessing them 
using the Cambridge Depersonalization Scale and a subliminal self-face recognition task. We also conducted a Tran-
scranial Direct Current Stimulation (tDCS) intervention to understand its effect on brain dynamics, evidenced by Func-
tional Magnetic Resonance Imaging (fMRI) scans. Our data preprocessing and analysis employed techniques such 
as Independent Component Analysis (ICA) and Dynamic Functional Network Connectivity (dFNC) to establish a com-
prehensive disease atlas for DPD. We compared the brain’s dynamic states between DPDs and HCs using ANACOVA 
tests, assessed correlations with patient experiences and symptomatology through Spearman correlation analysis, 
and examined the tDCS effect via paired t-tests.

Results  We identified distinct brain networks corresponding to the Frontoparietal Network (FPN), the Sensorimotor 
Network (SMN), and the Default Mode Network (DMN) in DPD using group Independent Component Analysis (ICA). 
Additionally, we discovered four distinct dFNC states, with State-1 displaying significant differences between DPD 
and HC groups (F = 4.10, P = 0.045). Correlation analysis revealed negative associations between the dwell time 
of State-2 and various clinical assessment factors. Post-tDCS analysis showed a significant change in the mean dwell 
time for State-2 in responders (t-statistic = 4.506, P = 0.046), consistent with previous clinical assessments.

Conclusions  Our study suggests the brain dynamics of DPD could be a potential biomarker for diagnosis and symp-
tom analysis, which potentially leads to more personalized and effective treatment strategies for DPD patients.
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Trial registrations  The trial was registered at the Chinese Clinical Trial Registry on 03/01/2021 (Registration number: 
ChiCTR2100041741, https://​www.​chictr.​org.​cn/​showp​roj.​html?​proj=​66731) before the trial.

Keywords  Functional Network Connectivity, FMRI, Depersonalization-Derealization Disorder

Backgrounds
Depersonalization-derealization disorder (DPD), a 
prevalent psychiatric disorder, fundamentally disrupts 
self-consciousness and could significantly impact the 
quality of life of those affected It manifests as a detach-
ment from one’s environment and personal self, which 
affects approximately 1% of the wider population [1, 2]. 
This prevalence rises to 5%-20% among outpatients and 
further increases to 17.5–41.9% in inpatient settings [1]. 
DPD patients frequently experience a disturbing sensa-
tion of being in a dreamlike state or questioning their 
existence [3]. The core of the symptoms lies in a dis-
ruption in self-referential processing [4], a fundamen-
tal aspect of consciousness [4]. Illustrative experiments, 
such as the rubber hand illusion study [5], reveal that 
individuals with pronounced DPD tendencies demon-
strate altered visual-tactile integration. Additionally, 
diminished experiences of the full-body illusion in self-
association contexts further underscore this anomaly [6].

While existing research has provided foundational 
insights into this disorder [7], the limited exploration of 
brain dynamics in DPD hinders a deeper understand-
ing of its mechanisms and restricts the advancement of 
diagnostic and treatment strategies. Dynamic Functional 
Network Connectivity (dFNC) has recently emerged as a 
popular approach to exploring brain dynamics by analyz-
ing the evolving relationships between functional regions 
[8–10], which may be also a suitable method to explore 
the brain dynamics in DPD. Specifically, brain regions 
with similar functional specializations exhibit Functional 
Connectivity (FC) through correlated blood oxygen level-
dependent signals during rest [11], indicating a strong 
link between them. FC could be a biomarker for diagno-
ses [12–14] or efficacy of treatment [15]. These function-
ally similar brain regions constitute the brain network. 
Large-scale dFNC offers a more direct, context-sensitive, 
and dynamic view at a higher network level [16]. More-
over, the brain regions altered in the DPD found in the 
previous research were parts of the Default Mode Net-
work (DMN), the Sensorimotor Network (SMN), or 
the Frontoparietal Network (FPN). The right Anterior 
Cingulate Cortex (ACC) [17], bilateral Medial Prefron-
tal Cortex (mPFC) [17], and temporoparietal junction 
[18–21] are part of DMN; the insula [22] is part of SMN; 
the Dorsolateral Prefrontal Cortex (dlPFC) [23] is part of 
the FPN [24, 25]. The SMN [26], FPN [27, 28], and DMN 
[29, 30] also emerge as central players in consciousness 

studies. These networks are crucial for understanding 
the workings of the consciousness. The SMN facilitates 
consciousness within the brain’s overarching functional 
architecture [31], while DMN-FPN connectivity is vital 
for introspective cognition [32]. Despite this, there is 
still a notable gap in the study of dFNC in DPD patients. 
Building on this existing evidence, our paper primarily 
focuses on exploring brain dynamics within and between 
the SMN, FPN, and DMN.

To address the limited exploration of brain dynamics in 
DPD, our study conducts a comprehensive dFNC analy-
sis focusing on diagnosis and symptoms. We compared 
the dFNC in DPD patients and healthy controls (HCs). 
We then performed the correlation analyses between the 
dFNC states with the clinical assessments among DPD 
patients, containing the symptoms measured by the CDS 
and the level of self-consciousness assessed by a sublimi-
nal self-face recognition task. To verify our findings of 
brain dynamics in DPD, we incorporated observations 
of patients’ brain dynamics following Transcranial Direct 
Current Stimulation (tDCS) intervention, a neuroregula-
tion technique. tDCS has already shown potential ben-
efits for individuals with various mental conditions, such 
as stress-related mental health [33] Thus, we checked 
whether dFNC states differed before and after tDCS 
interventions in responsive patients. Figure  1 illustrates 
the workflow of our data analysis. Advanced techniques, 
including Independent Component Analysis (ICA) and 
dFNC, were incorporated to delve into brain dynamics. 
Through the employment of the sliding window, clus-
tering, and correlation techniques, dynamic state labels 
were determined for HC participants, DPD patients, and 
DPD patients post-tDCS intervention. Leveraging these 
state labels, which could be viewed as brain dynamics, 
evaluations were conducted to understand the influence 
of brain dynamics on the personal experiences of DPD 
patients and their change post-tDCS.

Methods
Participants
We recruited 84 right-handed patients diagnosed with 
DPD from the Outpatient Department of Beijing Anding 
Hospital, Capital Medical University. All examinations 
were conducted following the principles of the Declara-
tion of Helsinki. The Ethics Committee of Beijing Anding 
Hospital, Capital Medical University, China approved the 
present study. Some of the data (DPD samples) presented 
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in this paper have been previously published in our study 
[34].

DPD patients were diagnosed according to ICD-10 and 
screened through the Chinese version of the Dissocia-
tive Disorders Interview Schedule (DDIS, https://​www.​

rossi​nst.​com/​ddis, accessed on 5 September 2018) [35] 
and the mini-international neuropsychiatric interview 
(M.I.N.I.) [36]. Patients with DPD were included if they 
were (a) 15–45 years old, (b) right-handed, and (c) with 
a score of Cambridge Depersonalization Scale (CDS) 

Fig. 1  Methods (Data Analysis). NDPD denotes the number of DPD patients, NHC denotes the number of HCs, T denotes the time windows 
number extracted for each single scan, and NDPDaftertDCS denotes the number of DPD patients after tDCS treatment. First, we adapt the group ICA 
to generate a DPD atlas from the fMRI of the DPD group and the HC group, which identifies intrinsic connectivity network. Second, we employ 
our atlas and K-means cluster method to get the brain dynamics, which support our detailed dFNC analysis. Third, we incorporated observations 
of patients’ neural dynamics following Transcranial Direct Current Stimulation (tDCS) intervention, to verify our dFNC findings for DPD

https://www.rossinst.com/ddis
https://www.rossinst.com/ddis
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[37] ≥ 70. They were excluded if they had (a) transient 
experiences of Depersonalization and/or Derealization 
due to trauma, fatigue, or substance use; (b) a history 
of neurological disorders or family history of hereditary 
neurological disorders; (c) history of substance addiction 
or brain trauma; (d) gross morphological anomalies, as 
evidenced by brain MRI; and (e) any electronic or metal 
implants.

67 HCs matched with age, sex and education were 
recruited by the solicitation, screened through M.I.N.I, 
and interviewed for the 2-item CDS [3] to determine the 
absence of previous DPD symptoms or psychiatric dis-
eases. None of the HCs had reported a history of acute or 
chronic illness.

Clinical assessment and self‑referential processing task
The CDS was developed by Sierra and Berrios specifically 
for DPD and consists of 29 self-reported items [37]. Each 
item encompasses both duration and frequency sub-
items. In clinical studies, a score of 70 is typically used 
as a threshold, with scores above 70 exhibiting a sensi-
tivity of 75.5% and a specificity of 87.2%. While previous 
factor analyses have shown that the CDS is multidimen-
sional, there is no large-sample unified factor structure, 
and there is a lack of factor analysis in the Chinese 
population.

In this study, we utilized three versions of the scale: the 
original 4-factor version from the scale’s development 

team [38], a subsequently derived 5-factor version that 
exhibited good results [39], and a more simplistic 2-fac-
tor version [40]. The 4-factor version comprises Anoma-
lous Body Experience, Emotional Numbing, Anomalous 
Subjective Recall, and Alienation from Surroundings. 
The 5-factor version includes Numbing, Unreality of Self, 
Perceptual Alterations, Unreality of Surroundings, and 
Temporal Disintegration. The 2-factor version consists of 
factors representing a sense of unreality and detachment, 
and emotional and physical numbing.

Self‑referential processing task
To reflect the level of self-awareness of the subjects, 
this study employed the time taken by the test group in 
a subliminal self-face recognition task as an indicator of 
the level of self-awareness in DPD patients. The task uti-
lized a continuous flash suppression (CFS) experimental 
paradigm. CFS is an experimental technique involving 
dynamic noise images presented to the dominant eye and 
a face image with increasing contrast to the non-domi-
nant eye. This induces interocular suppression, making 
the face initially imperceptible. As time progresses and 
face contrast increases, it breaks through suppression 
into consciousness. The time taken defines subliminal 
processing. Thus, we used this task as an indicator of the 
level of self-awareness in DPD patients.

The illustration of the experiment is shown in Fig.  2. 
All participants were tested in a soundproof laboratory 

Fig. 2  Illustration of a trial in the experimental paradigm. In the experimental condition, the non-dominant eye was exposed to the participant’s 
own face or scrambled pictures, transitioning from 0 to 100% contrast over 1000 ms and then remaining at 100% for 9000 ms, while the dominant 
eye was exposed to noise images at 100% contrast. In the control condition, both eyes were exposed to images that varied from 0 to 100% contrast, 
maintaining 100% for 4000 ms
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and completed the experiment after understanding the 
requirements and practicing until confident. During the 
experiment, participants’ heads were fixed with a chin 
rest 60 cm away from a computer screen.

The experiment consisted of two blocks: an experimen-
tal condition and a control condition. In the experimental 
block, participants wore red-blue anaglyph glasses, with 
noise images visible to the dominant eye through the red 
lens and face images to the other eye through the blue 
lens. This setup created interocular suppression, allow-
ing participants to see continuous noise images while 
the face image remained suppressed until breaking into 
awareness. In the control condition, without anaglyph 
glasses, noise and face images were presented to both 
eyes simultaneously, eliminating binocular suppression.

Each block included 55 trials: 15 self-face pictures, 15 
famous faces, 15 stranger faces, and 10 scrambled faces. 
Scrambled pictures were shown to the non-dominant 
eye, and a response within 10 seconds marked an error. 
After three false alarms, the trial restarted. Trials began 
with a white fixation point for 2000 ms to attract atten-
tion. In the experimental condition, the dominant eye 
saw 100% contrast noise images, while the non-dominant 
eye saw face or scrambled pictures, transitioning from 0 
to 100% contrast over 1000 ms and remaining at 100% for 
9000 ms. In the control condition, both eyes saw images 
varying from 0 to 100% contrast, maintaining 100% for 
4000 ms.

Participants pressed the space bar as quickly as possi-
ble upon recognizing the face image. Images remained on 
the screen until a response or 10 seconds elapsed. Details 
of the task can be found in a previously published paper 
[4]. We used the mean response time of self-faces in the 
experimental condition to represent the level of self-con-
sciousness of patients.

tDCS intervention
The experiment utilized the DC-STIMULATOR direct 
current microelectrode stimulator manufactured by Ger-
many’s NeuroConn company in conjunction with con-
ductive rubber electrodes measuring 5 × 7 cm2. Sponge 
covers were soaked in a dilute NaCl saline solution to 
enhance conductivity and then placed over the conduc-
tive rubber. A gradient method was employed to prevent 
the sudden onset and offset of current at the start and 
end of stimulation, which could cause pronounced sting-
ing or discomfort for the participant. The current gradu-
ally peaked over 15 seconds, with stimulation parameters 
set at 2 mA and lasting 20 min. Electrode placement on 
the skull was determined based on the 10–20 EEG sys-
tem. The stimulation site for the anode targeted the 
dlPFC at the F3 location, which is supported by imag-
ing evidence [41]. In the anodal stimulation mode, the 

anode electrode was placed on F3, while the cathode 
electrode was positioned on F4. The inclusion criteria 
for study participants remained consistent with previous 
standards. The Functional Magnetic Resonance Imaging 
(fMRI) was taken before the tDCS intervention, and a 
second fMRI was captured within 30 min after a single 
intervention to explore the mechanism of tDCS interven-
tion. Patients with a reduction of more than 25% in their 
CDS score after 10 sessions of tDCS therapy were con-
sidered responders. A reduction of 25% in the CDS score 
after ten tDCS therapy sessions was considered adequate.

Data acquisition and preprocessing
Image acquisition
Resting-state fMRI data were acquired with a 3.0 Tesla 
MRI scanner (Prisma 3.0; Siemens, Germany) in the Bei-
jing Anding Hospital, Capital Medical University, China. 
fMRI data were acquired with a single-shot, gradient-
recalled echo-planar imaging sequence with the follow-
ing parameters: repetition time = 2000 ms, echo time = 30 
ms, flip angle = 90°, matrix = 64 × 64, field of view = 200 
mm × 200 mm, slice thickness = 3.5 mm, gap = 1 mm, 33 
axial sections, and 240 volumes.

High-resolution brain structural images were acquired 
with a T1-weighted three-dimensional (3D) multi-echo 
magnetization-prepared rapid gradient-echo (MPRAGE) 
sequence (echo time: 3.39 ms, repetition time: 2530 ms, 
slice thickness 1.3 mm, voxel size: 1.3 × 1 × 1 mm3, field of 
view (FOV): 256 × 256 mm2 and volume number: 176).

Participants were required to undergo a 30-min rest 
period before scanning. They were explicitly instructed 
to remain still and awake throughout the scanning ses-
sion. Foam head holders were used to immobilize partici-
pants during the scanning process.

fMRI preprocessing
All image preprocessing was completed by DPABI [42] 
and SPM 12 [43]. The resting-state functional MRI 
(fMRI) data were preprocessed with the following steps: 
removal of the first ten volumes, correction for slice tim-
ing, realignment to the first volume, and spatial normali-
zation within the native space. Subsequently, echo-planar 
imaging volumes were co-registered to the correspond-
ing T1-weighted MRI images, normalized to MNI space 
using the normalization parameters derived from the 
T1-weighted MRI, and smoothed with a 4-mm full-width 
at half-maximum Gaussian kernel.

The generation of the DPD atlas
To generate the DPD atlas, we leverage the CanICA 
function from the Nilearn library to perform Inde-
pendent Component Analysis (ICA) on the collected 
neuroimaging data [44]. This process involves defining 
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30 independent components and deploying a ’whole-
brain-template’ mask strategy. Notably, the number of 
components was chosen as suggested by the former 
research that higher model orders in ICA can capture 
finer-grained sub-networks and enhance sensitivity 
to subtle connectivity changes [45]. We did not opt 
for a higher number of components in our ICA analy-
sis because increasing the model order beyond 30 can 
lead to overfitting and a reduction in the reproducibil-
ity of the identified components. Overfitting occurs 
when the model becomes excessively complex, captur-
ing noise instead of meaningful signals, which distorts 
the true functional connectivity patterns. Additionally, 
higher model orders may yield components that are 
less interpretable and more difficult to relate to known 
neuroanatomical structures or functional networks.

To identify the brain regions involved in each com-
ponent, we used the RegionExtractor tool from 
Nilearn’s regions module. The resulting data are pre-
served as NIfTI images, which are subsequently ana-
lyzed. Functional connectivity between components 
was calculated as the mean of pairwise functional 
connectivity between the regions identified by the 
RegionExtractor. This approach ensures that the con-
nectivity measures reflect the interactions between the 
specific regions within each component. Following the 
ICA decomposition, we utilize the Yeo 2011 7-network 
atlas for network extraction [46], selecting SMN, FPN 
and DMN for further scrutiny. We then calculate the 
similarity between the derived ICA components and 
the selected networks. This process involves applying a 
mask to the components associated with each network 
and computing the percentage overlap. We identify 
the components with the most significant similarity 
for each network, given that they exceed a specified 
threshold of 50%.

dFNC analysis
dFNC extraction
With our generated DPD atlas, we employ the sliding 
window technique to generate dynamic correlation 
matrices that encapsulate the FC patterns in discrete 
time windows. We first normalize the ROI signals 
using a convolution with sigma = 1 for smoothing and 
then define the window size as 20 and step size as 3. 
This choice is informed by previous work indicating 
that a window length between 30 and 60 seconds is 
optimal for estimating dFNC [8]. The generated matri-
ces rely on correlation analysis, a commonly employed 
method in dFNC studies [47]. After this step, we nor-
malize these matrices to Fisher’s Z transformation.

Clustering analysis
Given that DPD patients possess intact reality testing 
abilities, we hypothesized that distinct states are con-
sistently present across both groups (DPD and HC) and 
conditions (pre-tDCS and post-tDCS), with variations 
limited only to dynamics. Consequently, we utilized the 
K-means algorithm to segment the fMRI sequences from 
both DPD and HC subjects into distinct states, thereby 
capturing the underlying patterns of dFNC [48]. We uti-
lize the elbow point criterion to establish the optimal 
number of clusters (states) [49]. To visually represent 
the segregation of connectivity states into distinct clus-
ters, we plotted each state in a reduced two-dimensional 
space using Principal Component Analysis (PCA) for 
simplification and visualization purposes. The states 
were color-coded according to their corresponding clus-
ter assignment, facilitating an intuitive visualization of 
their distribution and separation. The resulting clusters 
are illustrated in Fig. S1. Following this, we calculate the 
mean correlation matrix for each state, shedding light on 
the variations in FC across other states. Simultaneously, 
we measure the mean dwell time within each state, the 
frequency of each state’s occurrence, and the transitions 
between states for every subject.

Utilizing the K-means clustering results, we assign dif-
ferent state labels to each time window for each subject 
in every group (DPD group and HC group). This allows 
us to obtain dynamic state parameters, including the 
count (the number of occurrences of a state in a subject), 
the mean dwell time (the average duration that a state 
persists), and the number of transitions (the frequency 
of state changes in a subject). We then compare the state 
parameters between the DPD and the HC groups using 
an ANACOVA test, controlling for variables such as sex, 
age, education, and head framewise displacement.

Correlation analysis
We conducted a partial Spearman correlation analysis to 
examine the relationship between the total score on the 
CDS and the average duration in each state. In this analy-
sis, we controlled sex, age, years of education, and head 
movement parameters. A significance level of P < 0.05 
indicates a statistically significant correlation. Notably, 
our correlation analysis was conducted as an exploratory 
study. The primary goal was to identify potential trends 
and relationships that could inform future research 
rather than to establish definitive statistical significance. 
Given the novel nature of this investigation and the 
limited sample size, applying multiple comparison cor-
rections could have increased the risk of Type II errors, 
potentially obscuring meaningful findings. Therefore, we 
chose not to apply multiple comparison corrections in 
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this context, aligning with other exploration studies [50, 
51].

Pre‑ and post‑tDCS analysis
We applied the K-means model from the Clustering anal-
ysis section to pre- and post-tDCS fMRI scan data for 
post-tDCS assessments. By using this approach to both 
pre-tDCS, and post-tDCS data, and HC data, we could 
compare changes in state parameters. Specifically, due to 
the limited sample size, we provide descriptive statistics 
for positive-tDCS, negative-tDCS, and HC in pre-tDCS 
and HC data.

Results
We recruited 92 DPD subjects, but eight subjects were 
excluded (one for gross morphological anomalies, 
three for poor quality control score, three for max head 
motion > 3 mm, and one for relative RMS > 0.2 mm). 
Thus, we finally analyzed 84 samples (22 female, 59 
unmedicated) with a diagnosis of DPD. And 67 HCs were 
recruited, matched by age, education duration and sex. 
For a detailed list of the brain regions involved in each 
component, see Supplementary Information (SI 1 Clini-
cal information of participants).

FPN, SMN, and DMN of DPD identified from group ICA
The results of the group ICA are depicted in Fig.  3. 
Using CanICA, 30 components were identified in 
our DPD atlas. Among them, three components cor-
responded to the SMN (as network_2 in the Yeo-7 
atlas), one component matched the FPN (Network_6 
in the Yeo-7 atlas), and three components aligned with 

the DMN (Network_7 in the Yeo-7 atlas [46]). For a 
detailed list of the brain regions involved in each com-
ponent, see Supplementary Information (SI 2 The brain 
regions in Components).

The four states of dFNC identified in DPD
With the elbow method for K-means clustering, we 
identified four states of DPD from the dFNC analy-
sis based on our generated DPD atlas (Fig.  4). These 
clusters are shown in Fig. S1. Varying the number of 
clusters can significantly affect the outcomes of the 
analysis. Using fewer clusters might obscure impor-
tant distinctions between different dynamic states, 
potentially leading to an oversimplified interpretation 
of the functional connectivity data. On the other hand, 
a higher number of clusters could lead to overfitting, 
where the model captures noise as if it were significant, 
making the clusters less interpretable and potentially 
less reproducible across different datasets or similar 
studies.

In State-0 and State-2, the FC between all compo-
nents appeared weak. Conversely, State-1 displayed 
strong FC across all components. State-3 showcased 
strong intra-network FC within DMN and SMN com-
ponents. The mean dwell time of State-1, which exhib-
ited a robust active correlation among all components, 
was different between the DPD group and the HC 
group (F = 4.10, P = 0.045, Table 1), while the dwell time 
of each state was not different. Detailed information on 
these parameters is shown in the Supplementary Mate-
rials Fig. S2.2–1 to Fig. S2.9.

Fig. 3  Our DPD atlas. A All ICA components; (B) Components in SMN, FPN, DMN. The different colors represent different components 
in the network. Component 1 is characterized by red, Component 2 by green, and Component 3 by blue. Abbreviation: ICA, Independent 
Component Analysis; SMN, Sensorimotor Network; FPN, Frontoparietal Network; DMN, Default Mode Network
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Fig. 4  Different states of dFNC. We identified four distinct neural states. Notably, variations in the dwell times of the global cohesive state (State-1) 
and the intra-network cohesive state (State-2) served as pivotal biomarkers

Table 1  ANACOVA result for brain dynamics between DPD and HC group

ANACOVA test, controlling for variables with sex, age, education, and head framewise displacement. Brain dynamics (Variable): State-0 mean dwell time, State-1 mean 
dwell time (*p < 0.05), State-2 mean dwell time, State-3 mean dwell time, State-0 frequency of occurrence, State-1 frequency of occurrence, State-2 frequency of 
occurrence, State-2 frequency of occurrence, State-3 frequency of occurrence, Transitions number

Abbreviation: mDT Mean dwell time, DPD Depersonalization-derealization disorder, HC Healthy control

Variable DPD (N = 84) HC (N = 67) Sum sq F-statistic PR(> F)

State-0 mDT 7.99 ± 5.28 7.07 ± 3.93 44.075 2.54 0.113

State-1 mDT 2.65 ± 2.95 2.85 ± 1.96 16.649 4.945 0.028*

State-2 mDT 3.29 ± 0.94 3.21 ± 0.78 0.01 0.019 0.89

State-3 mDT 4.71 ± 1.62 4.95 ± 1.77 0.383 0.169 0.682

State-0 40.43 ± 27.39 36.46 ± 23.26 2057.314 3.282 0.072

State-1 14.24 ± 19.56 14.73 ± 17.01 210.179 0.978 0.324

State-2 36.89 ± 19.21 37.45 ± 15.28 187.711 0.622 0.432

State-3 50.44 ± 17.71 53.36 ± 17.99 150.245 0.475 0.492

Transitions number 31.67 ± 9.91 31.96 ± 7.81 55.941 0.715 0.399



Page 9 of 15Zheng et al. BMC Psychiatry          (2024) 24:685 	

Correlation analysis between dFNC states and clinical 
assessments
Multiple negative associations were observed when 
analyzing the correlation between the brain dynam-
ics of DPD patients and related scales. Specifically, the 
mean dwell time of State-2, an intra-network cohesive 
state, displayed significant negative correlations with 
factors such as self, PA, surrounding, AB, and unreality 
(Fig. 5).

The verification of the dFNC states through tDCS 
intervention
Due to the limited sample size, we performed only 
descriptive statistics without hypothesis testing at the 
group level. Notably, tDCS responders (2.85 ± 1.60) 
exhibited higher State 1 mean dwell times than HCs 
(2.85 ± 1.51), consistent with our overall group-level find-
ings. Conversely, non-responders (1.53 ± 0.45) showed 
lower State 1 mean dwell times than HCs, which may 
partly explain their lack of response to tDCS treatment. 
These results are illustrated in Fig. S2.3–1 to Fig. S2.3–9.

Fig. 5  Correlation between DPD neural dynamics and related scales. Total: the total scores of CDS. Five factors of CDS: Numbing, Self (Unreality 
of Self ), PA (Perceptual Alterations), Surrounding (Unreality of Surroundings), TD (Temporal Disintegration); Four factors of CDS: AB (Anomalous 
Body Experience), EN (Emotional Numbing), ASR (Anomalous Subjective Recall), AfS (Alienation from Surroundings); Two Factors of CDS: Unreality 
(A sense of unreality and detachment), Numbing2 (Emotional and physical numbing); GAF, global assessment of functioning. The mean dwell time 
of State-2, an intra-network cohesive state, displayed significant negative correlations with factors such as self (p < 0.05), PA (p < 0.05), surrounding 
(p < 0.05), AB (p < 0.01), and unreality (p < 0.01)
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A post-tDCS analysis demonstrated a notable change 
in the mean dwell time for State-2 in responders to tDCS 
intervention rather than in non-responders (Before: 
2.941 ± 1.258, after: 3.477 ± 0.866, t-statistic = 4.506, 
P = 0.046, Table  2), while the mean dwell time for 
State-3 (Before: 3.141 ± 0.70, after: 3.524 ± 1.008, t-statis-
tic = 3.086, P = 0.022, Table 2) and the number of State-0 
(Before: 44.714 ± 30.136, after: 28.857 ± 17.343, t-statis-
tic = -4.967, P = 0.003, Table 2) changed in non-respond-
ers. In both groups, there were no significant side effects 
were observed, except for the sensation of tDCS stimula-
tion itself. This result is consistent with the findings from 
the earlier part of this study, where we discovered a cor-
relation between mean dwell time in State-2 and the rat-
ings on the DPD-related clinical assessment.

Discussion
In this paper, we explore the brain dynamics of DPD 
through dFNC analysis. First, we generated a new com-
prehensive disease atlas for DPD, where the network atlas 
in DPD showed lateralized. Second, we found the brain 
dynamics of active states play a significant role in the 
DPD mechanism. Notably, the dwell time of the global 
cohesive state (State-1) emerges as a critical factor distin-
guishing DPD from HC. Meanwhile, the dwell time of the 
intra-network cohesive state (State-2) is associated with 
various DPD symptoms. Third, our post-tDCS analy-
sis revealed that tDCS significantly influences the dwell 
time of State-2, thus demonstrating our symptom-related 
observations.

Contrasting with the previous work mentioned [7], 
our study first employs FC analysis and delves into brain 
dynamics with multiple analysis methods such as ICA 
and dFNC. Second, our considerably larger sample size 
makes our findings more considerable. Third, we adopt 
the effect of tDCS interventions to understand how treat-
ments influence DPD brain dynamics, which verifies our 
clinical findings from clinical practice.

Comprehensive disease FC atlas for DPD
We have successfully generated a comprehensive dis-
ease FC atlas for DPD for the first time, significantly 
advancing our understanding of this complex condition. 
We found the brain regions in these networks were not 
aligned with the healthy peoples’ atlas (Yeo-7 [52]). The 
SMN in the DPD atlas was similar to the Yeo-7 network, 
while the FPN and DMN seemed to be lateralized. In 
our previous research [53], we found that patients with 
DPD demonstrated higher fractional anisotropy (FA) in 
the right corpus callosum (CC), and posterior corona 
radiate (CR) compared to HCs. The CC is a structure in 
the brain that connects the left and right hemispheres 
through around 180 million transcallosal fibers. It is 
responsible for monitoring the integration of information 
between the hemispheres, as well as controlling sensory, 
motor, and cognitive functions [54]. When the fibers in 
the genu and body of the CC have higher FA, it indicates 
abnormal information exchange between the prefrontal 
lobe and sensory areas of the brain abnormal informa-
tion exchange between the prefrontal lobe and sensory 
areas of the brain is indicated [53]. And the network atlas 
in DPD shown lateralized seems to support our previ-
ous findings [53]. These results suggest that lateralization 
of the brain for DPD may contribute to DPD’s possible 
pathomechanisms.

In neuroimaging studies, the choice of brain atlas can 
significantly influence the results, particularly regarding 
the identified brain networks and dynamic states. For 
instance, the choice of atlas may influence the statistical 
significance and characterization of dFNC states. The 
AAL atlas [55], for example, is widely used and divides 
the brain based on anatomical landmarks. In contrast, 
the DPD atlas is designed to emphasize functional con-
nectivity relevant to DPD. These differences in regional 
definitions and the specificity of the brain areas involved 
can lead to variations in the identified networks and 
dynamic states. The DPD atlas is tailored to reflect the 
neural alterations observed in DPD, offering a more 
precise framework for our analysis. This atlas allows for 
a focused examination of brain regions that are particu-
larly implicated in DPD, thereby enhancing the accuracy 
and relevance of our findings. On the other hand, using 
a more general atlas like AAL might lead to broader 

Table 2  Paired t-test of tDCS intervention

Brain dynamics (dependent variable): State-0 mean dwell time, State-1 mean 
dwell time, State-2 mean dwell time (*p < 0.05 in responders), State-3 mean 
dwell time (*p < 0.05 in non-responders), State-0 frequency of occurrence 
(*p < 0.05 in non-responders), State-1 frequency of occurrence, State-2 
frequency of occurrence, State-2 frequency of occurrence, State-3 frequency of 
occurrence, Transitions number

Responders (N = 3) Non-
responders(N = 7)

Dependent variable t-statistic p-value t-statistic p-value

State-0 mean dwell time -0.748 0.533 -0.357 0.736

State-1 mean dwell time 0.997 0.501 1.161 0.298

State-2 mean dwell time 4.506 0.046* 0.529 0.616

State-3 mean dwell time -0.497 0.669 3.086 0.022*

State-0 frequency of occur-
rence

0.072 0.949 -4.967 0.003*

State-1 frequency of occur-
rence

-0.472 0.683 2.231 0.067

State-2 frequency of occur-
rence

0.675 0.569 1.153 0.293

State-3 frequency of occur-
rence

-0.072 0.949 1.836 0.116

Transitions number 0.833 0.492 0.094 0.928
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but less specific findings, potentially overlooking subtle 
but critical connectivity patterns associated with DPD. 
Therefore, the conclusions regarding the neural mecha-
nisms underlying DPD might differ depending on the 
atlas used. By choosing the DPD atlas, we aim to ensure 
that our results are as relevant and specific as possible 
to the disorder in question, thereby providing deeper 
insights into its neural underpinnings.

Thus, we chose the DPD atlas for this study due to its 
high relevance and specificity for DPD. And due to our 
hypothesis focused on exploring the differences in dFNC, 
rather than static network structures. We chose to com-
pare the different states between groups rather than 
directly compare components or networks between the 
groups. This approach is consistent with other studies 
in the field [56, 57], which often prioritize investigating 
network dynamics and their implications for cogni-
tive and clinical outcomes rather than static network 
configurations.

The differences in brain dynamics between DPD and HC
Our dFNC analysis revealed pronounced discrepancies 
in brain dynamics between the HC group and the DPD 
group. Notably, we identified distinct patterns in the 
dwell time of the global cohesive state, which may suggest 
that brain dynamics could be the potential biomarker for 
DPD diagnosis.

Our dFNC analysis discerned four distinct states asso-
ciated with DPD. In State-0 and State-2, FC between all 
components seemed weak. In contrast, state 1 exhibited 
strong FC across all components, while state 3 demon-
strated a pronounced intra-network FC within DMN and 
SMN components. A key observation was the disparity 
in the dwell time of the global cohesive state (State-1), 
which appears to be a critical factor differentiating DPD 
from HC. The global cohesive state, characterized by 
robust FC among the SMN, FPN, and DMN, represents 
heightened synchronized activity across these major 
brain networks [58]. The SMN is responsible for sensory 
and motor processing [59], contributing to the bodily self 
[60]; the FPN governs executive functions like attention 
and working memory [61], while the DMN is involved in 
self-referential thoughts and daydreaming [62]. A dispar-
ity in the dwell time of this state between DPD and HC 
suggests a different pattern of inter-network communica-
tion in DPD patients. This difference might indicate that 
DPD patients have altered integration or co-activation 
patterns among sensory processing, executive functions, 
and self-referential thoughts. Such a shift could poten-
tially contribute to the dissociative experiences of DPD. 
In other words, the heightened synchronization across 
these networks might underlie the detachment from 
reality and self that DPD patients report. The prolonged 

dwell time in this state for DPD patients compared to 
HCs might suggest a greater tendency for them to stay 
in a hyper-connected neural state, which could correlate 
with the intensity or frequency of their DPD symptoms.

The observed disparity in the dwell time of the State-1 
between the DPD group and the HC group suggests that 
DPD individuals may experience a hyper-connected 
neural state, a phenomenon that aligns with the predic-
tive coding framework. This framework proposes that 
depersonalization and derealization symptoms can be 
individually manipulated by altering the relative preci-
sion of interoceptive predictions driven by exteroceptive, 
proprioceptive, and interoceptive sensory modalities. 
According to Gatus et  al. [63], activation of the insula 
(part of the SMN) and ACC (part of the DMN) activation 
together serve to integrate perception and physiological 
responses. We could potentially propose that in healthy 
people, the self-reference of any given signal is formed 
by iteratively comparing the signals with the predicted 
self-reference of that signal (through interoceptive- to 
Mental-self-processing) and by dynamically updating 
the predictions to minimize prediction errors, resulting 
in both bottom-up and top-down modulations [31]. DPD 
patients stay in a hyper-connected state for more time, 
then the level of self-processing could be impaired, which 
leads to altered interceptive prediction and ultimately 
results in symptoms of numbing.

Although these comparisons did not yield statistically 
significant differences, we believe this result is due to 
several factors. The variability and complexity of brain 
functional connectivity, combined with a relatively small 
sample size, may obscure subtle differences between the 
groups. Furthermore, the exploratory nature of our study 
was aimed at identifying potential patterns and trends 
rather than achieving definitive statistical comparisons.

Using the Yeo-7 atlas and ICA with 30 components 
was intended to capture broad and complex network 
patterns, which might not be sensitive enough to detect 
finer-grained differences. Nonetheless, the overall pat-
terns observed in our analyses provide valuable insights 
into the brain dynamics of DPD patients.

The correlation of brain dynamics with DPD 
symptomatology
When correlating brain state dynamics with CDS 
scores, we found that the dwell time of the intra-net-
work cohesive state for both DMN and SMN (State 
2) appears to negatively correlate with various DPD-
related symptom scores. Interestingly, States-1 and 
State-2 illuminate contrasting aspects concerning 
the differences between DPD and HC and the rela-
tionship of brain dynamics with DPD experiences. 
State-1, representing the global cohesive state, reveals 
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fundamental neural differences between DPD patients 
and HCs. It captures an overarching neural signature 
of DPD but might not directly correlate with specific 
real-time disorder experiences. This distinction sug-
gests it embodies a generalized predisposition towards 
DPD rather than a direct measure of symptom inten-
sity. Conversely, State-2, which showcases activity 
within both DMN and SMN, correlates more closely 
with transient DPD experiences. In summary, while 
State-1 offers a broader perspective on the inherent 
neural distinctions between DPD patients and HCs, 
State-2 delves into the dynamic neural processes asso-
ciated with the immediate expression of DPD symp-
toms, considering both introspective and sensory 
experiences. These findings further suggest that brain 
dynamics could be the potential biomarkers for DPD 
progress monitoring.

The DMN is traditionally associated with self-refer-
ential activities [62], introspection, and daydreaming. 
In the context of DPD, the negative correlation with 
DMN activity suggests that increased activity within 
this network might serve as a compensatory mecha-
nism or protective factor, potentially mitigating the 
severity of DPD symptoms. In simpler terms, when 
the DMN is more active or internally synchronized (as 
indicated by the longer dwell times in state 2), it may 
counterbalance or reduce the intensity of dissociative 
and unreality experiences that DPD patients undergo. 
Conversely, the SMN, primarily involved in sensory 
processing and motor functions [64], also exhibits 
altered activity in DPD patients [65]. While its specific 
correlation with DPD symptoms requires more in-
depth analysis, it can be hypothesized that disruptions 
or heightened activity in SMN might relate to sensory 
or perceptual disturbances often reported in DPD [65].

Previous research also supports our findings of 
the relationship between DMN/SMN activities and 
DPD symptoms. Parts of DMN (i.e., right ACC and 
mPFC) were activated when DPD sufferers differenti-
ate between self and others [17]. Notably, the magni-
tude of Depersonalization correlates with activations 
in mPFC, among other areas. Reinforcing this, our 
preceding investigation [34] emphasized the instru-
mental role of mPFC in self-referential processes and 
its potential involvement in DPD pathologies [29]. 
Moreover, parts of SMN(i.e. insula) were identified as 
a linkage between symptom alleviation in DPD, with 
diminished emotional resonance tethered to a subdued 
insula response [22]. Many studies have positioned the 
insula as pivotal to interoceptive awareness, our innate 
self-sensing faculty [66–71].

The verification of dFNC states through tDCS intervention
In our exploration of DPD, the application of tDCS played 
a pivotal role in verifying the dFNC states we identified, 
which offered a unique perspective on how these states 
respond to neuro-modulatory interventions [72]. The 
use of tDCS adds significant credibility to our findings. 
It not only reinforces the identified brain dynamics as key 
biomarkers in DPD but also suggests that these states are 
modifiable, emphasizing the need for targeted therapeu-
tic interventions.

In detail, our analysis revealed distinct responses 
to tDCS intervention in DPD patients, categorized as 
responders and non-responders, with no significant 
side effects observed. We investigated the differences in 
dynamic states between DPD patients and HCs before 
tDCS treatment. Our analysis revealed distinctions 
between responders, non-responders, and HCs. The 
dwell time of State 1 in responders was higher than HCs, 
consistent with our primary results. While that in the 
non-responders was lower than in the HCs. This finding 
suggests that these patients’ neural dynamics may dif-
fer, potentially explaining the lack of therapeutic effect 
observed in this subgroup. These results underscore 
the importance of considering individual differences in 
neural dynamics when evaluating the efficacy of tDCS 
for treating DPD. The observed variations in dynamic 
states highlight the potential for personalized treatment 
approaches, where identifying specific neural profiles 
could guide the selection of patients who are more likely 
to benefit from tDCS. However, it is important to note 
that the small sample size in our study may introduce 
bias, and further research with larger cohorts is neces-
sary to validate these findings and explore their implica-
tions for personalized treatment strategies in DPD.

In responders, tDCS notably influenced the dwell time 
of State-2, the intra-network cohesive state. This altera-
tion underscores the potential of tDCS in modifying the 
activity within the DMN and SMN. These networks are 
deeply involved in the self-referential and sensory pro-
cessing dysfunctions in DPD, suggesting that tDCS might 
recalibrate internal synchronization in these networks, 
thereby alleviating DPD symptoms. The change of State-2 
dwell time in responders reaffirms our earlier findings, 
indicating that increased activity within these networks, 
particularly the DMN, might serve as a protective mech-
anism in DPD. The longer dwell times in State-2 might 
help counterbalance or reduce the intensity of disso-
ciative and unreality experiences in DPD patients. Con-
versely, non-responders exhibited changes in the dwell 
time of State-3 and the number of occurrences in State-0 
post-tDCS treatment, which might reflect a different 
mechanism of brain adaptation or resistance to tDCS 
intervention. These observations for the tDCS effect are 
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particularly intriguing, which imply that while tDCS can 
alter brain dynamics in DPD, its effectiveness and the 
nature of these changes can vary significantly among 
individuals [73].

Limitation
Whilst our study provides valuable insights, it is not 
devoid of limitations. Although necessary for ensuring 
quality, the exclusion of certain data might lead to poten-
tial biases [74]. Additionally, the correlational nature of 
some findings prevents us from establishing causality 
[75]. The small sample size used in the tDCS interven-
tion may result in low statistical power. It is also worth 
noting that the exact clinical significance of each dFNC 
state remains to be fully decoded, an area for future 
exploration.

Conclusion
In conclusion, our research suggests the brain dynam-
ics of DPD could be a potential biomarker for diagnosis 
and symptom analysis, which may be helpful for further 
clinical research for DPD. We presented a comprehen-
sive disease atlas, found the active state plays a signifi-
cant role in the DPD mechanism, and demonstrated our 
symptom-related observations with post-tDCS analy-
sis. Key findings reveal that the active state significantly 
influences the mechanism of DPD. Notably, variations in 
the dwell time of the global cohesive state serve as a cru-
cial factor distinguishing DPD from HCs. Furthermore, 
the dwell time of the intra-network cohesive state corre-
lates with various DPD symptoms, as evidenced by post-
tDCS treatment observations. These insights advance 
our knowledge of DPD mechanisms and emphasize the 
promising therapeutic potential of interventions such as 
tDCS, which also benefit finding innovative management 
approaches for this complex disorder.

While our study benefits from a larger sample size 
compared to previous research [7], future work could still 
gain from analyzing even more extensive data to produce 
findings that are more representative of the real DPD 
population. Additional, we consider incorporating state-
of-the-art explainable deep learning techniques for treat-
ment prediction in DPD mechanism research, aiming for 
a more objective understanding of the DPD mechanism 
that surpasses human selection bias [76].
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