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The programs described in this article and distributed with it aim (1) at integrating the optical Bloch equations 
governing the time evolution of the density matrix representing the quantum state of an atomic system driven 
by laser or microwave fields, and (2) at integrating the 1D Maxwell-Bloch equations for one or two laser fields 
co-propagating in an atomic vapour. The rotating wave approximation is assumed. These programs can also be 
used for more general quantum dynamical systems governed by the Lindblad master equation. They are written 
in Fortran 90; however, their use does not require any knowledge of Fortran programming. Methods for solving 
the optical Bloch equations in the rate equations limit, for calculating the steady-state density matrix and for 
formulating the optical Bloch equations in the weak probe approximation are also described.

Program summary

Program Title: CoOMBE

CPC Library link to program files: https://doi .org /10 .17632 /5wsg9d52dk .1
Developers’ repository link: https://github .com /durham -qlm /CoOMBE

Licensing provisions: GPLv3

Programming language: Fortran 90

Nature of problem: The present programs can be used for the following operations: (1) Integrating the optical-

Bloch equations within the rotating wave approximation for a multi-state atomic system. At the choice of the 
user, the calculation will return either the time-dependent density matrix at given times or the density matrix 
in the long time limit if the system evolves into a steady state in that limit. The calculation can be done with or 
without averaging over the thermal velocity distribution of the atoms. The number of atomic states which can 
be included in the calculation is limited only by the CPU time available and possibly by memory requirements. 
An arbitrarily large number of laser or microwave fields can be included in the calculation if these fields are 
all CW. This number is currently limited to one or two for fields that are not all CW. The calculation can be 
done in the weak probe approximation, or in the rate equations approximation, or without assuming either of 
these two approximations. Calculating refractive indexes, absorption coefficients and complex susceptibilities is 
also possible. (2) Integrating the 1D Maxwell-Bloch equations in the slowly varying envelope approximation for 
one or two fields co-propagating in a single-species atomic vapour. Although geared towards the case of atoms 
interacting with laser fields, this code can also be used for more general quantum systems with similar equations 
of motion (e.g., molecular systems, spin systems, etc.).

Solution method: The Lindblad master equation is expressed as a system of homogeneous first order linear 
differential equations, which are transformed as required and solved to obtain the density matrix representing 
the state of the atomic system. A variety of methods are offered to this end. The same approach is also used in 
the calculation of the polarisation of the medium when integrating the Maxwell-Bloch equations. The latter are 
integrated over space using predictor-corrector methods. The library includes a general driving program making 
it possible to use these codes without additional program development. The distribution also includes examples 
of the use of a container for running these programs without a pre-installed Fortran compiler.
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1. Introduction

The programs described in this article have been developed for mod-

elling general atomic or molecular systems interacting with one or sev-

eral laser or microwave fields resonant or nearly resonant with atomic 
transitions, the interaction being treated within the rotating wave ap-

proximation. They can also be used for more general quantum systems, 
e.g., spin systems, governed by similar equations of motion. Their main 
focus is on the calculation of the density matrix representing the state of 
the system as obtained by integrating the optical Bloch equations (i.e., 
the Lindblad master equation for such systems). The populations and co-

herences can be calculated as time-dependent functions. Alternatively, 
for systems driven by CW fields and evolving to a steady state, they 
can also be obtained in the long time limit. Calculations of complex 
susceptibilities, refractive indexes and absorption coefficients are also 
possible. The present programs were originally developed for studying 
the formation of optical solitons and two-colour quasisimultons in an 
optical vapour, which required the integration of the 1D Maxwell-Bloch 
equations in the slowly envelope approximation [1]. The Maxwell-Bloch 
solvers developed at that occasion are included in this library as they 
are of general interest and share the same user interface.1

A number of open source programs are already available for tack-

ling similar or related calculations, namely general purpose programs 
for the modelling of open quantum systems, programs more specific to 
Atomic Physics calculations, and programs solving the Maxwell-Bloch 
equations in various approximations. The general purpose programs 
include, in particular, Qutip [2,3], written in Python, its predecessor, 
Quantum Optics Toolbox [4,5], written in MATLAB, and a more re-

cent alternative, QuantumOptics, written in Julia [6]. They also include 
several MATLAB programs primarily intended for educational purposes 
[7–9], two Quantum Monte Carlo programs written in C++ [10,11]

and a MATLAB program focusing on the optimal control of the dynam-

ics of quantum systems interacting with external electromagnetic fields 
[12]. General programs solving the optical Bloch equations for atomic 
systems have also been published, including the Atomic Density Ma-

trix package [13], which is written in Mathematica and also supports 
more general quantum optical calculations, a collection of Python tools 
for modelling few-level atom-light interactions [14], and PyLCP [15], 
a Python program oriented towards the modelling of laser cooling but 
also allowing for general solutions of the optical Bloch equations. The 
Elecsus program, also written in Python, is specialised to the case of 
an atomic vapour addressed by a single probe field and offers powerful 
facilities for the analysis of experimental absorption spectra for that par-

ticular case [16,17]. The necessary atomic data are provided by Atomic 
Density Matrix, PyLCP and Elecsus for species of current interest. The 
Maxwell-Bloch solvers include mbsolve [18], a C++ program for the 1D 
propagation of a field in the plane wave approximation or a field con-

fined to a wave guide, and QuEST [19–22], also written in C++, which 
was developed for modelling the interaction of an electromagnetic field 
with multiple 2-level quantum dots in 3D. Neither mbsolve nor QuEST 
assume the slowly varying envelope approximation; mbsolve does not 
assume the rotating wave approximation either and is not restricted to a 
2-state medium (the Maxwell-Bloch solver included in the present pack-

age is simpler: it takes the medium to be homogeneous and assumes both 
the slowly varying envelope approximation and the rotating wave ap-

proximation, which is appropriate, e.g., in calculations of self-induced 
transparency for many-cycle pulses).

The present programs may nonetheless be of interest in view of their 
generality, their scalability to large systems, and the wide choice of 
integration methods they offer. While written in Fortran 90 for speed 
and convenience, no knowledge of this language is necessary for using 
them. It is expected that they will be further extended in the future, 

1 Python codes developed in the course of the work reported in [1] are pub-
2

lished at the URL https://github .com /tpogden /maxwellbloch.
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in particular by coupling them with programs providing the atomic 
data required for calculations on atomic systems of current experi-

mental interest. Future versions will be published at the URL https://

github .com /durham -qlm /CoOMBE, a GitHub repository of the Quan-

tum, Light and Matter research group of Durham University.

General information about the distribution is given in Section 2. The 
computational methods implemented in these program and the theoret-

ical framework are outlined in Section 3. Information about installing 
and using this software can be found in Section 4 and also, at much 
greater lengths, in the User Manual. The reuse of codes written by other 
authors in the present programs is acknowledged in Section 5. The main 
text is accompanied by a number of more technical appendices: the 
reduction of Lindblad master equation to rate equations is explained Ap-

pendix A, the calculation of a steady-state density matrix in the long time 
limit in Appendix B, and the implementation of the weak probe approx-

imation in the present computational framework in Appendix C. Useful 
results concerning weak probe calculations for a single field are gath-

ered in Appendix D. Examples of the use of these programs are given 
in Appendix E and Appendix F (further examples can be found in the

examples directory included in the distribution). Advice about how 
to run this software without the installation of a Fortran compiler and 
supporting libraries, through a Podman container [23], are provided in 
Appendix G and in the GitHub repository.

We are not aware that the methods described in Appendix A, Ap-

pendix B and Appendix C are widely known or previously published.

2. General information

2.1. Organisation into program units

This library contains several modules and external subroutines, as 
follows:

• The general_settings modules. This module sets several key 
parameters, in particular the variable 𝚗𝚜𝚝 which defines the num-

ber of states to be considered in the calculation. More information 
about this module and these parameters can be found in Section 4.2.

• The obe_constantsmodule, which defines fundamental physical 
constants used elsewhere in the code [24].

• The obe module, which forms the main part of the library. It con-

tains a number of subprograms, many of which are private to this 
module (i.e., cannot be called from outside the module). These sub-

programs are concerned with solving the optical Bloch equations 
and/or forming a user-friendly interface with the ldbl module.

• The mbe module, grouping program units concerned with solving 
the Maxwell-Bloch equations and with solving the optical Bloch 
equations for time-dependent fields.

• The ldbl module, which contains a number of subprograms con-

cerned with setting up and solving the Lindblad master equation. 
This module is the core of the library. However, the subprograms it 
contains can be accessed more conveniently through subprograms 
forming part of the obe or mbe modules, and using those does not 
require any knowledge of the inner working of the 𝚕𝚍𝚋𝚕 module. 
For this reason, this module is not addressed in the present article. 
The reader is referred to the detailed documentation for general 
information about its content.

• The external subroutine ext_setsys, which is used only for com-

municating information between the obe and mbe modules.

• The external subroutines fcn_dummy and solout_dummy, which 
are provided for compatibility with the original code of the DOP853 
ODE solver mentioned in Section 3.1.3.

• The ldblstore module, which is used to store certain intermedi-

ate results produced by programs contained in the ldbl module.

• The driveall program, described in Section 4.4, which offers a 
simple interface with obe and mbe and makes it possible to use 

these codes without any Fortran programming.

https://github.com/tpogden/maxwellbloch
https://github.com/durham-qlm/CoOMBE
https://github.com/durham-qlm/CoOMBE
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Table 1

Contents of the distribution.

File or directory Short description

user_manual.pdf The User Manual, including a detailed description 
of the use of the driveall program.

general_settings.f90 The general_settings module.

ldbl.f90 The ldbl and ldblstore modules and the

fcn_dummy and solout_dummy subroutines.

obe.f90 The obe and obe_constants modules and the

ext_setsys subroutine.

mbe.f90 The mbe module.

driveall.f90 The driveall program.

examples Examples of the use of this software, including 
the files and the program listed in Appendix E and 
Appendix F.

These various components are grouped into files as outlined in Table 1.

Besides a number of program units intended for internal use only, the

obe and mbe modules currently contain a total of 35 user-facing sub-

programs (Table 2), i.e., subprograms providing an interface between 
the internal program units and a user-written driving program.

2.2. Documentation and examples

The distribution includes a User Manual complementing the present 
article. This document contains further information about all the pro-

grams units forming this library, a detailed description of the user-facing 
subprograms, detailed information about the use of the driveall pro-

gram, and a short tutorial explaining how the Hamiltonian of an atomic 
system interacting with an electromagnetic field treated in the rotating 
wave approximation can be cast into the form of Eq. (11).

Further examples illustrating the use of various features of this li-
brary are also provided. The corresponding files and documentation can 
be found in the examples directory.

3. Theory and methods

3.1. The optical-Bloch equations

3.1.1. General formulation

The obe and mbe codes have been developed for modelling atomic 
systems composed of two or more states driven by laser fields or other 
coherent electromagnetic fields, the fields being resonant or close to 
resonance with transitions between these states. The codes can also be 
used to calculate the density matrix for more general 𝑁 -state quantum 
systems interacting with a superposition of 𝑀 electromagnetic fields, as 
long as the rotating wave approximation can be assumed.

Each field is described by a real electric field vector, 𝐄𝛼(𝐫, 𝑡), the total 
electric field of the applied light at position 𝐫 and time 𝑡 being 𝐄(𝐫, 𝑡), 
with

𝐄(𝐫, 𝑡) =
𝑀∑
𝛼=1

𝐄𝛼(𝐫, 𝑡). (1)

The calculation assumes that each of the 𝐄𝛼 (𝐫, 𝑡)’s can be written as the 
product of a slowly-varying envelope and a plane-wave carrier. Specifi-

cally,

𝐄𝛼(𝐫, 𝑡) =
1
2
𝝐̂𝛼 𝛼 exp[𝑖(𝐤𝛼 ⋅ 𝐫 −𝜔𝛼𝑡)] + c.c. (2)

= |𝛼|Re
(
𝝐̂𝛼 exp[𝑖(𝐤𝛼 ⋅ 𝐫 −𝜔𝛼𝑡+ arg𝛼)]) , (3)

where 𝐤𝛼 is the wave vector of field 𝛼 and 𝜔𝛼 is its angular frequency 
(𝜔𝛼 > 0). The field amplitudes 𝛼 may be complex and may vary in time. 
The polarisation vectors are assumed to be constant and of unit norm:
3

𝝐̂
∗
𝛼
⋅ 𝝐̂𝛼 = 1. (4)
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Given Eqs. (2) and (3), the intensity of a continuous wave (CW) field is 
related to its complex amplitude by the following equation:

𝐼 = 𝜖0𝑐 ||2∕2. (5)

This relation generalizes to the case of a pulsed field of envelope 
(𝑡), provided the pulse encompasses more than a few optical cycles: 
𝜖0𝑐 |(𝑡)|2∕2 can be taken to be the instantaneous intensity at time 𝑡. 
Intensities are easily converted into electric field amplitudes and con-

versely by making use of the fact that an intensity of exactly 1 mW cm−2

corresponds to an electric field amplitude of 86.8021 V m−1.

The states coupled to each other by the field(s) are assumed to be 
orthonormal eigenstates of the field-free Hamiltonian, 𝐻̂0 . We denote 
these states by the ket vectors |𝑖⟩, 𝑖 = 1, … , 𝑁 , and the corresponding 
field-free eigenenergies by ℏ𝜔(𝑖): ⟨𝑖|𝑗⟩ = 𝛿𝑖𝑗 and

𝐻̂0|𝑖⟩ = ℏ𝜔(𝑖)|𝑖⟩, 𝑖 = 1,… ,𝑁. (6)

Typically, these 𝑁 states form two or more groups differing considerably 
in energy, and each of the fields is resonant or close to resonance with 
transitions between states of one of these groups and states of one of the 
other groups. E.g., in rubidium, these groups could be the 5S1∕2(𝐹 , 𝑚𝐹 )
states, the 5P1∕2(𝐹 , 𝑚𝐹 ) states, the 5P3∕2(𝐹 , 𝑚𝐹 ) states, etc., and the cal-

culation could involve a field resonant or nearly resonant on a transition 
between one of the 5S1∕2(𝐹 , 𝑚𝐹 ) states and one of the 5P1∕2(𝐹 , 𝑚𝐹 )
states. These groups of energetically close states are denoted by 1 , 2, 
. . . , 𝐾 in the following. The states belonging to a same group may or 
may not differ in energy, depending on the system. Either way, the en-

ergies ℏ𝜔(𝑖) of the states belonging to a same group can be referred to a 
reference energy, ℏ𝜔ref , from which each one differs by an energy offset 
ℏ𝛿𝜔(𝑖): for group 𝑘,

𝜔(𝑖) = 𝜔ref (𝑘) + 𝛿𝜔(𝑖) if 𝑖 ∈ 𝑘. (7)

A reference energy ℏ𝜔ref (𝑘) could be, for example, the energy of one of 
the basis states, or the centroid of a group of hyperfine levels. More gen-

erally, ℏ𝜔ref (𝑘) can be any energy reference appropriate for the problem 
at hand.

The calculation also assumes that the interaction with the fields 
is taken into account within the electric dipole approximation, which 
amounts to neglecting the spatial variation of 𝐄(𝐫, 𝑡). For simplicity, the 
vector 𝐫 is taken to be zero in the following. The exp(±𝑖 𝐤𝛼 ⋅ 𝐫) phase 
factors can be subsumed into the complex amplitudes 𝛼 should they 
be relevant. The Hamiltonian of the system thus takes on the following 
form:

𝐻̂(𝑡) =
𝑁∑
𝑖=1

ℏ𝜔(𝑖)|𝑖⟩⟨𝑖|−1
2

𝑀∑
𝛼=1

𝑁∑
𝑖=1

𝑁∑
𝑗=1

[𝛼 exp(−𝑖𝜔𝛼𝑡)⟨𝑖|𝝐̂𝛼 ⋅ 𝐃̂|𝑗⟩
+∗

𝛼
exp(𝑖𝜔𝛼𝑡)⟨𝑖|𝝐̂∗𝛼 ⋅ 𝐃̂|𝑗⟩] |𝑖⟩⟨𝑗|, (8)

where 𝐃̂ is the atom’s dipole operator. In terms of the relevant position 
operator, 𝐗̂,

𝐃̂ = −𝑒𝐗̂, (9)

where 𝑒 is the absolute charge of the electron (𝑒 > 0). The matrix ele-

ments of the operator 𝝐̂𝛼 ⋅ 𝐗̂ would typically be obtained as the product 
of a reduced matrix element and an angular factor. The corresponding 
complex Rabi frequencies Ω𝛼;𝑖𝑗 are defined as follows throughout the 
code:

Ω𝛼;𝑖𝑗 =
⎧⎪⎨⎪⎩
𝛼 ⟨ 𝑖 | 𝝐̂𝛼 ⋅ 𝐃̂ | 𝑗 ⟩∕ℏ if ℏ𝜔(𝑖) > ℏ𝜔(𝑗),

∗
𝛼
⟨ 𝑖 | 𝝐̂∗

𝛼
⋅ 𝐃̂ | 𝑗 ⟩∕ℏ if ℏ𝜔(𝑖) < ℏ𝜔(𝑗),

(10)

with the convention that Ω𝛼;𝑖𝑗 = 0 if states 𝑖 and 𝑗 are deemed not to be 
coupled by field 𝛼, e.g., because this transition would be excessively far 

from resonance. It should be noted that this definition of the complex 
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Table 2

User-facing subprograms contained in the obe and mbe modules.

Name Short description

Computational routines: Time-dependent calculation of the density matrix

mbe_tdint_1 For a single field with a time-dependent envelope, with or without Doppler averaging.

mbe_tdint_2 For a superposition of two fields with a time-dependent envelope, with or without Doppler averaging.

obe_Doppler_av_td_A For CW fields, with Doppler averaging.

obe_Doppler_av_td_B For CW fields, with Doppler averaging (alternative method).

obe_tdint For CW fields, without Doppler averaging.

Computational routines: Calculation of the steady state density matrix for CW fields

obe_2state For 2-state systems driven by a single field, with or without Doppler averaging.

obe_Doppler_av_st For general systems with semi-analytical Doppler averaging.

obe_Doppler_av_st_numerical For general systems with numerical Doppler averaging.

obe_steadystate For general systems without Doppler averaging.

obe_steadystate_ladder For ladder systems in the weak probe approximation, with or without Doppler averaging.

obe_steadystate_onefld For one-field systems, with or without Doppler averaging (intended for calculation repeated for multiple values of the 
detuning).

obe_steadystate_onefld_powerbr As obe_steadystate_onefld_weakprb but with power broadening taken into account.

obe_steadystate_onefld_weakprb For one-field systems in the weak probe approximation, with or without Doppler averaging.

obe_weakfield For one-field systems in the weak probe approximation, with or without Doppler averaging (with calculation of the 
refractive index and the absorption coefficient).

obe_weakprb_3stladder For 3-state ladder systems in the weak probe approximation, with or without Doppler averaging.

obe_weakprb_4stladder For 4-state ladder systems in the weak probe approximation, with or without Doppler averaging.

Computational routines: Integration of the Maxwell-Bloch equations

mbe_propagate_1 Propagates a single field.

mbe_propagate_2 Propagates a superposition of two fields.

Initialisation routines

mbe_set_envlp Defines the parameters of the temporal envelope of either the probe or the coupling field.

mbe_set_tdfields_A Calculates the temporal envelope of either the probe or the coupling field.

mbe_set_tdfields_B Passes a time mesh and pre-calculated time-dependent complex amplitude(s) of the applied field(s) to mbe.

obe_reset_campl Sets the complex amplitude of a field to a new value.

obe_reset_detuning Sets the detuning of a field to a new value.

obe_setcsts Sets a number of parameters defining the system considered.

obe_set_Doppler Sets parameters related to Doppler averaging.

obe_setfields Specifies field parameters.

obe_setoutputfiles Specifies the unit numbers of output files.

obe_set_tol_dop853 Specifies convergence criteria for the DOP853 ODE solver.

Auxiliary routines

obe_coher_index Given the indexes of two different atomic states, 𝑖 and 𝑗, returns the indexes of the components corresponding to the real 
and imaginary parts of the coherence 𝜌𝑖𝑗 in the 1D representation of the density matrix.

obe_fieldtocfield Given a variable of type obefield containing the details of a field, returns a variable of type obecfield containing the 
same details.

obe_find_campl Given a complex dipole moment and a complex Rabi frequency, returns the corresponding complex electric field amplitude.

obe_find_rabif Given a complex dipole moment and a complex electric field amplitude, returns the corresponding complex Rabi frequency.

obe_init_rho Returns the density matrix of a mixed state with given populations and zero coherences.

obe_pop_index Returns the index of the component corresponding to a specified population in the 1D representation of the density matrix.

obe_susceptibility Given the relevant coherences, calculates the complex susceptibility, refractive index and absorption coefficient.
4
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Rabi frequency includes the (negative) −𝑒 factor multiplying the posi-

tion operator. It may differ, in sign and otherwise, from the definition 
of the Rabi frequency used by other authors.

This Hamiltonian cannot be treated in its full complexity by the 
present software. Rather, the obe and mbe routines are based on a 
simplified Hamiltonian, 𝐻̂ ′, derived from 𝐻̂(𝑡) by neglecting any exces-

sively far detuned transition, making the rotating wave approximation 
and passing to slowly varying variables by a unitary transformation. 
This transformed Hamiltonian is assumed to have the following general 
form:

𝐻̂ ′ = ℏ

𝑁∑
𝑖=1

(
𝛿𝜔(𝑖) +

𝑀∑
𝛼=1

𝑎𝑖𝛼Δ𝛼

)|𝑖⟩⟨𝑖|− (ℏ∕2)
𝑁∑
𝑖=1

𝑁∑
𝑗=1

Ω𝑖𝑗 |𝑖⟩⟨𝑗|, (11)

where Δ𝛼 is the frequency detuning of field 𝛼, the 𝑎𝑖𝛼 ’s are numerical 
factors, and

Ω𝑖𝑗 =
𝑀∑
𝛼=1

Ω𝛼;𝑖𝑗 . (12)

What the factors 𝑎𝑖𝛼 are and how the frequency detunings are defined 
in terms of the energies of the relevant states and the angular frequen-

cies 𝜔𝛼 varies from system to system, as is explained in Appendix A of 
the User Manual. For instance, for the 3-state system considered in Ap-

pendix E,

Δ1 = 𝜔1 − (𝜔ref (2) −𝜔ref (1)), (13)

Δ2 = 𝜔2 − (𝜔ref (3) −𝜔ref (2)), (14)

and, as can be seen from Eq. (E.1), 𝑎11 = 𝑎12 = 𝑎22 = 0 and 𝑎21 = 𝑎31 =
𝑎32 = −1. We stress that these frequency detunings, as defined, are an-

gular frequencies, like the Rabi frequencies Ω𝑖𝑗 . It can be noted that 𝐻̂ ′

is a self-adjoint operator, as expected, since Ω𝑗𝑖 =Ω∗
𝑖𝑗

within the above 
definition of the Rabi frequencies. For most systems, 𝐻̂ ′ is constant in 
time if all the fields considered are CW fields.

The optical Bloch equations are the equations of motion for the in-

dividual components of the density matrix for an open quantum system 
interacting with classical electromagnetic fields. They are obtained from 
the Lindblad master equation,

𝜕𝜌̂

𝜕𝑡
= − 𝑖

ℏ
[𝐻̂ ′, 𝜌̂ ] + 1

2
∑
𝑛

(
2 𝐶̂𝑛𝜌̂ 𝐶̂

†
𝑛
− 𝐶̂†

𝑛
𝐶̂𝑛𝜌̂− 𝜌̂ 𝐶̂†

𝑛
𝐶̂𝑛

)
, (15)

where 𝜌̂ is the density operator describing the state of the system and the 
𝐶̂𝑛 ’s are certain operators called jump (or collapse) operators. The latter 
include the operator 

√
Γ𝑖𝑗 | 𝑖 ⟩⟨ 𝑗 | if state 𝑗 relaxes to state 𝑖 at a rate Γ𝑖𝑗

by spontaneous decay or some other mechanism. It is customary to add 
phenomenological terms in −𝛾𝑖𝑗⟨ 𝑖 | 𝜌̂ | 𝑗 ⟩| 𝑖 ⟩⟨ 𝑗 | and −𝛾𝑖𝑗⟨ 𝑗 | 𝜌̂ | 𝑖 ⟩| 𝑗 ⟩⟨ 𝑖 |
to the right-hand side of Eq. (15) if the coherences ⟨ 𝑖 | 𝜌̂ | 𝑗 ⟩ and ⟨ 𝑗 | 𝜌̂ | 𝑖 ⟩
decay at an additional rate 𝛾𝑖𝑗 due to pure dephasing effects such as 
collisional broadening.

The obe and ldbl modules calculate the density matrix, 𝜌, repre-

senting the density operator 𝜌̂ in the {|𝑖⟩} basis — i.e., the elements of 
𝜌 are the matrix elements of 𝜌̂:

𝜌𝑖𝑗 = ⟨ 𝑖 | 𝜌̂ | 𝑗 ⟩, 𝑖, 𝑗 = 1,… ,𝑁. (16)

Re𝜌𝑖𝑗 = Re𝜌𝑗𝑖 and Im𝜌𝑖𝑗 = −Im𝜌𝑗𝑖 since the density matrix is Hermi-

tian. These relations are used within the obe, mbe and ldbl modules 
to store and calculate this matrix as a column vector of 𝑁2 real num-

bers, 𝗋, rather than as a 2D array of 𝑁2 complex numbers. Specifically, 
if the states are labelled 1, 2, 3,. . . as done throughout this section,

𝗋 =
(
𝜌11 Re𝜌12 Im𝜌12 𝜌22 Re𝜌13 … 𝜌𝑁𝑁

)𝖳
. (17)

Accordingly, the Lindblad equation is recast as a set of homogeneous 
linear relations between the elements of 𝗋 and the elements of 𝗋̇, the 
5

time derivative of 𝗋:
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𝗋̇ = 𝖫 𝗋, (18)

where 𝖫 is a 𝑁2 × 𝑁2 real matrix. Much of the obe and ldbl code 
aim at constructing this matrix given the parameters of the system and 
at integrating Eq. (18), either as written or after further transforma-

tion. (Readers interested in knowing the details of how the matrix 𝖫
is constructed are referred to the information given in the code of the 
subroutine ldbl_reformat_rhs_cmat contained in the subroutine

ldbl_set_rhsmat of the ldbl module.)

3.1.2. Inhomogeneous broadening

The obe and mbe modules make it possible to take inhomogeneous 
broadening into account in the calculation of the density matrix. The 
codes are specifically geared towards the case of Doppler broadening 
arising from the free thermal motion of atoms in an atomic vapour. 
However, they can be easily generalised to other cases of Gaussian 
broadening if required. Extending them to Doppler broadening for a 
non-Maxwellian distribution of atomic velocities is also possible.

In the current state of development of the obe and mbe mod-

ules, Doppler averaging is possible only for co-propagating or counter-

propagating co-linear fields. The internal state of an atom depends on 
the component of its velocity vector in the direction of propagation of 
the field, 𝑣, owing to the Doppler shift of the detunings Δ𝛼 . To first order 
in 1∕𝑐,

Δ𝛼(𝑣) = Δ𝛼(𝑣 = 0) − 𝑘𝛼𝑣 (19)

if the wave vector 𝐤𝛼 is oriented in the positive 𝑧-direction or

Δ𝛼(𝑣) = Δ𝛼(𝑣 = 0) + 𝑘𝛼𝑣 (20)

if it is oriented in the negative 𝑧-direction. Correspondingly, the matrix 
𝖫 appearing in Eq. (18) depends on 𝑣, and so does the solution vector 𝗋. 
Averaging the latter over the Maxwellian distribution of atomic veloci-

ties gives the Doppler-averaged density matrix, 𝜌av, here represented by 
the column vector 𝗋av:

𝗋av =

∞

∫
−∞

𝗋(𝑣)𝑓M(𝑣) d𝑣 (21)

with

𝑓M(𝑣) = 1
𝑢
√
𝜋
exp(−𝑣2∕𝑢2). (22)

In this last equation, 𝑢 is the rms velocity of the atoms in the 𝑧-direction: 
𝑢 =

√
2𝑘B𝑇 ∕𝑀 , where 𝑘B is Boltzmann constant, 𝑇 is the temperature 

of the vapour and 𝑀 is the mass of the atom.

The obe and mbe modules include code calculating the integral over 
𝑣 either by numerical quadrature or by expressing the integral in terms 
of the Faddeeva (or Faddeyeva) function, 𝑤(𝑧) [25]:

𝑤(𝑧) = exp
(
−𝑧2

) ⎡⎢⎢⎣1 + 2𝑖√
𝜋

𝑧

∫
0

exp
(
𝑡2
)
d𝑡
⎤⎥⎥⎦ . (23)

In terms of the complementary error function [25],

𝑤(𝑧) = exp
(
−𝑧2

)
erfc (−𝑖𝑧). (24)

The approach based on the Faddeeva function applies only to Doppler 
averaging of the steady state density matrix. It is outlined in Appendix B

and Appendix D.

The numerical quadrature method is more general. The quadrature 
abscissas {𝑣𝑘} and quadrature weights {𝑤𝑘} used by the obe and mbe
modules can either be provided by the user or calculated internally. As 
the program sets

av
𝑁𝑣∑
𝗋 =
𝑘=1

𝑤𝑘 𝗋(𝑣𝑘)𝑓M(𝑣𝑘), (25)
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the quadrature weights should not include the velocity distribution 
𝑓M(𝑣). Since the Doppler effect is taken into account to first order in 
1∕𝑐 only, as per Eqs. (19) and (20), the matrix 𝖫 varies linearly with 𝑣:

𝖫 = 𝖫0 + 𝑣𝖫1, (26)

where 𝖫0 and 𝖫1 do not depend on 𝑣. These two matrices are easily 
constructed, which makes Eq. (26) an efficient way of re-calculating 𝖫
for each value of 𝑣. Replacing 𝑓M(𝑣) by another velocity distribution, 
should this be necessary, would only require minor changes to the codes.

3.1.3. Integrating the optical Bloch equations

Integrating Eq. (18) subject to specified initial conditions gives the 
density matrix as a function of time. Unless the size of the system 
is excessively large, this operation is amenable to standard numerical 
methods. This library provides five subroutines to this effect, namely

obe_Doppler_av_td_A, obe_Doppler_av_td_B and obe_tdint, 
for CW fields, and mbe_tdint_1 and mbe_tdint_2, for fields with 
a time-dependent complex amplitude 𝛼(𝑡). The obe routines can han-

dle an arbitrary number of applied fields, whereas mbe_tdint_1 and

mbe_tdint_2 are respectively limited to one and two fields. Both

obe_Doppler_av_td_A and obe_Doppler_av_td_B calculate the 
Doppler-averaged time-dependent density matrix. These two routines 
differ by their memory and CPU times requirements. The obe_tdint
routine calculates the time-dependent density matrix without Doppler 
averaging. Doppler averaging is optional for the two mbe routines.

Each of these five routines offers a choice of integrator between the 
classic fourth-order Runge-Kutta method, Butcher’s fifth-order Runge-

Kutta method [26] and an adaptive ODE integrator (the DOP853 routine 
of Hairer et al., which is a Dormand-Prince implementation of an ex-

plicit eighth-order Runge-Kutta method [27,28]). A solution based on 
the right and left eigenvectors of the matrix 𝖫 is also implemented, and 
can be contemplated if this matrix is time-independent (which is nor-

mally the case if the applied fields are CW). These eigenvectors fulfil the 
equations

𝖫𝗏𝑗 = 𝜆𝑗𝗏𝑗 , 𝑗 = 1,… , (27)

and

𝗎†
𝑗
𝖫 = 𝜆𝑗𝗎

†
𝑗
, 𝑗 = 1,… , (28)

with  =𝑁2. In many cases of interest, the initial density matrix vec-

tor can be written as a linear combination of the 𝗏𝑗 ’s. I.e., there exist 
complex coefficients 𝑐1, 𝑐2, . . . , 𝑐 such that

𝗋(𝑡 = 𝑡0) =
∑
𝑗=1

𝑐𝑗 𝗏𝑗 . (29)

In this case, the density matrix can be obtained for all times as

𝗋(𝑡) =
∑
𝑗=1

𝑐𝑗 exp[𝜆𝑗 (𝑡− 𝑡0)]𝗏𝑗 . (30)

However, the existence of such a set of coefficients is not guaranteed 
since the matrix L is not symmetric and may be defective. The subpro-

gram obe_tdint offers the option to attempt to expand 𝗋(𝑡 = 𝑡0) as per 
Eq. (29) with

𝑐𝑗 =
𝗎†
𝑗
𝗋(𝑡 = 𝑡0)

𝗎†
𝑗
𝗏𝑗

, (31)

and if this attempt is successful (it normally is), use Eq. (30) to propagate 
the density matrix in time.

3.1.4. Rate equations

The optical Bloch equations can be transformed into a smaller system 
6

of rate equations if the elements of the density matrix can be divided into 
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two classes,  and  , depending on whether they converge to steady 
values much more rapidly () or much more slowly () than the ele-

ments belonging to the other class. Class  typically includes most or all 
the coherences, class  the populations and, if any, the coherences not 
included in . This dichotomy makes it possible to reduce the number of 
coupled differential equations by adiabatic elimination of the elements 
belonging to . The details of this approach can be found in Appendix A.

The routines obe_Doppler_av_td_A and obe_tdint can solve 
Eq. (18) within this approximation for a superposition of CW fields, with 
or without Doppler averaging. As the code is written, the set  of the 
elements of 𝜌 which are actually propagated in time includes all the 
populations and none of the coherences. The latter are derived from the 
former through Eq. (A.5) of Appendix A. Time propagation thus involves 
solving a system of only 𝑁 coupled differential equations, which is a 
considerable reduction from the original system of 𝑁2 equations.

3.1.5. Steady state solutions

In many cases, but not all cases, the populations and coherences set-

tle to constant values as time increases if the fields are CW. Then 𝗋 → 𝗋st
for 𝑡 →∞, where

𝗋̇st = 𝖫 𝗋st = 0. (32)

The steady-state density matrix represented by the column vector 𝗋st is 
thus an eigenvector of the matrix 𝖫 corresponding to a zero eigenvalue, 
and can usually be calculated as such. The calculation follows the same 
lines as the calculation of 𝗋(𝑡) by the eigenvalue method described in Sec-

tion 3.1.3, except that here only the eigenvectors 𝗏𝑗 belonging to a zero 
eigenvalue are included in Eq. (30). The optical Bloch equations have 
no steady state solution if some of the eigenvalues 𝜆𝑗 are imaginary.

The obe module also supports a different way of obtaining the 
steady-state density matrix, which is based on transforming the eigen-

value equation 𝖫 𝗋 = 0 into an inhomogeneous system of linear equa-

tions,

𝖫′𝗋′ = 𝖻, (33)

where 𝖫′ is a ( − 1) × ( − 1) square matrix and 𝖻 is a ( − 1)-
component column vector. The matrix 𝖫′ and the column vector 𝖻 are 
derived from 𝖫 by a straightforward rearrangement process. The trans-

formation is normally possible due to the unit trace property of the den-

sity matrix, which constraints the solutions of this eigenvalue equation. 
The vector 𝗋st representing the steady state density matrix is identical 
to the solution vector 𝗋′, apart from one population which can be cal-

culated readily as a linear combination of the other populations. The 
reader is referred to Appendix B for the details of the method. Calculat-

ing 𝗋st in this way may be faster than by using the eigenvalue method 
but will fail if Eq. (32) has more than one solutions. It would then be 
necessary to specify the density matrix that 𝗋st develops from in order 
to obtain a unique solution, which is not overly difficult in the eigen-

value method — and is implemented in the obe module — but would 
considerably complicate the calculation based on the linear equations 
method.

Finding the steady state as per Eq. (33) also makes it possible to 
Doppler average the density matrix semi-analytically, as an alternative 
on the entirely numerical approach mentioned in Section 3.1.2. This 
semi-analytical route may lead to substantial savings in CPU time as 
compared to a numerical quadrature. Its principles are outlined in Ap-

pendix B.

As pointed out in that appendix, significant savings may also be 
achieved, along similar lines, in computations involving the calculation 
of the density matrix for multiple values of a same detuning.

Calculations of the steady-state density matrix are possible only 
for CW fields. Several routines are provided to this end, namely, for 
general systems, obe_steadystate (for calculations without Doppler 
averaging), obe_Doppler_av_st (for calculations with Doppler av-
eraging performed semi-analytically as described in Appendix B, and



R.M. Potvliege and S.A. Wrathmall

obe_Doppler_av_st_numerical (for calculations with Doppler av-

eraging performed by a numerical quadrature). The library also includes 
a routine specialised to the case of 2-state systems driven by a single 
field (obe_2state), one specialised to the case of multi-state systems 
driven by a single field with the calculation organised as explained in 
Appendix B (obe_steadystate_onefld), and, as described in next 
section, several routines specialised to calculations in the weak probe 
approximation. obe_steadystate and obe_Doppler_av_st_nu-
merical can handle calculations using the eigenvalue method, which 
makes it possible to address cases for which the steady state depends on 
the initial populations. The subroutine obe_Doppler_av_st_numer-
ical is normally less efficient than obe_Doppler_av_st.

3.1.6. The weak probe approximation

These programs offer the option of solving the optical Bloch equa-

tions within the approximation where one of the fields is considered to 
be too weak to cause any appreciable optical pumping over the rele-

vant time scales. A calculation within this approximation amounts to 
calculating the density matrix to first order in the weak field and to all 
orders in any of the other fields in the problem. The populations are 
not affected by the weak field in this case, while the coherences depend 
linearly on its amplitude, without any power broadening.

The weak field is referred to as the probe field in many applications 
of these methods, and the weak field approximation as the weak probe 
approximation. This terminology is also used here. How this approxima-

tion is implemented within the obe module is explained in Appendix C.

The calculation of the steady state for a ladder system by the linear 
equations method may be problematic in the weak probe approxima-

tion. Ladder systems here refer to systems in which a set of low energy 
states, which are the only ones initially populated, are coupled to states 
of higher energy only by the probe field. The populations of the lower 
energy states do not vary in time in the weak probe approximation for 
such systems, and the populations of the higher energy states remain 
identically zero at all times. The steady state populations are thus the 
same as the initial ones, which are specified by the user. It is there-

fore possible to find the steady state coherences by an application of the 
rate equations method. Referring to Appendix A, the calculation simply 
amounts to solving Eq. (A.5) for the vector 𝗋, with  including all the 
coherences and  all the populations. Within this approach, folding the 
result on a Maxwellian distribution of atomic velocities can also be done 
in terms to the Faddeeva function, following the same method as out-

lined in Appendix B but here starting from Eq. (A.5) rather than from 
Eq. (33).

Calculations within the weak probe approximation can normally be 
handled by the general computational routines contained in the obe
module. However, steady state calculations for ladder system are best 
done by the subroutine obe_steadystate_ladder. Specialised sub-

routines (obe_weakprb_3stladder and obe_weakprb_4stlad-
der) are also provided for calculations in the weak probe approximation 
for, respectively, 3-state ladder systems [29,30] and 4-state ladder sys-

tems [31].

The steady state density matrix takes on a particularly simple form in 
the weak probe approximation if the system comprises only two states 
or two groups of states coupled by a single field. This case is described 
in Appendix D. Three specialised routines are provided for tackling such 
systems, namely obe_steadystate_onefld_weakprb, obe_weak-
field (a stand-alone subprogram which also calculates the complex 
susceptibility, the refractive index and the absorption coefficient), and

obe_steadystate_onefld_powerbr (for systems in which power 
broadening is significant but optical pumping is not, as explained in the 
detailed description of this subprogram given in the User Manual).

3.1.7. The complex susceptibility

Let 𝐏(𝑡) be the polarisation generated in the medium by the optical 
field described by Eq. (1). (As mentioned above, we set 𝐫 = 0 in this 
7

equation. The exp(±𝑖 𝐤𝛼 ⋅ 𝐫) phase factors are assumed to be taken into 
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account through the complex amplitudes 𝛼 if they are relevant.) In 
terms of a complex susceptibility 𝜒(𝜔𝛼),

𝐏(𝑡) =
𝜖0
2

𝑀∑
𝛼=1

𝝐̂𝛼 𝛼𝜒(𝜔𝛼) exp(−𝑖𝜔𝛼𝑡) + c.c. +… , (34)

where the … stand for contributions oscillating at frequencies other than 
𝜔𝛼 , if any is present. It is assumed, in the following, that these additional 
contributions are negligible or absent.

For such systems,

𝜒(𝜔𝛼) = 2𝑁d
∑
𝑖,𝑗

′
𝜌𝑖𝑗 ⟨ 𝑗 | 𝝐̂∗𝛼 ⋅ 𝐃̂ | 𝑖 ⟩∕(𝜖0 𝛼), (35)

where 𝑁d is the number density and, as in Section 3.1.1, 𝐃̂ is the dipole 
operator. For each field, the summation runs over all the states |𝑖⟩ and 
all the states |𝑗⟩ dipole-coupled to each other by this field and such that 
ℏ𝜔(𝑖) > ℏ𝜔(𝑗) with 𝜔(𝑖) −𝜔(𝑗) ≈ 𝜔𝛼 . This equation can also be written in 
the following form, which is the one implemented in the programs:

𝜒(𝜔𝛼) = 2𝑁d
∑
𝑖,𝑗

′
𝜌𝑖𝑗 ⟨ 𝑖 | 𝝐̂𝛼 ⋅ 𝐃̂ | 𝑗 ⟩∗∕(𝜖0 𝛼). (36)

The coherences 𝜌𝑖𝑗 ’s and therefore the susceptibility 𝜒(𝜔𝛼) generally de-

pend on the intensity of all the fields included in the calculation — with 
the important exception of systems containing only one field and this 
field is treated within the weak probe approximation (see Appendix D).

Besides the complex susceptibility, the programs can also calculate 
the corresponding refractive index, 𝑛(𝜔𝛼), and absorption coefficient, 
𝛼(𝜔𝛼). Here [32],

𝑛(𝜔𝛼) = Re [1 + 𝜒(𝜔𝛼)]1∕2 (37)

𝛼(𝜔𝛼) = 2𝑘𝛼 Im [1 + 𝜒(𝜔𝛼)]1∕2. (38)

The library contains two routines calculating these quantities, 
namely obe_susceptibility, which uses pre-calculated coherences, 
and obe_weakfield, which is self-contained and computes the nec-

essary coherences within the weak probe approximation for multi-state 
single-field systems.

3.2. The Maxwell-Bloch equations

3.2.1. General formulation

The mbemodule addresses the case of a single field or a superposition 
of two different fields, i.e., a probe field and a coupling field, (co)propa-

gating in the positive 𝑧-direction. Solving the Maxwell-Bloch equations 
for more than two fields or in another geometry is not yet supported.

In general, the spatial and temporal variation of the electric field 
component of the electromagnetic wave is governed by the equation

∇2𝐄− 1
𝑐2

𝜕2𝐄
𝜕𝑡2

= 𝜇0
𝜕2𝐏
𝜕𝑡2

, (39)

where 𝐏 is the medium polarisation and 𝜇0 is the vacuum permeability. 
The plane wave approximation is assumed in the calculation performed 
by the mbe codes. I.e., it is assumed that 𝐄 and 𝐏 are constant in any 
plane perpendicular to the 𝑧-axis. These fields thus depend only on 𝑧
and 𝑡, and the 3D wave equation reduces to the 1D equation

𝜕2𝐄
𝜕𝑧2

− 1
𝑐2

𝜕2𝐄
𝜕𝑡2

= 𝜇0
𝜕2𝐏
𝜕𝑡2

. (40)

This equation can be simplified further, to
𝜕𝛼
𝜕𝑧

+ 1
𝑐

𝜕𝛼
𝜕𝑡

= 𝑖
𝑘𝛼

2𝜖0
𝛼(𝑧, 𝑡), (41)

by making the ansatz

1
𝑀∑
𝐄(𝑧, 𝑡) =
2

𝛼=1
𝝐̂𝛼 𝛼(𝑧, 𝑡) exp[𝑖(𝐤𝛼 ⋅ 𝐫 −𝜔𝛼𝑡)] + c.c., (42)
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𝐏(𝑧, 𝑡) = 1
2

𝑀∑
𝛼=1

𝝐̂𝛼 𝛼(𝑧, 𝑡) exp[𝑖(𝐤𝛼 ⋅ 𝐫 −𝜔𝛼𝑡)] + c.c., (43)

and taking into account that the complex amplitudes 𝛼(𝑧, 𝑡) and 𝛼(𝑧, 𝑡)
vary slowly compared to the carriers. As noted above, the library only 
supports calculations for a single field (𝑀 = 1) or a superposition of two 
fields (𝑀 = 2). The field with 𝛼 = 1 is referred to as the probe field and 
the field with 𝛼 = 2 (if present) as the coupling field.

The relationship between the medium polarisation and the state of 
the atoms is considered in Section 3.1.7, from which it follows that

𝛼(𝑧, 𝑡) = 2𝑁d
∑
𝑖,𝑗

′
𝜌𝑖𝑗 ⟨ 𝑖 | 𝝐̂𝛼 ⋅ 𝐃̂ | 𝑗 ⟩∗, (44)

where 𝑁d is the medium number density and the summation runs as in 
Eqs. (35) and (36). Changing the time variable 𝑡 to the shifted time 𝑡′, 
with

𝑡′ = 𝑡− 𝑧∕𝑐, (45)

further simplifies Eq. (41) to

𝜕𝛼
𝜕𝑧

= 𝑖
𝑁d𝑘𝛼
𝜖0

∑
𝑖,𝑗

′
𝜌𝑖𝑗 ⟨ 𝑖 | 𝝐̂𝛼 ⋅ 𝐃̂ | 𝑗 ⟩∗, (46)

where 𝛼 and the coherences 𝜌𝑖𝑗 are now functions of 𝑧 and 𝑡′ rather 
than functions of 𝑧 and 𝑡. This last equation governs the propagation of 
the fields through the medium, as calculated by the present programs.

3.2.2. Implementation

The subroutines mbe_propagate_1 and mbe_propagate_2 solve 
Eq. (46), with the coherences obtained by solving Eq. (15), respectively 
for the case of a single field (𝛼 = 1) or a superposition of two fields 
(𝛼 = 1, 2). The calculation yields the density matrix describing the state 
of the medium, 𝜌(𝑧, 𝑡′), and the complex amplitude(s) of the propagated 
field(s), 𝛼(𝑧, 𝑡′). These results are calculated on a two-dimensional 
mesh of values of 𝑧 and 𝑡′. The grid points in the 𝑧-direction extend 
from 𝑧 = 𝑧0 = 0 (the entrance of the medium) to 𝑧 = 𝑧max and are sepa-

rated by a constant step ℎ:

𝑧 = 𝑧𝑖 = 𝑧0 + 𝑖ℎ, 𝑖 = 0,… ,𝑁𝑧,

with 𝑧0 = 0 and ℎ = 𝑧max∕𝑁𝑧. The distance 𝑧max and the number of 
spatial steps, 𝑁𝑧, are set by the user. The complex amplitude of the fields 
at 𝑧0 must be provided on a mesh of 𝑁𝑡 +1 values of 𝑡, namely at 𝑡 = 𝑡𝑘
with 𝑘 = 0, 1,. . . , 𝑁𝑡. The same mesh is used by mbe_propagate_1

and mbe_propagate_2 for the shifted time 𝑡′. Namely, at all z, the 
grid points in the 𝑡′-direction are taken to be at

𝑡′ = 𝑡′
𝑘
= 𝑡𝑘, 𝑘 = 0,… ,𝑁𝑡.

The calculation alternates at each spatial step between obtaining the 
coherences 𝜌𝑖𝑗 (𝑧, 𝑡′) given the field(s) and propagating the field(s) to 
the next step given these coherences. If Doppler averaging is required, 
the coherences are obtained for a number of velocity classes and their 
average, weighted by the Maxwellian velocity distribution, is calculated 
by numerical quadrature.

The density matrix is calculated at each 𝑧𝑖 by integrating the optical 
Bloch equations, starting, at 𝑡′ = 𝑡′0, with initial values determined by 
the user. A fourth order Runge Kutta rule is used to this end for the in-

tegration in time and a predictor-corrector method combining the third 
order Adams-Bashford rule and the fourth order Adams-Moulton rule 
for the integration in space. Other choices of methods are also offered. 
More information about the different possibilities can be found in the 
8

User Manual.
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4. Using this software

4.1. Installation

The most recent version of these modules can be found at the 
URL https://github .com /durham -qlm /CoOMBE. Installing this software 
only involves downloading the general_settings.f90, obe.f90,

mbe.f90, ldbl.f90 and driveall.f90 files, and editing the gen-

eral_settings.f90 file as required (see Section 4.2). The latter is 
the only program file which may need customisation.

A calculation using these modules requires a driving program, which 
could be either the driveall program provided in the driveall.f90

file or a user-written bespoke Fortran 90 program. The driveall pro-

gram is described in Section 4.4. Information relevant for the develop-

ment of a bespoke driver can be found in Section 4.5. The User Manual 
included in this distribution contains detailed information about the use 
of driveall and (for Fortran programmers) the use of the various user-

facing subroutines contained in these modules.

Running this software requires compiling the programs and linking 
it to the LAPACK [33] and BLAS [34] libraries. If a Fortran compiler 
and these two libraries are already installed, compiling these programs 
could be done, e.g., by the command2

gfortran general_settings.f90 ldbl.f90 obe.f90 mbe.f90

driveall.f90 -llapack -lblas

and similarly for a bespoke program. In the latter case, the mbe.f90

file does not need to be compiled if the program does not call any of the

mbe subroutine listed in Table 2.

We also provide advice, in Appendix G, for compiling and running 
these programs through a container, specifically a Podman container 
[23]. This alternative, self-contained method allows the software to be 
used without installing a Fortran compiler or any supporting libraries 
directly to the user’s machine. This feature is offered for convenience 
to users not familiar with compiling Fortran codes and does not limit 
the scope of the program or its output. The distribution includes the 
files required for running all the examples provided in the examples

directory in this way.

4.2. Key parameters

The following parameters are defined in the general_settings

module and must be adapted to the requirements of the intended calcu-

lation before compilation:

nst: An integer constant which must be given a value equal to the 
number of states in the model, 𝑁 . Changing the value of nst is 
the only editing which may be required across all the modules for 
adapting the Fortran code to the problem at hands.

kd: An integer defining the kind of many of the variables used in
obe and mbe — i.e., defining whether these variables are of real

or double precision type (complex or double complex for 
variables storing complex numbers). Selecting a kind parameter 
corresponding to real variables rather than to double preci-
sion variables will reduce memory requirements and computation 
time but may also result in larger numerical inaccuracies.

nmn: An integer constant defining how the states are numbered by 
the user, as explained in Section 4.6.

2 This command is given for illustrative purpose only. How to invoke the com-

piler and link the LAPACK and BLAS libraries is system dependent and may vary 

from installation to installation.

https://github.com/durham-qlm/CoOMBE
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4.3. Required data

The routines provided require various input data, which are problem-

dependent and need to be prepared separately. These will typically 
include:

• the energy offset ℏ𝛿𝜔(𝑖) defined by Eq. (7) for each of the states 
considered;

• the rates of spontaneous decay Γ𝑖𝑗 from a state 𝑗 to a state 𝑖, for all 
the states considered;

• any additional dephasing rate 𝛾𝑖𝑗 that would need to be included 
in the calculation to take into account the frequency widths of the 
fields and/or other pure dephasing effects;

• the detuning Δ𝛼 , complex field amplitude 𝛼 and wavelength of 
each of the fields considered, as well as the transition dipole mo-

ments for each of the transitions driven by these fields or the cor-

responding Rabi frequencies;

• the initial populations (i.e., the initial values of the diagonal ele-

ments of the density matrix);

• the temporal profile of the applied field(s), unless these fields are 
CW or their profile should be calculated internally;

• the frequency widths of the fields, if these widths should be taken 
into account otherwise than through the rates 𝛾𝑖𝑗 ;

• the atomic number and the wavelength of each field density in the 
case of a propagation calculation or a calculation of the complex 
susceptibility.

All energies and angular frequencies are to be provided as frequencies 
specified in MHz. E.g., the energy offset ℏ𝛿𝜔(𝑖) needs to be provided 
as the frequency 𝛿𝜔(𝑖)∕(2𝜋). Wavelengths are to be expressed in nm, 
densities in number of atoms per m3, dipole moments in C m and electric 
field amplitudes in V m−1.

Besides the wavelength of each field, calculations involving Doppler 
averaging will also require the r.m.s. thermal speed of the atoms in the 
laser propagation direction, 𝑢, in m s−1, and the abscissas and inte-

gration weights for the numerical quadrature over the atoms’ velocity 
distribution (unless the calculation uses one of the quadrature rules pro-

vided by obe or the integration is done analytically using the Faddeeva 
function).

4.4. Running these codes through the driveall program

All the features of the obe and mbe routines are accessible through 
the driveall program, with the exceptions of two of the most spe-

cialised ones (setting collapse operators explicitly and varying the num-

ber of sub-steps inside each time step of a time-dependent integration). 
There are also minor restrictions on certain modes of operation, as 
flagged in the User Manual.

All the necessary data and control parameters are passed to

driveall through several input files. A computation using this pro-

gram simply involves (i) specifying the required number of states and 
other key parameters in the general_settings module; (ii) compil-

ing the program; (iii) preparing or updating the input files as necessary; 
and (iv) executing the program. The program can be compiled once 
and for all, as long as the number of states and other key parameters 
specified in the general_settings module are kept the same.

The driveall program reads up to five different input files, of 
which two must always be provided. The two mandatory files are re-

ferred to as the keyparams file and the controlparams file. Their 
content is listed in Tables 3, 4, 5 and 6. For convenience, parameters 
such as energies and dipole moments, which may be numerous in cal-

culations on large multistate systems, can be specified in an auxiliary

defaultdata file as an alternative to being listed in the control-
params file. The program reads these files using the namelist feature 
of Fortran, as explained in Appendix E and Appendix F. These files must 
9

therefore be formatted accordingly; however, no knowledge of Fortran 
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Table 3

Contents of the keyparams file read by the driveall program. Comprehensive 
information about these parameters and the use of driveall can be found in 
the User Manual.

Name Short description

Mandatory parameters

nfields The number of fields.

nstates The number of states.

nmin The starting number in the indexing of the states.

filename_controlparams The name of the controlparams file.

Optional parameters

filename_defaultdata The name of the defaultdata file.

icmplxfld Parameter indicating whether the field 
amplitudes, dipole moments and Rabi frequencies 
are specified as real numbers or as complex 
numbers in the input files.

programming is required beyond what is mentioned in this regard in 
that appendix.

Further examples of the use of driveall can be found in the ex-
amples folder forming part of the distribution. The reader is referred to 
the User Manual for a full description of all the features of this program.

4.5. Running these codes through a bespoke program

4.5.1. Representation of the density matrix

As was explained in Section 3.1.1, the density matrices are stored 
within these modules as column vectors of 𝑁2 real numbers, as per 
Eq. (17): a 1D array rhovec representing a density matrix is such 
that rhovec(1) contains 𝜌11, rhovec(2) contains Re𝜌12, etc. (or 𝜌00, 
Re𝜌01, etc., if the states are numbered 0, 1, 2,. . . rather than 1, 2, 3,. . . , 
see Section 4.6). Which components of such vectors correspond to which 
elements of the density matrix can be found by using the subroutines

obe_coher_index and obe_pop_index of the obe module.

4.5.2. The obefield and obecfield derived types

Two Fortran derived variable types, called obefield and obec-
field, are defined in the module obe. Variables of this type are used 
by the obe and mbe programs for storing and communicating various 
attributes of the relevant fields, such as their amplitude, wavelength, 
direction of propagation, detuning, and the Rabi frequencies or dipole 
moments of the transitions they drive. A full description of these two 
derived types can be found in the User Manual. No knowledge of these 
derived types is required for running the codes through the driveall
program.

4.5.3. Structure of the program

With the exceptions of the subroutines flagged at the end of this 
section, using this package will normally involve the steps outlined be-

low. A Fortran 90 program using the obe_steadystate subroutine 
for a steady-state calculation is provided in Appendix E as an example. 
A program using the mbe module for a propagation calculation is also 
included in the examples directory. Detailed information about using 
the various user-facing routines provided in this library can be found in 
the User Manual.

1. The driving program should first pass various pieces of information 
to the obe module through a call to the subroutine obe_setc-
sts, namely the frequency offsets of the different states, the rates 
of spontaneous decay and optionally any additional dephasing rate 
and any additional collapse operator, as well as the number of 
fields, whether the weak probe approximation is to be assumed or 
not, and whether Rabi frequencies or complex electric field ampli-

tudes and dipole moments will be used for defining how each of the 

fields couples to the different states.
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Table 4

Contents of the controlparams file read by the driveall program: I. General parameters. Comprehensive information about these parameters and the 
use of driveall can be found in the User Manual. The parameters indicated by an asterisk may be specified in the defaultdata file rather than in 
the controlparams file.

Name Short description

Mandatory parameters

icalc Parameter determining whether the program should calculate the steady state density matrix, or the density matrix as a function of time, or 
integrate the Maxwell-Bloch equations.

iRabi Parameter determining whether the relevant Rabi frequencies are input data or are to be calculated by the program.

Optional parameters

(*) add_dephas The dephasing rates 𝛾𝑖𝑗 divided by 2𝜋, in MHz, if relevant.

(*) amplitude The electric field amplitudes 𝛼 in V m−1, expressed as real numbers.

(*) camplitude The electric field amplitudes 𝛼 in V m−1, expressed as complex numbers.

(*) cdip_mom The electric dipole moments ⟨ 𝑖 | ̂𝝐𝛼 ⋅ 𝐃̂ | 𝑗 ⟩ in C m, expressed as complex numbers.

(*) cRabif The Rabi frequencies Ω𝛼;𝑖𝑗 divided by 2𝜋, in MHz, expressed as complex numbers.

(*) detuning The detunings Δ𝛼 divided by 2𝜋, in MHz.

(*) detuning_fact The detuning factors 𝑎𝑖𝛼 .

(*) dip_mom The electric dipole moments ⟨ 𝑖 | ̂𝝐𝛼 ⋅ 𝐃̂ | 𝑗 ⟩ in C m, expressed as real numbers.

(*) energ_f The energy offsets 𝛿𝜔(𝑖) divided by ℏ, in MHz.

filename_rho_out The name(s) of the output file(s) to which the program should write the density matrix.

(*) Gamma_decay_f The spontaneous decay rates Γ𝑖𝑗 divided by 2𝜋, in MHz.

iappend Parameter determining whether existing output files can be overwritten with new results.

iDoppler Parameter determining whether the density matrix must be Doppler-averaged.

iweakprb Parameter determining whether the calculation is to be done within the weak probe approximation.

(*) Rabif The Rabi frequencies Ω𝛼;𝑖𝑗 divided by 2𝜋, in MHz, expressed as real numbers.
2. The parameters of each of the fields must then be passed to obe

through calls to the subroutine obe_setfields. The field iden-

tified by the reference number 1 in the corresponding call to

obe_setfields is taken to be the probe field if the calculation 
is to be done within the weak probe approximation.

3. The root-mean squared velocity of the atoms and the details of the 
integration over atomic velocities must be passed to obe through 
a call to the subroutine obe_set_Doppler if a calculation in-

volving a Doppler averaging by numerical quadrature is to be 
done. A choice of general numerical quadratures is offered by

obe_set_Doppler. Alternatively, the user can upload custom ab-

scissas and weights.

4. Unless the applied fields are CW, the details of their temporal enve-

lope must be passed to mbe either through a call to mbe_set_en-

vlp followed by a call to mbe_set_tdfields_A, or through a call 
to mbe_set_tdfields_B. The latter makes it possible to use time 
meshes and define temporal profiles more varied than offered by

mbe_set_envlp and mbe_set_tdfields_A.

5. The relative and absolute accuracy parameters of the DOP853 ODE 
solver must also be passed to obe, through a call to

obe_set_tol_dop853, if this solver is to be used in the course of 
the calculation.

6. Unit numbers for the output of selected elements of the density 
matrix must be passed to obe through a call to obe_setoutput-

files if this option of outputting results is to be used.

7. The relevant computational routines must then be called for per-

forming the required calculation. The initial populations and (pos-

sibly) coherences need to be passed to these various subroutines as 
input data, with the exceptions mentioned in their detailed descrip-

tions in the User Manual.

8. A calculation of the density matrix can be followed, if required, 
by a call to obe_susceptibility, which calculates the complex 
susceptibility, refractive index and absorption coefficient.

9. For propagation calculations, the program must also include 
10

an external subroutine through which mbe_propagate_1 or
mbe_propagate_2 can output the results, as described in the User 
Manual.

The detunings and complex amplitudes of the applied fields initially 
set by obe_setfields can be reset at a later stage, respectively by call-

ing the subroutines obe_reset_detuning and obe_reset_cfield
of the obe module. This makes it possible, e.g., to calculate refractive 
indexes and absorption coefficients for a range of detunings or a range 
of field strengths.

The obe module also includes several auxiliary routines which may 
be of assistance when preparing the input of some of the subpro-

grams mentioned above or processing their output. These are obe_co-
her_index and obe_pop_index, for identifying the relevant ele-

ments of a density matrix in the 1D storage mode described in Sec-

tion 4.5.1; obe_find_cfield and obe_find_rabif, for relating 
complex electric field amplitudes to complex Rabi frequencies in the 
definition of Eq. (10); and obe_init_rho, for initialising a density 
matrix in its 1D representation.

None of the initialisation steps listed above are necessary if the only 
computational routines used would be obe_2state,

obe_weakprb_3stladder, obe_weakprb_4stladder or

obe_weakfield.

4.6. State numbering

The 𝑁 states included in a calculation are identified by numbers 
running from 1 to 𝑁 throughout these code and in the documentation. 
This numbering is in line with the default indexing of arrays in Fortran. 
However, the user may choose to use a different numbering system for 
describing the system in the driving program, e.g., one where the states 
are identified by a number running from 0 to 𝑁 −1 rather from 1 to 𝑁 . 
The value of the variable nmn set in the general_settings module 
informs the user-facing obe and mbe routines of the numbering system 
used in the external programs calling them: giving a value of 𝑛 to nmn

means that the states are numbered 𝑛, 𝑛 +1, 𝑛 +2,. . . in the information 

passed to obe and mbe by the driving program. E.g., setting nmn to 0 
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Table 5

Contents of the controlparams file read by the driveall program: II. Parameters specific to particular types of calculation. Comprehensive information about 
these parameters and the use of driveall can be found in the User Manual. The parameters indicated by an asterisk may be specified in the defaultdata file 
rather than in the controlparams file.

Name Short description

Parameters to be provided for time-dependent calculations of the density matrix

imethod Parameter determining which numerical algorithm is to be used in the integration of the optical Bloch equation.

n_time_steps 𝑁𝑡, the number of integration steps in the time integration of the optical Bloch equations.

(*) popinit The initial populations.

Optional parameters relevant for time-dependent calculations of the density matrix

filename_rhoall_out The name of the file to which the whole density should be written at each time step.

iAorB Parameter determining which subroutine should be used in calculations with Doppler averaging.

inoncw Parameter determining whether the calculation is for CW fields or for fields with a time-dependent envelope.

iprintrho Parameter determining whether the final density matrix is to be written out to the standard output stream.

irate Parameter determining whether the calculation is to be done within the rate equations approximation.

iunformatted Parameter determining whether the output files should be unformatted (binary) rather than formatted.

ti, tf The lower and upper bounds of the time integration interval, in μs.

Optional parameters relevant for calculations of the steady state density matrix

filename_chi_out The name of the file to which the calculated complex susceptibilities, refractive indexes and absorption coefficients should be written.

iDoppler_numer_st Parameter determining whether Doppler averaging is to be done analytically or numerically.

iladder_wkprb Parameter determining whether the steady state density matrix is to be calculated by a subroutine specialised to ladder systems rather than 
by general subroutines.

ioption Parameter determining the algorithm used for calculating the steady state density matrix.

iprintrho Parameter determining whether the steady state density matrix is to be written out to the standard output stream.

isuscept Parameter determining whether the complex susceptibility at the probe frequency and the corresponding values of the refractive index and 
absorption coefficient are calculated after the steady state density matrix has been obtained.

ivarydetuning Parameter determining whether the steady state density matrix is to be calculated over a range of detunings.

(*) popinit The initial populations.

Parameters to be provided in the case of propagation calculations

(*) density The density of the medium expressed as the number of atoms per m3.

imethod Parameter determining which numerical method is to be used for integrating the optical Bloch equations.

n_time_steps 𝑁𝑡, the number of integration steps in the time integration of the optical Bloch equations.

n_z_steps The number of integration steps to be taken between 𝑧 = 0 and 𝑧 = 𝑧max.

(*) popinit The initial populations.

wavelength The wavelength(s) of the field(s) considered in nm.

zmax The distance over which the field(s) must be propagated, 𝑧max, in μm.

Optional parameters relevant for propagation calculations

filename_rhoall_out The name of the file to which the whole density matrix should be written.

iunformatted Parameter determining whether the output files should be unformatted (binary) rather than formatted.

izrule Parameter determining the numerical algorithm used in the spatial propagation.

nt_writeout, nz_writeout Constants determining at which time or spatial steps results should be written out.

ti, tf The lower and upper bounds of the time integration interval, in μs.
means that the states are numbered 0, 1, 2,. . . in the arrays passed to 
these modules by the user, while setting nmn to 1 means that the states 
are instead numbered 1, 2, 3,. . . Within the obe, mbe and ldblmodules, 
however, the states are numbered 1, 2 and 3, irrespective of the value 
of nmn.

For instance, the three states of the systems considered in Appendix E

could be identified equally well by the numbers 0, 1 and 2, rather than 
by the numbers 1, 2 and 3. In order to use 0, 1 and 2, the constant nmn
should be given the value 0 in the general_settings module (and 
in the keyparams file if driveall is used). The statements

Gamma_decay(1,2) = 5.0d0

Gamma_decay(2,3) = 1.0d0

defining the decay rates in the example given in Appendix E should then 
be replaced by

Gamma_decay(0,1) = 5.0d0

Gamma_decay(1,2) = 1.0d0

and similarly for the arrays Rabif, detuning_fact and energ_f.

5. Code reuse

The ldbl and mbe modules both contain a copy, in essentially the 
original form, of the subroutine DOP853 described in Ref. [27] and 
published by the University of Geneva [28]. The obe module con-
11

tains a copy of the subroutine CLENSHAW_CURTIS_COMPUTE published 
by J. Burkardt [35], and a Fortran 90 implementation of the wwerf
function of the CERN Library, which calculates the Faddeeva function 
[36–38].
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Table 6

Contents of the controlparams file read by the driveall program: III. Miscellaneous parameters. Comprehensive information about these parameters and the use of

driveall can be found in the User Manual. The parameters indicated by an asterisk may be specified in the defaultdata file rather than in the controlparams

file.

Name Short description

Parameters to be provided for calculations with analytical Doppler-averaging

idir Parameter(s) indicating whether the corresponding fields propagate in the positive 𝑧-direction or the negative 𝑧-direction.

(*) urms The root-mean squared velocity of the atoms in the laser propagation direction, 𝑢, in m s−1.

(*) wavelength The wavelength(s) of the field(s) considered, in nm.

Parameters to be provided for calculations with numerical Doppler-averaging

filename_Dopplerquad The name of the file containing the quadrature abscissas and quadrature weights to be used in the calculation, if this file is required.

idir Parameter(s) indicating whether the corresponding fields propagate in the positive 𝑧-direction or the negative 𝑧-direction.

irule Parameter determining which quadrature rule is to be used in the calculation.

n_v_values The number of integration points in the integration over 𝑣.

(*) urms The root-mean squared velocity of the atoms in the laser propagation direction, 𝑢, in m s−1.

vmax The maximum value of |𝑣| to be considered, in m s−1.

(*) wavelength The wavelength(s) of the field(s) considered, in nm.

Parameters to be provided when the DOP853 ODE integrator is to be used

atol Parameter controlling the allowed absolute error on the populations and coherences calculated by the program.

rtol Parameter controlling the allowed relative error on the populations and coherences calculated by the program.

Parameters relevant for calculations involving non-CW fields

filename_tdamps_in The name of the file containing the time-dependent amplitude(s) of the field(s) considered, if this file is required.

filename_tdamps_out The name of the file to which the program should write the time-dependent amplitude(s) of the field(s) considered.

iforce0 Parameter(s) determining whether the corresponding field should be taken to be initially zero.

iinterp Parameter determining whether tabulated field amplitudes should be interpolated.

istart Parameter determining the initial values of the populations and coherences.

itdfieldsAorB Parameter determining whether the amplitude(s) of the applied field(s) must be calculated by the program or read from file.

nsubsteps Number of substeps within each integration step.

pulse_type Parameter(s) determining the pulse envelope of the respective field.

t0, t1, tw Parameters determining the shape of the pulse envelope of the respective field.

Parameters to be provided for steady state calculations over a range of detunings

detuning_min, detuning_max The smallest and largest values of the detuning divided by 2𝜋, in MHz.

detuning_step The step in detuning, divided by 2𝜋, in MHz.

index_field Parameter determining which field should be varied in the calculation.

Parameters to be provided for a calculation of the susceptibility at the probe frequency

(*) density The density of the medium expressed as the number of atoms per m3.

(*) wavelength The wavelength of the probe field in nm.
den. The authors also acknowledge the use of the Hamilton HPC Service 
of Durham University during the course of this work.

Appendix A. The Lindblad master equation in the rate equations 
limit

As mentioned in Section 3.1.4, a net reduction in the size of the 
problem can be obtained by propagating only those elements of 𝜌 which 
belong to a class  of elements varying slowly in time. Those that are 
not propagated form the class  of rapidly varying elements.

Accordingly, we divide 𝗋 into two column vectors, 𝗋 and 𝗋 , re-

spectively grouping the 𝑁 elements of 𝗋 belonging to class  and the 
𝑁 =𝑁2 −𝑁 elements belonging to class  . Formally,

𝗋 = 𝖱𝗋 (A.1)

𝗋 = 𝖲 𝗋, (A.2)

where 𝖱 and 𝖲 are two rectangular matrices, respectively of size 𝑁 ×
𝑁2 and 𝑁 × 𝑁2. The elements of 𝖱 are defined by the equation 
𝑅𝑖𝑗 = 𝛿𝑘(𝑖)𝑗 , where 𝑘(𝑖) is the index of the 𝑖-th element of 𝗋 in the col-

umn vector 𝗋. The elements of 𝖲 are defined similarly. In terms of the 
tranposes of these two matrices,

𝗋 = 𝖱𝑇 𝗋 + 𝖲𝑇 𝗋 . (A.3)

We now make the approximation that the elements of class  converge 
so rapidly to steady values after any variation of the elements of class 
 that they can be assumed to remain stationary on the time scale on 
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which the latter evolve. That is, we set
𝗋̇ = 0 (A.4)

when solving equation (18). Equation (A.4) can also be written as 𝖱 𝖫 𝗋 =
0, from which we deduce that

(𝖱𝖫𝖱𝑇 )𝗋 = −(𝖱𝖫𝖲𝑇 )𝗋 . (A.5)

Given the elements of 𝗋 , this equation determines the elements of 𝗋 . 
Formally

𝗋 = −(𝖱𝖫𝖱𝑇 )−1(𝖱𝖫𝖲𝑇 )𝗋 . (A.6)

In practice, however, 𝗋 is calculated by solving equation (A.5) as a 
system of inhomogeneous linear equations. We also have

𝗋̇ = (𝖲𝖫𝖲𝑇 )𝗋 + (𝖲𝖫𝖱𝑇 )𝗋, (A.7)

since 𝗋̇ = 𝖲 𝖫 𝗋. Eliminating 𝗋 between equations (A.6) and (A.7) gives 
the equation of motion for the populations and coherences belonging to 
class  :

𝗋̇ = 𝖫 𝗋 , (A.8)

with

𝖫 = (𝖲𝖫𝖲𝑇 ) − (𝖲𝖫𝖱𝑇 )(𝖱𝖫𝖱𝑇 )−1(𝖱𝖫𝖲𝑇 ). (A.9)

Contrary to 𝖫, the 𝑁 ×𝑁 square matrix 𝖫 depends on the Rabi fre-

quencies, decoherence rates and detunings in a complicated way. How-
ever, it is not difficult to construct this matrix numerically, as its columns 
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can be obtained one by one by calculating how each unit basis vector is 
transformed by the operator (𝖲 𝖫 𝖲𝑇 ) − (𝖲 𝖫 𝖱𝑇 )(𝖱 𝖫 𝖱𝑇 )−1(𝖱 𝖫 𝖲𝑇 ).

Appendix B. Calculation of the steady-state density matrix

The linear equations method mentioned in Section 3.1.5 is based on 
the unit trace property of the density matrix,

𝑁∑
𝑖=1

𝜌𝑖𝑖 = 1. (B.1)

In terms of the elements 𝑟𝑗 of a vector 𝗋 of the form of Eq. (17), this 
property can be formulated as∑
𝑗∈

𝑟𝑗 = 1 (B.2)

if the set  is defined by the condition that 𝑟𝑗 belongs to  if and only 
if 𝑟𝑗 is a population. Let 𝐽 be one of the elements of this set of indexes, 
and let  ′ =  ∖ {𝐽}. Thus

𝑟𝐽 = 1 −
∑
𝑗∈ ′

𝑟𝑗 . (B.3)

This relation makes it possible to rearrange the equation 𝖫 𝗋 = 0 defining 
the steady-state density matrix into the equations∑
𝑗∈ ′

(𝐿𝑖𝑗 −𝐿𝑖𝐽 ) 𝑟𝑗 +
∑
𝑗∉

𝐿𝑖𝑗 𝑟𝑗 = −𝐿𝑖𝐽 , 𝑖 = 1,… ,𝑁2. (B.4)

Moreover, Eq. (B.3) also makes the equation

𝑟̇𝐽 =
∑
𝑗

𝐿𝐽𝑗 𝑟𝑗 = 0 (B.5)

redundant with the rest of the original system since 𝑟̇𝐽 is necessarily 
zero if 𝑟̇𝑗 is zero for all the 𝑗 ’s belonging to  ′. The equation for 𝑖 = 𝐽

can thus be removed from Eq. (B.4). The other equations then form 
an inhomogeneous system of 𝑁2 − 1 linear equations in the 𝑁2 − 1
unknowns 𝑟𝑗 (𝑗 ≠ 𝐽 ), as expressed by Eq. (33).

This system of equations can be solved numerically by standard 
methods. However, it can also be solved by the following method, which 
is well suited to calculations of the steady-state density matrix with 
Doppler broadening, as we now explain.

The structure of the optical Bloch equations ensures that the 𝐿𝑖𝐽 ’s 
forming the right-hand sides of Eq. (B.4) do not depend on detunings, 
and that the other 𝐿𝑖𝑗 ’s depend at most linearly on them. The column 
vector 𝖻 is thus constant in the atomic velocity 𝑣, while the matrix 𝖫′
varies linearly with 𝑣. We set, accordingly,

𝖫′ = 𝖫′0 + 𝑣𝖫′1, (B.6)

where 𝖫′0 and 𝖫′1 do not depend on 𝑣. The two matrices 𝖫′0 and 𝖫′1 define 
the generalized eigenvalue problem

𝖫′0𝗑 = 𝜇 𝖫′1𝗑, (B.7)

where 𝜇 is a (normally complex) generalized eigenvalue. Since 𝖫′0 and 
𝖫′1 are ( − 1) × ( − 1) matrices, the span of the solution vectors 𝗑 is 
a space of dimension  ≤ − 1. It is thus possible to find  eigen-

vectors 𝗑1, 𝗑2,. . . , 𝗑 forming a basis for this space. With 𝜇𝑗 denoting 
the corresponding eigenvalues,

𝖫′0𝗑𝑗 = 𝜇𝑗 𝖫
′
1𝗑𝑗 , 𝑗 = 1,… ,. (B.8)

To each eigenvector 𝗑𝑗 can be associated a left eigenvector 𝗒𝑗 such that

𝗒†
𝑗
𝖫′0 = 𝜇𝑗 𝗒

†
𝑗
𝖫′1, 𝑗 = 1,… , (B.9)

and
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𝗒†
𝑖
𝖫′1𝗑𝑗 = 𝛿𝑖𝑗 . (B.10)
Computer Physics Communications 306 (2025) 109374

The solution 𝗋′ of Eq. (33) can be written as the sum of a linear combi-

nation of the eigenvectors 𝗑𝑗 ’s and of a vector 𝗋′0 biorthogonal to all the 
left eigenvectors:

𝗋′ =
∑
𝑗

𝑐𝑗𝗑𝑗 + 𝗋′0, (B.11)

with 𝗋′0 being such that

𝗒†
𝑗
𝖫′1𝗋

′
0 = 0, 𝑗 = 1,… ,. (B.12)

(Formally, 𝑐𝑗 = 𝗒†
𝑗
𝖫′1𝗋

′ and 𝗋′0 = 𝗋′ −
∑

𝑗 𝑐𝑗𝗑𝑗 .) Combining the above equa-

tions yields

𝑐𝑗 =
𝗒†
𝑗
𝖻

𝑣+ 𝜇𝑗
, 𝑗 = 1,… , (B.13)

and

𝖫′0𝗋
′
0 = 𝖻−

∑
𝑗

(𝑣+ 𝜇𝑗 )𝑐𝑗𝖫′1𝗑𝑗 . (B.14)

Solving Eqs. (B.8) and (B.9) for the eigenvalues 𝜇𝑗 and the correspond-

ing right and left eigenvectors is a standard numerical problem, as is 
solving Eq. (B.14) for the vector 𝗋′0. (In the present programs, this cal-

culation is done by first reverting to a formulation of the density matrix 
in terms of real populations and complex coherences, and working with 
the complex matrices and complex vectors corresponding to 𝖫′ , 𝗋′ and 
𝖻 in that formulation.) Altogether, the calculation yields each of the el-

ements of 𝗋st as a sum of partial fractions with constant numerators and 
denominators linear in 𝑣:

(𝗋st )𝑖 =
∑
𝑗

𝛼𝑖𝑗

𝑣+ 𝜇𝑗
, (B.15)

where the 𝛼𝑖𝑗 ’s are constants. As is well known, expressions of this form 
are readily amenable to an analytical averaging over a Maxwellian dis-

tribution of velocities [29], and indeed, expanding coherences in partial 
fractions of this form is a standard approach in few-state calculations 
based on the weak probe approximation. The method outlined in this 
appendix generalises this approach to multi-state, multi-fields systems 
treated beyond the weak probe approximation.

Doppler averaging is based on the following identities, where 𝜂𝑗 =
−𝜇𝑗∕𝑢 and, as defined in Section 3.1.2, 𝑤(⋅) is the Faddeeva function:

∞

∫
−∞

𝑓M(𝑣) d𝑣
𝑣+ 𝜇𝑗

= 1
𝑢
√
𝜋

∞

∫
−∞

exp(−𝜂2) d𝜂
𝜂 − 𝜂𝑗

(B.16)

= 1
𝑢
√
𝜋

{
𝑖𝜋𝑤(𝜂𝑗 ) if Im 𝜂𝑗 > 0,
[𝑖𝜋𝑤(𝜂∗

𝑗
)]∗ if Im 𝜂𝑗 < 0.

(B.17)

The case Im 𝜂𝑗 = 0 does not need to be considered as the eigenvalues 𝜇𝑗
always have a non-zero imaginary part for any pair of matrices 𝖫′0 and 
𝖫′1 arising from the optical Bloch equations.

Organising the calculations along similar lines may also lead to a sig-

nificant speed up in computations of the steady state density matrix for 
multiple values of one of the detunings. For such calculations, Eq. (B.6)

would be replaced by the equation

𝖫′ = 𝖫̃′0 + Δ𝛼 𝖫̃
′
1, (B.18)

where the matrices 𝖫̃′0 and 𝖫̃′1 do not depend on Δ𝛼 . Following the above 
procedure then results in a density matrix of the form

(𝗋st )𝑖(𝜔) =
∑
𝑗

𝛼̃𝑖𝑗

Δ𝛼 + 𝜇̃𝑗
, (B.19)

where 𝛼̃𝑖𝑗 and 𝜇̃𝑗 are constants. The only potentially CPU intensive step 
in this approach is the calculation of the generalized eigenvalues and 
eigenvectors of the matrix pair (𝖫̃′0, 𝖫̃

′
1), which does not need to be re-
peated for each value of Δ𝛼 .
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Appendix C. The optical Bloch equations in the weak probe 
approximation

For simplicity, we will only consider the case where the amplitude 
of the probe field, p, is real. The final results — Eqs. (C.6) and (C.7)

— are easily generalised to the case of a complex amplitude, and the 
program is organised in such a way that the weak probe approximation 
is correctly implemented whether the amplitude of the probe field is 
real or complex.

We assume that the coherences are all initially zero. The populations 
then vary with p only through terms quadratic or of higher order in p . 
The populations will therefore vary little if the probe field is very weak. 
The essence of the weak probe approximation is to integrate Eq. (18)

only to the leading (non vanishing) order in p. This is done to first 
order in p within the obe module.

Implementing this approximation first requires a consideration of 
Eq. (18) in the limit of a vanishing probe field (p → 0). The elements 
of the density matrix divide into two classes in that limit, namely the 
populations and the coherences which take on non-zero values either 
initially or at later times (class ), and the coherences which are initially 
zero and remain zero at all times (class ). (The elements of class  may 
vary in time even when p = 0, e.g., because of spontaneous decay or 
because of an interaction with a field other than the probe field.) We 
can thus form the column vector 𝗋 by concatenating the column vectors 
formed by the respective populations and coherences, 𝗋 and 𝗋:

𝗋 ≡
(
𝗋
𝗋

)
. (C.1)

Accordingly, Eq. (18) takes on the form(
𝗋̇
𝗋̇

)
=
(
𝖫 𝖫
𝖫 𝖫

)(
𝗋
𝗋

)
, (C.2)

where the blocks 𝖫, 𝖫, 𝖫 and 𝖫 are square or rectangular 
matrices. Since the optical Bloch equations are linear in the Rabi fre-

quencies, each of these blocks is constant or linear in p:

𝖫 = 𝖫(0) + p 𝖫(1), (C.3)

where the matrices 𝖫(0) and 𝖫(1) are constant in p, and similarly for 
the other blocks. Due to this dependence in the probe field, both 𝗋 and 
𝗋 may depend in a complicated way on p.

In general, a perturbative expansion of these two vectors reads

𝗋 = 𝗋(0) + p 𝗋(1) + 2
p 𝗋

(2)
 +⋯ (C.4)

𝗋 = 𝗋(0) + p 𝗋(1) + 2
p 𝗋

(2)
 +⋯ (C.5)

where the vectors 𝗋(𝑘) ’s and 𝗋(𝑘) ’s do not depend on p. We can imme-

diately see that 𝗋(0) = 0, since, by construction, the vector 𝗋 groups all 
the elements of 𝗋 which are zero at all times in the limit p → 0. More-

over, the elements of 𝗋 are non-zero even in this limit, whether they 
are initially non-zero or whether they acquire a non-zero value as 𝑡 in-

creases. The leading term in the perturbative expansion of 𝗋 is thus the 
term of order 0 in p. Also, 𝖫(0) must be zero, as otherwise 𝗋 would 
not be identically zero in the p → 0 limit. Retaining the terms of lowest 
order in p thus implies setting 𝗋(𝑘) = 0 for 𝑘 ≠ 0 and 𝗋(𝑘) = 0 for 𝑘 ≠ 1, 
and finding these vectors as solutions of the equations

𝗋̇(0) = 𝖫(0) 𝗋(0) (C.6)

𝗋̇(1) = 𝖫(1) 𝗋(0) + 𝖫(0) 𝗋(1) . (C.7)

(The replacement of the diagonal block 𝖫 by its zero-p limit, 𝖫(0), 
ensures that 𝗋(1) remains linear in p.)

In summary, the weak probe approximation amounts to integrating 
the equations (C.6) and (C.7) rather than Eq. (18). I.e., it amounts to 
14

replacing the matrix 𝖫 by the matrix
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𝖫(0) 0
𝖫(1) 𝖫(0)

)
.

The key steps in implementing this approximation is to construct the 
matrix 𝖫(0) and allocate the elements of 𝗋 to either 𝗋 or 𝗋. Within

obe, this is done by an iterative search for the elements of 𝗋 directly or 
indirectly coupled by 𝖫 to the initial non-zero populations when p = 0.

Appendix D. Weak probe calculations for a single field

This appendix addresses the case of a single, weak CW field. We will 
assume that this field dipole-couples one set of states, 1 , to another set 
of states, 2, higher in energy. Each of the latter decays spontaneously at 
a state-dependent rate Γ𝑗 . The former are stable. We describe the field 
by way of Eqs. (2) and (3), although without specifying the subscript 
𝛼 for economy of notation (it is understood that 𝛼 = 1). We make the 
weak probe approximation and assume that only the states belonging to 
group 1 are populated. Thus 𝜌𝑖𝑖 = 0 if 𝑖 ∈ 2 and∑
𝑗∈1

𝜌𝑗𝑗 = 1. (D.1)

Eq. (15) simplifies considerably in that limit: 𝜌𝑖𝑗 ≡ 0 if 𝑖 and 𝑗 both 
belong to 1 or both belong to 2, whereas

𝜌̇𝑖𝑗 = 𝑖

[(
𝛿𝜔(𝑗) − 𝛿𝜔(𝑖) + Δ

)
𝜌𝑖𝑗 +

Ω𝑖𝑗

2
𝜌𝑗𝑗

]
−

Γ𝑖
2
𝜌𝑖𝑗 − 𝛾

𝑖𝑗
𝜌𝑖𝑗 (D.2)

when 𝑖 ∈ 2 and 𝑗 ∈ 1. The decoherence rates 𝛾
𝑖𝑗

account for dephas-

ing mechanisms not contributing to the decay rates Γ𝑖 , such as random 
phase jumps of the field contributing to its frequency width [39] and 
collisional broadening. Typically,

𝛾𝑖𝑗 = 𝛾coll
𝑖𝑗

+ 2𝜋Δ𝜈, (D.3)

where 𝛾coll
𝑖𝑗

is the decay rate of the coherence 𝜌𝑖𝑗 due to collisions and 
Δ𝜈 is the frequency width of the field (full width at half maximum).

We refer the energies of the states to either an energy ℏ𝜔ref (1) or 
ℏ𝜔ref (2) depending on whether they belong to group 1 or group 2. 
Thus

𝛿𝜔(𝑗) = 𝜔(𝑗) −𝜔ref (1) if 𝑗 ∈ 1, (D.4)

𝛿𝜔(𝑖) = 𝜔(𝑖) −𝜔ref (2) if 𝑖 ∈ 2. (D.5)

Moreover

Δ= 𝜔− [𝜔ref (2) −𝜔ref (1)], (D.6)

and therefore, in the above equation,

𝛿𝜔(𝑗) − 𝛿𝜔(𝑖) + Δ ≡ 𝜔−
[
𝜔(𝑖) −𝜔(𝑗)] . (D.7)

Moreover, since we defined 2 as containing states higher in energy than 
the states belonging to 1,

Ω𝑖𝑗 =  ⟨ 𝑖 | 𝝐̂ ⋅ 𝐃̂ | 𝑗 ⟩∕ℏ. (D.8)

Setting 𝜌̇𝑖𝑗 = 0 yields the steady state coherences:

𝜌𝑖𝑗 =
𝑖

2
Ω𝑖𝑗𝜌𝑗𝑗

𝛾 tot
𝑖𝑗

− 𝑖Δ𝑖𝑗

(D.9)

with

𝛾 tot
𝑖𝑗

= Γ𝑖∕2 + 𝛾
𝑖𝑗
, Δ𝑖𝑗 = 𝜔−

[
𝜔(𝑖) −𝜔(𝑗)] . (D.10)

Given Eqs. (D.8) and (D.9), Eq. (36) yields a particularly simple result 
for the corresponding complex susceptibility:

𝜒(𝜔 ) =
𝑖𝑁d ∑ ∑ |⟨ 𝑖 | 𝝐̂𝛼 ⋅ 𝐃̂ | 𝑗 ⟩|2

𝜌 . (D.11)
1
ℏ𝜖0 𝑖∈2 𝑗∈1 𝛾 tot

𝑖𝑗
− 𝑖Δ𝑖𝑗

𝑗𝑗
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Note that the full width at half maximum of the resonance peak at 
Δ𝑖𝑗 = 0 is twice the total dephasing rate 𝛾 tot

𝑖𝑗
. E.g., to obtain a colli-

sional width of Γcoll
𝑖𝑗

(full width at half maximum in angular frequency), 
the dephasing rate 𝛾coll

𝑖𝑗
must be set equal to Γcoll

𝑖𝑗
∕2.

Doppler averaging 𝜒(𝜔1) then amounts to a simple application of 
Eqs. (B.16) and (B.17), since

1
𝑢
√
𝜋

∞

∫
−∞

exp(−𝑣2∕𝑢2) d𝑣
𝛾 tot
𝑖𝑗

− 𝑖Δ𝑖𝑗 + 𝑖𝑘𝑣
= 1
𝑖𝑢𝑘

√
𝜋

∞

∫
−∞

exp(−𝜂2) d𝜂
𝜂 − 𝜂𝑖𝑗

(D.12)

with 𝜂𝑖𝑗 =
(
Δ𝑖𝑗 + 𝑖 𝛾 tot

𝑖𝑗

)
∕(𝑢𝑘). Therefore

1
𝑢
√
𝜋

∞

∫
−∞

exp(−𝑣2∕𝑢2) d𝑣
𝛾 tot
𝑖𝑗

− 𝑖Δ𝑖𝑗 + 𝑖𝑘𝑣
=
√
𝜋𝑤(𝜂𝑖𝑗 )∕(𝑢𝑘).

(D.13)

Appendix E. Example of steady state calculation

This appendix illustrates how the obe codes can be used for calcu-

lating the steady state density matrix for a ladder system of three states, 
states 1, 2 and 3, with ℏ𝜔(1) < ℏ𝜔(2) < ℏ𝜔(3). States 1 and 2 are cou-

pled to each other by field 1 (the “probe field”) and states 2 and 3 by 
field 2 (the “coupling field”). Within the rotating wave approximation, 
the Hamiltonian of this system is represented by the following matrix in 
the {|1⟩, |2⟩, |3⟩} basis,

𝖧′ = ℏ

⎛⎜⎜⎝
𝛿𝜔(1) −Ω12∕2 0

−Ω∗
12∕2 𝛿𝜔(2) − Δ1 −Ω23∕2
0 −Ω∗

23∕2 𝛿𝜔(3) − Δ1 −Δ2

⎞⎟⎟⎠ , (E.1)

where Δ1 and Δ2 are given by Eqs. (13) and (14). It is assumed that 
state 3 decays to state 2 and state 2 to state 1, the corresponding decay 
rates being Γ32 and Γ21, respectively, and that inhomogeneous broad-

ening can be neglected. Specifically, we take 𝛿𝜔(1) = 𝛿𝜔(2) = 𝛿𝜔(3) = 0, 
Δ1 = 2𝜋 × 5 MHz, Δ2 = 0, Ω12 = 2𝜋 × 5 MHz, Ω23 = 2𝜋 × 10 MHz, 
Γ12 = 2𝜋 × 5 MHz and Γ23 = 2𝜋 × 1 MHz, and we calculate the steady 
state with the subroutine obe_steadystate. As there are three states 
in the problem, the general_settings module must give a value of 
3 to the variable 𝚗𝚜𝚝.

We first show how the steady state density matrix could be obtained 
by running the code through the driveall program. We then give an 
example of a bespoke program doing the same calculation. Copies of 
these files are provided in the examples folder.

1. Using the driveall program

Calculating this density matrix using the driveall program re-

quires two input files, namely the keyparams and the controlparams

files, formatted as illustrated by the examples below. Apart from possi-

ble comments and blank lines, each of these two files must start with an 
ampersand symbol followed by the name of the respective namelist

structure (keyparams for the keyparams file, controlparams for 
the controlparams file) and must end with a slash. Each input value 
must be provided in the form of a Fortran assignment statement (e.g., i 
= 1 if i is an integer variable, v = 1.0d0 if v is a double pre-
cision variable, s = ’something’ if s is a character variable). 
Input values can be provided in any order and do not need to be all 
present. Strings of characters starting with an exclamation mark are 
taken to be comments and are ignored, as are blank lines.

The following file could be used as the keyparams file for that calcu-

lation. This file is read by driveall from the standard input stream. It 
specifies several key parameters and the name of the controlparams
15

file.
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&keyparams

nstates = 3 ! Number of states.

nmin = 1 ! I.e., the states are numbered 1, 2, 3.

nfields = 2 ! Number of fields.

icmplxfld = 0 ! Indicates that the field amplitudes

! and Rabi frequencies will be specified as real

! numbers, not as complex numbers.

! Name of the controlparams files:

filename_controlparams = ’example_c.dat’

/

The corresponding controlparams file could be taken to be as fol-

lows.3

&controlparams

icalc = 2 ! Tells driveall to calculate the

! steady state.

iRabi = 1 ! The Rabi frequencies will be specified.

inoncw = 0 ! The fields are CW.

iweakprb = 0 ! The weak probe approximation is not made.

iDoppler = 0 ! No Doppler averaging.

! Rabi frequencies, in units of (2 pi) x MHz:

Rabif(2,1,1) = 5.0d0

Rabif(3,2,2) = 10.0d0

! Decay rates, in units of (2 pi) x MHz:

Gamma_decay_f(1,2) = 5.0d0

Gamma_decay_f(2,3) = 1.0d0

! Frequency offset of each of the states, in units of

! (2 pi) x MHz:

energ_f(1) = 0.0d0

energ_f(2) = 0.0d0

energ_f(3) = 0.0d0

! The factors multiplying the detunings in the Hamiltonian

! (only the non-zero values need to be specified):

detuning_fact(2,1) = -1.0d0

detuning_fact(3,1) = -1.0d0

detuning_fact(3,2) = -1.0d0

! The detunings, in units of (2pi) x MHz:

detuning(1) = 5.0d0

detuning(2) = 0.0d0

/

Running driveall with these input files produces the following out-

put:

i j Re rho(i,j) Im rho(i,j)

1 1 5.85372E-01 0.00000E+00
1 2 -3.36553E-02 -1.98712E-01
2 2 1.98712E-01 0.00000E+00
1 3 -6.03183E-02 1.81884E-01
2 3 -1.51570E-01 -2.15916E-02
3 3 2.15916E-01 0.00000E+00

2. Using a bespoke program

The program listed below calculates and writes out the steady state 
value of 𝜌12 for the same parameters. Running it produces the following 
output:

rho(1,2) = -3.36553E-02 -1.98712E-01

3 Since the three states are assumed to coincide in energy with their respective 
reference energy level, the frequency offset of each of the states is zero here, 
which is the default value of these quantities within the driveall program. 
Although this is not necessary, these frequency offsets are specified to be zero 

in this example, for clarity.
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program example

! Modules directly used by this program:

use general_settings

use obe

! Declare all the variables. The type obecfield is

! defined in the obe module. The variable nst (the number

! of states) is defined in the general_settings module.

implicit none

type(obecfield) :: coupling_field, probe_field

double precision, dimension(nst,nst) :: Gamma_decay_f

double precision, dimension(nst*nst) :: rhovec

double precision, dimension(nst) :: energ_f

integer :: ioption, iRabi, iweakprb, mim, mre, nfields

! Properties of the probe field

probe_field%detuning = 5.0d0

probe_field%detuning_fact(1) = 0.0d0

probe_field%detuning_fact(2) = -1.0d0

probe_field%detuning_fact(3) = -1.0d0

probe_field%Rabif = (0.0d0 , 0.0d0)

probe_field%Rabif(1,2) = (5.0d0 , 0.0d0)

! Properties of the coupling field

coupling_field%detuning = 0.0d0

coupling_field%detuning_fact(1) = 0.0d0

coupling_field%detuning_fact(2) = 0.0d0

coupling_field%detuning_fact(3) = -1.0d0

coupling_field%Rabif = (0.0d0 , 0.0d0)

coupling_field%Rabif(2,3) = (10.0d0 , 0.0d0)

! Frequency offset of each of the states. Here they are

! zero since the three states are assumed to coincide

! in energy with their respective reference

! energy level.

energ_f(1) = 0.0d0

energ_f(2) = 0.0d0

energ_f(3) = 0.0d0

! State 2 decays to state 1 and state 3 decays to state 2.

! Corresponding decay rates:

Gamma_decay_f = 0.0d0

Gamma_decay_f(1,2) = 5.0d0

Gamma_decay_f(2,3) = 1.0d0

! Initialisation: Key parameters are first passed to obe

! through a call to obe_setcsts. The properties of field 1

! and of field 2 are then passed through calls

! to obe_setfields.

nfields = 2 ! Number of fields

iweakprb = 0 ! 0 means that the weak probe

! approximation is not made

iRabi = 1 ! 1 means that the Rabi frequencies are

! provided directly rather than through

! dipole matrix elements and

! field amplitudes.

call obe_setcsts(energ_f,Gamma_decay_f,nfields, &

iweakprb,iRabi)

call obe_setfields(1,probe_field)

call obe_setfields(2,coupling_field)

! Calculation of the steady state density matrix. The

! result is returned by obe_steadystate through the

! 1D array rhovec.

ioption = 1 ! See the description of

! obe_steadystate for that option.

call obe_steadystate(rhovec,ioption)

! Find out which components of rhovec correspond to the

! real and imaginary parts of rho_12, and print this

! coherence.

call obe_coher_index(1,2,mre,mim)

print 1000,rhovec(mre),rhovec(mim)

1000 format(1x,’rho(1,2) = ’,2(1pe12.5,2x))

end program example
16
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Fig. F.1. Nascent quasisimultons in a 3-state model, calculated as described in 
Appendix F. (a): Probe field. (b): Coupling field.

Appendix F. Example of propagation calculation

This second example illustrates the use of the mbe module in cal-

culations of light propagation in a nonlinear medium. The calculation 
reproduces some of the 3-state results reported in Ref. [1]. The medium 
is a dense 85Rb vapour. The three states in question are the 5 2S1∕2
ground state, the 5 2P1∕2 state and the 5 2P3∕2 state. The D1 transition 
is addressed by a weak CW field (the probe field), the D2 transition 
by a strong Gaussian pulse propagating in the same direction as the 
CW field (the coupling field). The peak intensity of this pulse is so 
high, 1 kW cm−2, that it splits into three soliton-like pulses travel-

ling over large distances through the medium [40]. The intensity of 
the applied CW field is only 10 μW cm−2, which is normally far too 
low for the formation of solitons: instead, this field would normally be 
absorbed rapidly by the vapour. However, a nonlinear interaction be-

tween the two fields mediated by the atoms gives rise to three pulses 
at the D1 wavelength which co-propagate with the strong soliton-like 
pulses formed at the D2 wavelength, forming as many quasi-simultons 
[1]. This nonlinear effect is illustrated by Fig. F.1, which shows the re-

sults generated by the driveall program when run with the input data 
given below.

Both fields are assumed to be 𝜋-polarized in the 𝑧-direction. The 
relevant dipole moments are ⟨5 2S1∕2 || 𝑒𝑟 || 5 2P1∕2 ⟩∕√3 for the D1 
transition and ⟨5 2S1∕2 || 𝑒𝑟 || 5 2P3∕2 ⟩∕√3 for the D2 transition, where ⟨5 2S1∕2 || 𝑒𝑟 || 5 2P1∕2 ⟩ = 2.537 × 10−29 C m [16,41] and⟨5 2S1∕2 || 𝑒𝑟 || 5 2P3∕2 ⟩ = 3.58425 × 10−29 C m [42]. The spontaneous 
decay rates of the 5 2P1∕2 and 5 2P3∕2 states are, respectively, 2𝜋 ×
5.746 MHz and 2𝜋×6.0666 MHz for the 5 2P3∕2 state [16,41]. The atomic 
number density, 1.96 × 1021 m−3, corresponds to a vapour temperature 
of 220 ◦C; however, Doppler broadening is neglected in this example 
so as to avoid unnecessarily long execution times. The Maxwell-Bloch 
equations are integrated in time using Butcher’s 5th order Runge-Kutta 
method and in space using a predictor-corrector method combining 
the third order Adams-Bashford method and the fourth order Adams-

Moulton method, initiated by calculation with smaller spatial steps using 
the classic fourth order Runge-Kutta rule. The applied fields are read 
from a file called appliedfields.dat. This file, as well as the con-
trolparams file listed below and the corresponding keyparams file 
can be found in the examples directory included in this distribution. 
Running the driveall program with these input data produces a file 

called outamplitudes.dat containing the complex amplitudes of the 
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propagated fields as functions of position and time (however, see Ap-

pendix G for adapting the program listed below to being run through 
Podman). These complex amplitudes are transformed into the corre-

sponding intensities by the program used for plotting Fig. F.1, which is 
also included in the examples directory.

&controlparams

icalc = 3 ! Tells driveall to integrate the

! Maxwell-Bloch equations.

iRabi = 0 ! Dipoles moment rather than Rabi frequencies

! are specified.

inoncw = 1 ! Non-CW fields.

! Use obe_set_tdfields_B to define the time-dependent

! amplitudes of the applied fields, and read these

! amplitudes from the file appliedfields.dat:

itdfieldsAorB = 2

filename_tdamps_in = ’appliedfields.dat’

n_time_steps = 100 ! Number of time steps.

! Choice of integration rule for the time integration and

! number of intermediate steps between each mesh point:

imethod = 5 ! Butcher’s 5-th order formula.

nsubsteps = 2

! How many t-steps between each value of t at which

! the fields are written out:

nt_writeout = 1

! Choice of integration rule for the integration in the

! z-direction, propagation distance (in mum) and number

! of steps:

izrule = 3

zmax = 16.d0

n_z_steps = 1600

! How many z-steps between each value of z at which

! the fields are written out:

nz_writeout = 20

density = 1.96d+21 ! 220 C.

Gamma_decay_f(1,2) = 5.746d0

Gamma_decay_f(1,3) = 6.0666d0

detuning_fact(2,1) = -1.d0

detuning_fact(3,2) = -1.d0

detuning(1) = 0.d0

detuning(2) = 0.d0

dip_mom(2,1,1) = 1.465d-29

dip_mom(3,1,2) = 2.06937d-29

! Both fields propagate in the positive z-direction:

idir(1) = 1

idir(2) = 1

wavelength(1) = 794.979d0

wavelength(2) = 780.241d0

! The following information determines the initial

! density matrix as explained in the User Manual.

istart = 2

popinit(1) = 1.d0

! The calculated fields must be written on a file called

! outamplitudes.dat, which, if already existing, will be

! overwritten by the program:

iappend = 0

filename_tdamps_out = ’outamplitudes.dat’

\

The examples directory also contains a bespoke program doing the 
same calculation, although with the fields calculated directly within the

mbe module rather than read from file.

Appendix G. Running CoOMBE using a container image

This code can be compiled and run using a container image such as 
one managed by the Podman tool [23]. An advantage of this method is 
that the user does not need to worry about installing a Fortran com-
17

piler or the required numerical libraries. This approach is becoming 
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increasingly conventional across modern software development. The 
user wishing to use Podman will need to install this program for their 
respective operating system (this program is freely available at [23]). 
Once done, the user can then easily build the relevant image of the code 
and run the program.

We provide a Podman implementation for each of the worked exam-

ples in the examples folder, namely a Containerfile (here a Dockerfile), 
a Makefile and a .sh shell script. Building the image is done by the fol-

lowing command:

podman build -t coombe .

(The ldbl.f90, obe.f90, mbe.f90 and driveall.f90 files need to 
be first copied into the working directory as necessary, together with the 
relevant general_settings.f90 file, data files, Dockerfile, Makefile 
and shell script.) Once the image has been built, the program can be run 
using the command

podman run -v ./:/home/coombe coombe

Changing any input parameters normally requires to rebuild the image 
by using the podman build command again; however, the rebuild pro-

cess is typically faster than the initial rebuild.
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