
J
H
E
P
1
0
(
2
0
2
4
)
0
7
0

Published for SISSA by Springer

Received: August 6, 2024
Accepted: September 21, 2024

Published: October 9, 2024

Soft limits of gluon and graviton correlators in
Anti-de Sitter space

Chandramouli Chowdhury ,a Arthur Lipstein ,b Jiajie Mei b and Yuyu Mo c

aMathematical Sciences and STAG Research Centre, University of Southampton,
Highfield, Southampton SO17 1BJ, U.K.

bDepartment of Mathematical Sciences, Durham University,
Stockton Road, DH1 3LE, Durham, U.K.

cHiggs Centre for Theoretical Physics,
School of Physics and Astronomy, The University of Edinburgh,
Edinburgh EH9 3FD, Scotland, U.K.

E-mail: c.chowdhury@soton.ac.uk, lipstein@durham.ac.uk,
jiajie.mei@durham.ac.uk, y.y.mo@sms.ed.ac.uk

Abstract: We derive formulae for the soft limit of tree-level gluon and graviton correlators in
Anti-de Sitter space, which arise from Feynman diagrams encoding the Weinberg soft theorems
in flat space. Other types of diagrams can also contribute to the soft limit at leading order in
the soft momentum, but have a different pole structure. We derive these results at four points
using explicit formulae recently obtained from the cosmological bootstrap and double copy,
and extend them to any multiplicity using bootstrap techniques in Mellin-momentum space.

Keywords: AdS-CFT Correspondence, Scattering Amplitudes

ArXiv ePrint: 2407.16052

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2024)070

https://orcid.org/0000-0003-4893-4948
https://orcid.org/0000-0002-0213-186X
https://orcid.org/0000-0003-3639-9896
https://orcid.org/0009-0004-7463-1793
mailto:c.chowdhury@soton.ac.uk
mailto:lipstein@durham.ac.uk
mailto:jiajie.mei@durham.ac.uk
mailto:y.y.mo@sms.ed.ac.uk
https://doi.org/10.48550/arXiv.2407.16052
https://doi.org/10.1007/JHEP10(2024)070


J
H
E
P
1
0
(
2
0
2
4
)
0
7
0

Contents

1 Introduction 1

2 Review 3

3 Four points 5
3.1 Yang-Mills 5
3.2 Gravity 8

4 General multiplicity 10
4.1 Mellin-momentum amplitudes 10
4.2 Bootstrap 11
4.3 Gluon soft limit 13
4.4 Graviton soft limit 15

5 Conclusion 17

A Four-point GR soft limit 18

B Soft limits in Mellin space 20

C From Mellin to momentum space 20
C.1 Yang-Mills 20
C.2 Gravity 22
C.3 Further comments on Mellin momentum amplitudes 23

D Soft limits in momentum space 24

E Soft limit of five-point YM 27

1 Introduction

A major driving force in the study of scattering amplitudes was the discovery of soft theorems
which relate higher point amplitudes to lower point amplitudes when the momentum of one
external leg is taken to zero. Soft gluon and graviton theorems were first derived at leading
order in the soft momentum by Weinberg [1] and then extended to higher orders in [2–7].
They are of great interest because they imply useful constraints on scattering amplitudes
and encode hidden symmetries. For example in certain scalar theories they encode hidden
shift symmetries via enhanced soft limits [8–12], while in Yang-Mills (YM) and Einstein
gravity they encode asymptotic symmetries [13–15] known as extended Bondi-Metzner-Sachs
(BMS) symmetry [16, 17].

Soft limits also play an important role in cosmology where they give rise to consistency
conditions on inflationary correlators [18–26] and allow one to deduce certain inflationary
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three-point functions from soft limits of four-point de Sitter (dS) correlators [27–30]. More
recently, they were also shown to encode hidden symmetries of certain scalar theories via
enhanced soft limits analogous to those in flat space [31, 32]. The soft limit of three-point
graviton correlators in de Sitter was found long ago by Maldacena [18] and takes the form of
an energy derivative acting on a two-point correlators. Similar structure was also found for
inflationary correlators with a soft graviton and any number of scalars using symmetry-based
arguments [21, 24]. Our goal in this paper will be to derive a formula for the soft limits of
gluon and graviton correlators with any multiplicity in Anti-de Sitter space (AdS). Curvature
corrections to the Weinberg soft theorems in AdS were found by first expanding around the
flat space limit [33–36], but in this paper we will not perform such an expansion. In fact,
we will show that the soft and flat space limits do not commute.

First we compute the soft limits of the tree-level four-point gluon and graviton correlators
in AdS4. While this is fairly straightforward to do for gluons using Feynman diagrams, for
gravitons we make use of a compact formula for the four-point graviton correlator recently
derived using a combination of bootstrap [37] and double copy [38] techniques. We then
obtain soft limit formulae for arbitrary multiplicity by computing the soft limit of class I
diagrams which give rise to the Weinberg soft theorems in flat space. Unlike in flat space,
other types of diagrams can also contribute to the soft limit at leading order in the soft
momentum, but they have a different pole structure than class I diagrams so they can be
distinguished, as we will explain. The soft limit of class I diagrams is very difficult to prove in
gravity using standard Feynman diagram methods, so we prove it using bootstrap techniques
in Mellin-momentum space [39–42]. This approach makes use of a differential representation
where correlators are represented in terms of certain differential operators acting on bulk
scalar contact diagrams [43–46].

Ultimately, we find that the soft limit of gluon and graviton correlators gives a term
analogous to the Weinberg soft factor for scattering amplitudes where the soft pole is
replaced with an energy derivative plus a term involving a polarisation derivative which is
subleading in the flat space limit. These two terms can be nicely combined into a single
momentum derivative acting on the bulk-to-boundary propagator of a hard leg. As mentioned
above, similar structures appear in the consistency relations for inflationary correlators,
which are derived from Ward identities associated with certain nonlinearly realised large
diffeomeorphisms [21, 24]. On the other hand, we derive soft limits diagramatically rather than
from underlying symmetry principles. It would be very interesting to see how the soft limits in
this paper are related to those of inflationary correlators or to derive them from the analogoue
of BMS symmetry in AdS known as Λ-BMS symmetry, which was recently discovered in [47].

The structure of this paper is as follows. In section 2 we review the Weinberg soft
theorems in flat space and the soft limit of three-point gluon and graviton correlators in
AdS4. In section 3 we compute the soft limits of four-point gluon and graviton correlators
in AdS4 and in section 4 we obtain soft limit formulae for any multiplicity by computing
the soft limit of general class I diagrams using bootstrap techniques in Mellin-momentum
space. In section 5, we present our conclusions. There are also several of appendices which
describe various technical details. For example, we analyze soft limits of general YM diagrams
using Feynman rules in AdS momentum space and show that non-class I diagrams exhibit
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different pole structure than class I diagrams. We also verify our soft limit formula for
five-point correlators in YM. We also include as Supplementary material two Mathematica
notebooks, Class1.nb and 5ptYM.nb, which provide details of the bootstrap procedure for
class I diagrams and our five-point checks, respectively.

2 Review

As shown long ago by Weinberg [1], soft limits of gluon and graviton ampitudes have the
following universal form:

lim
kµ

n+1→0
AY M

n+1 =
(

n∑
a=1

εn+1 · ka

kn+1 · ka
+ . . .

)
AY M

n (2.1)

lim
kµ

n+1→0
AGR

n+1 =
(

n∑
a=1

(εn+1 · ka)2

kn+1 · ka
+ . . .

)
AGR

n (2.2)

where . . . denote subleading terms in the soft expansion. In recent years, deep connections to
asympotic symmetries have been identified [13, 14]. In this paper our goal will be to find
analogous formulae for boundary correlators in AdS. Before doing so, we will first review
some facts about AdS correlators and soft limits of 3-point functions.

We will work in the Poincare patch of Euclidean AdSd+1 with unit radius:

ds2 = dz2 + dxidxi

z2
, (2.3)

where 0 < z <∞ is the radial coordinate and xi with i ∈ {1, . . . , d} are the coordinates of
the boundary located at z = 0. In AdS, the basic obervables are computed by summing over
Feynman diagrams ending on the boundary, which can be formally treated like boundary
CFT correlators. Wick-rotating to de Sitter space then gives cosmological wavefunction
coefficients [18, 48]. In-in correlators can then be obtained by squaring the wavefunction
and performing a path integral over boundary values of the bulk fields [18, 49], although we
will not consider such objects in this paper. Since the boundary is translation invariant, we
Fourier transform correlators along the boundary to momentum space to get [50]〈

O∆
(
k⃗1
)
. . .O∆

(
k⃗n

)〉
= δd

(
k⃗T

) 〈〈
O∆

(
k⃗1
)
. . .O∆

(
k⃗n

)〉〉
, (2.4)

where k⃗T is the total boundary momentum, which must vanish by momentum conservation:

k⃗T =
n∑

a=1
k⃗a = 0, (2.5)

where the subscript a labels external legs and we denote the correlator stripped of the delta
function with double brackets. For simplicity, we consider scalar operators in the boundary
with scaling dimension ∆ which are dual to bulk scalar fields ϕ with mass m2 = ∆(∆− d).
The bulk-to-boundary propagators for the bulk scalar fields are obtained by solving the
free equations of motion [51, 52]

D∆
k ϕ∆(k, z) = 0, D∆

k ≡ z2k2 − z2∂2z − (1− d)z∂z +∆(∆− d), (2.6)
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where k = |⃗k| is the norm of the boundary momentum flowing through the propagator, which
we refer to as the energy of the particle.1 In general, the total energy of an n-point correlator

k12...n =
n∑

a=1
ka, ka =

∣∣∣⃗ka

∣∣∣ (2.7)

is not conserved. In the flat space limit, the energy is taken to zero and the correlator develops
a pole whose residue is the flat space amplitude in (d + 1) dimensions [53].

In more detail, the solution to (2.6) is given by

ϕ∆(k, z) =
√

2
π
zd/2k∆− d

2K∆− d
2
(zk) (2.8)

where K is a Bessel function. A useful fact is that the bulk-to-boundary propagators for
gluons and gravitons can be obtained by dressing scalar propagators with polarisations [51, 52]

Ai (k, z) = εiϕ∆=d−1 (k, z) , hij = εijϕ∆=d (k, z) , (2.9)

where we have rescaled the propagators of by factors of z and absorbed these factors into the
interaction vertices (for more details about this and the gauge choice see [54]). Polarisations
point along the boundary and satisfy

ε⃗a · k⃗a = ε⃗a · ε⃗a = 0. (2.10)

Moreover, graviton polarisations can be written as a tensor product of gluon polarisations:

εij
a = εi

aε
j
a. (2.11)

We will not go into further details about the Feynman rules for gluons and gravitons in
AdS since later on we will make use of bootstrap techniques that will not require a detailed
knowledge of the Feynman rules.

Correlators of gluons and gravitons can be represented as boundary correlators of
conserved currents J and stress tensors T , respectively. The two and three-point gluon
correlators in AdS4 are given by [55, 56]

⟨⟨JJ⟩⟩ = −1
2k2ε1 · ε2, ⟨⟨JJJ⟩⟩ = 1

k123
(ε1 · ε2ε3 · k1 + cyclic) , (2.12)

where the double brackets once again indicate that we drop the momentum-conserving delta
function.2 If we take the soft limit of the three-point we obtain

lim
k⃗3→0

⟨⟨JJJ⟩⟩ = −ε3 · k2ε1 · ε22k2
= −ε3 · k22k2

∂k2⟨⟨JJ⟩⟩, (2.13)

where the energy derivative acts trivially on polarisations so only acts on the k2 in (2.12).
Similarly, the two and three-point graviton correlators in AdS4 are given by [55, 56]:

⟨⟨TT ⟩⟩ = 1
2k

3
2 (ε1 · ε2)2 , (2.14)

⟨⟨TTT ⟩⟩ =
(
k1k2k3
k2123

+ k1k2 + k2k3 + k3k1
k123

− k123

)
(ε1 · ε2ε3 · k1 + cyclic)2 , (2.15)

1More precisely, this can be thought of as the radial component of the momentum in AdS, but after Wick
rotation to dS the radial direction becomes time-like so this can be interpreted as an energy.

2We have chosen the normalisation of two point functions for consistency with soft limits.
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where we neglect boundary contact terms in the three-point expression which can be removed
by redefining the bulk metric. For simplicity, we also neglect a well-known IR divergent
term [55] which cancels out of the in-in correlator and will not effect our results later on.
Taking the soft limit of the three-point correlator then gives:

lim
k⃗3→0

⟨⟨TTT ⟩⟩ = −3
2k2 (ε1 · ε2ε3 · k2)

2 = −(ε3 · k2)2

2k2
∂k2⟨⟨TT ⟩⟩. (2.16)

A similar formula for in-in correlators was first found by Maldacena in the context of
cosmology [18]. Note that the divergent term we neglected in (2.15) does not contribute to
the soft limit because the terms which survive in the soft limit are analytic in at least two
momenta and therefore correspond to boundary contact terms at three points [55].

Our goal in this paper will be to generalise these formulae to arbitrary multiplicity. For
the impatient reader, our main results can be found in (4.24) and (4.35). As we will see
later, the energy derivatives in (2.13) and (2.16) can be thought of as the AdS analogue
of Weinberg soft factors in (2.2), and appear at arbitrary multplicity. Above three-points,
we also obtain polarisation derivatives which are subleading in the flat space limit. Similar
structures also appear in the soft limits of inflationary correlators [21, 24] so it would be
very interesting to understand how they are related to the soft limits of boundary correlators
in AdS. Note that the relation is not direct because cosmological correlators are obtained
by squaring the cosmological wavefunction, which maps onto boundary correlators in AdS
after analytic continuation [18, 49].

3 Four points

In this section we compute the soft limit of four-point gluon and graviton correlators in AdS4
using explicit four-point correlators recently derived in [38] using double copy techniques.
We will observe a Weinberg-like soft factor involving an energy derivative as well as another
term with a polarisation derivative which is subleading in the flat space limit. As we will
show in the next section, this structure extends to any number of points.

3.1 Yang-Mills

Let us consider the color-ordered tree-level four-point correlator. This is given by a sum of s
and t-channel diagrams along with a contact diagram as depicted in the figure below:

2 3

41

+ (2 ↔ 4) +

2 3

41

(3.1)

It is possible to express this sum over Feynman diagrams (including the contact diagram)
as a sum of s and t-channel contributions. Using Feynman rules in momentum space, it is
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not difficult to show that the s-channel contribution is [38]

⟨⟨JJJJ⟩⟩(s) = Ws

k1234ELER
+ ε1 · ε2ε3 · ε4Π1,1

k1234ELER
− ε1 · ε2ε3 · ε4Π1,0

k1234
+ V s

c

4k1234
, (3.2)

where EL = k12 + kS , ER = k34 + kS , kS =
∣∣⃗k12∣∣,

Ws = ε1 · ε2 (k1 · ε3k2 · ε4 − k2 · ε3k1 · ε4) (3.3)
+ ε3 · ε4 (k3 · ε1k4 · ε2 − k4 · ε1k3 · ε2) (3.4)
+ (k2 · ε1ε2 − k1 · ε2ε1) · (k4 · ε3ε4 − k3 · ε4ε3) (3.5)

Π1,1 =
1
4 (k1 − k2) · (k3 − k4) +

(
k21 − k22

) (
k23 − k24

)
4k2S

(3.6)

Π1,0 =
(k1 − k2) (k3 − k4)

4k2S
(3.7)

V s
c = (ε1 · ε3ε2 · ε4 − ε1 · ε4ε2 · ε3). (3.8)

If we take the soft limit of k⃗4, we obtain

lim
k⃗4→0

⟨⟨JJJJ⟩⟩(s) = − ε4 · k3
2k3k123

⟨⟨JJJ⟩⟩ − ε1 · ε2ε3 · ε4 (k1 − k2)
4k3k123

+ V
(s)

c

4k123
, (3.9)

where we noted that

lim
k⃗4→0

Π1,1 = 0, lim
k⃗4→0

Π1,0 =
k1 − k2
4k3

. (3.10)

To proceed, we drop the contribution from the contact digram V
(s)

c in (3.9) and re-write
the remaining expression as

lim
k⃗4→0

⟨⟨JJJJ⟩⟩(s) = ε4 · k3
2k3

∂k3⟨⟨JJJ⟩⟩+
ε3 · ε4
2k23

ki
3V

i
12

∫
dze−k12z

(
1− e−k3z

)
+ . . . (3.11)

where the energy derivative only acts on the energy pole of the three-point correlator in (2.12),

V i
ab =

1
2εa · εb (ka − kb)i + εa · kbε

i
b − εb · kaε

i
a (3.12)

is the three-point gluon vertex, and . . . denote the terms we have dropped. As we will see
in the next section, the terms we have kept arise from the soft limit of Feynman diagrams
which encode the Weinberg soft limit in flat space (known as class I diagrams) and the
terms we have dropped arise from other classes of diagrams. To obtain (3.11) we noted
that ki

3V
i
12 = −1

2ε1 · ε2
(
k21 − k22

)
and∫

dze−k12z
(
1− ek3z

)
= k3
k123k12

. (3.13)

We may then write (3.11) as follows:

lim
k⃗4→0

⟨⟨JJJJ⟩⟩(s) = ε4 · k3
2k3

∂k3⟨⟨JJJ⟩⟩+
ε3 · ε4
2k23

k3 ·∂ε3

(
⟨⟨JJJ⟩⟩|k3=0 − ⟨⟨JJJ⟩⟩

)
+ . . . (3.14)
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where ⟨⟨JJJ⟩⟩|k3=0 means that the energy k3 is set to zero but not k⃗3, so this restriction
just means that we take the energy pole k−1

123 → k−1
12 . Note that the first term in parenthesis

in (3.14) corresponds to a boundary contact term in position space and can be dropped.
To see this, let’s write out this term explicitly:

ε3 · ε4
2k23

k3 · ε3 ⟨⟨JJJ⟩⟩|k3=0 =
ε3 · ε4
2k23

ki
3V

i
12

∫
dze−k12z = ε1 · ε2ε3 · ε4

4k23
(k1 − k2) (3.15)

The first term on the right-hand-side is analytic in legs 2 and 3 while the second term
is analytic in legs 1 and 3. As shown in [55], terms which are analytic in at least two
momenta give delta functions after Fourier transforming to position space so vanish for
generic positions of the dual operators.

In summary, we find the following soft limit for the s-channel contribution to a 4-point
gluon correlator:

lim
k⃗4→0

⟨⟨JJJJ⟩⟩(s) = ε4 · k3
2k3

∂k3⟨⟨JJJ⟩⟩ −
ε4 · ε3
2k23

k3 · ∂ε3⟨⟨JJJ⟩⟩+ . . . (3.16)

= 1
2ε

i
4∂k3i

⟨⟨JJJ⟩⟩+ . . . , (3.17)

where the momentum derivative in the second line acts on the bulk-to-boundary propagator
of leg 3. Recalling that the bulk-to-boundary propagator can be expressed in terms of scalar
propagator (which only depends on energy) dressed with a polarisation, we see that the
momentum derivative in (3.17) can act on the energy or polarisation of the propagator, which
gives (3.16) after using the following identities:

∂ki = ki

k
∂k,

∂εi

∂kj
= −εjki

k2
. (3.18)

The first one follows from the chain rule while the second one follows from taking a derivative
of (2.10). The soft limit of the full color-ordered gluon correlator is then obtained by
summing over the s and t channels.

Let us comment on the physical interpretation of (3.17). Consider the first term on the
right hand side of (3.2), which comes from gluon exchange. Notice that it has a simple pole
in the total energy k1234. Taking the energy to zero gives

lim
k1234→0

Ws

k1234ELER
= 1
k1234

Ws

S
, (3.19)

where S = k34µk
µ
34 is the 4d Lorentz-invariant Mandelstam variable. We recognise the residue

of the energy pole to be the s-channel gluon exchange diagram in flat space. If we then
take the soft limit k⃗4 → 0 we get

lim
k⃗4→0

lim
k1234→0

Ws

k1234ELER
= 1
k123

ε4 · k3
k4 · k3

(ε1 · ε2ε3 · k1 + cyclic) , (3.20)

which we recognize as a term contributing to the Weinberg soft gluon theorem in (2.2)
times a three-point energy pole. If we instead take the soft limit followed by the flat space
limit, we obtain

lim
k1234→0

lim
k⃗4→0

Ws

k1234ELER
= ε4 · k3

2k3k2123
(ε1 · ε2ε3 · k1 + cyclic) . (3.21)
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Hence, the soft and flat space limits do not commute and we get a double pole in k123 which
arises from acting with ∂k3 on the energy pole of the three-point function in (3.17). The
double pole can in turn be written as a single pole in k123 times a pole in the energy of the
soft leg k4 using energy conservation associated with the flat space limit. Hence, we see that
the first term on the right-hand-side of (3.16) is indeed the analogue of the Weinberg soft
factor in AdS. In addition to this, we also find a polarisation derivative in (3.16) which is
subleading in the flat space limit. The two terms combine nicely into a single derivative with
respect to boundary momentum acting on the bulk-to-boundary propagator of leg 3.

3.2 Gravity

Next let us consider the soft limit of the 4-point graviton correlator. A compact formulae
was obtained from the double copy in [38]. It can be written as a sum over three channels
and we give the explicit formula for the s-channel and compute its soft limit in appendix A.
In the end we obtain

lim
k⃗4→0

⟨⟨TTTT ⟩⟩(s) = 1
2 (k3 · ε4)2

(2k1k2
k3123

+ k12
k2123

+ 1
k123

)
(ε1 · ε2ε3 · k1 + cyclic)2

+ 1
2k3 · ε4 (ε1 · ε2ε3 · k1 + cyclic) ε1 · ε2ε3 · ε4 (k1 − k2)

(
k1k2
k2123

+ k12
k123

)
−1
2k3 · ε4 (ε1 · ε2ε3 · k1 + cyclic)V (s)

c

×
(
k1k2k3
k2123

+ k1k2 + k2k3 + k3k1
k123

− k123

)
. (3.22)

We see that the soft limit can be written in terms of gluonic building blocks, reflecting the
underlying double copy structure. As we did in the previous subsection, we drop the gluonic
four-point vertex V

(s)
c and re-write the remaining terms as follows:

lim
k⃗4→0

⟨⟨TTTT ⟩⟩(s) = −(ε4 · k3)2

2k3
∂k3⟨⟨TTT ⟩⟩ −

ε4 · k3ε3 · ε4
2k23

ε
(i
3 k

j)
3 Ṽ

ij
12
k23
k12

(
k1k2
k2123

+ k12
k123

)
+ . . . ,

(3.23)
where . . . denote the terms we have dropped, ε(i3 k

j)
3 ≡ εi

3k
j
3 + εj

3k
i
3, Ṽ

ij
ab = V i

abV
j

ab, and we
noted that

− 1
k3

∂

∂k3

(
k1k2k3
k2123

+ k1k2 + k2k3 + k3k1
k123

− k123

)
= 2k1k2

k3123
+ k12
k2123

+ 1
k123

, (3.24)

ε
(i
3 k

j)
3 Ṽ

ij
12 = −1

2 (ε1 · ε2ε3 · k1 + cyclic) ε1 · ε2
(
k21 − k22

)
. (3.25)

As we will see in the next section, (3.23) encodes the contribution of Feynman diagrams
which encode the Weinberg soft theorem in flat space (known as class I diagrams) and the
terms we have neglected arise from other types of diagrams. We can recast the gravitational
soft limit in (3.23) in a form analogous to the gluonic one in (3.11):

lim
k⃗4→0

⟨⟨TTTT ⟩⟩(s) =− (ε4 · k3)2

2k3
∂k3⟨⟨TTT ⟩⟩

− ε4 · k3ε3 · ε4
2k23

ε
(i
3 k

j)
3 ∂εij

3

(
⟨⟨TTT ⟩⟩|k3=0 − ⟨⟨TTT ⟩⟩

)
+ . . . (3.26)
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In obtaining this formula we used the following identity:∫
dz

z2
(1 + k1z) (1 + k2z) e−k12z

(
1− (1 + k3z) e−k3z

)
= k23
k12

(
k1k2
k2123

+ k12
k123

)
, (3.27)

and replaced Ṽ ij
ab with the three-graviton vertex. While the three-graviton vertex is not equal

to the square of the three-gluon vertices unless all three legs are external, the difference
between them actually doesn’t contribute to the amplitude in the soft limit, as we will
prove in the next section.

The first term in parenthesis in (3.26) corresponds to a boundary contact term. To
see this, let us write it out explicitly:

2ε4 · k3ε3 · ε4
k23

ε
(i
3 k

j)
3 ∂εij

3
⟨⟨TTT ⟩⟩|k3=0 =

2ε4 · k3ε3 · ε4
k23

ε
(i
3 k

j)
3 Ṽ

ij
12

∫ ∞

z0

dz

z2
(1 + k1z) (1 + k2z) e−k12z, (3.28)

where we have put a cutoff on the lower limit of the z integral to regulate the divergence.
In more detail, this integral is given by∫ ∞

z0

dz

z2
(1 + k1z) (1 + k2z) e−k12z = 1

z0
+ k1k2

k12
− k1 − k2. (3.29)

Note that this divergence cancels a divergence in the second term in parenthesis in (3.26),
which we left out of (2.15) for simplicity. We then find that

ε4 · k3ε3 · ε4
2k23

ε
(i
3 k

j)
3 ∂εij

3
⟨⟨TTT ⟩⟩|k3=0 = −ε4 · k3ε1 · ε2ε3 · ε42k23

(ε1 · ε2ε3 · k1 + cyclic)

×
(
k21 − k22

)( 1
z0

+ k1k2
k12

− k1 − k2

)
. (3.30)

Noting that (
k21 − k22

)
k1k2

k12
= k21k2 − k22k1, (3.31)

we see that all the terms on the right hand side of (3.30) are analytic in two momenta and
therefore correspond to boundary contact terms in position space. Hence, we discard the
first term in parenthesis in (3.26) and are left with

lim
k⃗4→0

⟨⟨TTTT ⟩⟩(s) =− (ε4 · k3)2

2k3
∂k3⟨⟨TTT ⟩⟩+

ε4 · ε3ε4 · k3
2k23

ε
(i
3 k

j)
3 ∂εij

3
⟨⟨TTT ⟩⟩+ . . . (3.32)

=− 1
2ε

ij
4 k3i∂k3j

⟨⟨TTT ⟩⟩+ . . . , (3.33)

where the momentum derivative in the second line acts on the bulk-to-boundary propagator
of leg 3. To go from the second line to the first line, we recalled that the bulk-to-boundary
propagator can be expressed in terms of a scalar propagator dressed with a polarisation
and combined (3.18) with (2.11) to obtain [25]

∂εij

∂kl
= −kiεjl + kjεil

k2
. (3.34)
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Note the similarity to the soft gluon limit in (3.17). In particular, (3.32) consists of an energy
derivative which gives rise to a cubic energy pole which can be thought of as the AdS analogue
of the Weinberg soft pole, plus a polarisation derivative which is subleading in the flat space
limit. The full soft limit is obtained by summing over the s,t, and u channels.

4 General multiplicity

In the previous section, we computed soft limits of four-point correlators in AdS4. In this
section, we will generalise these formulae to arbitrary multiplicity by computing the soft
limit of general class I diagrams, which take the following form:

...
k⃗s + k⃗h

An

k⃗s

k⃗h

(4.1)

where k⃗s is the momentum that we take soft and k⃗h is a generic hard momentum. Note that
these diagrams are the same ones that give rise to the Weinberg soft theorems in flat space.
In appendix D we compute the soft limit of general diagrams in Yang-Mills using momentum
space Feynman rules and show that only class I diagrams give rise to energy derivatives
or poles in the energy of individual hard legs. For gravity it is much more challenging
to directly evaluate class I diagrams due to the complexity of the Feynman rules so we
resort to bootstrap techniques in Mellin momentum space recently developed in [41, 42].
In particular, the blob in (4.1) represents an n-point Mellin-momentum amplitude which
we will review in the next subsection.

4.1 Mellin-momentum amplitudes

For many applications, it is useful to formally represent boundary correlators in terms of
a certain differential operator acting on a scalar contact diagram:

〈〈
O
(
k⃗1
)
. . .O

(
k⃗n

)〉〉
=
∫

dz

zd+1An(z, k⃗a, ε⃗a)
n∏

a=1
ϕ∆(ka, z), (4.2)

where the left-hand-side represents a generic scalar or spinning correlator. This is known as the
differential representation [44–46]. Spinning correlators can be represented this way because
bulk-to-boundary propagators can be expressed in terms of scalar propagators dressed with
polarisations [41]. The differential operator An contains tensor structures constructed from
external polarisations and momenta, interaction vertices dressed with additional z factors,
and bulk-to-bulk propagators which are formally encoded by the inverse of the differential
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operator in (2.6). In more detail, noting that a bulk-to-bulk scalar propagator satisfies

D∆
k (z)G∆(k, z, y) = zd+1δ(z − y), (4.3)

where ∆ is the scaling dimension, (z, y) are two radial coordinates, and k is the energy
flowing through the propagator, we see that the insertion of a bulk-to-bulk propagator can
be represented by acting with (D∆

k (z))−1 as follows:

(D∆
k (z))−1F (z) =

∫
dy

yd+1G∆(k, z, y)F (y), (4.4)

where F (z) is any function. For example, the s-channel exchange of a scalar field of conformal
dimension ∆ and momentum kS ≡ |⃗k1 + k⃗2| can be represented as∫

dz

zd+1

∫
dx

xd+1ϕ∆1 (k1, z)ϕ∆2 (k2, z)G∆(kS , z, x)ϕ∆3 (k3, x)ϕ∆4 (k4, x) , (4.5)

which corresponds to having A4(z, k1, k2, k3, k4) = 1/D∆
kS

in (4.2). Similarly, spinning bulk-
to-bulk propagators can be expressed in terms of scalar bulk-to-bulk propagators dressed
with tensor structures plus additional terms that we will not need to specify because they
will automatically be captured by the bootstrap procedure that we will describe in the
next subsection.

It is convenient to perform a Mellin transformation of the bulk-to-boundary propaga-
tors [39, 40, 57]:

ϕ∆(k, z) =
∫ +i∞

−i∞

ds

2πiz
−2s+d/2ϕ∆(s, k), (4.6)

where

ϕ∆(s, k) =
Γ
(
s+ 1

2

(
d
2 −∆

))
Γ
(
s− 1

2

(
d
2 −∆

))
2Γ
(
∆− d

2 + 1
) (

k

2

)−2s+∆− d
2

(4.7)

is the Mellin representation of a bulk-to-boundary propagator which satisfies(
z2k2 + (d/2−∆)2 − 4s2

)
ϕ∆(s, k) = 0. (4.8)

After performing Mellin transformations of the bulk-to-boundary propagators in (4.2), we
can replace certain z-derivatives in An with Mellin variables and the resulting object will be
referred to as a Mellin-momentum amplitude.3 In Mellin-momentum space, the soft limit
then correponds to taking k⃗a → 0 along with s→ −1

2

(
d
2 −∆

)
, as we explain in appendix B.

4.2 Bootstrap

We will now review some bootstrap techniques developed in [41, 42] that will be relevant to
this paper. To carry out the bootstrap, we only need to specify the three-point gluon and
graviton Mellin-momentum amplitudes, which are given by

AYM
3 = z(ε1 · ε2ε3 · k1 + ε2 · ε3ε1 · k2 + ε3 · ε1ε2 · k3), (4.9)

AGR
3 = (AYM

3 )2 = z2(ε1 · ε2ε3 · k1 + ε2 · ε3ε1 · k2 + ε3 · ε1ε2 · k3)2. (4.10)
3We cannot generally replace z derivatives appearing in D∆

k (z)−1 with Mellin variables except in the limit
k → 0. When converting to Mellin variables one should also note that f(s)k2 → f(s + 1)

(
(d/2−∆)2−4s2

z2

)
,

where f(s) is any rational function of the Mellin variable s.
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Higher-point amplitudes can then be bootstrapped by making an ansatz and imposing various
constraints. For a general class I diagram in (4.1), we make the following ansatz in Yang-Mills
and gravity, respectively:

AYM1
n+1 =

aYM
s+h

Dd−1
ks+h

+ bs+h

k2s+h

, AGR1
n+1 =

aGR
s+h

Dd
ks+h

+
b
(1)
s+h

k2s+h

+
b
(2)
s+h

k4s+h

+ cAZ , (4.11)

where ks+h = |⃗ks + k⃗h| and the coefficients a, b, c depend on momenta and polarisations. Note
that the supercripts YM1 and GR1 indicate that we are only considering the Mellin-momentum
representation of an individual class I diagram. The soft limit of full Mellin-momentum
amplitudes will then be obtained by summing over all contributing class I diagrams. The
first term in each ansatz encodes the bulk-to-bulk propagator in the class I diagram, noting
that spinning bulk-to-bulk propagators can be expressed in terms of scalar bulk-to-bulk
propagators dressed with tensor structures plus additional terms which we do not need to
specify for the bootstrap procedure.

The coefficients in (4.11) can be fixed by imposing the following constraints:

• Factorization: we can choose the coefficient of 1
D∆

kI

to be a product of lower-point
amplitudes [58–60]:

aYM
s+h =

∑
r

AYM,i
3 εr

i ε
∗r
j AYM,j

n , aGR
s+h =

∑
r

AGR,i1i2
3 εr

i1i2ε
∗r
j1j2A

GR,j1j2
n , (4.12)

where r labels transverse traceless states and An = Ai
nεi. The polarisation sums are

given by ∑
r

εi(k, r)εj(k, r)∗ = ηij −
kikj

k2
≡ Πij

∑
r

εij(k, r)εkl(k, r)∗ =
1
2ΠikΠjl +

1
2ΠilΠkj −

1
d− 1ΠijΠkl.

(4.13)

Note that we can add terms to the right-hand-side of (4.12) which are proportional to
D∆

kI
, but this will cancel the 1

D∆
kI

in (4.11) so such terms can be absorbed into the other
coefficients of the ansatz.

• OPE limit: if two operators Oa and Ob become close together in position space, in
momentum space this corresponds to the sum of their momenta k⃗I = k⃗a + k⃗b becoming
soft. On the other hand, the operator product expansion (OPE) implies that the
correlator should factorise into a product of lower-point correlators times a two-point
function which scales like k2∆−d

I (where ∆ is the scaling dimension of the exchanged
operator) plus terms which have no poles in kI [21, 29, 39, 41, 42, 61–66]. For exchanged
gluons and gravitons, ∆ = d − 1 and d, respectively, so for d > 2 this contribution
vanishes as kI → 0. For class I diagrams, we therefore find that

Res
k2

s+h
→0

AYM
n+1 = 0. Res

k2
s+h

→0
AGR

n+1 = Res
k4

s+h
→0

AGR
n+1 = 0. (4.14)

These constraints fix the b’s in (4.11).
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• Adler zero: suppose we reduce two external gravitons to scalars by imposing εa · εb = 1
and εa · kc = εb · kc = 0, where a, b label the scalars and c labels any leg. After doing
so, we obtain a correlator of the form ⟨ϕϕhhh . . . ⟩ where the scalars couple to gravity
via ∇µϕ∇νϕhµν and enjoy a shift symmetry ϕ → ϕ + constant. It follows that the
Mellin-momentum amplitude must vanish when taking the soft limit of a scalar field,
which is an Alder zero in curved space [32, 67]. This constraint fixes cAZ in (4.11).

4.3 Gluon soft limit

Let us now use the bootstrap method described above to compute the soft limit of a general
class I diagram for gluons:

lim
k⃗s→0

...
k⃗s + k⃗h

AYM
n

k⃗s

k⃗h

(4.15)

Starting from the ansatz in (4.11), we have

AYM1
n+1 =

aYM
s+h

Dd−1
ks+h

+
bYM

s+h

k2s+h

, (4.16)

where ks+h = |⃗ks + k⃗h|. Factorisation then implies that

aYM
s+h =

∑
r

AYM,i
3 εr

i ε
r,∗
j AYM,j

n = AYM,i
3 ΠijAYM,j

n , (4.17)

where the arguments of the three-point subamplitude are given by AYM
3 (εh, εs, εr, kh, ks,−ks+h)

and Πij is given in (4.13). If we now take k⃗s soft, we obtain

lim
k⃗s→0

as+h

Dd−1
ks+h

= −zεs · khAYM
n

Dd−1
kh

, (4.18)

where we used the explicit form of the three-gluon amplitude in (4.10).
Next let us use the OPE constraint in (4.14) to fix bs+h in (4.16). Plugging (4.17)

into (4.16) and noting that Πij has a pole in k2s+h, we find that

bs+h = − Res
k2

s+h
→0

AYM,i
3 ΠijAYM,j

n

Dd−1
ks+h

= z(kj
s + kj

h)AYM,j
n (k2h − k2s)εs · εh

4 (d− 2sh − 2ss) (sh + ss − 1)

=
kj

h+s∂εj
h
AYM

n εs · εh(sh − ss)

2z
(

d
2 − (1 + sh + ss)

) . (4.19)
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To obtain the second line in (4.19), we used

lim
k⃗s+h→0

1
Dd−1

ks+h

= 1
2 (d− 2sh − 2ss) (sh + ss − 1) , (4.20)

which follows from acting with D−1 on the Mellin representation (4.6) of zϕd−1 (z, kh)×
ϕd−1 (z, ks). To obtain the third line in (4.19), we used f(s)k2 → f(s + 1)

(
(d/2−∆)2−4s2

z2

)
.

Using (4.19) and recalling that we must take s→ d
4 − 1/2 in the soft limit, we find that

lim
k⃗s→0

bs+h

k2h+s

= −εs · εh
kh · ∂εh

AYM
n

2zk2h
. (4.21)

Combining the results in (4.18) and (4.21), we find that the soft limit of a general class
I diagram in YM is given by

lim
k⃗s→0

AYM1
n+1 = −zεs · khAYM

n

Dd−1
kh

− εs · εh
kh · ∂εh

AYM
n

2zk2h
. (4.22)

The first term is the natural generalization of a Weinberg soft term in flat space after replacing
ks · kh → D∆

ks+h
, while the second term is subleading in the flat space limit which can be

seen by taking z → ∞.
In appendix C we show how to translate (4.22) to correlation functions in momentum

space. After relabeling the soft leg as n+ 1 and summing over all class I diagrams, we then
obtain the following formula for the soft limit of color-ordered gluon correlators in AdSd+1:

lim
k⃗n+1→0

⟨⟨J . . . J⟩⟩n+1 = Nd−1

{
εn+1 · kn

2kn
∂kn⟨⟨J . . . J⟩⟩n − εn+1 · εn

2k2n
kn · ∂εn ⟨⟨J . . . J⟩⟩n

}
−
(
k⃗n → k⃗1, ε⃗n → ε⃗1

)
+ . . . (4.23)

= Nd−1
2

{
εi

n+1∂kni
⟨⟨J . . . J⟩⟩n − εi

n+1∂k1i
⟨⟨J . . . J⟩⟩n

}
+ . . . (4.24)

where Nd−1 =
2(d−3)/2Γ( d−2

2 )√
π

and . . . denotes contributions from non-class I diagrams. Note
that the derivatives only act on the bulk-to-boundary propagators of hard legs. In particular,
the energy derivative in (4.23) gives rise to a double pole in the energy while the polarisation
derivative is subleading in the flat space limit. These two terms can then be combined
into a single momentum derivative acting on bulk-to-boundary propagators using (3.18).
In appendix D, we compute the soft limit of general YM diagrams using momentum space
Feynman rules and find that non-class I diagrams do not give energy derivatives or poles in
the energy of individual hard legs. Hence, (4.23) provides non-trivial constraints on gluon
correlators. We illustrate how this works at five points in appendix E and the Mathematica
notebook 5ptYM.nb in the Supplementary material.

Note that the soft factors of (4.24) are infrared finite, in contrast to the Weinberg soft
factors in flat space. Another important property of Weinberg soft factors is that they
are gauge-invariant [1]. On the other hand, the soft factors in (4.24) do not exhibit this
property because under gauge transformations correlators get shifted by boundary contact
terms (see for example [55, 68, 69] for more details). Moroever, (4.24) only encodes the
contribution of class I diagrams to the soft limit. In the next section we will see that similar
comments apply to graviton correlators.

– 14 –



J
H
E
P
1
0
(
2
0
2
4
)
0
7
0

4.4 Graviton soft limit

As we did for gluons, we will now consider the soft limit of class I diagrams for gravitons,
which we depict below:

lim
k⃗s→0

...
k⃗s + k⃗h

AGR
n

k⃗s

k⃗h

(4.25)

In this case, we start with the ansatz

AGR1
n+1 =

aGR
s+h

Dd
ks+h

+
b
(1)
s+h

k2s+h

+
b
(2)
s+h

k4s+h

+ cAZ , (4.26)

where the first term is determined from factorization, the second and the third terms from the
OPE limit, and the fourth term from the Adler zero condition after dimensional reduction. We
have included in the Supplementary material a Mathematica file Class1.nb with more details,
so we will just sketch how this works below. As explained in (4.12), factorisation implies that

aGR
s+h =

∑
r

AGR,i1i2
3

(1
2Πi1j1Πi2j2 +

1
2Πi1j2Πj1i2 −

1
d− 1Πi1i2Πj1j2

)
AGR,j1j2

n , (4.27)

where the sum is over transverse traceless states. Taking the soft limit k⃗s → 0 then gives

lim
k⃗s→0

aGR
s+h

Dd
ks+h

= z2 (εs · kh)2AGR
n

Dd
kh

. (4.28)

Next let us use the OPE constraints in (4.14) to fix b(1)s+h and b
(2)
s+h in (4.26). Since Πij

has a pole in k2s+h, we see that the right-hand-side of (4.27) has both k2s+h and k4s+h poles.
Hence, the OPE constraints imply that

b
(1)
s+h

k2s+h

= − 1
k2h+s

(
Res

k2
s+h

→0

as+h

Dd
ks+h

)

b
(2)
s+h

k4s+h

= − 1
k4h+s

(
Res

k4
s+h

→0

as+h

Dd
ks+h

)
. (4.29)
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Since there are 1/k4s+h poles, we must expand 1/D to order k2s+h in order to compute the
residue of 1/k2s+h:4

1
Dd−1

ks+h

= 1
2 (sh + ss − 1) (d− 2sh − 2ss + 2)

−
z2k2s+h

4 (sh + ss − 2) (sh + ss − 1) (d− 2sh − 2ss + 2) (d− 2sh − 2ss + 4) + . . .

(4.30)

where . . . denote higher order terms in k2s+h and we computed the action of 1/D on the
Mellin representation (4.6) of z2ϕd (z, kh)ϕd (z, ks). Plugging (4.27) and (4.30) into (4.29)
then determines b(1)s+h and b

(2)
s+h. In the soft limit we then find

lim
k⃗s→0

b
(1)
s+h

k2s+h

+
b
(2)
s+h

k4s+h

= −
(εs · εh)2Aj,GR

j,n

4(1− d) + εs · εhεs · khε
i
hk

j
hAGR,ij

n

k2h
, (4.31)

where we recalled that we must take the Mellin variable s → d/4 in this limit.
Finally, let us deduce the coefficient cAZ in (4.26) by imposing εs · εh = 1, εs · ka = 0, εh ·

ka = 0, where a can be any leg. This reduces the two external legs attached to the three-point
vertex in (4.25) to scalars which enjoy shift symmetries and therefore exhibit Adler zeros.
Demanding that the soft limits of these legs vanishes then fixes cAZ (see Class1.nb in the
Supplementary material for the expression). In the soft limit we then find that cAZ reduces to

lim
k⃗s→0

cAZ =
(εs · εh)2Aj,GR

j,n

4(1− d) . (4.32)

Adding the results in (4.28), (4.31), and (4.32) finally gives

lim
k⃗s→0

AGR1
n+1 = z2 (εs · kh)2AGR

n

Dd
kh

+ εs · εhεs · khε
i
hk

j
hAGR,ij

n

k2h
. (4.33)

Note the similarity to the gluonic soft limit in (4.22): the first term contains the soft limit
of a bulk-to-bulk scalar propagator and represents the analogue of a Weinberg soft term
in AdS while the second term contains a momentum derivative is subleading in the flat
space limit, z → ∞.

In appendix C we explain how to translate (4.33) to correlators in momentum space.
Relabelling the soft leg as n+1 and summing over all class I diagrams then gives the following
formula for the soft limit of graviton correlators in AdSd+1:

lim
k⃗n+1→0

⟨⟨T . . . T ⟩⟩n+1 = Nd

{
n∑

a=1
−(εn+1 · ka)2

2ka
∂ka⟨⟨T . . . T ⟩⟩n

+ εn+1 · εaεn+1 · ka

2k2a
ε(ia k

j)
a ∂εij

a
⟨⟨T . . . T ⟩⟩n

}
+ . . . , (4.34)

=− Nd

2

n∑
a=1

εij
n+1kai∂kaj

⟨⟨T . . . T ⟩⟩n + . . . , (4.35)

4One can do so using (A + B)−1 = A−1 − A−1B(A + B)−1, where A and B are operators.
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where Nd = 2(d−1)/2Γ( d
2 )√

π
, the derivatives only act on bulk-to-boundary propagators of the hard

legs, and . . . denote contributions from non-class I diagrams. As in YM, those contributions
do not contain energy derivatives or poles in the energy of individual hard legs. Hence, the
soft limit of class I diagrams can be distinguished from that of other diagrams and (4.34)
imposes non-trivial constraints on graviton correlators. Note that the energy and polarisation
derivatives in (4.34) can be combined into a single momentum derivative in the third line
using (3.18) and (3.34).

5 Conclusion

In this paper we derived formulae for the soft limit of gluon and graviton correlators in AdS
arising from class I diagrams which give rise to the Weinberg soft theorems in flat space.
At four points, we obtained these formulae using explicit formulae recently obtained using
cosmological boostrap methods and the double copy [37, 38]. We then generalised them to
arbitrary multiplicity by computing the soft limit of general class I diagrams using bootstrap
methods in Mellin-momentum space which were recently developed in [41, 42]. The soft
limits take the form of a differential operator acting on bulk-to-boundary propagators of
lower-point correlators which is schematically a sum of two terms: an energy derivative dressed
with the same tensor structure appearing in the Weinberg soft theorems plus a polarisation
derivative which is subleading in the flat space limit. These two terms can be combined into
a single momentum derivative acting on hard bulk-to-boundary propagators. Other classes of
diagrams can also contribute to the soft limit above four points, but they have different pole
structure than class I diagrams. In particular, they do not exhibit energy derivatives, which
give rise to higher order energy poles, or poles in the energy of individual hard legs. Our soft
limit formulae therefore provide useful constraints on gluon and graviton correlators.

There are a number of follow-up directions. First of all, it would be very interesting to
understand how to relate our soft limit formulae to consistency conditions for inflationary
correlators, which were derived from Ward identities associated with certain large diffeomor-
phism symmetries [21, 22]. The first step would be to adapt these Ward identities from in-in
correlators to wavefunction coefficients which can be mapped to AdS boundary correlators
by analytic continuation. Given that the Weinberg soft theorems for scattering amplitudes
can be derived from Ward identities associated with BMS symmetry [13], it seems plausible
that the soft gluon and graviton formulae in this paper can be derived from an analogue of
BMS symmetry recently discovered in (A)dS known as Λ-BMS symmetry [47]. It would also
be interesting to understand how these symmetries are related to those which arise in the
flat space limit (recent work showing how soft factors and BMS symmetry arise from the flat
space limit of conformal Ward identities [70, 71] may be relevant for this purpose).

It would also be interesting to extend our calculations to subleading order in the soft
momentum. These could in turn be used to deduce new consistency relations on inflationary
correlators. In flat space, non-class I diagrams play an important role in subleading soft
theorems and multiparticle soft limits [72], so we expect them to play an important role
in AdS as well. In order to investigate the universality of soft gluon and graviton limits
in AdS, we should also consider couplings to various kinds of matter [73]. Recently, soft
limits of certain supersymmetric correlators in AdS5 were investigated in [74, 75] so it would
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be interesting to make contact with those results as well. Finally, it would be of interest
to see if soft limits can be used to bootstrap higher-point correlators. Indeed, soft limits
impose very powerful constraints on scattering amplitudes and in some cases can even fully
determine them [76]. For example, a certain class of gluon amplitudes known as MHV
amplitudes can be fully reconstructed from their soft limits [77, 78] and are described by
a very concise expression for any multiplicity known as the Parke-Taylor formula [79]. If
we can use similar reasoning derive an all-multiplicity formula for gluon correlators in AdS
that would be very significant. Twistor string formulae along these lines have been proposed
in [80–82], although their physical interpretation is not yet clear. We hope to report on
these exciting directions in the future.
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A Four-point GR soft limit

In this appendix, we will derive (3.22). Our starting point will equation 4.9 of [38], which
gives the s-channel contribution to the four-point tree-level graviton correlator:5

⟨⟨TTTT ⟩⟩(s) = 1
16(ε1 · ε2)

2 (ε3 · ε4)2ψ(s)
ϕ,DC + 1

16
(
8 (ε1 · ε2) (ε3 · ε4)Wsk

2
sΠ1,1 + 16W 2

s

)
f2,2

− 1
16 (ε1 · ε2) (ε3 · ε4) k12k34 (8WsΠ1,0 + αβV s

c ) f2,1

+ 1
16

(
(V s

c )2 +
1
2(ε1 · ε2)

2 (ε3 · ε4)2
)
fa+

+ 1
16
(
(ε1 · ε2) (ε3 · ε4)

(
k⃗1 − k⃗2

)
·
(
k⃗3 − k⃗4

)
+ 8Ws

)
V s

c fb. (A.1)

where Ws,Π1,1,Π1,0, V
s

c are given in (3.8), α = k1 − k2, β = k3 − k4, and

ψ
(s)
ϕ,DC = 1

3k
4
Sf2,2Π2,2 −

1
3k

2
Sk12k34f2,1Π2,1 +

1
2f2,0

k212α
2k234β

2

k4S

− 1
2f2,1

((
k212 + α2 − k2s − k212α

2

k2S

)
k234β

2

k2S
+ k212α

2

k2S

(
k234 + β2 − k2s − k234β

2

k2S

))
,

f2,2 =
2k1k2k3k4 (ELER + k1234kS)

k31234E
2
LE

2
R

+ k1k2 (ELk34 + k1234kS)
k21234E

2
LER

+ k3k4 (k1234kS + ERk12)
k21234ELE2

R

+ ELER − k2S
k1234ELER

,

f2,1 =
2k1k3k4k2
k31234k12k34

+ k1k2
k21234k12

+ k3k4
k21234k34

+ 1
k1234

,

5We have introduced an overall factor of 1/16.
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fa =
(
k12k34 + k2S

)
fb +

1
k1234

(
2k1k2k3k4 − k1k2

(
2k21234 + k212

))
+ 1
k1234

(
−k3k4

(
2k21234 + k234

)
− 2k12k34k21234 + k41234

)
,

fb =
(
2k1k2k3k4
k31234

+ k1k2
k34 + k1234
k21234

+ k3k4
k12 + k1234
k21234

+ k12k34 − k21234
k1234

)
,

Π2,2 =
3

2k4S

(
k⃗1 − k⃗2

)i (
k⃗1 − k⃗2

)j
(ΠilΠjm +ΠimΠjl −ΠijΠlm)

(
k⃗3 − k⃗4

)l (
k⃗3 − k⃗4

)m
,

Π2,1 =
3

2k2Sk12k34

(
k⃗1 − k⃗2

)i (
k⃗1 − k⃗2

)j (
Πilk̂j k̂m +Πjmk̂ik̂l +Πimk̂j k̂l +Πjlk̂ik̂m

)
(
k⃗3 − k⃗4

)l (
k⃗3 − k⃗4

)m
. (A.2)

where kS =
∣∣∣⃗k1 + k⃗2

∣∣∣, EL = k12 + kS , ER = k34 + kS , and k̂i =
(k⃗1+k⃗2)i

kS
.

Let us now take the limit k⃗4 → 0. We then find that Π1,1 vanishes and fa vanishes
up to boundary contact terms:

lim
k⃗4→0

fa = k31 + k32. (A.3)

Hence, we can drop terms proportional to Π1,1 and fa. Moreover, with a bit of algebra
we can show that all terms proportional to (ε1 · ε2)2 (ε3 · ε4)2 vanish in the soft limit. This
can understood from an emergent shift symmetry after dimenisonal reduction, as explained
in section 4.2. We also find that the following linear combination of terms reduces to a
boundary contact term in the soft limit:

lim
k⃗4→0

[
− (ε1 · ε2) (ε3 · ε4) k12k34 (αβV s

c ) f2,1 +
(
(ε1 · ε2) (ε3 · ε4)

(
k⃗1 − k⃗2

)
·
(
k⃗3 − k⃗4

))
V s

c fb

]
= (ε1 · ε2) (ε3 · ε4)V s

c (k31 − k32), (A.4)

where we noted that

lim
k⃗4→0

f2,1 =
k1k2
k2123k12

+ 1
k123

,

lim
k⃗4→0

fb =
k2k3k1
k2123

+ k1k2 + k3k2 + k1k3
k123

− k123. (A.5)

In summary, we find that the following terms in (A.1) survive in the soft limit:

lim
k⃗4→0

⟨⟨TTTT ⟩⟩(s) = lim
k⃗4→0

[
W 2

s f2,2 −
1
2 (ε1 · ε2) (ε3 · ε4) k12k34WsΠ1,0f2,1 +

1
2WsV

s
c fb

]
. (A.6)

We can now evaluate the right-hand-side using (A.5) and the following soft limits:

lim
k⃗4→0

Ws = (ε1 · ε2k2 · ε3 + ε3 · ε1k1 · ε2 + ε3 · ε2k3 · ε1) k3 · ε4,

lim
k⃗4→0

f2,2 =
k1k2
k3123

+ k1 + k2
2k2123

+ 1
2k123

. (A.7)

We then obtain (3.22) after some algebra.
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B Soft limits in Mellin space

Using the differential representation in (4.2), the soft limit of a correlator can be directly
evaluated by taking the soft limit of a bulk-to-boundary propagator in the contact diagram [32].
Let us therefore consider the soft limit of a scalar bulk-to-boundary propagator in (2.8):

lim
k→0

ϕ∆(k, z) =
√

2
π

[
2−

d
2+∆−1Γ

(
∆− d

2

)
zd−∆ + 2

d
2−∆−1z∆Γ

(
d

2 −∆
)
k2∆−d

]
. (B.1)

For ∆ > d/2 the second term gets power suppressed leaving us with

lim
k→0

ϕ∆(k, z) =
√

2
π
2−

d
2+∆−1Γ

(
∆− d

2

)
zd−∆. (B.2)

On the other hand in Mellin space, the power expansion in (B.1) is encoded by the residues
of the integral in (4.6):

ϕ∆(k, z) =
∫ +i∞

−i∞

ds

2πiz
−2s+d/2

Γ
(
s+ 1

2

(
d
2 −∆

))
Γ
(
s− 1

2

(
d
2 −∆

))
2Γ
(
∆− d

2 + 1
) (

k

2

)−2s+∆− d
2
. (B.3)

The poles are located at s = −x + 1
2

(
d
2 −∆

)
, corresponding to k2∆−d+2x, and s = −x −

1
2

(
d
2 −∆

)
, corresponding to k2x, where x is a non-negative integer. For ∆ > d/2, the x = 0

pole gives the leading contribution in the soft limit. Hence, in the soft limit we must take

s→ −1
2

(
d

2 −∆
)
. (B.4)

In particular, for YM (∆ = d − 1) and GR (∆ = d) we have

YM: s → d− 2
4 ,

GR: s → d

4 . (B.5)

C From Mellin to momentum space

In this appendix, we will translate the soft limits for Mellin-momentum amplitudes in (4.22)
and (4.33) to correlators in momentum space.

C.1 Yang-Mills

Let us consider the first term on the right-hand-side of (4.22). We shall denote this contribution
to the soft limit by the subscript 1. Plugging this into (4.2) to go from the Mellin momentum
amplitude to the momentum space correlator gives

⟨⟨J1 . . . Jn−1JhJs⟩⟩1 = −
∫ ∞

0

dz1

zd+1
1

dz2

zd+1
2

ϕ∆ (z1, kh)ϕ∆ (z1, ks) z1G∆ (z1, z2, kh)

× εs · khε
j
hA

YM,j
n (z2)

n−1∏
a=1

ϕ∆ (z2, ka) , (C.1)
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where ∆ = d− 1 and the z1 in the first line comes from the definition of the three-point YM
amplitude in (4.10). The scalar bulk-to-boundary propagators are given by (2.8) and the
soft propagator is expanded to first order in the soft momentum:

ϕd−1 (z, ks) = Nd−1z +O (ks) , Nd−1 =
2(d−3)/2Γ

(
d−2
2

)
√
π

. (C.2)

For d = 2 there is a subtlety because Γ
(

d−2
2

)
is singular, so we will focus on d > 2. The

scalar bulk-to-bulk propagator in (C.1) is given by

G∆ (z1, z2, kh) =
∫ ∞

0
dw

wz
d/2
1 z

d/2
2 J∆−d/2 (wz1) J∆−d/2 (wz2)

k2h + w2 . (C.3)

The integral over z1 in (C.1) can be evaluated as follows:∫ ∞

0

dz1

zd+1
1

ϕd−1 (z1, kh)ϕd−1 (z1, ks) z1G (z1, z2, kh + ks, d− 1)

=
∫ ∞

0
dz1

∫ ∞

0
dw

2 d
2−1k

d
2−1
h K d−2

2
(khz1)z1Γ

(
d−2
2

)
wz

d/2
2 J d−2

2
(wz1) J d−2

2
(wz2)

π
(
k2h + w2)

=
2 d

2−1z
d
2+1
2 Γ

(
d
2 − 1

)
k

d
2−2
h K d

2−2 (khz2)
π

, (C.4)

where we used the following identities:

∫ ∞

0
dz1 z1J d−2

2
(wz1)K d−2

2
(khz1) = w

d
2−1k

1− d
2

h

k2h + w2∫ ∞

0
dw

wd/2J d−2
2

(wz2)(
k2h + w2) 2 = 1

2z2k
d
2−2
h K2− d

2
(khz2) . (C.5)

Plugging this into (C.1) and performing the integral over z2 then gives

⟨⟨J1 . . . Jn−1JhJs⟩⟩1

= −
∫ ∞

0

dz2

zd+1
2

2 d
2−1Γ

(
d
2 − 1

)
z

d
2+1
2 k

d
2−2
h K2− d

2
(khz2)

π
εs · khε

j
hA

YMj
n−1 (z2)

n−1∏
a=1

ϕd−1 (z2, ka)

= 1
2Nd−1

∫ ∞

0

dz2

zd+1
2

( 1
kh
∂kh

ϕd−1 (z2, kh)
)
εs · khε

j
hA

YMj
n−1

(
z2, k⃗

) n−1∏
a=1

ϕd−1 (z2, ka)

= Nd−1
εs · kh

2kh
∂kh

⟨⟨J1 . . . Jn−1Jh⟩⟩, (C.6)

where ∂kh
acts on the hard gluon bulk-to-boundary propagator, which can be expressed in

terms of a scalar bulk-to-boundary propagator dressed with a polarisation vector via (2.9).
To obtain the second-to-last line above we noted that

1
kh
∂kh

ϕd−1 (z2, kh) = −
√

2
π
z

d
2+1
2 k

d
2−2
h K d−4

2
(khz2), (C.7)

and we used Kν(x) = K−ν(x) for ν a multiple of 1/2.
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Now let us consider the second term on right-hand-side of (4.22). We shall denote this
contribution to the soft limit by the subscript 2. Plugging this into (4.2) then gives

⟨⟨J1 . . . Jn−1JhJs⟩⟩2 = −
∫

dz

zd+1 εs · εh
kh · AYM

n (z)
2zk2h

ϕd−1 (z, ks)ϕd−1 (z, kh)
n−1∏
a=1

ϕd−1 (z, ka)

= −Nd−1εs · εh

∫
dz

zd+1
kh · AYM

n (z)
2k2h

ϕd−1 (z, kh)
n−1∏
a=1

ϕd−1 (z, ka)

= −Nd−1
εs · εh

2k2h
kh · ∂εh

⟨⟨JhJ3 . . . Jn⟩⟩ . (C.8)

where we used (C.2) in the second line. Adding (C.6) to (C.8), relabeling the soft leg as
n+ 1, and summing over all class I diagrams then gives (4.24). Note that the relative minus
sign in (4.24) can be understood as coming from an antisymmetric structure constant which
has been factored out of the color-ordered correlator.

C.2 Gravity

The analysis will be similar to the YM case. Let us consider the first term on the right-
hand-side of (4.33). We will denote its contribution to the soft limit by the subscript 1.
Plugging this into (4.2) then gives

⟨⟨T1 . . . Tn−1ThTs⟩⟩1 =
∫ ∞

0

dz1

zd+1
1

dz2

zd+1
2

ϕd (z1, kh)ϕd (z1, ks) z21G∆ (z1, z2, kh)

× (εs · kh)2 εi
hε

j
hA

GRij
n

n−1∏
a=1

ϕd (z2, ka) , (C.9)

where ∆ = d, the bulk-to-boundary propagators are given by (2.8), and we expand the soft
bulk-to-boundary propagator to leading order in the soft momentum

ϕd (z, ks) = Nd +O (ks) , Nd =
2(d−1)/2Γ

(
d
2
)

√
π

. (C.10)

The scalar bulk-to-bulk propagator is given by (C.3) with ∆ = d.
Using the following identities:∫ ∞

0
dz1 z1J d

2
(wz1)K d

2
(khz1) = w

d
2 k

− d
2

h

k2h + w2

∫ ∞

0
dw

w
d
2+1J d

2
(wz2)(

k2h + w2) 2 = 1
2z2k

d
2−1
h K d−2

2
(khz2) , (C.11)

we can carry out the integral over z1 in (C.9) to obtain

⟨⟨T1 . . . Tn−1ThTs⟩⟩1 =
∫ ∞

0

dz2

zd+1
2

2 d
2−1Γ

(
d
2

)
z

d
2+1
2 k

d
2−1
h K d−2

2
(khz2)

π

× (εs · kh)2 εi
hε

j
hA

GRij
n

n−1∏
a=1

ϕd (z2, ka)

= −Nd

∫ ∞

0

dz2

zd+1
2

(εs · kh)2

2kh
(∂kh

ϕd (z2, kh)) εi
hε

j
hA

GRij
n

n−1∏
a=1

ϕd (z2, ka)

= −Nd
(εs · kh)2

2kh
∂kh

⟨⟨T1 . . . Tn−1Th⟩⟩ , (C.12)
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where the derivative acts on the bulk-to-boundary propagator of the hard graviton, which
can be expressed as a scalar bulk-to-boundary propagator dressed with a polarisation as
given in (2.9). To obtain the third line, we used

1
kh
∂kh

ϕd (z2, kh) = −
√

2
π
z

d
2+1
2 k

d
2−1
h K d−2

2
(khz2). (C.13)

Now consider the second term on the right-hand-side of (4.33). We will denote its
contribution to the soft limit with the subscript 2. Plugging this into (4.2) then gives

⟨⟨T1 . . . Tn−1ThTs⟩⟩2 =
∫ ∞

0

dz

zd+1ϕd (z1, kh)ϕd (z1, ks)
εs · εhεs · khε

i
hk

j
hMij

n

k2h

n−1∏
a=1

ϕd (z2, ka)

= Nd
εs · εhεs · kh

2k2h

∫ ∞

0

dz

zd+1ϕd (z1, kh) ε(ih k
j)
h AGRij

n

n−1∏
a=1

ϕd (z2, ka)

= Nd
εs · εhεs · kh

2k2h
ε
(i
h k

j)
h ∂εij

h
⟨⟨T1 . . . Tn−1Th⟩⟩ , (C.14)

where we used (C.10) in the second line. Adding (C.12) to (C.14), relabeling the soft leg
as n + 1, and summing over all class I diagrams then gives (4.35).

C.3 Further comments on Mellin momentum amplitudes

It is interesting to note the soft limit of class I diagrams can be expressed in a purely algebraic
way in Mellin space. To see this, it is convenient to combine the soft scalar propagator with
the rest of the Mellin-momentum amplitude as follows:

Ãn+1 = An+1ϕ∆ (z, ks) . (C.15)

In the soft limit, this will rescale the Mellin momentum amplitude by a factor of z in YM
and will have no effect in GR. On performing the Mellin transformation of bulk-to-boundary
propagators following (4.6), the energy derivative on the hard bulk-to-boundary propagator
in (C.6) gives

∂kh
ϕ∆(s, kh) =

(∆− d/2− 2s)
kh

ϕ∆(s, kh). (C.16)

Thus, we can write (4.22) as

lim
k⃗s→0

ÃYM1
n+1 → Nd−1

(
εs · kh (d/2− 2sh − 1)

2k2h
− εs · εh

2k2h
kh · ∂εh

)
AYM

n . (C.17)

Similarly, for gravity we find using (C.12)

lim
k⃗s→0

ÃGR1
n+1 → Nd

[
−(εs · kh)2 (d/2− 2sh)

2k2h
+ εs · εhεs · kh

2k2h
ε
(i
h k

j)
h ∂εij

h

]
AGR

n . (C.18)

– 23 –



J
H
E
P
1
0
(
2
0
2
4
)
0
7
0

D Soft limits in momentum space

In this appendix we provide some more details about the soft limit of gluon correlators
by directly analyzing Witten diagrams in momentum space.6 The following four classes of
diagrams contribute to a generic YM correlator:7

A similar classification was used to prove soft theorems for superstring scattering ampli-
tudes in flat space [83]. In particular, the Weinberg soft theorem in flat space arises only from
class I diagrams above while the subleading soft theorem receives contributions from classes I
and II. We first consider class I diagrams, obtaining results consistent with the bootstrap

6CC would like to thank Savan Kharel for useful discussions on this topic.
7We use F here to distinguish expressions in momentum space from the corresponding expressions in Mellin

momentum space in section 4.
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procedure in section 4.3. Consider the soft limit of a general class I diagram as shown below:

lim
k⃗s→0

... FYM
n

k⃗s

k⃗h

k⃗s + k⃗h
≡ lim

k⃗s→0
FY M

n+1

= lim
k⃗s→0

∫ ∞

0
dz1dz2FYM,i

n (z1)Gij(z1, z2, k⃗s + k⃗h)e−(ks+kh)z2V jkl
(
−(k⃗s + k⃗h), k⃗s, k⃗h

)
εk(k⃗h)εl(k⃗s),

(D.1)

where the propagators and the vertex factors are defined in axial gauge8 and the blob is
defined as FYM,i

n (z1), with i a Lorentz index that contracts onto the rest of the diagram via
a bulk-to-bulk propagator. Note that in the limit k⃗s → 0 we get

lim
k⃗s→0

FY M
n+1 =

∫ ∞

0
dz1dz2FYM,i

n (z1)Gij (z1, z2, kh) e−khz2V jkl
(
−k⃗h, k⃗s, k⃗h

)
εh,kεs,l. (D.4)

Performing the integral over z2 then gives

lim
k⃗s→0

FY M
n+1 = π

kh
V jkl

(
−k⃗h, k⃗s, k⃗h

)
εh,kεs,l

×
∫ ∞

0
dz1FYM,i

n (z1)
[
z1
2kh

e−khz1

(
δij −

kh,ikh,j

k2h

(
1 + 2

khz1

))
+ 1
k2h

kh,ikh,j

k2h

]
.

(D.5)

Using the vertex factor given in (D.3) we obtain the following for the soft limit of the
(n + 1)-point function:

lim
k⃗s→0

FY M
n+1 = 1

2kh

{
εs · kh

∂

∂kh

∫ ∞

0
dzεh,iFYM,i

n (z)e−khz

+ εs · εh
kh,i

kh

∫ ∞

0
dzFYM,i

n (z)
(
1− e−khz

)}
, (D.6)

where the energy derivative acts on the bulk-to-boundary propagator of the hard leg. Re-
labeling the soft leg as n + 1 and summing over all class I diagrams then gives the soft

8These are stated in [84]:

Gij(z1, z2, y⃗) =
∫ ∞

−∞

dω

ω2 + y2 sin(ωz1) sin(ωz2)
(

δij + yiyj

ω2

)
(D.2)

Vjkl

(
k⃗1, k⃗2, k⃗3

)
= δjk

(
k⃗1 − k⃗2

)
l
+ cyclic. (D.3)
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limit of color-ordered YM correlator:

lim
k⃗s→0

⟨⟨J · · · J⟩⟩n+1 =
{
εn+1 · k⃗n

2kn
∂kn ⟨⟨J · · · J⟩⟩n

−εn+1 · εn

2k2n
kn · ∂εn

(
⟨⟨J · · · J⟩⟩n − ⟨⟨J · · · J⟩⟩n|kn=0

)}
−
(
k⃗n → k⃗1, ε⃗n → ε⃗1

)
+ . . . (D.7)

where ⟨⟨J · · · J⟩⟩n|ka=0 means that we set ka = 0 but not k⃗a, and . . . denotes the contribution
of non-class I diagrams. This generalizes the result found in (3.14) to any multiplicity.
However, as argued around (3.14) for n = 3, the last term in the equation above is a boundary
contact term in position space and can therefore be neglected. This term is also absent in
the bootstrap result for any multiplicity in (4.24). Note that the energy derivative in the
first term in the expression above gives a double pole in the total energy 1

k2
1...n

. This pole
appears because the vertex to which the soft leg is attached is a cubic external vertex. Thus,
in the soft limit we obtain a bulk-boundary propagator. This simplification is a consequence
of the orthogonality of the propagators:∫ ∞

0
dz bulk-bulk(z′, z)bulk-boundary(z) ∼ z′bulk-boundary(z′) .

The extra power of z on the right-hand-side then leads to a higher-order energy pole in
the energy.

For a diagram in class II, one can explicitly compute the soft limit in the same manner
and obtain the following:

lim
k⃗s→0

...
...FL FRy⃗1 y⃗2

k⃗s

= − ε⃗s · y⃗
y

∂y ...
...FL FRy⃗

+ 1
y2

(εi
sy

j + εj
sy

i)
{

...
...F i

L F j
Ry⃗ = 0

- ...
...F i

L F j
Ry⃗

}
(D.8)

where y⃗ refers to the sum of boundary momenta flowing through a propagator and y denotes
its magnitude. In the bottom two diagrams we have displayed the free Lorentz indices on
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the blobs which contract with the soft polarisation and exchanged momentum. Note that
these diagrams do not exhibit energy derivatives and therefore do not give rise to double
poles in the total energy as we found for class I diagrams. Moreover, class II diagrams exhibit
poles in the y variables, which correspond to multiparticle energy poles, and we find similar
results for higher class diagrams. This is in contrast to class I diagrams which give rise to
poles in the energy of individual hard legs. Hence the polarisation derivative arising from
the soft limit of class I diagrams can be distinguished from the contributions of non-class I
diagrams even though it does not contain a double pole in the total energy.

E Soft limit of five-point YM

In this appendix we will verify the YM soft limit formula in (4.24) at five points. Specializing
this formula to n = 4 gives

lim
k⃗5→0

⟨⟨J . . . J⟩⟩5 =
{
ε5 · k4
2k4

∂k4⟨⟨J . . . J⟩⟩4 −
ε5 · ε4
2k24

k4 · ∂ε4⟨⟨J . . . J⟩⟩4
}

− (k4 → k1, ε4 → ε1) + free of poles in k21234, k1, k4.

(E.1)

As a simple check, let us restrict our attention to terms which contain ε4 · ε5ε1 · ε3ε2 · k4.
The left-hand-side of (E.1) then gives

lim
k⃗5→0

⟨⟨JJJJJ⟩⟩|ε4·ε5ε1·ε3ε2·k4

= k1

2k4k1234
(
k14 +

∣∣∣⃗k2 + k⃗3
∣∣∣) (k23 + ∣∣∣⃗k2 + k⃗3

∣∣∣) +O(k04). (E.2)

The first term on the right-hand-side of (E.1) does not contribute while the second term gives

−ε5 · ε42k24
k4 · ∂ε4⟨⟨JJJJ⟩⟩|ε4·ε5ε1·ε3ε2·k4

= − 1
4k24

(
k2 + k3 +

∣∣∣⃗k2 + k⃗3
∣∣∣) + k1

2k4k1234
(
k14 +

∣∣∣⃗k2 + k⃗3
∣∣∣) (k23 + ∣∣∣⃗k2 + k⃗3

∣∣∣) +O(k04).

(E.3)

Taking the difference of (E.2) and (E.3) then gives a term which is analytic in the momenta
of at least two legs and is therefore a boundary contact term. In a similar manner, we
may check (E.1) more generally with the help of MultivariateApart [85]. In particular,
we have checked that the poles in k21234, k1, and k4 on both sides of (E.1) agree up to
boundary contact terms.

We can also check the soft limit formula in Mellin-momentum space, which is convenient
because this representation is free of boundary contact terms [41]. We will just sketch how
this works at five points and leave the details to 5ptYM.nb in the Supplementary material.
At five points, the soft limit in Mellin-momentum space is given by

lim
k⃗5→0

AYM
5 = −zε5 · k4A

YM
4

Dd−1
k45

+ zε5 · k1AYM
4

Dd−1
k15

− ε5 · ε4
k4 · ∂ε4AYM

4
2zk24

+ ε5 · ε1
k1 · ∂ε1AYM

4
2zk21

+ free of poles in k4, k1,Dd−1
k45

,Dd−1
k15

. (E.4)
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Starting with an explicit formula for the five-point Mellin momentum amplitude derived
in [42], we compute the residues of the factorisation poles and the poles in the hard momenta
and find that

Res
Dd−1

k4
→0

lim
k⃗5→0

AYM
5 = −zε5 · k4A

YM
4

Dd−1
k4

, (E.5)

Res
Dd−1

k1
→0

lim
k⃗5→0

AYM
5 = zε5 · k1AYM

4
Dd−1

k1

, (E.6)

Res
k2

4→0
lim

k⃗5→0
AYM

5 = −ε5 · ε4
k4 · ∂ε4AYM

4
2zk24

, (E.7)

Res
k2

1→0
lim

k⃗5→0
AYM

5 = ε5 · ε1
k1 · ∂ε1AYM

4
2zk21

, (E.8)

in agreement with (E.4). When checking these relations, it is important to keep track of
an extra factor of z which arises from the soft bulk-to-boundary scalar propagator (see the
discussion in section C.3 for more details).

When checking the polarisation derivative terms we found that in (E.1) they come with
a 1/kh, while the coefficients of 1/k2h are boundary contact terms, and in (E.4) they come
with a 1/k2h. The difference arises because when going back to momentum space the Mellin
variable sh will produce kh in the numerator. One may use the Mellin delta function to
write sh in terms of other Mellin variables leaving a 1/k2h pole but the two expressions will
only differ by boundary contact terms [39].

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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