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1 Introduction

Since its discovery [1–3], mirror symmetry for type II strings on Calabi-Yau manifolds quickly
evolved into a powerful tool [4] with intricate mathematical implications such as homological
mirror symmetry [5]. This development has been driven by the wealth of examples that can be
readily constructed and analyzed using techniques from toric geometry [6, 7], and a detailed
understanding of the worldsheet SCFT in which the equivalence for distinct target spaces
could be proven directly [8–10]. Key technical advances in this development were Gepner
models [11, 12], which give direct access to the worldsheet SCFT, as well as the detailed study
of N = (2, 2) models and in particular the correspondence between Calabi-Yau sigma-models
and Landau-Ginzburg models [13–17]. Extending the equivalence from the worldsheet theory
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to the full string theories, which includes BPS states associated with wrapped branes, not
only vastly extended the scope of this duality, but also led to the geometric idea of mirror
symmetry being T-duality along the fibres of a torus fibration [18]. This picture becomes
particularly clear for toroidal orbifolds [19].

For G2 manifolds, a similar phenomenon in which topologically distinct target spaces
lead to isomorphic worldsheet SCFTs has been conjectured in [20], and has been dubbed
‘G2 mirror symmetry’. Whereas a necessary condition for a pair of Calabi-Yau threefolds
X, X∨ to be mirror is that their Hodge numbers satisfy

(
h1,1(X), h2,1(X)

)
=
(
h2,1(X∨), h1,1(X∨)

)
(1.1)

the corresponding condition for a pair of G2 manifolds M and M∨ is weaker and says merely
that their Betti numbers obey

b2(M) + b3(M) = b2(M∨) + b3(M∨) . (1.2)

Coincident with this work in physics was the first construction of compact G2 manifolds as
smoothings of toroidal orbifolds [21, 22], which intriguingly also produced the first examples
satisfying the above relation. Similar to Calabi-Yau orbifolds, mirror symmetry for G2
orbifolds can be understood as a consequence of T-duality for these cases [23, 24].

G2 target spaces only preserve half of the supercharges of their Calabi-Yau cousins,
which makes it significantly harder to establish robust results for the worldsheet SCFT, and
most of the techniques which proved invaluable for Calabi-Yau targets become unavailable.
For models based on Calabi-Yau quotients, detailed studies based on Gepner models were
undertaken in [25–28].

Geometrically, the reduced supersymmetry manifests itself in the difficulty to construct
manifolds of G2 holonomy. There is no analogue of Yau’s theorem, i.e. no topological
condition which guarantees the existence of a Ricci-flat metric with holonomy G2, and almost
all examples are ultimately based on Calabi-Yau geometry. Mirror manifolds were proposed
for orbifolds based on Calabi-Yau threefolds in [29, 30], for twisted connected sum (TCS) G2
manifolds in [31, 32], and for non-compact G2 manifolds with adiabatic circle fibrations in [33].

The main purpose of the present work is to strengthen the understanding of G2 mirror
symmetry from the perspective of the worldsheet SCFT, and in particular to provide more
evidence for some of the geometric mirror constructions that have appeared in the literature.
Our approach is based on the work of [10], which showed how mirror symmetry for Calabi-Yau
hypersurfaces in toric varieties can be demonstrated by using duality in N = (2, 2) gauged
linear sigma models (GLSMs). For a Calabi-Yau threefold X of this type, their analysis
together with T-duality shows the equivalence of the worldsheet theory for the following models
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IIA/B on X × S1 IIB/A on X∨ × S1

IIB/A on X ×
(
S1)∨ IIA/B on X∨ ×

(
S1)∨

mirror

mirror

T-duality T-duality

For every one of those four geometries we may form a G2 variety1 by modding out an isometry
(σ,−) which acts as an anti-holomorphic involution σ on the Calabi-Yau, and an inversion
on the circle. Using the explicit dualisation of [10] allows us to show that appropriate
anti-holomorphic involutions are identified under the mirror map. This implies that we not
only have four isomorphic SCFTs, but four isomorphic instances of an SCFT together with
an involution. Taking the quotient hence results in four isomorphic N = (1, 1) theories
after including appropriate twisted sectors. There hence exist three G2 mirror maps as a
consequence of Calabi-Yau mirror symmetry and T-duality for such models. A similar line of
reasoning has already appeared in [29] for ‘barely’ G2 manifolds resulting from free actions
of σ, and for non-compact G2 manifolds in [33].

Using the equivalence of a large class of TCS G2 manifolds with (smoothings of) (X ×
S1)/(σ,−) found in [34] in turn allows us to compare our results with the proposals made
for TCS G2 manifolds in [31, 32]. TCS G2 manifolds are based on gluing two asymptotically
cylindrical Calabi-Yau threefolds X± times a circle, and [31, 32] described three mirror
constructions which either swap X+, X−, or both with an appropriate mirror. For TCS G2
manifolds which have an equivalent realization as (X × S1)/(σ,−), we find that these three
mirrors are consistent with the three mirrors found above.

This paper is organized as follows. As an extended introduction and to set notation we
review the constructions of compact G2 manifolds and the mirror geometries that have been
proposed (mostly from a space-time perspective) in section 2, as well as aspects of worldsheet
theories for type II strings on Calabi-Yau threefolds in section 3. After reviewing some aspects
of type II strings with G2 targets, we then show how anti-holomorphic involutions of the
GLSM are identified under the mirror map of [10] in section 4. We end with a discussion of
our results and several avenues for further work in section 5. As an elementary exemplification
of the lift of Calabi-Yau mirror symmetry to associated G2 manifolds, we treat the case
of a Joyce orbifold from this perspective in detail in an appendix A. The largest classes of
geometric mirror constructions for Calabi-Yau and G2 are based on toric geometry, and we
review the necessary tools in appendix B.

1We will loosely use the term G2 variety in analogy to its usage in algebraic geometry to refer to both G2

manifolds, as well as singular geometries which become G2 manifolds after an appropriate smoothing, or after
their singularities are excised.
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2 Constructions of G2 manifolds and mirror symmetry

In this section we will review those constructions of compact G2 manifolds needed later in
this paper, explain the overlap between them, and state the mirror pairs which have been
proposed in the literature. For a general introduction to G2 geometry see [35].

2.1 Joyce orbifolds

The first non-trivial examples of compact G2 manifolds were found by Joyce [21, 22] as
smoothings of torus orbifolds T 7/Γ with Γ a finite subgroup of G2. At the time of writing,
there exists no classification of such finite subgroups, and only a few examples have been
studied from the CFT perspective using a free field realization [23, 24, 36]. A particularly
instructive example is based on Γ = Z3

2 with generators α, β, σ acting on T 7 with coordinates2

xi ∼ xi + 1, i = 1 . . . 7 as

α : (x1, x2, x3, x4, x5, x6, x7) 7→
(
x1, x2,−x3,−x4,

1
2 − x5,−x6, x7

)
β : (x1, x2, x3, x4, x5, x6, x7) 7→ (−x1,−x2,+x3,+x4,−x5,−x6, x7)

σ : (x1, x2, x3, x4, x5, x6, x7) 7→
(
x1,−x2, x3,−x4, x5,

1
2 − x6,−x7

)
,

(2.1)

As shown in [22] there are 9 topologically inequivalent smoothings Ml of this orbifold that
have a Ricci-flat G2 metric. The resulting Betti numbers are

b2(Ml) = 8 + l b3(Ml) = 47− l , (2.2)

for l = 0 . . . 8. All of these share the same b2 + b3 and hence satisfy the condition of (1.2). By
analysing different assignments of discrete torsion, [23, 24] reproduced those Betti numbers.
There are two non-trivial mirror maps T3 and T4 based on performing three or four T-dualities
along suitable tori, which map

T3 : IIA/B on Ml → IIB/A on M8−l

T4 : IIA/B on Ml → IIA/B on M8−l
. (2.3)

2.2 Quotients of Calabi-Yau manifolds

Given a Calabi-Yau threefold X, an anti-holomorphic involution σ is an isometry of X which
maps the complex structure of X to minus itself. In suitable local coordinates it can be
described as complex conjugation and it acts as

σ :
J → −J

Ω3,0 → Ω3,0
(2.4)

on the Kähler form J and the holomorphic three-form Ω3,0 of X. As a consequence of the
oddness of the volume form and Poincaré duality, the dimensions of even/odd subspaces
of cohomology are such that [37]

b2
± = b4

∓ b3
+ = b3

− . (2.5)
2We have chosen a different labelling of generators and coordinates as in [22].

– 4 –



J
H
E
P
1
0
(
2
0
2
4
)
0
8
1

While freely acting anti-holomorphic involutions of complete intersection Calabi-Yau threefolds
in products of projective spaces have been classified in [38], there is no such classification for
other classes of Calabi-Yau threefolds. In this work we will focus on Calabi-Yau hypersurfaces
in toric varieties, where there is always at least one anti-holomorphic involution which maps
all of the homogeneous coordinates to their complex conjugates. We will call this the ‘vanilla’
involution σv. Of course, its definition depends on the embedding of X into an ambient toric
variety and is not intrinsic to the Calabi-Yau, but this is not inappropriate for our formulation.

The product X ×S1 becomes a G2 manifold with the associative and coassociative forms

Φ := Re
(
Ω3,0

)
+ J ∧ dt

Ψ := Im
(
Ω3,0

)
∧ dt+ 1

2J ∧ J
(2.6)

and the associated G2 structure persists upon taking a quotient by (σ,−) where (−) acts on
the coordinate θ ∼ θ + 1 on S1 as θ → −θ. We will call such involutions G2 involutions.

The fixed point locus Lσ of an anti-holomorphic involution is either empty, or a special
Lagrangian submanifold of X. In the former case

Mσ =
(
X × S1

)
/(σ,−) (2.7)

is smooth and is called a barely G2 manifold. Its holonomy is not all of G2, but only
SU(3) ⋉ Z2 and its Betti numbers are

b2 = h1,1
+ (X) b3 = 1 + h1,1

− + h2,1 (2.8)

If the fixed locus Lσ of σ on X is not empty, Mσ has two copies of Lσ worth of singularities
locally modelled on A1 × R3. As shown in [39], Mσ can be smoothed to a G2 manifold M if
there exists a Z2 bundle Z on Lσ, such that there is a nowhere vanishing harmonic3 one-form
λ valued in Z on Lσ. The Betti numbers of M are then given by

b2(M) = b2(Mσ) + b0(Lσ,Z) b3(M) = b3(Mσ) + b1(Lσ,Z) . (2.9)

Here bk(Mσ) are counting those cohomology classes that are even under σ and bi(Lσ,Z) are the
Z-twisted Betti numbers. Even though it is not difficult to write down Calabi-Yau threefolds
with anti-holomorphic involutions, it is in general hard to show the existence of such a form λ.

The worldsheet theories associated to G2 manifolds of this type have been investigated
from the perspective of Gepner models in [25–28]. Here, different choices of discrete torsion
also give rise to different smoothings. As argued in [26], the usual mirror map for Gepner
models leads to isomorphic SCFTs after the involution as well.

An argument leading to a similar conclusion was sketched in [29] for barely G2 manifolds,
i.e. Calabi-Yau mirror symmetry of X induces a pair of G2 mirrors in the above construction.
In this case Lσ = ∅ and (2.8) shows that (1.2) is satisfied for Calabi-Yau mirrors with
free involutions.

3With respect to the Ricci-flat Kähler metric on X.
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2.3 Twisted connected sums

Twisted connected sum G2 manifolds are obtained from a gluing construction [40–42] using a
pair of asymptotically cylindrical (acyl) Calabi-Yau threefolds. Detailed discussions can also
be found in the physics literature [43–46], see [47] for a derivation of the TCS construction
from the duality between M-Theory and heterotic strings.

A non-compact Calabi-Yau threefold X is called asymptotically cylindrical if it is
diffeomorphic to the product of a K3 surface S0 and a cylinder S1

b × I outside a compact
submanifold. Asymptotically cylindrical Calabi-Yau threefolds can be obtained as follows:
let Z be a K3 fibred Kähler threefold whose first Chern class, c1(Z), is given by the Poincaré
dual [S0]PD of the homology class [S0], with S0 the K3 fibre over p0 ∈ P1. Then

X = Z \ S0 (2.10)

is an asymptotically cylindrical Calabi-Yau threefold if there is no monodromy from a small
loop around p0. The auxiliary threefold Z is called a building block.

For a pair of acyl Calabi-Yau threefolds X± with cylinder regions S0,± × S1
b,± × I, a

topological manifold M is formed by gluing X± × S1
e,± along the cylindrical regions of X±

by identifying

S1
b,± = S1

e,∓ , (2.11)

as well as the interval direction and the K3 surfaces S0,±. The isometry φ between the K3
surfaces S0,± must be such that it identifies

J(S0,±) = Re
(
Ω2,0(S0,∓)

)
Im
(
Ω2,0(S0,+)

)
= − Im

(
Ω2,0(S0,−)

) (2.12)

where J(S0,±) is the Kähler forms and Ω2,0(S0,±) the holomorphic two-form on S0,± in the
complex structure inherited from Z±.

The resulting topological manifold M admits a Ricci-flat metric with holonomy group
G2 which asymptotes to the Ricci-flat Calabi-Yau metrics on X± in the limit in which the
interval along which the gluing takes place becomes very long (the ‘Kovalev limit’). We
will use the notation

M(Z−, Z+) :=
(
Z− × S1

e−

)
#φ

(
Z+ × S1

e+

)
. (2.13)

as a short-hand for this construction.
Let ρ± : H1,1(Z±) → H1,1(S0±) be the natural restriction maps. Then

N± := im(ρ±)
T± := N⊥

± ∈ H2(S0±,Z)
K(Z±) := ker(ρ±)/[S0]PD

. (2.14)

The isometry φ induces an isomorphism φ : H2(S0+,Z) ∼= H2(S0−,Z), which in turn
allows us to think of N± and T± as both sitting in Γ3,19 = U⊕3 ⊕ (−E8)⊕2. The integral

– 6 –



J
H
E
P
1
0
(
2
0
2
4
)
0
8
1

cohomology groups of M can then be computed as

H1(M,Z) = 0
H2(M,Z) = N+ ∩N− ⊕K(Z+)⊕K(Z−)
H3(M,Z) = Z[S]⊕ Γ3,19/(N+ +N−)⊕ (N− ∩ T+)⊕ (N+ ∩ T−)

⊕H3(Z+)⊕H3(Z−)⊕K(Z+)⊕K(Z−)
H4(M,Z) = H4(S)⊕ (T+ ∩ T−)⊕ Γ3,19/(N− + T+)⊕ Γ3,19/(N+ + T−)

⊕H3(Z+)⊕H3(Z−)⊕K(Z+)∗ ⊕K(Z−)∗

H5(M,Z) = Γ3,19/(T+ + T−)⊕K(Z+)⊕K(Z−) .

(2.15)

In this paper we will only consider isometries φ such that

N± ⊗ R = (N± ⊗ R ∩N∓ ⊗ R)⊕ (N± ⊗ R ∩ T∓ ⊗ R) , (2.16)

which is called orthogonal gluing. In this case, the simplified relation

b2 + b3 = 23 + 2
[
|K(Z+)|+ |K(Z−)|+ h2,1(Z+) + h2,1(Z−)

]
(2.17)

for the sum of the Betti numbers holds.
In the light of the Shatashvili-Vafa relation (1.2) this formula is very suggestive: swapping

one (or both) of the building blocks Z± for another building block Z∨
± such that

h2,1(Z∨
±) = |K(Z±)|

h2,1(Z±) = |K(Z∨
±)|

(2.18)

preserves b2 + b3 for the resulting TCS G2 manifolds.
A construction of building blocks in analogy to Batyrev’s construction of Calabi-Yau

hypersurfaces in toric varieties was given in [45], and to be reasonably self-contained we have
reviewed this construction in appendix B.3. The key combinatorial objects are a pair of
projecting tops (♢,♢◦), and each such pair gives rise to a family of building blocks Z♢,♢◦ .
Crucially, exchanging the role played by ♢ and ♢◦ gives us a pair of building blocks such
that (2.18) is satisfied [31]. A consequence of this construction is that the K3 fibres of
Z = Z♢,♢◦ are from the (algebraic) mirror family of the K3 fibres of Z∨ = Z♢◦,♢.

To define a G2 mirror we not only need to construct appropriate mirror building blocks,
but furthermore need to find an isometry φ∨ to glue the asymptotically cylindrical Calabi-Yau
threefolds X∨

± to a TCS G2 manifold. That such a ‘mirror gluing’ always exists was shown
in [31, 32] by employing the following arguments. For type II strings on a G2 variety M

we not only need to specify the geometry of the target, but furthermore the B-field. If M
is TCS, the B-field in general restricts non-trivially to X± and the asymptotic K3 fibres
S0±. Consistency of the gluing then implies that

B|S0− = B|S0+ . (2.19)

In the asymptotically cylindrical regions of X±, mirror symmetry acting on X± implies that
the K3 fibres S0± are mapped to their mirrors. Mirror symmetry for a K3 surface S can

– 7 –



J
H
E
P
1
0
(
2
0
2
4
)
0
8
1

be understood as a linear map acting on J(S),ReΩ2,0(S), ImΩ2,0(S), BS that is specified
by a choice of special Lagrangian fibration of S, and results in a mere reinterpretation of
the same point in the CFT moduli space [48, 49].

Replacing both Z± by Z∨
± then replaces S0± by S∨

0±, which in turn implies that
J(S∨

0±),Ω2,0(S∨
0±), BS∨

0±
satisfy the relations (2.12) and (2.19), so that the mirror symmetry

canonically identifies a mirror gluing φ∨ that can be used to construct

[M(Z−, S0−, Z+, S0+, φ)]∨ :=M(Z∨
−, S

∨
0−, Z

∨
+, S

∨
0+, φ

∨) . (2.20)

By using a similar logic as in the original SYZ argument, this mirror map is associated
with performing 4 T-dualities along a coassociative T 4 fibration of M . Here, both Se± are
contained in the coassociative T 4.

Using a similar analysis one can show that there are gluings φ∧± which allow to construct

[M(Z−, S0−, Z+, S0+, φ)]∧− :=M(Z∨
−, S

∨
0−, Z+, S0+, φ

∧−)
[M(Z−, S0−, Z+, S0+, φ)]∧+ :=M(Z−, S0−, Z

∨
+, S

∨
0+, φ

∧+)
(2.21)

and that these mirror maps are associated with associative T 3 fibrations. For ∧±, the SYZ
picture implies that S1

e∓ are contained in the associative T 3 fibre, but S1
e± are not.

Besides sharing b2(M) + b3(M), the total integral cohomology

H•(M) =
⊕
k

Hk(M,Z) (2.22)

satisfies the stronger condition

H•(M) = H•(M∨) = H•(M∧±) (2.23)

for any type of gluing, not just orthogonal gluing. Note that this implies that b2 + b3 + b4 +
b5 = 2(b2 + b3) is the same for all of these geometries.

Another interesting aspect of these mirror maps is that smooth G2 manifolds can
potentially have (geometrically) singular mirrors [32]. A TCS G2 variety necessarily contains
ADE singularities if there is a non-trivial ADE root lattice contained in N+ ∩N−, which is
a possible realization of non-Higgsable clusters [50] in M-Theory [47]. Whereas a TCS G2
manifold M might be such that N+∩N− contains no roots, this does not necessarily hold for all
of its mirrors. However, the presence of such singularities does not imply a non-abelian gauge
group as there is necessarily a non-trivial B-field along the corresponding P1s in such cases.

2.4 Calabi-Yau quotients as twisted connected sums

The sets of G2 manifolds constructed as (resolutions of) quotients of Calabi-Yau threefolds and
TCS G2 manifolds are not disjoint, which already follows from the fact that a number of Joyce
orbifolds can be cast into both descriptions. The relationship between the two constructions
was explored more generally in [34] by studying the M-Theory lift of IIA orientifolds. The
geometric aspects of this work are applicable more generally to G2 geometries, and the
upshot is that whenever a G2 variety is realized as (a resolution of)

(
X × S1) /(σ,−) for an

– 8 –
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anti-holomorphic involution σ, the resulting G2 variety can also be described as a TCS if X
carries a K3 fibration with base P1

b which is respected by σ. This can be expressed as

σ|P1
b
: [z0 : z1] 7→ [z̄0, z̄1] σ|S0 = σS0 (2.24)

where [z0 : z1] are homogeneous coordinates on P1
b and σS0 is an anti-holomorphic involution

acting on S0:

σS0 : J(S0) 7→ −J(S0) σS0 : Ω2,0(S0) 7→ Ω2,0(S0) . (2.25)

Let us further assume that the Calabi-Yau threefold X is realized as a hypersurface in a toric
variety corresponding to a reflexive pair of polytopes X = X∆,∆◦ , and that the K3 fibration on
X∆,∆◦ is made manifest by ∆◦ containing a reflexive three-dimensional subpolytope ∆◦

F . We
have collected some technical details of this construction in appendix B. In such a situation,
anti-holomorphic involutions of the type we are interested in are guaranteed to exist if ∆◦ is cut
into two isomorphic copies ♢◦

1,♢
◦
2 of a projecting top ♢◦, and the anti-holomorphic involution

is inherited from an automorphism of ∆◦ that exchanges ♢◦
1 ↔ ♢◦

2. This becomes the vanilla
anti-holomorphic involution given above upon redefining the coordinates on the base.

To better understand possible σS0 , we can perform a hyper-Kähler rotation ψ to a new
complex structure on S0 such that

J(Sψ0 ) = ReΩ2,0(S0) Ω2,0(Sψ0 ) = J(S0)− i ImΩ2,0(S0) , (2.26)

where we denote the K3 surface in the hyper-Kähler rotated complex structure by Sψ0 . On
Sψ0 , σS0 acts as

σS0 : J(Sψ0 ) 7→ J(Sψ0 ) σS0 : Ω2,0(Sψ0 ) 7→ −Ω2,0(Sψ0 ) . (2.27)

and such involutions have been classified [51–53] in terms of three invariants (r, a, δ) of which
there are 75 instances. All possible triples of integers appearing can be found e.g. in section
6.3 of [53]. The fixed point locus of σS0 on Sψ0 is given as the union of a Riemann surface
of genus g together with f − 1 P1s, where f and g are related to (r, a, δ) by

f = (r − a)/2 + 1
g = (20− r − a)/2 + 1

(2.28)

if (r, a, δ) ̸= (10, 10, 0) or (10, 8, 0).
As detailed in [34], one may then construct (X∆,∆◦ × S1)/(σ,−) as a TCS and we have

(X∆,∆◦ × S1)/(σ,−) =M(Z♢,♢◦ , S0,Υr,a,δ, S
ψ
0 , ψ) . (2.29)

Here, Z♢,♢◦ is the building block constructed from (♢,♢◦), ψ is the hyper-Kähler rotation
considered above and

Υr,a,δ =
(
Sψ0 × P1

)
/ (σS0 ,−) (2.30)

with (−) acting on the homogeneous coordinates of P1 as (−) : [ζ1, ζ2] → [−ζ1, ζ2].
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Using this construction, (X∆,∆◦ × S1)/(σ,−) can then be smoothed by resolving or
deforming the building block Υr,a,δ while keeping its asymptotic region and Z♢,♢◦ fixed. The
orbifold Υr,a,δ always has a crepant resolution Υ̃r,a,δ → Υr,a,δ with

|K(Υ̃r,a,δ)| = 2f
h2,1(Υ̃r,a,δ) = 2g

(2.31)

which results in a G2 manifold M̃ with Betti numbers
b2(M̃) = h1,1

+ (X∆,∆◦) + 2f
b2(M̃) + b3(M̃) = h1,1(X∆,∆◦) + h2,1(X∆,∆◦) + 4(f + g) + 1

(2.32)

which agrees with (2.9) for trivial Z.

3 SCFTs with Calabi-Yau target

In this section we will review the relevant material on Calabi-Yau manifolds, their superconfor-
mal field theory (SCFT) realisations, and Calabi-Yau mirror symmetry. Reviews containing
a guide to the extensive literature on this topic are [54–56].

The worldsheet SCFT of type II strings on Calabi-Yau manifolds is a N = (2, 2) field
theory in (1 + 1)-dimensions. We therefore start with a review of some of the basic concepts
and set notations of N = (2, 2) SCFTs. More detailed reviews can be found in [55, 57].

3.1 N = 2 SCFTs

Although we have N = 2 SUSY for both the left and right moving sectors, we will just focus
on one side here, and assume the other is understood implicitly. We will return to how the
left and right quantum numbers are related later.

The N = 2 Virasoro algebra contains four generators: the energy-momentum tensor,
two supersymmetry currents and a U(1) current (T,G0, G3, J), respectively. It is common to
work with G± = 1√

2(G
0 ± iG3) instead of G0 and G3, and we do so here. It can be shown [58]

that the U(1) current and one of the supersymmetry currents stem from the Kähler form
in the geometry.4 The algebra is defined via the mode relations

[Lm, Ln] = (m− n)Lm+n +
c

12(m
3 −m)δm+n,0

[Lm, Jn] = −nJm+n

[Jm, Jn] =
c

3mδm+n,0

[Lm, G±
r ] =

(
m

2 − r

)
G±
m+r

[Jm, G±
r ] = ±G±

m+r

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0

{G±
r , G

±
s } = 0.

(3.1)

4The general statement is that the existence of a covariantly constant p-form on the target manifold gives
rise to conformal dimension p

2 and p+1
2 currents in the algebra, the latter being the superpartner of the former.

Here the Kähler form is a 2-form and so gives rise to a dimension 1 and dimension 3
2 current, which are the J

and G3, respectively.
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The indices on the supersymmetry operators dictate whether we are in the Neveu-Schwarz
(NS) or Ramond (R) sector, with r, s ∈ Z being R and r, s ∈ Z + 1

2 being NS.
An important property of the N = 2 algebra is the existence of spectral flow. Spectral

flow provides a map between the R and NS sectors, and so it provides a way to map bosons
and fermions into each other: it encapsulates the spacetime SUSY. Spectral flow acts by
mapping the conformal weight and U(1) charge via

(h, q) 7→
(
h− ηq + η2

6 c, q −
η

3c
)
, (3.2)

where c is the central charge and η ∈ R. One flows from NS to R (or vice versa) with η = ±1/2.
States in the NS Hilbert space with the property (h, q) = (h,±2h) are called chiral and

anti-chiral states. We have a notion of chiral and anti-chiral for both the left and right N = 2
algebras. We therefore end up with four types of fields (c, c), (a, a), (c, a) and (a, c), where
c and a stand for chiral and anti-chiral, respectively. We map from c to a (and vice versa)
simply by charge conjugation, and so only two of these are independent. Therefore, we really
only need to consider, say, (c, c) and (a, c) fields. These sets of fields actually obey a ring
structure [2] and so we have two rings, which we denote R(c,c) and R(a,c). We shall denote
the union of these rings as R = R(c,c) ∪ R(a,c).

3.1.1 Minimal models

The simplest class of N = 2 SCFTs are the N = 2 minimal models. These are rational
conformal field theories and so contain a finite number of primary fields. They are uniquely
defined by their central charge

c = 3k
k + 2 , (3.3)

where k is an integer known as the level and 0 < c < 3. We will denote the level k minimal
model as MMk. The superconformal primaries in MMk are given by a triple (l,m, s) where

0 ≤ l ≤ k, s ∼ s+ 4 and m ∼ m+ 2(k + 2). (3.4)

We identify s = 0, 2 as the NS states while s = ±1 are the R states. The conformal weights
and U(1) charges are given by

hlm,s =
l(l + 2)−m2

4(k + 2) + s2

8 and qlm,s = − m

k + 2 + s

2 . (3.5)

Note that the chiral and anti-chiral conditions are given by (l,m, s) = (l,∓l, 0), respectively.
Spectral flow maps (l,m, s) 7→ (l,m − 1, s − 1), and so our R ground states are given by
(l,m, s) = (l,∓l − 1,−1).

3.2 N = 2 SCFTs with Calabi-Yau target

So far we have discussed N = 2 SCFTs in general. We now want to specialise to the worldsheet
theories of Type II strings compactified on a Calabi-Yau manifold, which is described by a
nonlinear sigma model (NLSM) in 2D. The bosonic fields in this SCFT are the coordinates
on the Calabi-Yau target space.
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3.2.1 Nonlinear sigma model

The NLSM on a Calabi-Yau manifold is, in particular, a NLSM on a Kähler manifold. We
have already seen that Kähler implies N = (2, 2) on the worldsheet, and so this NLSM is
a N = (2, 2) field theory in (1 + 1)-dimensions. Just as with N = 1 in (3 + 1)-dimensions,
there is a notion of chiral and anti-chiral superfields,5 i.e. fields which obey, respectively,

D̄±Φ = 0 and D±Φ̄ = 0, (3.6)

for supercovariant derivatives D± and D̄±.
The Lagrangian (density) for the NLSM on a Kähler manifold is given by the D-term

Lkin =
∫
d4θK

(
Φi, Φ̄ī

)
(3.7)

with K(Φi, Φ̄ī) a real function of chiral and anti-chiral superfields. It defines the Kähler metric

gij̄ := ∂i∂j̄K
(
Φi, Φ̄ī

)
. (3.8)

2D field theories with N = (2, 2) contain two U(1) R-symmetries: U(1)V and U(1)A,
where V stands for vector and A for axial.6 In what follows we shall often work in a different
charge basis, defined by

U(1)L = U(1)V + U(1)A
2 and U(1)R = U(1)V − U(1)A

2 , (3.9)

where L/R stands for left/right, respectively.
For these to be symmetries of our theory, we need to show that the action is invariant

under their action. It is easy to show that the kinetic term is invariant provided K(Φi, Φ̄ī)
has (qV , qA) = (0, 0). We note that if K(Φi, Φ̄ī) = K(|Φi|2), then we can assign any charges
to the individual chiral superfields (the anti-chiral superfields then have opposite charge).

However this only guarantees classical invariance and we need to check for the existence
of anomalies. It can be shown [55] that U(1)V is not anomalous but that U(1)A can be,
depending on the value of the first Chern class of the target manifold M. In particular
U(1)A is also anomaly free if, and only if, c1(M) = 0. This is the condition that makes
the target spacetime a Calabi-Yau manifold.

3.2.2 Ramond ground states and chiral rings

The Witten index was evaluated for an N = 1 supersymmetric NLSM in [59], where the
famous result that only Ramond ground states contribute was obtained. Identifying the
fermionic creation and annihilation operators with adding and removing differential forms on
the target manifold, it was also shown that there is a one-to-one correspondence between
Ramond ground states and harmonic forms on the target manifold.

5We are using superspace notation in this section, see [10] for some background relevant to our discussion.
6It turns out that a N = (2, 2) theory in (1 + 1) dimensions can be obtained by the dimensional reduction

of N = 1 SUSY in (3 + 1)-dimensions. The U(1)V is the R-symmetry of the 4D theory and U(1)A corresponds
to rotations in the compactified directions.
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It is important to note that, at this level, we cannot identify individual Betti/Hodge
numbers of our supersymmetric sigma model: all we can say is that there is the same number
of Ramond ground states as there are harmonic forms. If we are to introduce more structure
to our target space, then it is possible to obtain further information and potentially get
further topological relationships.

The case with N = 2, with the constraint that qL − qR ∈ Z, was considered in [2], where
it was shown that the elements of the chiral ring R are related to the Hodge numbers of the
target manifold. In particular, for N = (2, 2) theories there is the same number of states of
charge (p, q) in our ring R as there are (dimM− p, q)-forms on M.7

While this is clearly related to the previous result, it strengthens it in that we can now
look at individual Hodge numbers. This is related directly to the fact that our algebra has
two U(1) charges (i.e. two generators J and J̄). Indeed it can be shown for a theory with
only U(1)V (i.e. a Kähler target) that we would only be able to compute the Hodge numbers
hp,q up to a set value of p− q. The existence of the U(1)A symmetry allows us to compute
Hodge numbers up to set value of p+ q − dimM, and so it is the combination of these two
that allowed us to get the above result. This observation leads to the following important
result: we can only determine the Hodge numbers of the target space up to the ambiguity

hp,q ↔ hdimM−p,q. (3.10)

which is Calabi-Yau mirror symmetry seen as an ambiguity of associating a geometry with
a given SCFT.

3.2.3 Odake algebra

The above discussion holds for any N = (2, 2) NLSM. Here we want to specialise to the
case where our target manifold is a Calabi-Yau. Firstly, we note that, by central charge
arguments, the CFT for our Calabi-Yau must have c = 9: i.e. we have a total of c = 15 but
the 4-dimensional spacetime takes up cST = 6 of these.

As a Calabi-Yau is, in particular, a Kähler manifold, the N = (2, 2) SCFT is a good
starting point: the U(1) current gives us the Kähler form. However, it is not sufficient: we
still need the holomorphic (3, 0)-form, which we denote Ω. We account for Ω in the CFT by
extending the N = 2 Virasoro by a field with quantum numbers (h, q)NS = (3/2, 3), where
the subscript indicates that the field lives in the NS sector. The resulting Odake algebra with
this central charge was first written down in [60]8 The associated field Ω is decomposed as

Ω = A+ iB (3.11)

The complex conjugate of this field (corresponding to the (0, 3)-form) is Ω∗ = A− iB, and it
has (h, q)NS = (3/2,−3). The superpartner of this field is Υ = 1√

2(C + iD), such that (A,C)
and (B,D) are pairs of superpartners. So, in total, the generators of our Odake algebra are
(T,G0, J,G3, A,B,C,D). The OPEs of these generators can be found in [61, 62].

7We have changed convention compared to [2], which identifies (p, q) charge with (p, q)-forms. We pick this
convention for later convenience.

8A generic Odake algebra corresponds to an extension of the N = 2 Virasoro algebra by a (n/2, n) field,
and the central charge is c = 3n. Here we are just considering n = 3 as this is the relevant value for 3-folds.
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As detailed in the original paper, these theories only admit a finite number of irreducible,
unitary highest weight representations. The key thing for us will be the allowed massless
representations, of which there are three for NS and three for R. As mentioned before, these
representations are linked by spectral flow so that we only need to consider one set. The
allowed values in the NS sector are9

(h, q)NS = (3/2,−3), (1/2, 1), (1/2,−1) and (3/2, 3) (3.12)

which have corresponding R values

(h, q)R = (3/8, 3/2), (3/8,−1/2), (3/8, 1/2) and (3/8,−3/2), (3.13)

respectively. We note at this point that every R ground state has h = 3/8, and so the R
ground states are specified simply by their q values.

Here we have only written down the quantum numbers for one side (say the left side)
of our SCFT. The discussion is completely identical for the right hand side, and a general
state is given by a product of two of the above states.

As we will see, all the models we consider actually have qL = ±qR. We now see that
this is important: the (c, c) ring corresponds to 3-forms, i.e. if qL = qR = q ∈ {0, 1, 2, 3}10

then (q, q) ∼= α ∈ h3−q,q; the (c, a) then give us our diagonal forms (q,−q) η=−1−→ (q, 3− q) ∼=
β ∈ h3−q,3−q, where we have made use of spectral flow in order to ensure the degree of our
form is positive. It is therefore important that both R(c,c) and R(a,c) are non-trivial in our
theory to reflect the whole cohomology of a Calabi-Yau threefold.

We can also relate the Hodge numbers to the charges in the R sector by spectral flow.
We simply use (3.2) with η = ±1/2 and c = 9 so that qNS 7→ qR = qNS ∓ 3

2 . From here we
can say that to every state with charges (qL, qR)R there is an (m,n)-form with

(qL, qR)R =
(3
2 −m,n− 3

2

)
. (3.14)

We emphasise here that we can only equate the number of these things. That is, if VqL,qR

denotes the vector space of states with charges (qL, qR)R, then

dim
(
V 3

2−m,n−
3
2

)
= hm,n. (3.15)

It is generally true that a differential form can be represented by some state in the CFT,
however we are not guaranteed that such a state will have definite charge.

3.2.4 Mirror symmetry

An N = 2 sigma-model with Calabi-Yau target has the following automorphism

MCY : (T,G0, J,G3, A,B,C,D) 7→ (T,G0,−J,−G3, A,−B,C,−D). (3.16)

Note, in particular, that it flips the sign of any state, q 7→ −q. We are dealing with two
copies of the algebra, and we have seen that the charges of the states are related to the

9The (3/2,±3) states are actually related to a single state, (0, 0), by spectral flow with η = ±1. However,
for future simplicity we treat them as their own fields here.

10The 0, 2 cases are obtained by spectral flow of the −3,−1 cases, respectively.
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degrees of the forms on the target manifold. In this context, mirror symmetry is understood
as applying (3.16) to one side, say the right side: (qL, qR) 7→ (qL,−qR). Note that this maps
an element in (c, c) to an element of (c, a), and vice versa. From our relation to differential
forms, this recovers the well known replacement hp,q 7→ hp,3−q.

3.3 Gauged linear sigma models

NLSMs have the key disadvantage of being confined to working in coordinate patches of
the target geometry. In this section we briefly review gauged linear sigma models (GLSM),
which can be seen as the worldsheet analogue of the elegant geometric construction of
Calabi-Yau manifolds as hypersurfaces in simpler spaces with a global description in terms
of homogeneous coordinates.

A GLSM is a N = (2, 2) field theory, written in superspace, with a collection of n chiral
superfields {Φi} along with a U(1) gauge group.11 The gauge field associated to the U(1)
is V , and it enjoys the gauge symmetry V 7→ V + i(Λ − Λ̄), where Λ is a chiral superfield
that labels the U(1) action.

The Lagrangian of the GLSM contains four pieces:

L = Lkin + LW + Lgauge + LFI,θ. (3.17)

which are given by

Lkin =
∫
d4θ

∑
i

Φ̄ie2QiV Φi

LW =
∫
d2θW (Φi) + c.c.

Lgauge = − 1
2e2

∫
d4θΣ̄Σ

LFI,θ =
1
2

(
−
∫
dθ̄−dθ+tΣ+ c.c.

)
.

(3.18)

where W (Φi) is the superpotential, e is the gauge coupling constant and t = r − iθ. Here r
is the FI parameter and θ the theta angle. The field Σ = D̄+D−V is the field strength of
V which is a twisted chiral superfield which obeys D̄+Σ = D−Σ = 0. Viewing Lgauge as the
twisted equivalent of Lkin, we can then use LFI,θ to define a linear twisted superpotential,
W̃ (Σ) = −tΣ. Explicit expressions for the component expansions of these Lagrangians
can be found in [17].

We again need to ask about the U(1)V ×U(1)A symmetries and anomaly conditions. The
invariance of Lkin is of course the same as the NLSM discussion and gives the same result.
The F-term, LW , tells us that the superpotential is required to have (qV , qA) = (2, 0). This
constrains the form it can take, namely we require it to be quasi-homogeneous:

W
(
λq

i
V Φi

)
= λ2W

(
Φi
)
. (3.19)

The twisted F-term, LFI,θ, tells us that Σ must have (qV , qA) = (0, 2). The anomaly
conditions again carry over, along with the requirement that the U(1) gauge group charges

11The generalisation to U(1)s is straight forward.
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cancel [10, 55], i.e. ∑
i

Qi = 0. (3.20)

This is required to ensure U(1)A is non-anomalous. In particular if
∑
iQi = p then U(1)A

is broken to Z2p.

Connection to NLSMs and the Landau-Ginzburg/Calabi-Yau correspondence. In
order to see the connection between GLSMs and NLSMs, we solve the equations of motion
for the auxiliary fields:

D = −e2
(∑

i

Qi|ϕi|2 − r

)
and Fi =

∂W

∂ϕi
, (3.21)

where the lower case indicates the lowest component of the superfield. Doing this leaves us
with a dynamical theory for the fields (ϕi, σ), which has potential energy

U(ϕi, σ) =
1
2e2D

2 +
∑
i

|Fi|2 + 2|σ|2
∑
i

Q2
i |ϕi|2 (3.22)

Let MVac denote the vacuum manifold of the GLSM. That is, in the GLSM we identify
the chiral superfields {Φ1, . . . ,Φn} with coordinates on Cn and then consider the surface
defined via minimising the potential energy. It can in fact be shown that the IR limit of
a GLSM is the NLSM on MVac.

For example, consider a theory of n chiral superfields all with charge Qi = 112 and
vanishing superpotential, W = 0. Then we have

U(ϕi, σ) =
∑
i

|σ|2|ϕi|2 +
e2

2

(∑
i

|ϕi|2 − r

)2
. (3.23)

If r > 0 then U = 0 is given by σ = 0 and∑
i

|ϕi|2 = r. (3.24)

This defines a sphere Sn−1. However we now need to account for the U(1) action, so that
in total the vacuum manifold is

CPn−1 =
{
(ϕ1, . . . , ϕn)

∣∣∑
i |ϕi|2 = r

}
U(1) . (3.25)

By an identical calculation, assigning different charges to the fields will produce a weighted
projective space.

We now need to account for F -terms, i.e. non-vanishing superpotential. We will now
show that appropriately chosen superpotentials lead to hypersurfaces in the ambient toric
manifolds. For the sake of simplicity, we focus on the simplest case of a hypersurface in
Pn−1, but more general results can be found in [17].

12Note that this doesn’t obey (3.20), and so the NLSM is anomalous and therefore cannot correspond to a
Calabi-Yau.
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Consider a GLSM with n+1 chiral superfields {P,Φ1, . . . ,Φn} with gauge group charges
qi = 1 and qP = −n, and superpotential

W = P ·G
(
Φ1, . . . ,Φn

)
(3.26)

where G(Φ) is a homogeneous polynomial of degree n. We assume G(Φ) is generic, in
the sense that

G = ∂G

∂Φ1
= ∂G

∂Φ2
= . . . = ∂G

∂Φn
= 0 =⇒ Φ1 = Φ2 = . . . = Φn = 0. (3.27)

The potential energy for this system is given by

U =
∣∣G(ϕi)∣∣2 + |p|2

∑
i

∣∣∣∣ ∂G∂ϕi
∣∣∣∣2 + 1

2e2D
2 + 2|σ|2

(∑
i

|ϕi|2 + n2|p|2
)

(3.28)

where
D = −e2

(∑
i

|ϕi|2 − n|p|2 − r

)
. (3.29)

The vacuum manifold of this theory is defined by U = 0 and is r dependent. The case
r ≫ 0 requires at least one of the ϕi to be non-zero. From here, the |σ|2

∑
|ϕi|2 term gives

σ = 0, while the |p|2
∑

|∂iG|2 term (along with (3.27)) tells us that p = 0. Finally we require
G = 0. We are thus left in exactly the case as before, but now with the constraint G = 0. In
other words, the GLSM flows to the NLSM on X ⊂ CPn−1, defined by degree n homogenous
polynomial. These are precisely the conditions for a Calabi-Yau manifold.

The case r ≪ 0 can similarly be shown to require p ̸= 0 and so the field P picks up a vev,
and breaks the U(1) gauge group to a Zn subgroup: ϕi 7→ e

2πi
n ϕi. This leads to a theory with

superpotential W ′ =
√
−r ·G(ϕi) subject to this Zn action. This defines a Landau-Ginzburg

(LG) orbifold. This recovers the well known Calabi-Yau/Landau-Ginzburg correspondence:
we can view them as two different phases of the same GLSM.

It is important that we have a LG orbifold, as it is known that a LG theory only has
non-trivial R(c,c), while R(a,c) contains just the identity, but we need both to be non-trivial
for strings on Calabi-Yaus. However, as demonstrated in [63], the twisted states in the
orbifold theory give rise to elements in R(a,c).

We can alter the action of the gauge group on this system to account for hypersurfaces
in weighted projective spaces. We can pick QP = −H and Qi = wi, where

wi =
H

ki + 2 and H = lcm(ki + 2), (3.30)

and then the anomaly condition enforces∑
i

1
ki + 2 = 1. (3.31)

Then we set

G(Φi) = Φk1+2
1 + . . .+Φkn+2

n (3.32)

in the superpotential. Our Calabi-Yau is then defined by this degree H Fermat hypersurface
in Pn−1

w1,...,wn
. The LG orbifold is then given by W ′ = Φk1+2

1 + . . .+Φkn+2
n with ZH quotient

Φi 7→ e
2πi

ki+2Φi, (3.33)
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3.3.1 Gepner models

It is known [2] that the IR limit of a LG model with W = Φk+2 is a (2, 2) SCFT with
central charge

c = 3k
k + 2 . (3.34)

which is the level k N = 2 minimal model, MMk. The idea is then that the worldsheet
SCFT (i.e. the nonlinear sigma model) is isomorphic to the SCFT obtained by the IR limit
of the LG orbifold. We can therefore use the minimal models to construct and study the
worldsheet SCFT.

Gepner [12] proposed a method for constructing the CFT of a Calabi-Yau as a direct
product of N = 2 minimal models. At the GLSM level each term in the product corresponds
to a different Φki+2

i in G(Φi).
The key observation is that the central charge adds under products, and so we could

form a c = 9, N = 2 theory out of a collection of minimal models. That is

(
N = 2

)
c=9 =

r⊗
i=1

(
N = 2

)MM

ci
with

r∑
i=1

ci =
r∑
i=1

3ki
ki + 2 = 9. (3.35)

The remaining part of our CFT corresponds to the 4D spacetime. Working in lightcone
gauge, this is a CFT with central charge c = 3 and consists of two bosons and their
accompanying fermions. The fermions are described by an so(2)1 affine Lie algebra, which has
four representations (O2)h=0,q=0, (V2)h=1/2,q=1, (S2)h=1/8,q=1/2 and (C2)h=1/8,q=−1/2. The
NS sectors are O2 and V2 while S2 and C2 are the R sectors. As we are focusing on the
Gepner model part here, we drop the fermions for now but shall return to them later.

Recall that the superconformal primaries in MMk are defined by the triple (l,m, s)
where the conformal dimension and U(1) charge is given by (3.5). The conformal weights
and charges add under products of different MMk. Therefore all we need to do is account
for the orbifold action. As detailed in [63], at the level of the CFT the orbifold acts as
a projection on the charges via

g = e2πiJ . (3.36)

We therefore require our states to have integer charge, and our Gepner model is defined via

(Gep) =
[
MMk1 ,MMk2 , . . . ,MMkr ]

∣∣
U(1)-projection, (3.37)

where the U(1)-projection enforces
r∑
i=1

[
li

ki + 2

]
= 0, 1, 2, 3, (3.38)

The restriction on the right-hand side follows from (3.31) along with li ≤ ki. The integrality
of the charges is also required to ensure spacetime SUSY (see [8] and references therein).
This result is actually not surprising: we have already seen that our Odake algebra limits the
NS charges to be q = ±3,±1 which are equivalent, via spectral flow, to q = 0, 1, 2, 3. The
above equation is nothing other than the NS charges of our states.
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As we are considering an orbifold, we obtain both untwisted and twisted sectors. Let’s
start with the untwisted sector. Here we have qL = qR and the charges of a state are simply
given by the sum of the individual MM charges. Focusing on the case of a Calabi-Yau
three-fold (i.e. r = 5),13 in the R sector (which is where we will predominantly work), we
therefore have the untwisted charges

5∑
i=1

(
li + 1
ki + 2 − 1

2

)
=

5∑
i=1

(
li

ki + 2

)
− 3

2 , (3.39)

where we made use of our anomaly condition, (3.31). If we then impose the Gepner condi-
tion, (3.38), we see that the R charges are restricted to q = ±3

2 ,±
1
2 . This same result is, of

course, obtained by applying spectral flow to the allowed NS charges.
A chiral field Φ is identified with (l,m, s) = (1,−1, 0), and so the li value determines

the power of Φi. Therefore, states with
5∑
i=1

li
ki + 2 = 0, 1, 2, 3 (3.40)

correspond to degree 0, H, 2H and 3H polynomials, where H = lcm(ki + 2). In particular
the state |li⟩ is identified geometrically with Φlii . Note that li ≤ ki and so we must set
Φki+1
i = 0.14 This result is directly related to the Griffiths residue giving us the primitive

cohomology of the Calabi-Yau manifold [65].
Let’s now discuss the twisted sectors of our Gepner model. As detailed in [63] these

states have qL = −qR, and the charge of a state depends on which twisted sector we are in:

qνL =
∑

i|ν /∈(ki+2)Z

(
ν

ki + 2 −
[

ν

ki + 2

]
− 1

2

)
, (3.41)

where [. . .] stands for the integer part of the argument, and ν = 1, . . . ,H − 1 labels the
twisted sector.

States in the twisted sector can become untwisted when ν ∈ (ki + 2)Z, in which case
their charge is computed simply using

qi =
li + 1
ki + 2 − 1

2 . (3.42)

and (qi)L = (qi)R for these factors.
So, in total, a charge of a generic state is given by

qνL =
∑

i|ν∈(ki+2)Z

(
li + 1
ki + 2 − 1

2

)
+

∑
i|ν /∈(ki+2)Z

(
ν

ki + 2 −
[

ν

ki + 2

]
− 1

2

)

qνR =
∑

i|ν∈(ki+2)Z

(
li + 1
ki + 2 − 1

2

)
−

∑
i|ν /∈(ki+2)Z

(
ν

ki + 2 −
[

ν

ki + 2

]
− 1

2

) (3.43)

13The general result would be
r∑

i=1

(
li + 1
ki + 2 − 1

2

)
=

r∑
i=1

(
li

ki + 2

)
− r − 2

2 ,

with other following results changing accordingly.
14This is related to the fact that the (c, c) ring of a Landau Ginzburg orbifold is obtained by a Jacobian

ring (see, e.g. [64]): the quotient in the Jacobian sets these monomials to zero.
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where the fully untwisted sector is identified with ν = 0. We can write this in a more
symmetric manner by defining l

(ν)
i + 1 := ν mod (ki + 2), then the two sums above take

the same form. An overall state is considered untwisted if qL = qR and twisted if qL = −qR,
despite what the individual (qi)L and (qi)R obey.

Before moving on, we note an interesting point. Suppose that H is even, then we can
set ν = H/2 mod (ki + 2). We now claim that if wi = H

ki+2 is even, then the twist is trivial,
i.e. ν = 0. Let’s see this: for some n ∈ Z, we can write ν = H/2 as

H

2 + n(ki + 2) =
(

H

2(ki + 2) + n

)
(ki + 2) =

(
wi
2 + n

)
(ki + 2), (3.44)

but if wi is even, then we can always pick n = −wi
2 , and so ν = 0. When wi is odd, the

above calculation shows us that

l
( H

2 )
i = ki

2 , (3.45)

in which case the U(1) charges vanish, qL = qR = 0. We are then left with the untwisted
states |li⟩R, which have (qL)i = (qR)i = li+1

ki+2 − 1
2 , and correspond to (2, 1) or (1, 2) forms.

3.3.2 Mirror symmetry for Gepner models

In [8], Greene and Plesser took the observation made in [66], that the quotient of a Gepner
model by its full symmetry group yields an isomorphic theory, and extended it to more
general quotients. In particular they looked at the geometrical phase of such a duality.

Consider the Gepner model obtained by the minimal model product (k1, . . . , kr). Let d
denote the order of g = e2πiJ . Then, this model has discrete symmetry group

G =
( r∏
i=1

Zki+2

)/
Zn, (3.46)

where n = d for d odd and n = d/2 for d even. The mirror model is given by quotienting
by H ⊂ G defined such that

r∑
i=1

γi
ki + 2 ∈ Z, (3.47)

where γi ∈ Zki+2 represents an element of G. The mirror theory is isomorphic to the original
Gepner model with one of the U(1) charges reversed.

In terms of the corresponding LG orbifold, the statement is that the LG orbifold with
superpotential

W (Φi) =
r∑
i=1

Φki+2
i (3.48)

with orbifold action ZH has a mirror LG orbifold with the same form of the superpotential15

W̃F (Φ∨
i ) =

r∑
i=1

(Φ∨
i )ki+2, (3.49)

15The subscript F is to indicate “Fermat type”.
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but now the quotient is by Γ∨ ⊂
∏r
i=1 Zki+2 acting on the fields as

Φ∨
i 7→ e

2πiγi
ki+2 Φ∨

i (3.50)

subject to (3.47). The (2, 1)-forms of this dual theory are then related to the deformations
of this equation, where in particular the product Φ∨

1Φ∨
2 . . .Φ∨

r is always present. In fact,
the mirror theory for a non-zero value of the (FI, θ) parameter t is the LG orbifold with
superpotential

W̃ (Φ∨
i ) =

r∑
i=1

(Φ∨
i )ki+2 + et/H

r∏
i=1

Φ∨
i . (3.51)

The geometric phase is given by the Calabi-Yau defined by a hypersurface in a toric
manifold, with defining polynomial given by W (zi) = 0. For example, for (ki + 2) = 5 for all
i (and r = 5), we recover the quintic and mirror quintic Calabi-Yaus.

We can actually see the generation of this dual superpotential by looking at the states in
the Gepner model. We go to the case of interest, namely r = 5. States with qL = qR (i.e.
elements of R(c,c)) are the untwisted states, while states with qL = −qR (elements of R(a,c))
are the twisted states. Therefore, mirror symmetry acts on the Gepner model by mapping
the twisted and untwisted states to untwisted and twisted states, respectively. The original
twisted states should now be interpreted as the untwisted states in the mirror model and so, as
per the previous discussion, should be interpreted as monomials of degrees 0, H, 2H and 3H.
We can indeed see that this is the case as follows: we are now essentially mapping ν 7→ −ν.
This follows from the fact that the twisted states come from quotienting by g = e2πiνJ , but if
we send J 7→ −J this is the same as sending ν 7→ −ν in g. From here we simply interpret
the l(−ν)

i as the powers of the corresponding mirror homogeneous coordinates, i.e.∣∣∣l(−ν)
i

〉
∼= (Φ∨

i )l
−ν
i . (3.52)

Indeed this ties in nicely with the mirror description in terms of LG models. Let’s look
at the allowed deformations of W∨

F . The monomial Φ∨
1 . . .Φ∨

5 , which is always present (by
construction), would correspond to a state with l

(−ν)
i = 1 for all i, and it is indeed true that

this state always appears. This is seen simply from

l
(−ν)
i + 1 = −ν mod (ki + 2) =⇒ l

(−H+2)
i = 1 ∀i. (3.53)

Also note that ν = H − 2 always gives a (1, 1)-form in the original theory. This follows
simply from

l
(H−2)
i + 1 = H − 2 mod (ki + 2) =⇒ l

(H−2)
i = ki − 1, (3.54)

which together with

5∑
i=1

ki
ki + 2 = 3 and

5∑
i=1

1
ki + 2 = 1 (3.55)

gives
∑
i
l
(H−2)
i
ki+2 = 2, which is qL = −qR = 1

2 and is the criteria for a (1, 1)-form.
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For the original untwisted states, we simply take the li values and plug them into
li + 1 = −ν mod (ki + 2), and use this. For example, li = 0 for all i is the unique state
that always gives the (3, 0)-form, which should be mirrored to the (0, 0)-form. Under this
mirror map, this would give ν = H − 1 for all i, but we know that this is the unique twist
that gives the (0, 0)-form, as required.

We defined a twisted contribution to a state as one in which ν /∈ (ki + 2)Z, but note
that simply mapping ν 7→ −ν won’t change this condition. However, the mirror of a twisted
state is meant to be untwisted. The key thing is that it is untwisted w.r.t. the mirror Gepner
model, i.e. we have a ν∨ and a twisted contribution to a state in the mirror Gepner model
obeys ν∨ /∈ (ki + 2)Z. This ν∨ must account for the orbifold group of the mirror Gepner
model, and so it is not easy to write down a general relationship between ν and ν∨. However,
it is in principal not too difficult to obtain the relationship for specific cases.

3.3.3 Mirror symmetry for gauged linear sigma models

As we have seen, Gepner models are a particular phase of the more general theory of GLSMs.
The concept of mirror symmetry can be elevated to the general construction following [10].

Given a GLSM with a set of chiral superfields {Φi} with charges Qi and vanishing
superpotential, the mirror theory is given by the LG theory with twisted superpotential

W̃ =
(∑

i

QiYi − t

)
Σ+

∑
i

e−Yi . (3.56)

The fields Yi are anti-chiral superfields and their imaginary parts, ϑi := 1
2(Yi−Ȳi), are periodic

in 2π. These fields are dual to the chiral superfields Φi, and the duality relation is given by

Yi + Ȳi = 2Φ̄ie2QiV Φi. (3.57)

We can also relate the imaginary part of Yi to the phase of Φi. This is not easily done in
terms of the superfields, but can be seen if we consider a component expansion of the fields.
If the lowest component of Φi is ϕi = ρie

iψi , then the result is

dϑi = ⋆dψi. (3.58)

Solving the equations of motion for the dynamical field Σ results in the D-term constraint

∂ΣW̃ = 0 =⇒
∑
i

QiYi = t. (3.59)

Finally, defining

Xi = e−Yi , (3.60)

we see that the twisted superpotential takes the form

W̃ (Xi) =
∑
i

Xi subject to
∏

XQi
i = e−t. (3.61)

A theory of a superfield with (twisted) superpotential is a LG theory. So here we have
a LG theory for the twisted chiral superfields Yi (expressed in terms of Xi) with twisted
superpotential W̃ (Xi) as above.
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Let’s now modify this construction slightly by introducing another chiral superfield P to
our set {Φ1, . . . ,Φn}, and we set the charge of P to be negative, QP = −H. Let P̃ = e−YP

be the dual field to P , then it follows from the constraint above that

P̃−HXQ1
1 . . . XQn

n = e−t. (3.62)

Defining
Φ∨
i = X

Qi/H
i , (3.63)

then results in the condition

P̃ = et/H(Φ∨
1 ) . . . (Φ∨

n). (3.64)

The twisted superpotential then takes the form

W̃ (Φ∨
i ) = (Φ∨

1 )H/Q1 + . . .+ (Φ∨
n)H/Qn + et/H

n∏
i=1

Φ∨
i . (3.65)

Note that this twisted superpotential is subject to an orbifold action Γ∨ ⊂
∏
i ZH/Qi

. Specif-
ically it acts on the fields as

Φ∨
i 7→ exp

(2πiγiQi
H

)
Φ∨
i , subject to

∑
i

γiQi
H

∈ Z, (3.66)

where γi ∈ ZH/Qi
. The constraint condition comes from the fact that et/H

∏
i(Φ∨

i ) ∈ W̃ (Φ∨
i ).

We therefore arrive at the result that the mirror of the NLSM on a weighted projective
space is a LG model with the above superpotential. If we allow for negative charges then
we obtain a LG orbifold. This is not quite what we want yet: we want to show that the
mirror of a Calabi-Yau is again Calabi-Yau.

On the LG orbifold side, we can simply apply the Calabi-Yau/Landau-Ginzburg corre-
spondence to find another Calabi-Yau. On the NLSM side, we are so far only working on a
weighted projective space and we need a superpotential to restrict the theory to a NLSM on
a Calabi-Yau hypersurface. Happily, it turns out that the resulting mirror LG orbifold is
unchanged by introducing such a superpotential. The difference between the two cases is
actually encapsulated in what are considered to be the fundamental fields on the mirror side:
for the case with a superpotential the fundamental fields are the Xi while in the absence of
the superpotential the fundamental fields are the Yi. However we have a very simple relation
between the two, and the LG orbifold remains unchanged.

We therefore arrive at mirror symmetry as a map between two Calabi-Yaus. Note that if
we pick the charges as Qi = wi = H/(ki + 2) and QP = −H, then we arrive at the result of
Greene and Plesser. Namely, the mirror of a LG orbifold with Fermat type superpotential is
again a (deformation of) a LG orbifold with the same Fermat type superpotential but now
with a different quotient group. Indeed (3.66) becomes exactly the result of [8].

3.3.4 Mirror symmetry for toric hypersurfaces

The above geometrical mirror map can be generalised to hypersurfaces in a generic toric
variety, akin to the construction of Batyrev [6], details of which can be found in appendix B.
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The starting point is a GLSM with (h+ 1) chiral superfields (Φ1, . . .Φh, P ) and gauge
group U(1)k. For each U(1) we have a field strength Σa and associated FI parameter ta. Let
Qi,a denote the charge of Φi under the ath U(1) factor. Set

da :=
h∑
i=1

Qi,a, (3.67)

and define ti via16

ta =
h∑
i=1

Qi,ati. (3.68)

In order to have a Calabi-Yau we must obey the anomaly condition, (3.20). This implies
that the charges of P under the ath U(1) is −da.

We can again dualise this theory in order to obtain a theory with (h+ 1) twisted chiral
superfields (Y1, . . . , Yh, YP ) and then define

P̃ := e−YP and Xi := e−Yi . (3.69)

The D-term constraint, (3.59), gives k relations:
h∑
i=1

Qi,aYi − daYP = ta. (3.70)

In terms of the new variables this is(
h∏
i=1

XQi,a

)
P̃−da = e−ta (3.71)

It the follows from [10], that in our case the twisted superpotential is actually empty and the
defining hypersurface of the mirror Calabi-Yau is given by the above constraint along with

h∑
i=1

Xi + P̃ = 0. (3.72)

To write the superpotential above in terms of chiral fields of the dual theory we now
proceed as follows. The fan of the toric variety underlying the GLSM has h ray generators
ni sitting in the N lattice which obey the k relations

h∑
i=1

niQi,a = 0 . (3.73)

Let the superpotential take the form W (Φi, P ) = P ·G(Φi), where G(Φi) is a homogeneous
polynomial of degrees {d1, . . . , dk} with respect to the U(1)k. Next, let M denote the dual
lattice to N , and define mℓ such that we can write

G(Φi) =
h∨∑
ℓ=1

h∏
i=1

Φ⟨mℓ,ni⟩+1
i , (3.74)

where necessarily ⟨mℓ, ni⟩ ≥ −1 for all ℓ and i.
16The ti are defined up to redefinition of the Qi,a.
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The Calabi-Yau/Landau-Ginzburg story carries over and again we get two phases of
the GLSM: p = 0 gives the nonlinear sigma model on a Calabi-Yau defined by the vacuum
manifold; p ̸= 0 gives a LG orbifold with superpotential W = G(Φi).

We can now solve (3.71) by introducing {Φ∨
1 , . . . ,Φ∨

h∨}, and defining

P̃ =
h∨∏
ℓ=1

Φ∨
ℓ and Xi = e−ti

h∨∏
ℓ=1

(
Φ∨
ℓ

)⟨mℓ,ni⟩+1
. (3.75)

Plugging this into (3.72) then gives the hypersurface equation

h∑
i=1

e−ti
h∨∏
ℓ=1

(
Φ∨
ℓ

)⟨mℓ,ni⟩+1 +
h∨∏
ℓ=1

Φ∨
ℓ = 0 . (3.76)

This is the family of Calabi-Yau hypersurfaces identified by Batryrev’s construction.

4 G2 mirror symmetry from the SCFT perspective

We now move on to the main part of this paper: we want to demonstrate G2 mirror symmetry
at the CFT level by showing how the involution carries over to the mirror side. The logic
is straight forward: consider the theory of a product of a Calabi-Yau and circle. Acting
on this theory with mirror symmetry generates an isomorphic theory. If we can define an
involution in the original theory, there must exist an isomorphic involution on the mirror.
The crucial question is if we can find this involution and if it acts in a way that can be
understood geometrically.

4.1 G2 algebra

We can construct the superconformal algebra of a G2 manifold in a similar manner to that of
the Calabi-Yau. We start with the N = 1 super Virasoro generators (T,G) and then, again
by the results of [58], add in additional generators corresponding to the 3-form and 4-form of
the G2. The 3-form gives rise to a pair of fields (Φ,K) with conformal weights (3

2 , 2) which
are related by G. The 4-form gives a further pair of fields (X,M) which have conformal
weights (2, 5

2). The OPEs between these fields can be found in [20, 62].17

It is generally true that a Ramond ground state in a superconformal field theory has
conformal weight h = d

16 , where d is the number of Ramond fermions, i.e. the dimension
of the target space in NLSMs. For a G2-manifold we therefore require h = 7/16. The
reason this is important to us is that we have seen that a Ramond ground state in the
Odake algebra has h = 3

8 . Putting this together with the fact that the R ground state
of the SCFT of a circle (a boson-fermion pair) has h = 1

16 , provides support that we can
form the G2 algebra from the product of an Odake algebra and the boson-fermion pair,
reflecting the geometrical construction.

Indeed [62] explicitly demonstrates how one combines the two algebras to obtain the G2
algebra. In terms of the Odake generators (TCY, G

0, J,G3, A,B,C,D) and the boson-fermion

17Note the typo in [20] in the K(z)M(w) OPE, as pointed out in [62].
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generators (j, ψ), we obtain the G2 generators as

T = TCY + TS1

G = G0 +GS1

Φ = A+ (Jψ)

X = (Bψ) + 1
2(JJ)−

1
2(∂ψψ)

K = C + (Jj) + (G3ψ)

M = (Dψ)− (Bj) + 1
2(j∂ψ)−

1
2(∂jψ) + (JG3)− 1

2∂G,

(4.1)

where (. . .) stands for normal ordering and we defined

TS1 = 1
2(jj) +

1
2(∂ψψ) and GS1 = (jψ). (4.2)

We are dealing with an N = (1, 1) algebra, and so we have two copies of this: the left
and right copies.

Automorphisms. We now want to ask how a G2 involution acts on the generators of the
SCFT. Geometrically, an anti-holomorphic involution is defined via the action on the Kähler
form, JK 7→ −JK , and on the holomorphic (3, 0) form, Ω3,0 7→ Ω̄3,0. Recalling that the results
of [58] tell us that the Kähler form gives rise to (J,G3) generators and that the imaginary
part of Ω3,0 gives rise to (B,D), we conclude that an anti-holomorphic involution inverts
the sign of these four generators. We can make similar arguments for the S1 factor, where
we see that the signs of both generators (j, ψ) are changed. So, in total, we see that a G2
involution acts on the generators as

(σ,−) : (TCY, G
0, J,G3, A,B,C,D, j, ψ) 7→ (TCY, G

0,−J,−G3, A,−B,C,−D,−j,−ψ) (4.3)

on both the left and right algebras simultaneously. This is clearly an automorphism of the
G2 algebra as the generators (T,G,Φ, X,K,M) are all invariant. Indeed this is one way to
obtain the decomposition in (4.1): they generate the subalgebra of Od3 × S1 fixed by σ.

In the description at the level of the algebra we have given, the anti-holomorphic involution
is not unique in its action on all states of the theory. This is not surprising as the same
can be said geometrically, i.e. a given Calabi-Yau threefold can have many inequivalent
anti-holomorphic involutions.

Besides the anti-holomorphic involution automorphism, the G2 algebra contains three
other interesting automorphisms (MCY ◦ Phπ, TS1 ◦ Phπ,MG2), who’s actions on the gener-
ators are given in table 1. Contrary to the automorphism associated with anti-holomorphic
involutions, we want to let these automorphisms only act on one side of the N = (1, 1)
algebra, say the right side.

The first automorphism is nothing other than a composition of the Calabi-Yau mirror
map ((3.16)) with Phπ, and the second is T -duality of the boson-fermion pair composed
with Phπ. The final map is just the composition of these two. As pointed out in [61], the
mirror automorphism given in [24]

MGK : (T,G,Φ, X,K,M) 7→ (T,G,−Φ, X,−K,M). (4.4)

is the composition MCY ◦ Phπ.
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TCY G0 J G3 A B C D j ψ

MCY + + − − + − + − + +
TS1 + + + + + + + + − −
Phπ + + + + − − − − + +
MG2 + + − − + − + − − −

Table 1. Three automorphisms of the Od3 × S1 algebra. The action is written via its action on the
generators, with (TCY, G

0, J,G3, A,B,C,D) corresponding to the Calabi-Yau and (j, ψ) the circle.

Mirror symmetry. We are now in a position to make the observation that all three mirror
automorphisms commute with the anti-holomorphic involution automorphism. It follows from
this that for every anti-holomorphic involution on the original theory, there is a corresponding
action in the mirror theory which also acts on the algebra in the same way that an anti-
holomorphic involution does. This statement has been made simply at the level of the
generators of the algebra, and so we are blind to details such as which anti-holomorphic
involution we are doing. In the following, we will give a more detailed description in terms
of Gepner models and GLSMs.

4.2 G2 Gepner models

The construction of G2 Gepner models has been studied in [25–27]. Under Gepner’s con-
struction the full SCFT (in light-cone gauge) is given by a Gepner model and an so(2)1
affine Lie algebra, which gives the two fermions in the non-compact directions. It can be
shown using simple current arguments (see [57] for a review), that the NS vs. R sectors of
the two parts must agree, i.e. if we have a NS state in our Gepner model, we must take
a NS state from our so(2)1 model. Similarly we can show that the overall U(1) charge of
a state must be an odd integer.

When adding the so(2)1 factor for a NS state in our Gepner model, we have two options:
O2 and V2. These have (h, q)O = (0, 0) and (h, q)V = (1/2, 1). Now, we know that the NS
states should have total charge being an odd integer, however we chose our spectral flow such
that our Gepner models always had odd integer NS charge (i.e. to match (3.12)), and so we
can only couple to the O2 rep. This is all consistent: if we had taken a state of the form
q = qGep + qso(2)1 = 2 + 1, so that we were using the V2 rep, we could use spectral flow to go
to the state with qGep = −1. The spectral flow from NS to R in the so(2)1 theory is given
by either C2 or S2 (depending on which direction you flow). Either way, we are doing this
same spectral flow twice (to go NS to R to NS) and so we are using C2

2 = S2
2 = V2, which

follows from the fusion rules of so(2)1. Putting this together with V2 × V2 = O2, we see that
our V2 rep flows to an O2 rep, as needed. All together, that is

(qGep = 2)× V2 7→ (qGep = −1)×O2. (4.5)

Therefore we can always represent a state in the NS sector as a state in the Gepner model
with odd integer charge along with the O2 rep.

In order to construct our G2 Gepner model, we need to split the so(2)1 factor into
two copies of so(1)1. In other words, we want to treat the two fermions separately, as
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one will remain a flat direction, whereas the other will be compactified on S1. There are
three representations of so(1)1: (O1, V1, S1), which have conformal weights (0, 1/2, 1/16),
respectively. The R representation S1 has h = 1/16, which is exactly the conformal weight
required in order to take the R ground states of a Calabi-Yau CFT and produce R ground
states of a G2 CFT, i.e. hG2 = 7/16 = 3/8 + 1/16 = hGep + hS1 .

One can form the four reps of so(2)1 out of the three reps of so(1)1 as follows:

O2 = O1O1 + V1V1

V2 = O1V1 + V1O1

S2 = S1S1

C2 = S1S1

(4.6)

The at-face-value equality of S2 and C2 is dealt with via arguments related to fixed points
of simple current orbits in the so(1)1 × so(1)1 theory (see, [26] for details). We can use this
to write our generic NS (Gep) × so(2)1 state in terms of so(1)1 reps, namely(

h = |q|
2 , q ∈ {±3,±1}

)
⊗
(
O1O1 + V1V1

)
, (4.7)

and similarly for the right states (i.e. tildes everywhere).

Anti-holomorphic involution. The G2 involution maps the so(1)1 NS reps via (O1, V1) 7→
(O1,−V1).18 As we have seen, it also maps states in our Gepner models by changing the
sign of the U(1) charges, cf. (4.3). In terms of the tuples (li,mi, si) of the minimal model
factors, the involution acts as

(li,mi, si) 7→ (li,−mi,−si) (4.8)

on the states in the highest weight representation. This actually gives the vanilla involution
(i.e. simply complex conjugation), but we can easily generalise this to involutions that swap
homogeneous coordinates that have the same weight. At the Gepner level, this would be a
map that swaps two minimal model factors that have the same levels.

Using the general change of sign argument, the states that exist in the Calabi-Yau Gepner
model split into even and odd under the involution. Namely, working in a basis of states
with definite charge, our states are paired in their charge conjugates. We form the even
and odd combinations in these pairs: the even ones couple with O1O1 and survive while
the odd ones couple with V1V1 and survive.

Using the equivalence between the charges of the states in a Gepner model and the
number of differential forms, along with identifying the presence of V1 as wedging with dθ

(the differential form on the S1), the above reproduces the geometrical argument that the
differential forms that survive give Betti numbers

b0 = b7 = 1 b2 = h1,1
+ and b3 = h1,1

− + h2,1 + 1. (4.9)

These are only the Betti numbers corresponding to the untwisted states under the involution
σ as we have ignored the twisted sectors. Note that these numbers agree with the Betti

18It’s action to S1 is less easily written, but it acts via S2 ↔ C2.

– 28 –



J
H
E
P
1
0
(
2
0
2
4
)
0
8
1

numbers of a barely G2 manifold (2.8). For a barely G2 manifold, there is no twisted sector
(under the involution) in the SCFT as the involution acts freely on the geometry. Conversely,
the absence of twisted sectors implies that the involution acts without fixed points or the
resulting singularities cannot be smoothed. The holonomy is hence that of a barely G2
manifold, or what we could call a barely G2 variety in the singular case.

Mirror map. Next we want to look at the action of the mirror map on this construction
and demonstrate that it gives rise to a mirror anti-holomorphic involution. Given the above
arguments, this is straightforward; the key thing is that both maps act as a reversal of charges
and commute. If we denote the mirror minimal model tuples as

(li,mi, si) 7→ (l∨i ,m∨
i , s

∨
i ), (4.10)

then the charges of the mirror states are given in terms of (m∨
i , s

∨
i ). As the mirror involution

acts as a change of sign, it must act as

(l∨i ,m∨
i , s

∨
i ) 7→ (l∨i ,−m∨

i ,−s∨i ), (4.11)

which is exactly equivalent to (4.8). This tells us that the mirror involution has the same
geometrical interpretation, namely it is an anti-holomorphic involution.

At this point one might be tempted to identify states of definite charge with differential
forms of a specific Hodge type using (3.14). Consider a state corresponding to a (2, 1)-form
in the original Gepner model: under the involution, this state is mapped to a state who’s
corresponding form is of Hodge type (1, 2). Acting with the mirror map on both of these
states we find a (1, 1)-form and a (2, 2)-form. This now seems to imply that the involution σ

on the mirror side has to map a (1, 1)-form to a (2, 2)-form, which cannot be achieved by
an anti-holomorphic involution. However, eigenstates of the charge operators do not need
to correspond to forms of fixed degree. This can be made very explicit in orbifold models
and we have treated one example in detail in appendix A.

As mentioned before, we expect our G2 model to have three different mirrors. In the
quotient construction, geometrically these three mirrors correspond to: (i) mirroring the
Calabi-Yau but leaving the circle factor alone, (ii) leaving the Calabi-Yau alone and doing
T-duality on the circle, and (iii) doing both Calabi-Yau mirror and T-duality on the circle.
For our Gepner model here we have only obtained one mirror map, corresponding to case (ii).
By studying the interplay of T-duality and the action of the involution on the so(1)1 factor,
one should be able to obtain similar results for the other two mirror maps. We do not do this
calculation here, but claim that this construction exists, and provide evidence of this below.

4.3 G2 sigma models

Given a Calabi-Yau threefold X, a sigma model on the metric product X × S1 splits into
the sum of the Calabi-Yau and the circle models. The latter is simply the theory of a boson
fermion pair, and the former has been discussed in detail above. As G2 manifolds are not
Kähler this is a (1, 1) theory, however this is realized here as the tensor product of a (2, 2)
theory (the Calabi-Yau part) and a (1, 1) theory (the circle). As before, we are interested
in how G2 involutions act on mirror pairs.
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Anti-holomorphic involutions and GLSMs. The key observation which allows us to
immediately write down anti-holomorphic involutions for GLSMs is that the chiral superfields
Φi are identified with the homogeneous coordinates of the toric Calabi-Yau ambient space.
Therefore the anti-holomorphic involution acts on these chiral superfields in the same way
that it acts on the coordinates. As the anti-holomorphic involution furthermore needs to map
G± → G∓ it follows that θ± → θ∓ which implies that also the twisted chiral superfields Σa
are sent to their complex conjugates. The vanilla anti-holomorphic involution hence acts as

σv :
Φi 7→ Φ̄i
Σa 7→ Σ̄a

(4.12)

We can now trace this through the dualisation procedure of [10] to find the action of σv
on the mirror. We find that

σv :
Re(Yi) = Φ̄ie2Qi,aVaΦi → Φ̄ie2Qi,aV Φi = Re(Yi)
Im(Yi) = ϑi → −ϑi = − Im(Yi)

(4.13)

by using (3.57) and (3.58).
For the case of weighted projective spaces we can directly track this action through to

an action on the fields Φ∨
i : We have Φ∨

i = X
1/H
i = e−Yi/H , and so

σv : Φ∨
i 7→ Φ∨

i , (4.14)

which is simply the ‘vanilla’ anti-holomorphic involution on the mirror side again.
For more general toric varieties we have that the fields in the dual theory are

P̃ =
h∨∏
ℓ=1

Φ∨
ℓ and Xi = e−ti

h∨∏
ℓ=1

(
Φ∨
ℓ

)⟨mℓ,ni⟩+1
. (4.15)

where the Xi are dual variables for the Φi and P̃ is the dual variable of P . To trace the action
of σv through the duality, we can now simply think of the vanilla involution σv as being defined
on X∨ instead of X, where it acts as σ∨v : Φ∨ → Φ̄∨. This then implies immediately that

σv :
Xi 7→ X̄i

P̃ 7→ P̃
(4.16)

and hence

σv :
Φi 7→ Φ̄i
P 7→ P

(4.17)

To have a symmetry of the GLSM, and not just the fields, we also need to make sure the
anti-holomorphic involution is a symmetry of the action (3.17). This means that we need
to restrict the complex parameters in the superpotential such that

W (Φi) =W (Φi) . (4.18)

and furthermore have to take the ta to be real. In the LG theory after dualisation, the
resulting superpotential then again satisfies (4.18). We hence recover the result that the
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vanilla anti-holomorphic involution of a GLSM is mapped to an involution of the same
type for its mirror.

As the number h∨ of dual fields Φ∨
ℓ can be larger than the number h of fields Φi, we

cannot in general solve the above equations for Φ∨
ℓ to directly show that complex conjugation

of the Φi implies complex conjugation (and nothing else) of the Φ∨
ℓ . This does not prevent us

from associating σv with σ∨v . The action of an involution on an isomorphic theory must be
unique up to automorphism, so that any freedom to associate σv with a different involution
implies that this simply gives the vanilla involution in disguise.

A similar argument holds for the action of the involution of the circle part of the sigma
model, where the action of T-duality identifies it with another involution inverting the
coordinate on the circle. In summary, we hence have four isomorphic tuples

(
X × S1, (σ,−)

) ∼= (
X∨ × (S1)∨, (σ∨,−)

)
∼=
(
X∨ × (S1), (σ∨,−)

)
∼=
(
X × (S1)∨, (σ,−)

) (4.19)

As a Gepner model is a particular limit of the GLSM, our proof of the existence of the
three mirror GLSMs also provides a proof of our claim above that there are three mirror
maps for the G2 Gepner model.

Even though we have focused the discussion on the vanilla involution σv, which always
exists, it is clear that analogous results can be obtained for any other anti-holomorphic
involution σ. By following through the same analysis investigating the dualisation procedure
in the GLSM, such an involution σ will also have a mirror σ∨ which acts geometrically on
X∨. An upshot of this realization is that the set of anti-holomorphic involutions on X is
isomorphic to the set of anti-holomorphic involutions of X∨. We expect that this can be
made precise for toric hypersurfaces by relating σ to automorphisms of ∆◦.

4.4 G2 mirror maps

Above, we have shown the equivalence of the vanilla anti-holomorphic involutions in the dual
descriptions found after mirror symmetry and/or T-duality for both Gepner models and
GLSMs. Of course, merely specifying the tuple

(
X × S1, (σ,−)

)
does not yet define a G2

model as we need to include an appropriate twisted sector, which is in general not unique.
For a given choice of superpotential obeying (4.18), and a choice of real parameters

ta, the mirror map identifies a corresponding superpotential and FI parameters on the
mirror. This in particular means that the fixed loci Lσ and Lσ∨ are completely determined.
However, there will in general be several inequivalent (partial) smoothings of the orbifold
singularities of

(
X × S1) /(σv,−) by choosing different bundles Z in the construction of [39].

In a TCS description, this freedom will appear as the freedom to resolve or deform the
building block Υr,a,δ.

Given a point in the moduli space of the worldsheet SCFT of type II strings on X × S1,
our analysis hence implies that pairwise isomorphic worldsheet CFTs must exists among
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the four isomorphic sets{
(X × S1, (σv,−), X i

σ)
}
∼=
{
(X∨ × (S1)∨, (σ∨v ,−), X∨

σ
i)
}

∼=
{
(X∨ × S1, (σ∨v ,−), X∧−

σ
i)
}

∼=
{
(X × (S1)∨, (σv,−), X∧+

σ
i)
} (4.20)

where we have denoted different twisted sectors of Xi
σ, X

∨
σ
i, X∧−

σ
i, X∧+

σ
i.

It is beyond the scope of the present work to investigate these sets and the precise
identification between their elements. For specific models, some results can be found in [26–28].

It is intriguing to compare what we have found here with the mirror maps that were
proposed for twisted connected sum G2 manifolds, reviewed in section 2.3 and section 2.4.
For models of this type that can equally be realized as (X × S1)/(σ,−), Z− captures the
geometry of X, and Z+ = Υr,a,δ that of the twisted sector. For the three mirror maps found
using the GLSM description, there are obvious candidates for a corresponding geometrical
construction as a TCS, as indicated by the notation used. Making this precise requires
an in-depth analysis of twisted sectors, and an identification of the twisted sectors in the
GLSM with different TCS realizations.

5 Discussion

In this work we studied G2 mirror symmetry from the worldsheet perspective for models which
can be realized as a quotient of a Calabi-Yau threefold X times a circle. The worldsheet CFT
of Type II strings propagating on the covering space X × S1 then enjoys Calabi-Yau mirror
symmetry as well as T-duality, giving rise to three distinct duality maps when combined.

It hence becomes possible to lift these duality maps to duality maps for the CFT describing
the G2 quotient as well. Given a pair of isomorphic CFTs and a pair of involutions that
are identified under the isomorphism, one must find isomorphic theories after performing
the quotient. What is not immediately obvious however, is if one can have a geometrical
description in terms of a G2 mirror pair on both sides. The involution which is used to
form a G2 variety from X × S1 must act geometrically as an anti-holomorphic involution
on X. In the context of Calabi-Yau threefolds realized as toric hypersurfaces, the explicit
description of mirror symmetry in terms of a gauged linear sigma model made it possible for
us to show that the mirror map precisely identifies pairs of anti-holomorphic involutions, so
that Calabi-Yau mirror symmetry identifies pairs of dual quotients realized geometrically as
G2 varieties. This identification agrees with equivalences found using other techniques, such
as a free-field description of toroidal orbifolds and Gepner models, where these are available.

Specifying an involution of a CFT is not enough to uniquely capture the quotient theory
due to the presence of twisted sectors. Given a CFT and an involution, the set of possible
twisted sectors must be uniquely determined however, so that our argument really identifies
sets of models. For each possible twisted sector of the quotient CFT, there must be a
possible twisted sector of its mirror. In the context of G2 Gepner models, twisted sectors
have received attention in [25–28], but it remains an interesting question for future study
how to understand the general picture.
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The results obtained in this work are consistent with earlier proposals of G2 mirrors for
twisted connected sum G2 manifolds. Whenever quotients

(
X × S1) /(σ,−) can be realized as

twisted connected sums, this in particular gives us access to various smoothings by resolving
and/or deforming the building blocks. It would be very interesting to work out in detail how
this approach relates to twisted sectors both before and after mirror symmetry.

It would also be very interesting to start investigating enumerative problems for G2 mirrors
that are based on the equality of effective superpotentials, e.g. along the lines of [29, 67, 68].
This is bound to be a hard problem with interesting mathematical ramifications [69].

For Spin(7) mirror symmetry [20], we expect that results analogous to the ones presented
here can be found. Spin(7) manifolds can be realized as quotients of Calabi-Yau fourfolds
by anti-holomorphic involutions [70], a construction which can be recast as a gluing of two
simpler pieces analogous to TCS [71]. This was in turn used to propose a mirror construction
in [36] which can be studied using similar techniques as used in the present work. Spin(7)
mirror symmetry has been studied from the perspective of Gepner models in [72].
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A Toroidal orbifold

Here we present a detailed analysis of the content of this paper for the case of a toroidal
orbifold. Here we have a lot of control over the content of the theory and so it really helps
to highlight how everything works together.

A.1 Calabi-Yau

Consider the Calabi-Yau formed as the orbifold T 6/Z2
2, where the Z2

2 acts via

α : (x1, x2, x3, x4, x5, x6) 7→
(
x1, x2,−x3,−x4,

1
2 − x5,−x6

)
β : (x1, x2, x3, x4, x5, x6) 7→ (−x1,−x2, x3, x4,−x5,−x6)

. (A.1)

Such orbifolds were classified in [73]. The model presented here is (0−2) in their classification
and can be thought of as an orbifold limit of the Schoen threefold [74] XS . Here we will focus
solely on the untwisted sector as the notions we need are evident in this simpler setting.

As the shift of x5 in the action α won’t affect our discussion, we set it to zero. This
orbifold was studied in [19], and then later generalised in [24], in the context of discrete
torsion and its role in mirror symmetry.

Before discussing the states in the CFT, we can use our orbifold action to compute the
expected untwisted cohomology. We note that the values of ai and bi don’t affect this, as
they are simple shifts. Working with complex structure

zj = x2j−1 + ix2j where j = 1, 2, 3, (A.2)
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it is straight forward to check that the invariant forms are the (0, 0)-form along with

dzi+dz̄
i
+

dz1
+dz

2
+dz

3
+, dzi+dz

j
+dz̄

k
+, dzi+dz̄

j
+dz̄

k
+, dz̄1

+dz̄
2
+dz̄

3
+

dzi+dz̄
i
+dz

j
+dz̄

j
+,

dz1
+dz̄

1
+dz

2
+dz̄

2
+dz

3
+dz̄

3
+,

(A.3)

where i, j, k ∈ {1, 2, 3} but i ̸= j ̸= k. From here we see that the non-zero, even Hodge
numbers are h0,0

+ = h3,0
+ = h0,3

+ = h3,3
+ = 1 and h1,1

+ = h2,2
+ = h2,1

+ = h1,2
+ = 3.

Let’s now turn to the CFT and ask “what are the Ramond-Ramond (RR) ground states
in our CFT?” For each coordinate xj we have a left- and right-moving Majorana-Weyl spinor
ψi and ψ̃j respectively. Given we are working with the flat metric on T 6, the zero modes
obey the anticommutation relations

{ψi0, ψ
j
0} = {ψ̃i0, ψ̃

j
0} = 2δij and {ψi0, ψ̃

j
0} = 0. (A.4)

We then define the complexified

ψj± = 1
2
(
ψj0 ± iψ̃j0

)
, (A.5)

which can easily be checked to obey the standard creation and annihilation anticommutators

{ψi±, ψ
j
∓} = δij and {ψi±, ψ

j
±} = 0. (A.6)

We then adopt the convention that ψi+ are creation and ψi− are annihilation operators. We
note that these operators are left-right symmetric and so create left-right symmetric states.

Let’s now look at the untwisted sector states, i.e. those states that are invariant un-
der (A.1). This action was defined on the coordinates xi, but it acts on the fermions in the
same way, as required by SUSY. The invariant states, i.e. the untwisted sector, are then
easiest expressed using the ψi± algebra:

|0⟩
|12⟩ , |34⟩ , |56⟩

|135⟩ , |136⟩ , |145⟩ , |146⟩ , |235⟩ , |236⟩ , |245⟩ , |246⟩
|1234⟩ , |1256⟩ , |3456⟩

|123456⟩ ,

(A.7)

where we have introduced the notation |i . . . j⟩ := ψi+ . . . ψ
j
+ |0⟩. The twisted sector is

straight forward to compute, but will not play a role here, instead the interested reader
is directed to [24].

A.1.1 Link to cohomology

We now want to find a relationship between the above RR states and the cohomology of
the target Calabi-Yau manifold. The identification is straight forward:

|ij . . . k⟩ ∼= dxi ∧ dxj ∧ . . . ∧ dxk , (A.8)
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but really we want complex differential forms (e.g. the (3, 0)-form Ω). For this reason we
work in a different basis for our creation and annihilation operators. We define

ϕi± = 1
2
(
ψ2i−1
± + iψ2i

±
)

and ϕ̄i± = 1
2
(
ψ2i−1
± − iψ2i

±
)
, (A.9)

which obey

{ϕi±, ϕ̄
j
∓} = δij (A.10)

and all others vanishing. We identify the creation operators via the + subscript: i.e. ϕi+
and ϕ̄i+. This set of operators will create states that are left-right symmetric and also form
complex pairs. We then have

ϕi+ |0⟩ ∼= dzi and ϕ̄i+ |0⟩ ∼= dz̄i. (A.11)

We can now form the cohomology easily: we simply take products of the ϕi+ and ϕ̄i+s and use
the anticommutation properties. Of course we can only keep those that can be formed using the
untwisted states listed above. It is not hard to verify that the only allowed combinations are

|0⟩
ϕi+ϕ̄

i
+ |0⟩

ϕ1
+ϕ

2
+ϕ

3
+ |0⟩ , ϕi+ϕ

j
+ϕ̄

k
+ |0⟩ , ϕi+ϕ̄

j
+ϕ̄

k
+ |0⟩ , ϕ̄1

+ϕ̄
2
+ϕ̄

3
+ |0⟩

ϕi+ϕ̄
i
+ϕ

j
+ϕ̄

j
+ |0⟩

ϕ1
+ϕ̄

1
+ϕ

2
+ϕ̄

2
+ϕ

3
+ϕ̄

3
+ |0⟩ ,

(A.12)

where i, j, k ∈ {1, 2, 3} but i ̸= j ̸= k. These are, of course, the same results we arrived
at in (A.3).

The question we want to ask is: how do we write these forms in terms of our states
|ij . . . k⟩? The answer is to simply expand the ϕi+ and ϕ̄i+ in terms of the ψi+s. Let’s first
look at the 0, 2, 4 and 6-forms (i.e. the diagonal forms) and consider

ϕ1
+ϕ̄

1
+ = 1

4(ψ
1
+ + iψ2

+)(ψ1
+ − iψ2

+)

= 1
2iψ

1
+ψ

2
+,

(A.13)

which up to a rescaling is simply |12⟩. The same argument applies for all the other forms,
and we get that the states with an even number of ψi+s can simply be replaced with ϕi+ϕ̄

i
+.

We shall call such states the diagonal states.
All that is left are the 3-forms. We compute these in the same manner and obtain:

Ω = ϕ1
+ϕ

2
+ϕ

3
+ = |135⟩ − |245⟩ − |146⟩ − |236⟩+ i

[
|136⟩ − |246⟩+ |145⟩+ |235⟩]

Ω̄ = ϕ̄1
+ϕ̄

2
+ϕ̄

3
+ = |135⟩ − |245⟩ − |146⟩ − |236⟩ − i

[
|136⟩ − |246⟩+ |145⟩+ |235⟩]

ω1 = ϕ̄1
+ϕ

2
+ϕ

3
+ = |135⟩+ |245⟩ − |146⟩+ |236⟩+ i

[
|136⟩+ |246⟩+ |145⟩ − |235⟩]

ω̄1 = ϕ1
+ϕ̄

2
+ϕ̄

3
+ = |135⟩+ |245⟩ − |146⟩+ |236⟩ − i

[
|136⟩+ |246⟩+ |145⟩ − |235⟩]

ω2 = ϕ1
+ϕ̄

2
+ϕ

3
+ = |135⟩+ |245⟩+ |146⟩ − |236⟩+ i

[
|136⟩+ |246⟩ − |145⟩+ |235⟩]

ω̄2 = ϕ̄1
+ϕ

2
+ϕ̄

3
+ = |135⟩+ |245⟩+ |146⟩ − |236⟩ − i

[
|136⟩+ |246⟩ − |145⟩+ |235⟩]

ω3 = ϕ1
+ϕ

2
+ϕ̄

3
+ = |135⟩ − |245⟩+ |146⟩+ |236⟩+ i

[
− |136⟩+ |246⟩+ |145⟩+ |235⟩]

ω̄3 = ϕ̄1
+ϕ̄

2
+ϕ

3
+ = |135⟩ − |245⟩+ |146⟩+ |236⟩ − i

[
− |136⟩+ |246⟩+ |145⟩+ |235⟩]

(A.14)
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We shall refer to this collection of states as the non-diagonal states from now on. The
(3, 0)-form has a decomposition Ω = A + iB with

A = |135⟩ − |245⟩ − |146⟩ − |236⟩ and B = |136⟩ − |246⟩+ |145⟩+ |235⟩ . (A.15)

One can use the OPE between two fermions to then check that these expressions do indeed
obey the OPEs required of A and B.

We immediately notice the difference between the diagonal and non-diagonal states:
the former are given by single RR states, whereas the latter are given by a complex linear
combination of all the RR states with three ψi+s. This gives a first hint at a subtlety: we know
mirror symmetry is meant to map middle cohomology states to non-middle cohomology states,
however we have just seen that these two classes of states take distinctly different forms. As
we will see in appendix A.1.3, the fix to this problem is that our 3-forms don’t simply map
to a single diagonal form, but to a complex linear combination of all the diagonal states.
However, first it is instructive to compute the charges of our states under our U(1) current.

A.1.2 Charges

In order to compute the charges of our states, we of course need to know the form the
U(1) current takes. For our theory of complex fermions, the left-moving U(1) current takes
the simple form

J = −
3∑
i=1

N
(
ϕiϕ̄i

)
=

3∑
i=1

N
(
ψ2i−1ψ2i) (A.16)

where the N(. . .) stand for normal ordering. We have an analogous result for the right-moving
current, but with tildes everywhere. Note that the current takes the form of a sum over the
Kähler forms for the three T 2s that make up our T 6, i.e. ωi ∼ ψ2i−1ψ2i. To compute the
charges of our states, we need to find the zero mode in the expansion of J :

j0 = −i
∑
r∈Z

3∑
j=1

ψ2j−1
−r ψ2j

r . (A.17)

We now make use of the following fact: the modes ψjr with r > 0 will annihilate the
vacuum, and because j0 contains products of ψ2j−1

−r ψjr , along with the fact that we can
anticommute the different ψjs and the fact that all our states are simply actions of ψj0s on
the vacuum, means that we can effectively drop all the terms in j0 that don’t have r = 0.
That is, we can instead simply consider the terms

J = −i
(
ψ1

0ψ
2
0 + ψ3

0ψ
4
0 + ψ5

0ψ
6
0
)
∈ j0. (A.18)

The idea now is to express J in terms of the ψi±s, as this will allow us to easily compute the
charges of our states. Using (A.5), we decompose J into two pieces J = Jd + Jn−d given by

Jd = −i
(
ψ1

+ψ
2
+ + ψ1

−ψ
2
− + ψ3

+ψ
4
+ + ψ3

−ψ
4
− + ψ5

+ψ
6
+ + ψ5

−ψ
6
−
)
. (A.19)

and
Jn−d = −i

(
ψ1

+ψ
2
− + ψ1

−ψ
2
+ + ψ3

+ψ
4
− + ψ3

−ψ
4
+ + ψ5

+ψ
6
− + ψ5

−ψ
6
+
)
. (A.20)

The subscripts come from the fact that Jd is the only part of J that has any effect on the
diagonal states and similarly Jn−d for the non-diagonal states.
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Left-Charge Eigenstate
+3 Σ = −

[
|0⟩ − |1234⟩ − |3456⟩ − |1256⟩

]
+ i
[
|56⟩ − |123456⟩+ |34⟩+ |12⟩

]
−3 Σ̄ = −

[
|0⟩ − |1234⟩ − |3456⟩ − |1256⟩

]
− i
[
|56⟩ − |123456⟩+ |34⟩+ |12⟩

]
+1 σ1 = −

[
|0⟩+ |1234⟩− |3456⟩+ |1256⟩

]
+ i
[
|56⟩+ |123456⟩+ |34⟩− |12⟩

]
−1 σ̄1 = −

[
|0⟩+ |1234⟩− |3456⟩+ |1256⟩

]
− i
[
|56⟩+ |123456⟩+ |34⟩− |12⟩

]
+1 σ2 = −

[
|0⟩+ |1234⟩+ |3456⟩− |1256⟩

]
+ i
[
|56⟩+ |123456⟩− |34⟩+ |12⟩

]
−1 σ̄2 = −

[
|0⟩+ |1234⟩+ |3456⟩− |1256⟩

]
− i
[
|56⟩+ |123456⟩− |34⟩+ |12⟩

]
+1 σ3 = −

[
|0⟩−|1234⟩+ |3456⟩+ |1256⟩

]
+ i
[
−|56⟩+ |123456⟩+ |34⟩+ |12⟩

]
−1 σ̄3 = −

[
|0⟩−|1234⟩+ |3456⟩+ |1256⟩

]
− i
[
−|56⟩+ |123456⟩+ |34⟩+ |12⟩

]
Table 2. Eigenstates of the diagonal left U(1) current Jd, and their corresponding charges.

Diagonal states. Let’s start by looking at the diagonal states and using Jd. It is then
clear that, up to signs, this current is going to take our diagonal states and either add
two ψi+s or take away two in the pairs |12⟩ , |34⟩ or |56⟩. Noting that when we remove the
creation operators, we must first anticommute the ψ2j−1

− ψ2j
− in Jd, we see that these states

come with a minus sign. For example

ψ1
−ψ

2
−(ψ1

+ψ
2
+ |0⟩) = −ψ2

−ψ
1
−ψ

1
+ψ

2
+ |0⟩

= −ψ2
−ψ

2
+ |0⟩+ ψ2

−ψ
1
+ψ

1
−ψ

2
+ |0⟩

= − |0⟩+ ψ2
+ψ

2
− |0⟩ − ψ2

−ψ
1
+ψ

2
+ψ

1
− |0⟩

= − |0⟩ .

(A.21)

where we have used {ψi±, ψ
j
∓} = δij and {ψi±, ψ

j
±} = 0. The same calculation holds for all

other states — note that we can move bilinears in fermions freely, i.e. we can “jump” a ψ3
−ψ

4
−

over the ψ1
+ψ

2
+ in |1234⟩ without the cost of any signs.

So we see our diagonal forms are mapped under Jd in the following way

Jd :

|0⟩ 7→ −i
[
|12⟩+ |34⟩+ |56⟩

]
|12⟩ 7→ −i

[
− |0⟩+ |1234⟩+ |1256⟩

]
|34⟩ 7→ −i

[
− |0⟩+ |1234⟩+ |3456⟩

]
|56⟩ 7→ −i

[
− |0⟩+ |3456⟩+ |1256⟩

]
|1234⟩ 7→ −i

[
− |12⟩ − |34⟩+ |123456⟩

]
|1256⟩ 7→ −i

[
− |12⟩ − |56⟩+ |123456⟩

]
|3456⟩ 7→ −i

[
− |34⟩ − |56⟩+ |123456⟩

]
|123456⟩ 7→ −i

[
− |1234⟩ − |1256⟩ − |3456⟩

]

(A.22)

The important thing to note is that none of these states are eigenstates of our current. We
need to take a linear combination of states in order to get an eigenstate. By considering
the (8 × 8) matrix defining the action of Jd on our diagonal states, we can compute the
eigenvalues and eigenvectors. The results are presented in table 2.
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The relative coefficients of this matches that of our non-diagonal states, (A.14), i.e. Σ
and Ω etc have the same coefficients. We shall return to this in appendix A.1.3.

Non-diagonal states. We can proceed to compute how Jn−d affects the non-diagonal states
in a similar fashion. Here we have the rule: if the state contains ψ1,3,5

+ then it is replaced
with ψ2,4,6

+ and vice versa. In order to get the minus signs correct, we first write Jn−d with
all annihilation operators to the right

Jn−d = −i
(
ψ1

+ψ
2
− − ψ2

+ψ
1
− + ψ3

+ψ
4
− − ψ4

+ψ
3
− + ψ5

+ψ
6
− − ψ6

+ψ
5
−
)
, (A.23)

so we see replacing ψ2,4,6
+ 7→ ψ1,3,5

+ but ψ1,3,5
+ 7→ −ψ2,4,6

+ . As before, we see how each of the
individual |ijk⟩ states are mapped under Jn−d, and from there check that our non-diagonal
states are eigenstates and compute the eigenvalues. We have:

Jn−d :

|135⟩ 7→ −i
[
− |145⟩ − |145⟩ − |136⟩

]
|245⟩ 7→ −i

[
|145⟩+ |145⟩ − |246⟩

]
|146⟩ 7→ −i

[
− |246⟩+ |136⟩+ (156)

]
|236⟩ 7→ −i

[
|136⟩ − |246⟩+ |145⟩

]
|136⟩ 7→ −i

[
− |236⟩ − |146⟩+ |135⟩

]
|246⟩ 7→ −i

[
|146⟩+ (256) + |245⟩

]
|145⟩ 7→ −i

[
− |245⟩+ |135⟩ − |146⟩

]
|235⟩ 7→ −i

[
|135⟩ − |245⟩ − |236⟩

]

(A.24)

Recalling (A.14) we therefore see that our non-diagonal states are our eigenstates with
charges ±3,±1, specifically:

q(ϕ1
+ϕ

2
+ϕ

3
+) = 3, q(ϕ̄1

+ϕ̄
2
+ϕ̄

3
+) = −3, q(ϕ̄i+ϕ

j
+ϕ

k
+) = 1, and q(ϕi+ϕ̄

j
+ϕ̄

k
+) = −1. (A.25)

In fact we have been a little careless here: the above charges are what we expect for
the NS states, but here we are dealing with the R states. We go between these via spectral
flow and this maps j0 7→ j0 ± 3

2 , and so these charges should be shifted.

Right-charge. We should also compute the right charge qR. This comes from a similar
derivation but now with tildes everywhere

J̃ = −i
(
ψ̃1

0ψ̃
2
0 + ψ̃3

0ψ̃
4
0 + ψ̃5

0ψ̃
6
0
)
∈ j̃0. (A.26)

However now we have

ψ̃i0 = −i
(
ψi+ − ψi−

)
, (A.27)

and so we need to carry this factor of −i through along with the relative sign between ψi±.
Everything in J̃ is bilinear, so we are really dealing with (−i)2 = −1. We therefore get

ψ̃1
0ψ̃

2
0 = −

[
ψ1

+ψ
2
+ + ψ1

−ψ
2
− − ψ1

+ψ
2
− − ψ1

−ψ
2
+
]

(A.28)
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etc. We therefore see that the signs on the non-diagonal forms cancel, i.e. we simply have

J̃n−d = Jn−d (A.29)

however on the diagonal forms we get a relative sign

J̃d = −Jd (A.30)

In other words, our non-diagonal states will have qL = qR while the diagonal eigenstates have
qL = −qR. This agrees with the result of section 3.2.2: the non-diagonal states are elements
of the (c, c) ring while the diagonal eigenstates are elements of the (a, c) ring.

A.1.3 Mirror symmetry

We now want to look at how mirror symmetry acts on our Calabi-Yau. As explained in [24],
in this context mirror symmetry is generated by three T -dualities along the coordinates

(j1, j2, j3) ∈
{
(1, 3, 6), (1, 4, 5), (2, 3, 5), (2, 4, 6)

}
, (A.31)

which are exactly the combinations that appear in the imaginary parts of our 3-forms above.19

We now want to ask how T -duality affects our Clifford algebra: it changes the sign of
the right-moving fermion zero mode, and so it replaces the creation operator ψj+ with the
annihilation operator ψj−. This modifies the definition of the ground state to be in terms
of the mapped operators, namely (

ψi−
)′ |0⟩′ = 0, (A.32)

which is equivalent to

ψi− |0⟩′ = ψj+ |0⟩′ = 0 (A.33)

where j labels the coordinates that are T -dualised and i labels all others. Using that (ψj+)2 = 0,
we can then express our dual vacuum state in terms of the original one as

|0⟩′ = ψj1+ψ
j2
+ψ

j3
+ |0⟩ , (A.34)

with (j1, j2, j3) the dualised indices.
We can now ask how states/forms in the T -dual picture relate to states/forms in the

original picture. The idea is simple: we work with primes everywhere and then simply
substitute in the relations at the end. The untwisted sector is then exactly the same as
before, (A.7), but with primes everywhere. For concreteness, let’s work with T -dualising along
(1, 3, 6). We are going to include a factor of i into our map so that T 2 = id. Geometrically,
this can be thought of as simultaneously a complex rotation on three-forms in H3(X,C).
Then we have (

ψ2,4,5
±

)′ = ψ2,4,5
± ,

(
ψ1,3,6
±

)′ = ψ1,3,6
∓ and |0⟩′ = i |136⟩ . (A.35)

19In [24] they also allow for T-dualising along (1, 3, 5), (1, 4, 6), (2, 3, 6) and (2, 4, 5), which correspond to
the real parts of our 3-forms. Here we do not include these as they define the mirror map as one that maps
the right-moving part of Ω to its complex conjugate. In this work we will ignore these additional maps.
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We now put this together with the anticommutators for the creation/annihilation operators
to obtain our relation. The result is the following

T :

|135⟩ 7→ −i |56⟩
|245⟩ 7→ −i |123456⟩
|146⟩ 7→ i |34⟩
|236⟩ 7→ i |12⟩
|136⟩ 7→ −i |0⟩
|246⟩ 7→ −i |1234⟩
|145⟩ 7→ i |3456⟩
|235⟩ 7→ i |1256⟩

(A.36)

We can easily show from here that the states on the right hand side (i.e. the diagonal states)
are mapped with the opposite sign behaviour.

The above allows us to ask the question of how our initial states are mapped. For
example, the (3, 0)-form Ω is mapped as

T (Ω = ϕ1ϕ2ϕ3) = −
[
|0⟩ − |1234⟩ − |3456⟩ − |1256⟩

]
+ i
[
|56⟩ − |123456⟩+ |34⟩+ |12⟩

]
= Σ,

(A.37)
where Σ is as defined in table 2. Again note that the factor of i we included is needed
here, i.e. the real part of Ω is mapped to the imaginary part of Σ. A similar calculation
will verify that the non-diagonal states in (A.14) correspond, respectively, to the diagonal
eigenstates in the table, i.e.

T (Ω̄) = T (Σ̄), T (ωi) = σi and T (ω̄i) = σ̄i (A.38)

At the level of the charges, this implies that mirror symmetry maps

T : (qL, qR) 7→ (qL,−qR). (A.39)

So we see that mirror symmetry maps charge eigenstates to charge eigenstates. This is the
result we expected: mirror symmetry maps R(c,c) to R(a,c) and vice versa. As we see, such a
map takes a 3-form and maps it to a linear combination of all the diagonal forms. This is not
a new result, and is simply related to how BPS states are mapped under mirror symmetry.

A.2 G2

Let’s now look at the corresponding G2 orbifold. Joyce showed [21, 22] that one can construct
a G2 manifold via T 7/Z3

2, where the Z3
2 acts via20

α : (x1, x2, x3, x4, x5, x6, x7) 7→
(
x1, x2,−x3,−x4,

1
2 − x5,−x6, x7

)
β : (x1, x2, x3, x4, x5, x6, x7) 7→ (−x1,−x2, x3, x4,−x5,−x6, x7)

σ : (x1, x2, x3, x4, x5, x6, x7) 7→
(
x1,−x2, x3,−x4, x5,

1
2 − x6,−x7

)
.

(A.40)

20This is example 4 from [22]. The dictionary between our presentation and the choice of coordinates and

generators made there is
here [22]

(1, 2, 3, 4, 5, 6, 7) (4, 3, 6, 5, 2, 1, 7)
(α, β, σ) (β, α, γ)

– 40 –



J
H
E
P
1
0
(
2
0
2
4
)
0
8
1

The α and β actions here are simply the extension of (A.1) to include the x7 coordinate.
We note that σ acts with a minus on x2,4,6, which in the complex structure of our T 6/Z2

2
discussion, is nothing but complex conjugation. From here we see that we can identify21

T 7

Z3
2
=

(
T 6

(α,β)

)
× S1

σ
= XS × S1

σ
, (A.41)

Hence we can apply our logic in order to check the involution carries through as we would like.

A.2.1 Anti-holomorphic involution

Before discussing the R ground states of our G2 theory, we first want to ask how the anti-
holomorphic involution acts on the states in our Calabi-Yau theory. This is particularly
easy to do here: our complex structure is given by zi = x2i−1 + ix2i, and so complex
conjugation simply acts as

(x1, x2, x3, x4, x5, x6) 7→ (x1,−x2, x3,−x4, x5,−x6). (A.42)

This is not the unique anti-holomorphic involution in this choice of complex structure as it is
possible to include shifts as in σ. This mapping is translated directly to the fermions, i.e. we
map ψ2,4,6

+ 7→ −ψ2,4,6
+ and the others are left alone. From here we see that our diagonal and

non-diagonal states have the desired behaviour, when compared to their differential forms:
the (0, 0) and (2, 2) forms are invariant, the (1, 1) and (3, 3) forms are odd, and the 3-forms
are mapped in pairs (m, 3−m) 7→ (3−m,m). In particular complex conjugation acts simply
on the i appearing in our non-diagonal states, (A.14).

However we note that the diagonal eigenstates in table 2 are not invariant but are also
mapped via complex conjugation on the i factors. Note that this tells us that the real parts
of diagonal states are the even forms while the imaginary parts are the odd forms. Putting
this together with the non-diagonal states, we see that our charges are mapped via

σ : (qL, qR) 7→ (−qL,−qR). (A.43)

This is exactly the result we were expecting.

A.2.2 Untwisted sector

We start by looking at the untwisted sector of this theory. Here the values of the ai and
bi don’t matter (as they only affect the fixed points), and so we can ignore them. It is
straightforward to check that the invariant states are given by

|0⟩ , |ijk⟩ , |ijkℓ⟩ , |1234567⟩ (A.44)

where

(ijk) ∈
{
(127), (347), (567), (135), (146), (236), (245)

}
,

(ijkℓ) ∈
{
(1234), (3456), (1256), (1367), (1457), (2357), (2467)

}
.

(A.45)

21Strictly speaking we need to resolve the (α, β) action in T 6 to obtain the Calabi-Yau XS . We return to
this shortly.
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We now note these take the exact form needed to be the extension of our states from our
T 6/Z2

2 calculation: everything that was odd under the anti-holomorphic involution is paired
with a ψ7

+ here. Geometrically, this is the statement that forms that are odd under the
involution need to be wedged with dθ, the one-form on the S1. In particular, notice that for
our 3-forms, (A.14), we must now work with the real and imaginary parts. For example,

(ω1 + ω̄1) and (ω1 − ω̄1) |7⟩ (A.46)

are the invariant states. This corresponds to taking the real and imaginary linear combinations
of a (2, 1) and (1, 2) form and wedging the imaginary part with dθ. Equally for the diagonal
states, those corresponding to (1, 1) and (3, 3) forms come with a |7⟩, while the (0, 0) and
(2, 2) forms are invariant by themselves.

Additionally we note that the G2 3-form and dual 4-form are expressed in the CFT as

Φ = |135⟩ − |245⟩ − |146⟩ − |236⟩+ |127⟩+ |347⟩+ |567⟩
X = |1457⟩+ |1367⟩+ |2357⟩ − |2467⟩+ |1234⟩+ |3456⟩+ |1256⟩

(A.47)

which matches the geometrical decomposition Φ = Re(Ω)+J∧dθ and X = Im(Ω)∧dθ+ 1
2J∧J .

A.2.3 Twisted sector

We now want to investigate the twisted sector of our action, and ask how this changes the
cohomology of our G2 orbifold. This problem has been studied from the perspective of the
Joyce orbifold T 7/Z3

2 in [22] and then explained at the level of discrete torsion in [24]. Here
we take a slighly different approach, and instead consider

Mσ =

(̃
T 6

(α,β)

)
× S1

σ
, (A.48)

where the tilde means we resolve the singularities of the (α, β) action. This will, of course,
give the same result as the references above.

First we want to consider the Calabi-Yau given by the resolution of T 6/(α, β). We
know from our previous discussion that the untwisted sector gives contributions to the
Hodge numbers

(h0,0, h1,1, h2,1, h3,0) = (1, 3, 3, 1), (A.49)

along with their matching Hodge duals, hm,n = h3−m,3−n. The contribution from the twisted
sector comes from considering the fixed points. Both α and β have 16 fixed points each, but
the action of α (β) on the fixed points of β (α) identifies these pairwise. Locally the fixed
points are hence 16 copies of T 2 ×C2/{±1}, and as standard we can choose to either blow up
or deform the C2/{±1}. In either case the Hodge numbers are the same, and each fixed point
contributes one to both h1,1 and h2,1 (and their Hodge duals). So in total our Calabi-Yau
has (h1,1, h2,1) = (19, 19), and so is self-mirror. These are the Hodge numbers of the Schoen
Calabi-Yau XS , as expected. In terms of Betti numbers, we have

b2(XS) = 3
T 2

+ 8
α
+ 8
β
= 19 and b3(XS) = 8

T 2
+ 16

α
+ 16

β
= 40. (A.50)
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We now want to consider the action of σ in Mσ = (XS × S1)/σ, i.e. we want to
compute b2

±(XS) and b3
±(XS) and use them to compute the Betti numbers for the smoothing

M = M̃σ via

b2(M) = b2
+(XS) + e2 and b3(M) = b3

+(XS) + b2
−(XS) + e3, (A.51)

where e2,3 denotes the contributions from the fixed points of σ.
Let’s start with b2(XS). It is clear that the 3 contributions from T 2’s are all odd. As the

action of σ pairwise swaps the 8 fixed loci of α modulo β (β modulo α) we find b2
+(XS) = 8.

Similarly, there are 4 even classes in b3(XS) represented by T 3’s in the original T 6, and 2 · 8
classes from the resolution of the fixed points of α and β, giving b3

+(XS) = 20.
On XS , there are 8 fixed loci from the action of σ which contribute to e2 and e3. The

resolution of these is not unique, and contributes e2 = ℓ and e3 = 16− ℓ classes. This can be
seen from the covering space T 6 where αβ acts as an involution on each of the T 3s fixed by
σ. Depending on the smoothing of the singularities of σ we get a contribution to either b2 or
b3, a phenomenon which shows up as discrete torsion in CFT description [24].

In total the smoothed G2 orbifold then has Betti numbers

b2(M) = 8 + ℓ and b3(M) = 47− ℓ , (A.52)

in agreement with [22, 24].

A.2.4 Mirror symmetry

As detailed in [24], here we have 4 notions of mirror symmetry. Just as with the Calabi-Yau
torodial orbifold considered previously, these take the form of T-dualities:

T +
3 = {(3, 4, 7), (2, 4, 5), (1, 4, 6)}

T −
3 = {(2, 3, 6), (5, 6, 7), (1, 2, 7), (1, 3, 5)}

T +
4 = {(1, 2, 5, 6), (1, 3, 6, 7), (2, 3, 5, 7)}

T −
4 = {(1, 4, 5, 7), (1, 2, 3, 4), (3, 4, 5, 6), (2, 4, 6, 7)}.

(A.53)

The combinations appearing in here are exactly the terms that appear in Φ and X above,
i.e. these are calibrated submanifolds. The subscripts indicate how many T-dualities we do,
and from chirality arguments we can see that T ±

3 map compactifications on Type IIA/B
to those on Type IIB/A, while T ±

4 map Type IIA/B to Type IIA/B. The ± superscript
indicates whether the discrete torsion signs are reversed or not, i.e. whether we blow up
or deform the fixed points of β. This changes the topology of the resulting G2 manifold,
i.e. ℓ 7→ (8 − ℓ) in (A.52).

The key thing we want to notice is that within the T4 actions we have (1, 3, 6, 7), (2, 3, 5, 7),
(1, 4, 5, 7) and (2, 4, 6, 7) which have the effect of mirroring the Calabi-Yau plus a T-duality
in the additional S1 direction. That is, we can take our Calabi-Yau mirror maps in (A.31)
and add on a T-dual along the S1 direction and generate a G2 mirror map.22

22We note that, just as in the Calabi-Yau case, mirror symmetry does not simply map a 4-form to a 3-form,
and vice versa. This we can see from the fact that our 4-form X contains exactly the terms that appear
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Here we want to ask how the mirror maps affect the involution action σ. Namely we
want to ask how σ∨ is related to σ. It is clear from the above calculation and the fact
that XS is self-mirror that(

XS × S1

σ

)∨
= X∨

S × (S1)∨

σ
= XS × S1

σ
. (A.54)

There are 9 independent G2 manifolds we can form via different resolutions labelled by ℓ of
this space, and mirror symmetry instructs us to pairwise identify them.

B Mirror symmetry and toric hypersurfaces

In this appendix we review the geometrical constructions of mirrors for Calabi-Yau manifolds
and building blocks using toric geometry.

B.1 Polytopes and hypersurfaces in toric varieties

Given a toric variety PΣ defined in terms of a fan Σ (see, e.g., [75] for a detailed review of
toric varieties), we can define a hypersurface as the vanishing locus of a section of a line
bundle L. Given Σ, the divisor class of a line bundle L is specified as

D = c1(L) =
∑
i

aiDi, (B.1)

in terms of the toric divisors Di corresponding to the ray generators of the fan Σ.
The relevance of polytopes is that they allow us to encode both a fan and a line bundle

in terms of a single object. A generic polytope is defined as follows.

Definition B.1 (Polytope). Let MR be some real vector space of dimension d. Consider
some set of points S ⊂MR. Then we can define a polytope by the convex hull of the set S,
i.e.

∆ = Conv(S) :=
{∑

i

λimi

∣∣∣ ∑
i

λi = 1, ∀mi ∈ S, and λi ∈ R+
0

}
⊆MR. (B.2)

The dimension of the polytope is equal to the dimensional of the smallest affine subspace
in MR that contains ∆, and we will take this dimensional to be equal to d. Polytopes can
always be made top-dimensional, i.e. dim∆ = dimMR, simply by appropriately reducing the
dimension of M . We will furthermore focus on the cases where MR =M ⊗R for some lattice
M . We then call a polytope ∆ ⊆MR a lattice polytope if the vertices of ∆ are lattice points
in M .

Definition B.2 (Polytope Face). Let (NR,MR) be a set of dual vector spaces and let ∆ ⊆MR
be a polytope. Then given a non-zero vector v ∈ NR and an a ∈ R, we can define

Hv,a := {m ∈MR | ⟨m, v⟩ = a} and H+
v,a := {m ∈MR | ⟨m, v⟩ ≥ a}. (B.3)

in T4, and so these terms will be mapped to the vacuum. For example, if we did the (1, 3, 6, 7) map, then
X ∋ |1367⟩ 7→ |0⟩, which geometrically is the 0-form. Similarly Φ ∋ − |245⟩ 7→ |1234567⟩. It is then easy to
see that under any of the maps we actually exchange Φ + |0⟩ and X + |1234567⟩. This is just the equivalent of
the fact that a 3-form in the Calabi-Yau is mapped to a linear combination of the diagonal forms.
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Hv,a is clearly a hypersurface in MR, and H+
v,a is the upper half plane associated to this

hypersurface. We call a subset Θ ⊆ ∆ a face of ∆ if there exists a Hv,b and H+
v,b such that

Θ = Hv,a ∩∆, and ∆ ⊆ H+
v,a. (B.4)

We will denote a dimension k face by Θ[k].

This definition is intuitively clear: consider some hypersurface in MR that “touches”
∆, and then the intersection of this hypersurface with ∆ is a face of ∆. We call a face of
codimension-1 a facet, a face of dimension 1 an edge and a face of dimension 0 a vertex. Note
we can think of a polytope as the convex hull of its vertices. We give a pictorial example
of this for a 2D polytope corresponding to a triangle below.

Hv,a

Θ[1]
∆

Note that a polytope ∆ is given precisely by the intersection of the a finite number
of half planes H+

vi,ai
, i.e.

∆ =
ℓ⋂
i=1

H+
vi,ai

(B.5)

is a polytope. It then follows from the definition of Hvi,ai that the vectors vi are perpendicular
to surfaces Hvi,ai and point into the intersection, as this is exactly what we need to ensure that
⟨m, vi⟩ ≥ ai for all m ∈ ∆. We give a pictorial example for a 2D polytope with ℓ = 4 below.

We now note that for a lattice polytope, in which case dim∆ = dimMR = d, each facet
Θ[d−1] has a unique supporting hyperplane. It follows from this that there is a unique choice
such that v[d−1]

Θ is a primitive lattice point in N , which implies that a[d−1]
Θ is an integer.

H
v

[d−1]
Θ ,a

[d−1]
Θ

= {m ∈MR | ⟨m, v[d−1]
Θ ⟩ = −a[d−1]

Θ }

and H+
Θ[d−1] = {m ∈MR | ⟨m, v[d−1]

Θ ⟩ ≥ −a[d−1]
Θ } .

(B.6)

Using these, our polytope is given by

∆ =
⋂

{Θ[d−1]}

H+
Θ[d−1] = {m ∈MR | ⟨m, v[d−1]

Θ ⟩ ≥ −a[d−1]
Θ , ∀ facets Θ[d−1] ⊂ ∆}, (B.7)

The minus sign appearing in the above expressions is included for later convenience.
The polytope defines a fan, which in turn can be used to define a toric variety.
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Definition B.3 (Normal Fan). To any face Θ of a polytope ∆, we can associate a cone

σ̌Θ :=
⋃

r≥0,p∆∈∆,pΘ∈Θ
r · (p∆ − pΘ), (B.8)

and its dual
⟨σ̌Θ, σΘ⟩ ≥ 0 . (B.9)

The collection of the cones σΘ for all faces Θ defines a complete fan23 called the normal fan
Σn(∆) of ∆.

Here, a k-dimensional face Θ[k] of ∆ is associated to a (d− k)-dimensional cone in Σn(∆).
In particular, the facets in ∆ correspond to the rays in Σn(∆). By an appropriate translation
of ∆, the ray generators of this fan become equal to the lattice points v[d−1]

Θ .
We can then use our polytope to define not only a fan Σn(∆), but also the divisor class

of a line bundle L on the associated toric variety PΣn(∆). This construction relies on the
piecewise linear support function on Σn(∆) that is defined by ∆, see [76] for details, and
implies that we can identify the a[d−1]

Θ in (B.7) with the ai in (B.1).
The Newton polytope describing of global holomorphic sections of L is then equal to ∆,

and the group of holomorphic sections in L has monomial basis the elements of which are in
one-to-one correspondence with lattice points on ∆. They can be given explicitly as

p(m) =
∏
i

z
⟨m,νi⟩+ai

i . (B.10)

where zi are the homogeneous coordinates associated with ray generators νi of Σn(∆). Note
that holomorphicity of these sections is guaranteed by the relations ⟨m, v[d−1]

Θ ⟩ ≥ −a[d−1]
Θ .

The normal fan Σn(∆) does not define a smooth or even orbifold toric variety PΣn(∆)
in general, and we may need to refine it to fan

Σ̃n(∆) → Σn(∆) (B.11)

to resolve singularities.

B.2 Calabi-Yau hypersurfaces and reflexive polytopes

To get a Calabi-Yau hypersurface, adjunction tells us that we need to choose L such that
its divisor class equals the first Chern class of PΣ:

D = c1(L) =
∑
i

Di, (B.12)

i.e. ai = 1 for all i in (B.1). For the above construction to work we hence need the polar
dual to ∆◦ defined by

⟨∆,∆◦⟩ ≥ −1 (B.13)

to be a lattice polytope.
23Here, it is customary to consider the whole of ∆ as a face of itself with σ∆ being the zero-dimensional

cone.
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Definition B.4 (Reflexive Polytope). A lattice polytope ∆ is called reflexive if its polar dual
is also a lattice polytope.

This definition implies that ∆◦ is reflexive as well, and that ∆◦ and ∆ both have the
origin as their unique interior point. Furthermore, one can show that Σn(∆) is equal to
the face fan24 Σf (∆◦) of ∆◦ for a pair of reflexive polytopes. The faces of ∆ and ∆◦ are
related to each other by

⟨Θ[k],Θ◦[n−k−1]⟩ = −1, (B.14)

where n is the dimension of the polytopes. The important thing is that a k-dimensional face
in ∆ is related to a (n − k − 1)-dimensional face in ∆◦.

Refinements of the fan Σn(∆) which introduce no new ray generators or ray generators
which are lattice points on ∆◦ correspond to crepant (partial) resolutions of the hypersurface
in the class (B.12). For a maximal regular25 triangulation of the polytope we hence find what
is called a maximal projective crepant partial (MPCP) desingularisation.

As we can use both ∆ and ∆◦ as the starting point of this construction, we obtain a
pair of Calabi-Yau hypersurfaces in toric varieties with fans Σ̃n(∆) and Σ̃n(∆◦). The two
hypersurface equations are explicitly given as

G(z) =
∑
m∈∆

∏
n∈∆◦

αmz
⟨m,n⟩+1
n = 0

G◦(z◦) =
∑
n∈∆◦

∏
m∈∆

α◦
nz

◦ ⟨m,n⟩+1
m = 0

(B.15)

Note that the ray generators Σ̃n(∆)(1) of Σ̃n(∆) are equal to the lattice points on ∆◦, and
the ray generators Σ̃n(∆◦)(1) of Σ̃n(∆◦) are equal to the lattice points on ∆ using MPCP
triangulations. We have labelled the homogeneous coordinates associated with a lattice
point n (m) by zn (z◦m).

In case the MPCP triangulation results in a smooth hypersurface, we will denote a generic
member of the resulting family by X∆,∆◦ . The non-trivial Hodge numbers of X∆,∆◦ are [6]

h1,1(X∆,∆◦) = ℓ(∆◦)− (d+ 1)−
∑

Θ◦[n−1]

ℓ∗
(
Θ◦[d−1]

)
+

∑
(Θ◦[d−2],Θ[1])

ℓ∗
(
Θ◦[d−2]

)
ℓ∗
(
Θ[1]

)
hd−2,1(X∆,∆◦) = ℓ(∆)− (n+ 1)−

∑
Θ[d−1]

ℓ∗
(
Θ[d−1]

)
+

∑
(Θ◦[d−2],Θ[1])

ℓ∗
(
Θ[d−2]

)
ℓ∗
(
Θ◦[1]

)
hm,1(X∆,∆◦) =

∑
(Θ◦[d−m−1],Θ[m])

ℓ∗
(
Θ◦[d−m−1]

)
ℓ∗
(
Θ[m]

)
for d− 2 > m > 1. (B.16)

Here ℓ(. . .) denotes the number of lattice points of its argument, ℓ∗(. . .) only counts the
lattice points in the relative interior of its argument, and d − 1 is the complex dimension
of the Calabi-Yau hypersurface.

Exchanging ∆ ↔ ∆◦ maps the Hodge numbers as expected for mirror symmetry, i.e.
h1,1 ↔ hd−2,1. In our main case of interest, which are Calabi-Yau threefolds, we have d = 4,

24The face fan of a polytope ∆◦ is the fan found by taking all cones over the faces of ∆◦.
25Regularity of a triangulation is implies projectivity of the toric variety, see [76, 77] for details and

definitions.
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so that mirror symmetry swaps h1,1 ↔ h2,1. In this case, there always exists a MPCP that
gives rise to a smooth Calabi-Yau hypersurface [6], so we do not have to explicitly check
the existence of such a triangulation.

B.3 K3 fibrations, projecting tops and building blocks

Whenever the N -lattice reflexive polytope ∆◦ contains a reflexive subpolytope, i.e. there is a
sublattice NF ∈ N such that ∆◦ ∩NF = ∆◦

F with ∆◦
F reflexive, the associated Calabi-Yau

hypersurface X∆,∆◦ may admit a fibration with fibres X∆F ,∆◦
F

[78–80]. The projection of N
to N/Nf gives rise to a projection of the hypersurface if there is an appropriate triangulation
of ∆◦ that turns this into a toric morphism.

Our case of interest are K3 fibrations of Calabi-Yau threefolds, where ∆◦ is four-
dimensional and ∆◦

F is three-dimensional. In this case ∆◦
F separates ∆◦ into two halves

♢◦
1 and ♢◦

2 called tops (or top and bottom). Letting m0 be the primitive normal vector
to NF , ⟨m0, NF ⟩ = 0, we can set

♢◦
1 := Conv ({n ∈ ∆◦|⟨m0, n⟩ ≥ 0})

♢◦
2 := Conv ({n ∈ ∆◦|⟨m0, n⟩ ≤ 0})

(B.17)

so that

∆◦ = ♢◦
1 ∪ ♢◦

2 ∆◦
F = ♢◦

1 ∩ ♢◦
2 . (B.18)

Motivated by the above, we will adopt the following

Definition B.5 (Top). A top is a lattice polytope ♢◦ such that

♢◦ = Conv ({n ∈ ∆◦|⟨m0, n⟩ ≥ 0}) (B.19)

for a reflexive polytope ∆◦ and primitive lattice point m0, and

∆◦
F := Conv ({n ∈ ∆◦|⟨m0, n⟩ = 0}) (B.20)

is reflexive. We will make the simple choice m0 = (0, 0, 0, 1) by exploiting the SL(4,Z) acting
on N in the following.

Definition B.6 (Projecting Top). A top ♢◦ is called projecting if the projection of ♢◦ to
NF ⊗ R is contained in ∆◦

F .

Projecting tops can be used to construct building blocks for TCS G2 manifolds in analogy
to Batyrev’s construction of Calabi-Yau threefolds [45]. Given a projecting top, we can
define its dual as

⟨♢,♢◦⟩ ≥ −1 ⟨♢, n0⟩ ≥ 0 . (B.21)

where n0 = (0, 0, 0,−1). Using ♢ ∈MR, in the construction outlined above in appendix B.1
results in a compact hypersurface in the toric variety PΣn(♢) which in general is not smooth.
A fan refinement

Σ̃n(♢) → Σn(♢) . (B.22)
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for which all rays introduced have generators which are lattice points on ♢ gives rise to a
crepant partial desingularisation. The associated MPCP (again for a regular triangulation)
then defines a smooth hypersurface which we denote by Z♢,♢◦ . The defining equation of Z♢,♢◦ is

F (z) =
∑

m∈(♢∪(0,0,0,1))
αmz

⟨m,n0⟩
0

∏
n∈♢◦

z⟨m,n⟩+1
n = 0 . (B.23)

Here zi are the homogeneous coordinates associated with the ray generators ni ∈ ♢◦, note
that n0 is always a ray generator of Σn(♢).

The hypersurface Z♢,♢◦ admits a K3 fibration with base P1 such that

c1(Z♢,♢◦) = [S0] (B.24)

where [S0] is the cohomology class dual to the divisor class of a generic K3 fibre, i.e. Z♢,♢◦ is
a building block and X♢,♢◦ = Z♢,♢◦ \ S0 is an asymptotically cylindrical Calabi-Yau threefold.

The topological data of Z♢,♢◦ required for our purposes can be described by combi-
nators [45]. Denoting k-dimensional faces of ♢ by Θ[k], the Hodge numbers of Z♢,♢◦ are
hi,0(Z♢,♢◦) = 0 for all i > 0 and

h1,1(Z♢,♢◦) = −4 +
∑
Θ[3]

1 +
∑
Θ[2]

ℓ∗(σn(Θ[2])) +
∑
Θ[1]

ℓ∗(Θ[1])ℓ∗(σn(Θ[1]))

h2,1(Z♢,♢◦) = ℓ(♢)− ℓ(∆F ) +
∑
Θ[2]

ℓ∗(Θ[2])ℓ∗(σn(Θ[2]))−
∑
Θ[3]

ℓ∗(Θ[3])
(B.25)

where ℓ∗(σn(Θ[k])) counts lattice points on ♢◦ in the relative interior of the normal cone to
Θ[k], and ℓ and ℓ∗ of polytopes/faces are defined as before.

The ranks of the lattices N and K defined for building blocks in (2.14) are

|N(Z♢,♢◦)| = ℓ1(∆F )− 3 +
∑

ve Θ◦[1]
F

ℓ∗(Θ◦[1]
F )ℓ∗(Θ[1]

F )

|K(Z♢,♢◦)| = h1,1(Z♢,♢◦)− |N | − 1
(B.26)

where ℓ1() counts points on the one-skeleton, and ve Θ[1]
F denotes only those one-dimensional

faces of ∆ which are bounding a face of ♢◦ that is ‘vertical’, i.e. parallel to n0.
As for reflexive polyhedra, one may interchange the roles played by ♢ and ♢◦ which

results in another building block Z♢◦,♢ that satisfies [31]

h2,1(Z♢,♢◦) = |K(Z♢◦,♢)|
h2,1(Z♢◦,♢) = |K(Z♢,♢◦)| .

(B.27)

Furthermore, the lattice N(Z♢,♢◦) and N(Z♢◦,♢) admit a primitive embedding

N(Z♢,♢◦)⊕N(Z♢◦,♢)⊕ U ↪→ Γ3,19 (B.28)

for Γ3,19 = H2(S0,Z) the unique even self-dual lattice of signature (3, 19). This implies that
the K3 fibres of Z♢,♢◦ and Z♢◦,♢ are from algebraic mirror families [48]. The above relations
play a crucial role in the construction of mirror G2 manifolds of TCS type.
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Any two projecting tops ♢◦
1 and ♢◦

2 for which ∆◦
1F = ∆◦

2F can be joined to create a
reflexive polytope ∆◦

12 [81]. A large fraction of the polytopes in the Kreuzer-Skarke list are of
this type, and as their Hodge numbers can be understood from this decomposition as well, a
number of patterns in the plot of Hodge numbers can be explained by this. Conversely, given
a reflexive polytope ∆◦ that can be decomposed into two projecting tops, the Calabi-Yau
threefold X∆,∆◦ admits a stable degeneration limit in which it becomes reducible into the
two building blocks Z♢,♢◦ and Z♢◦,♢ [31]. This limit can be understood as stretching the base
P1 of the K3 fibration on X∆,∆◦ , separating the singular K3 fibres to its two ends. Cutting
along the stretched base along the middle then decomposes X∆,∆◦ into the asymptotically
cylindrical threefolds X♢1,♢◦

1
and X♢2,♢◦

2
.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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