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seabed ploughing 
(2014-2018)

screw piles 
(2016-2019)

drag anchors 
(2022-2025)

offshore decommissioning 
(future)
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Stability of implicit material point methods for geotechnical analysis
of large deformation problems

overview of the MPM

stability issues: cell crossing & small cuts

conditioning, implications, avoidance & remedies

ghost stabilisation

numerical examples

observations
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the Material Point Method

the finite element method where
Gauss points are allowed to move...
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the Material Point Method

the finite element method where
Gauss points are allowed to move...

but there are issues...

cell crossing small-cuts
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the issue with material point methods
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Stability issues: cell crossing
elastic compaction under self weight
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initial height,
l0 = 50m

E = 10kPa
ν = 0

b = −800N/m3 body
force applied over 40
equal load steps

analytical stress
solution

σa
zz = b(l0 − Z)

analytical solution
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Stability issues: cell crossing
generalised interpolation material point method (GIMPM)
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Bardenhagen, S. G., Kober, E. M. (2004). The Generalized
Interpolation Material Point Method. Computer Modeling
in Engineering & Sciences, 5(6), 477–496.
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and Structures, 190, 108-125.
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linked to the ease and accuracy
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large numbers are problematic
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grid node
material point

consistent  
mass

lumped  
mass

condition number, κ([M ])

ratio of the largest to
smallest eigenvalue of [M ]

linked to the ease and accuracy
of the solution of {f} = [M ]{a}

and other mapping issues

large numbers are problematic

note that the MPM
conserves mass
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grid node
material point

non-stabilised

Courant–Friedrichs–Lewy (CFL)
condition limits the maximum

explicit time step size

∆t ≤ αCCFL min(h)

CCFL is based on

[K]{x} = λ[M ]{x}
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remedies... or avoidance strategies
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▶ Mass cut off algorithm (Sulsky et al., 1995) Explicit

▶ Modified Update Stress Last (MUSL) approach (Sulsky et al., 1995) Explicit

▶ Redistribute the forces associated with small nodal masses (Ma et al., 2010) Explicit

▶ Soft stiffness to stabilisation (Wang et al., 2016) Implicit

▶ Extended B-spline basis functions (Yamaguchi et al., 2021) Explicit/Implicit
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“the value of a nodal basis

function... may be small. However,

the internal force vector... does not

approach zero → accelerations...

can occasionally be unphysical...”

Sulsky et al. (1995)
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▶ Mass cut off algorithm (Sulsky et al., 1995) Explicit

▶ Modified Update Stress Last (MUSL) approach (Sulsky et al., 1995) Explicit

▶ Redistribute the forces associated with small nodal masses (Ma et al., 2010) Explicit

▶ Soft stiffness to stabilisation (Wang et al., 2016) Implicit

▶ Extended B-spline basis functions (Yamaguchi et al., 2021) Explicit/Implicit

“Such a small mass node not
only leads to tiny time steps,
but also often results in
instability and failure of
numerical simulations.”

Ma et al. (2010)

“...occupied by a small physical
domain, has a harmful effect

on the solution... cause
numerical instability...

ill-conditioning...”

Yamaguchi et al. (2021)
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“...the condition number of the finite element matrix depends on how the domain boundary cuts the
mesh. If the cut results in elements with very small intersections with the physical domain, the system
matrix may be very ill-conditioned...” Burman (2010)

Burman E. Ghost penalty. Comptes Rendus Mathematique 2010; 348(21): 1217-1220.
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immersed FEM → MPM
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boundary element

boundary element edges

physical boundary boundary element

determine boundary-
element intersections

j(ui, wi) =

q∑
k=1

h2k+1

(2k + 1)(k!)2

∫
Γ
[[∂k

nui]] [[∂
k
nwi]]dΓ where [[ui]] = ui|F+ − ui|F−
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material point

physical boundary
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physical boundary
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(2k + 1)(k!)2

∫
Γ
[[∂k

nui]] [[∂
k
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unpopulated element boundary element

boundary element edgesmaterial point

physical boundary

j(ui, wi) =

q∑
k=1

h2k+1

(2k + 1)(k!)2

∫
Γ
[[∂k

nui]] [[∂
k
nwi]]dΓ j(ui, wi) =

h3

3

∫
Γ
[[∂nui]] [[∂nwi]]dΓ→



Ghost stabilisation
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boundary element

boundary element edges, 

physical boundary

unpopulated 
element

j(ui, wi) =
h3

3

∫
Γ
[[∂nui]] [[∂nwi]]dΓCoombs, W. (2023). Ghost stabilisation of the Material Point Method....

Int. J. Num. Meth. Eng., 124(21), 4841-4875. doi.org/10.1002/nme.7332

https://doi.org/10.1002/nme.7332
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boundary element

boundary element edges, 

physical boundary

unpopulated 
element

[KG] =
γkh

3

3

∫
Γ

(
[G]T [m][G]

)
dΓ

penalty parameter, γk ∝ ECoombs, W. (2023). Ghost stabilisation of the Material Point Method....

Int. J. Num. Meth. Eng., 124(21), 4841-4875. doi.org/10.1002/nme.7332

https://doi.org/10.1002/nme.7332
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condition number, κ([K])

ratio of the largest to
smallest eigenvalue of [K]

linked to the ease and accuracy
of the solution of {f} = [K]{d}

large numbers are problematic
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[K]{x} = λ[M ]{x}
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grid node
material point

non-stabilised
Ghost stabilised 

Courant–Friedrichs–Lewy (CFL)
condition limits the maximum

explicit time step size

∆t ≤ αCCFL min(h)

CCFL is based on

[K]{x} = λ[M ]{x}



AMPLE: implementation
wmcoombs.github.io/

Coombs, WM & Augarde, CE (2020). AMPLE: A Material Point Learning Environment. Advances in Engineering Software 139: 102748.
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C D

elastic properties
E = 1MPa, ν = 0.3

von Mises yield strength
ρy = 15kPa (main)
ρy = 7.5kPa (weak)

density, ρ = 2, 400kg/m3

gravity applied over 40/h steps
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weak layer

A B

C D

h(m) 1.00 0.50 0.25

22 MPs ✓ ✗ ✓

32 MPs ✗ ✗ ✗

42 MPs ✓ ✓ ✓

22 GSMPs ✓ ✓ ✓

32 GSMPs ✓ ✓ ✓

42 GSMPs ✓ ✓ ✓



Numerical example: Cone Penetration Test (CPT)

Will Coombs (DU) Stability of material point methods ALERT 2024 19 / 23




Numerical example: seabed ploughing
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RD= 44%

ρ = 1670kg/m3

E∗ = 26MPa
ν = 0.3

ϕ = 33.5◦

ψ = 3.5◦

c = 0.3kPa




Observations
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▶ The MPM suffers from conditioning issues due to
the arbitrary interaction between the physical
body and the background grid.

▶ Ghost stabilisation penalises jumps in the spatial
gradient of the solution across the boundary of
the physical body and introduces a bound on the
condition number of the linear system - restoring
coercivity to some degree (no proof).

▶ The stabilisation significantly improves the
reliability of the MPM and reduces stress
oscillations at the physical boundary.

explicit dynamic elasto-plastic analysis
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▶ 30 years since Sulsky et al. (1994)

▶ MPM is not a meshless method → an unfitted
mesh-based method is more appropriate?

▶ Unless we deal with the instabilities, combining
MPM with complex constitutive models is
problematic.

▶ 3D large deformation coupled (soil-water)
simulations are still a challenge: inf-sup, stiff
system, long run times...

▶ Boundaries need more work and care.

▶ Implicit is difficult, but worth the hassle...
(check with Robert and Ted)

Sulsky D, Chen Z, Schreyer HL (1994). A particle method for history-dependent materials.

Comput Methods Appl Mech Eng. 118(1):179-196.
explicit dynamic elasto-plastic analysis
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Validation: column under self weight
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Velocity mapping: expansion

Will Coombs (DU) Stability of material point methods ALERT 2024 25 / 23

g
h
o
st

st
a
b
il
is
ed

final position

initial position

FLIP/PIC

FLIP

PIC



Ghost stabilisation: B-Spline basis functions
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j(ui, wi) =

q∑
k=1

h2k+1

(2k + 1)(k!)2

∫
Γ
[[∂

k
nui]] [[∂

k
nwi]]dΓ

condition number, κ([K])

ratio of the largest to
smallest eigenvalue of [K]

linked to the ease and accuracy
of the solution of {f} = [K]{d}

large numbers are problematic
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